
HAL Id: hal-02102561
https://hal-lara.archives-ouvertes.fr/hal-02102561v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Middleware Deployment Planning on
Clusters

Eddy Caron, Pushpinder Kaur Chouhan, Holly Dail

To cite this version:
Eddy Caron, Pushpinder Kaur Chouhan, Holly Dail. Automatic Middleware Deployment Planning
on Clusters. [Research Report] LIP RR-2005-26, Laboratoire de l’informatique du parallélisme. 2005,
2+13p. �hal-02102561�

https://hal-lara.archives-ouvertes.fr/hal-02102561v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Automatic Middleware Deployment

Planning on Clusters

Eddy Caron,

Pushpinder Kaur Chouhan,

Holly Dail

May 2005

Research Report No 2005-26

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Automatic Middleware Deployment Planning on Clusters

Eddy Caron, Pushpinder Kaur Chouhan, Holly Dail

May 2005

Abstract

The use of many distributed, heterogeneous resources as a large collective re-
source offers great potential and has become an increasingly popular idea. A
key issue for these Grid platforms is middleware scalability and how middleware
services can best be mapped to the resource platform structure. Optimizing
deployment is a difficult problem with no existing, general solutions. In this
paper we address a simpler sub-problem: how to carry out an adapted deploy-
ment on a cluster with hundreds of nodes? Efficient use of clusters alone or as
part of the Grid is an important issue.
We present a deployment model that predicts the maximum throughput of
each element of a deployment. Our deployment construction algorithm uses
this model to automatically create a mapping of middleware elements onto
resources with the goal of maximizing throughput. We apply our approach
to automatically deploy a distributed Problem Solving Environment (PSE)
on a homogeneous cluster environment. We present experiments comparing
the automatically-generated deployment against a number of other reasonable
deployments.

Keywords: Deployment, Cluster, Middleware, Modeling

Résumé

L’utilisation de plusieurs ressources hétérogènes distribuées comme une seule et
même ressource offre un grand potentiel et est une idée de plus en plus répan-
due. L’approche la plus célèbre répondant à cette idée sont les plates-formes de
type Grille. Un des problèmes pour la gestion de ces grilles reste l’extensibilité
des intergiciels sous-jacent mais également comment associer les services rendus
par l’intergiciel avec la structure matérielle de la plate-forme. L’optimisation
du déploiement est un problème difficile pour lequel il n’existe pas de solution
générique. Dans ce papier nous nous intéressons à un sous-problème: comment
trouver un déploiement performant sur une grappe de plusieurs centaines de
nœuds ? On vise une utilisation efficace de l’ensemble de la grappe seule ou en
tant qu’élément d’une grille.
À ces fins, nous proposons un modèle pour le déploiement qui prédit le dé-
bit maximum de chaque élément déployé. Notre algorithme de construction de
déploiement utilise ce modèle pour créer automatiquement la projection des élé-
ments de l’intergiciel sur les ressources avec pour objectif de maximiser le débit
total. Nous appliquons notre approche pour automatiser le déploiement d’un
environnement de résolution de problème (PSE) sur un environnement de type
grappe. Enfin, nous présentons les expériences qui comparent le déploiement
généré automatiquement avec quelques déploiements qu’un utilisateur pourrait
envisager.

Mots-clés: Déploiement, Grappes, Intergiciel, Modélisation

1 Introduction

Due to the scale of Grid platforms, as well as the geographical localization of resources, middleware
approaches should be distributed to provide scalability and adaptability. Much work has focused on
the design and implementation of distributed middleware. To benefit most from such approaches, an
appropriate mapping of middleware components to the distributed resource environment is needed. How-
ever, while middleware designers often note that this problem of deployment planning is an important
problem, few solutions for efficient and automatic deployment exist. In other words, questions such as
“which resources should be used?”, “how many resources should be used” and “should the fastest and
best-connected resource be used for middleware or as a computational resource?” remain difficult to
answer.

Before deploying on the scale of the Grid, the first problem encountered by users is “how to manage
an adapted deployment on a cluster with tens to hundreds of nodes?” While the homogeneous properties
of such a platform tend to simplify many aspects of the problem, this article will show that the task is
not as simple as it appears. Moreover, given the popularity of resource reservation mechanisms (Condor,
PBS, OAR, etc) on clusters, the task can be dynamic even within a cluster.

The main goal of this paper is to provide an automated approach to deployment planning that
provides a good deployment on homogeneous cluster environments. We focus on hierarchically distributed
middleware approaches and we consider that a “good” deployment is one that maximizes throughput.
We present a model for the throughput of each element of the hierarchy. This model is used by our
deployment planning algorithm that defines an optimal hierarchy whereby the number of children at
each level is given by a real-valued solution. We then apply an integer approximation to obtain a
realisable hierarchy. We also present several algorithms that allow us to obtain a deployment under
limited resource conditions.

We use a distributed Problem Solving Environment (PSE) as a test case for our approach. This PSE,
the Distributed Interactive Engineering Toolbox (DIET) [13], uses a hierarchical arrangement of agents
and servers to provide a scalable, high-throughput scheduling service. In [13], the authors showed that
if a simple star deployment is used for DIET the centralized agent can become a bottleneck. We apply
our approach to find an appropriate hierarchical deployment of this middleware.

The rest of the article is organized as follows. Section 2 presents related work on the subject of
deployment and deployment planning. In Section 3 the architectural model is presented and a deployment
performance model is developed based on steady-state operation. Section 4 describes our algorithm for
deployment construction and provides two algorithms that can be used to utilize the exact number of
nodes available in the cluster. Section 5 gives an overview of DIET and describes how we applied the
given model to the deployment of DIET. Section 6 presents some experiments that validate this work.
Finally, Section 7 concludes the paper and describes future work.

2 Related Work

A deployment is the distribution of a common platform and middleware across many resources. Deploy-
ment can be broadly divided in two categories: system deployment and software deployment. Software
deployment maps and distributes a collection of software components on a set of resources. Software
deployment includes activities such as releasing, configuring, installing, updating, adapting, de-installing,
and even de-releasing a software system. Modern software systems are increasing the complexity of these
tasks as more sophisticated architectural models, such as systems of systems and coordinated distributed
systems, become commonplace. Many tools have been developed for software deployment; examples
include ManageSoft [1], FootPrints Software Deployment [2], Software Dock [17], SmartFrog [3], and
Ant [16].

ManageSoft [1] is a dynamic software deployment and management solution for desktops, servers, and
mobile devices. The ManageSoft client-centric architecture enables rapid and reliable software distribu-
tion across any network including the Internet. With automatic installation and self-healing, unlimited
scalability, and web-based status reporting, ManageSoft provides ongoing savings long after initial deploy-
ment. It’s the way to deploy, update, and manage software on Windows, Linux, UNIX, and Macintosh
devices.

FootPrints Software Deployment [2] distributes software to every computer in an organization. It
outfits and configures workstations, laptops and servers to organizations’ software standards and policies.

Utilizing New Boundary’s Prism Deploy [4] technology, set up computers the way they should be to ensure
maximum control and security of the network environment quickly and easily. The Prism Deploy helps
to keep them configured that way automatically no matter what accidental or unauthorized changes end
users may make.

The Software Dock [18] is a system of loosely coupled, cooperating, distributed components. The
Software Dock support software producers by providing the release dock that acts as a repository of
software system releases. The Software Dock employs agents that travel from release docks to field docs
in order to perform specific software deployment tasks while docked at a field dock.

SmartFrog [3] is a technology for describing distributed software systems as collections of cooperating
components, and then activating and managing them. It was developed at HP Labs in Bristol, in the
UK. The core SmartFrog framework is released under LGPL.

Distributed Ant [16] extends the Ant [26] build file environment to provide a flexible procedural
deployment description and implements a set of deployment services. It fills a gap in end user support in
Grid middleware and provides a dedicated secure mechanism for decentralized application deployment.

System deployment involves two steps, physical and logical. In physical deployment all hardware is
assembled (network, CPU, power supply etc), whereas logical deployment is organizing and naming whole
cluster nodes as master, slave, etc. As deploying systems can be a time consuming and cumbersome task,
tools such as Deployment Toolkit [6] and Kadeploy [22] have been developed to facilitate this process.

DELL Deployment Toolkit [6] provides a suite of enabling technologies for PowerEdge servers designed
to help with pre-operating system configuration, remote server deployment or re-provisioning. The
Deployment Toolkit provides the flexibility and control to leverage organization’s remote deployment
policies and practices.

Kadeploy [22] is a deploying tool to allow the deployment of multiple computing environment on
every node, without compromising the original system/boot sector. The environment to be deployed can
either already exist and be registered in the database or already exist but not be registered or neither
exist nor be registered. The deployment system is composed of several tools or commands whose aim is
the execution of all the needed actions to carry out deployments and other administrative tasks.

Although these toolkits can automate many of the tasks associated with deployment, they do not
automate the decision process of finding an appropriate mapping of task to resource so that the best
performance can be achieved from the system.

In [11] we presented a decision builder tool to analyze existing hierarchical deployments, use math-
ematical models to identify the bottleneck node, and remove the bottleneck by adding resources in the
appropriate area of the system. The solution presented was iterative and heuristic in nature; the current
work provides a direct analytical method that provides an optimal real-valued solution with an integer
approximation.

In [21], software components based on the CORBA component model are automatically deployed on
the computational Grid. The CORBA component model contains a deployment model that specifies
how a particular component can be installed, configure and launched on a machine. The authors note a
strong need for deployment planning algorithms, but to date they have focused on other aspects of the
system. Our work is thus perfectly complementary; a collaboration has already been planned to test our
algorithms with their deployment approach.

Optimizing deployment is an evolving field. In [19], the authors propose an algorithm called Sikitei to
address the Component Placement Problem (CPP). This work leverages existing AI planning techniques
and the specific characteristics of CPP. In [20] the Sikitei approach is extended to allow optimization
of resource consumption and consideration of plan costs. The Sikitei approach focuses on satisfying
component constraints for effective placement, but does not consider detailed but sometimes important
performance issues such as the effect of the number of connections on a component’s performance.

The Pegasus System [10] frames workflow planning for the Grid as a planning problem. The approach
is interesting for overall planning when one can consider the individual elements as composable with no
performance consideration. Our work is more narrowly focused on a specific style of assembly and
interaction between components and has a correspondingly more accurate view of performance to guide
the deployment decision process.

The middleware deployment model that we present in this article is different from above mentioned
tools and systems. Our model deploy middleware on PCs like software deployment and specify the
connectivity between the nodes like logical system deployment. Our model specify the way to construct
a platform from homogeneous distributed systems and also tells which type of hierarchy will be good for
specific type of computation intensive problems.

3 Steady-state modeling for hierarchical systems

We consider the steady-state scheduling techniques [9, 8] for our model because we are interested in
maximizing steady-state throughput. In steady-state techniques, the performance of the startup and
shutdown phases are not considered. The initial integer formulation is replaced by a continuous or
rational formulation. The precise ordering and allocation of tasks and messages are not required, at least
in the first step. The main idea is to characterize the activity of each resource during each time-unit.

3.1 Architectural Model

The target architectural framework is represented by a weighted graph G = (V,E,w,C). Each
Pi ∈ V represents a computing resource with computing power wi, meaning that node Pi execute
wi MFlop/second (so bigger the wi, the faster the computing resource Pi and wi = 0 is not possible
since it would permit node Pi to have no computing power). There are one or more client nodes Pc that
generate requests for the system. Each link Pi → Pj is labelled by the bandwidth value Ci,j in Mb/s.

Nodes can be divided in two types, agents and servers. Agents are the nodes that coordinate incoming
requests and communicate the requests to the appropriate servers; examples could include scheduling
computation requests in a remote procedure call system or providing load balancing between servers in
a web server farm. Servers provide services to clients; examples could include providing computational
services in a remote procedure call system or responding to web requests as part of a web server farm.
If responses are generated by the servers the agents may coordinate the response.

The size of the request generated by the client is Sin
i and the size of the reply request created by each

node is Sout
i . The measuring unit of these quantities is MB/request. The amount of computation needed

by Pi ∈ A (A is a set of agents) to process one incoming request is denoted by W in
i and the amount of

computation needed by Pi ∈ A to merge the reply requests of its children is denoted by W out
i . In short

W out
i is the time needed for sorting the servers. WXSer

i is the amount of computation needed by Pi ∈ S

(S is a set of servers) for Xser service.

3.2 Steady State Operation

Our objective is to generate a best hierarchy from the available number of nodes so as to get maximum
throughput. Throughput is the maximum number of requests that can be completed in a time step.
The main focus for constructing the hierarchy is the maximum throughput of each node, where this
throughput may depend on the number of children a node is supporting in the hierarchy. The overall
throughput of the system depends on the bandwidth of the links, message size of requests, time spent
computing by each node on each request, and the computing power of the nodes. Therefore, we have the
following constraints:

Computation resource for agents: αin
i denotes the number of incoming requests (requests from

clients) processed by Pi during one time-unit (we take one time-unit to be one second). Note that αin
i is

not necessarily an integer, it may be a rational. In a similar way, αout
i is the number of outgoing requests

(e.g. selection of the best server based on the reply packets) computed during one time-unit by the
node Pi. In steady-state, there is a corresponding reply for each incoming request and αin

i must equal
αout

i . Thus, we can consider only αi, the overall throughput of the sub-tree rooted at Pi. The following
equation states that the sub-tree throughput can not be larger than the throughput of the agent.

∀Pi ∈ A : αi ≤
wi

W in
i + W out

i

(1)

So we re-organize Equation (1) to represent the number of requests computed by an agent as
Nodecompi

in Equation (2).

Nodecompi
≤

wi

W in
i + W out

i

,∀Pi ∈ A (2)

Communication resources: Depending on the physical network, network bandwidth on a single
link is either shared by incoming and outgoing data or bandwidth is fully duplex. Depending on the
type of bandwidth utilization either of the two equations represented as Equation (3) will be used to
calculated the number of requests transmitted per time-unit along each link Pi ↔ Pj .

∀Pi → Pj : Commreq ≤
Ci,j

Sin
i + Sout

j

|| Commreq = min(
Ci,j

Sin
i

,
Ci,j

Sout
j

) (3)

Server computation constraints: The number of requests that can be calculated by a Pi ∈ S in
a time step is given by Equation (4).

Servercomp ≤
wi

WXser

i

,∀Pi ∈ S (4)

4 Deployment construction

The maximum nodes that can be connected to another node without making it bottleneck can be calcu-
lated from the above constraints.

Number of servers supported by an agent: MSPA (Maximum Servers Per Agent) represents
the maximum number of servers that can be supported by a node Pi ∈ A.

MSPA =
Nodecompi

min(Servercomp, Commreq)
(5)

Number of agents supported by another agent: The maximum number of agents of that can
be added to another agent is given as MAPA (Maximum Agents Per Agent). The MAPA value for
agents at a particular level in the hierarchy l depends on number of requests processed per second by
each agent at level l+1. The calculation of MAPA must therefore be done for each level of the hierarchy;
no more levels can be added when MAPA < 3 since there can be no benefit to adding levels.

MAPAl =
Nodecompl

min(Nodecompl+1
, Commreq)

, Pl, Pl+1 ∈ A (6)

As mentioned earlier the throughput of the platform can be a rational, so the values of MAPA and
MSPA are not necessarily integers, they could be rational too. To make these values integers we use
either round up or round down. The simple method that we consider is according to the available number
of nodes. If we have enough available nodes we round up, otherwise we round down.

We consider l to be the number of levels in the hierarchy between the top-level agent and the servers.
For example, l = 0 is the minimal hierarchy of an agent with servers. The total number of nodes required
for the best hierarchy, n req, can be calculated as follows.

n req =

l∑

k=0

MAPAk + MAPAl × MSPA (7)

The hierarchy is constructed using Algorithm 1. This algorithm uses Algorithm 2 and Algorithm 3
to use no more than the number of available nodes.

5 Model implementation

To organize the nodes in an efficient manner and use the nodes’ power efficiently is out of the scope of
end users. That is why end-users have to rely on specialized middleware, like Problem Solving Envi-
ronments (PSE), for their applications on such platforms. Such middleware, like NetSolve [7], Ninf [24]
or DIET [13], already exist and are commonly called Network Enabled Server (NES) environments [23].
We illustrate our model by applying the results to an existing hierarchical PSE called DIET.

5.1 DIET overview

The Distributive Interactive Engineering Toolbox is developed at the Ecole Normale Supérieure de Lyon
and is available at http://graal.ens-lyon.fr/DIET. Figure 1 gives a general view of DIET. DIET is built
around five main components. The Client is an application that uses DIET to solve problems in a
RPCS mode. The hierarchy of scheduling agents is composed of a single Master Agent and zero
or more Local Agents (LA). The MA is the entry point of the DIET environment and thus receives
all computation requests from clients. The MA forwards service requests onto servers, collects their
computation abilities from their responses, selects the best server, and forwards the server reference
back to the client according to some scheduling heuristics (dead-line scheduling, shortest completion
time first, minimization of the requests throughput, . . .). The LAs transmit requests and information
between the MA and the servers. The hierarchy of LAs can provide scalability and adaptation to diverse
network environments. For additional flexibility, peer-to-peer technology is used in DIET to provide

http://graal.ens-lyon.fr/DIET

1: calculate MSPA using Equation (5)
2: l=0, n req=0
3: while n req < n do
4: calculate MAPAl using Equation (6)
5: n reqlow = n req

6: calculate n req using Equation (7)
7: l++
8: l −− , n reqhigh = n req

9: if (n − n reqlow) > (n reqhigh − n) then
10: call Make Hierarchy
11: call Node Removal Algorithm 2 with extra nodes = n reqhigh − n

12: else
13: l −−
14: call Make Hierarchy
15: call Node Addition Algorithm 3 with extra nodes = n − n reqlow

Procedure: Make Hierarchy

1: while l > 0 do
2: add MAPAl agents to lowest level agent
3: l −−
4: add MSPA servers to lowest level agent

Algorithm 1: Construction Algorithm

clients with access to multiple hierarchies. In this paper we consider the deployment of a single DIET
hierarchy. The information stored on an LA is the list of requests and the number of servers that can
solve a given problem and information about the data distributed in this subtree. Depending on the
underlying network topology, a hierarchy of LAs may be deployed between an MA and the bottom LAs.
The scheduling and the gathering of information is distributed in the tree. Server Daemons (SeD)
provide a variety of computational services. These services are declared by the SeD to its parent LA.
For instance it can be located on the entry point of a parallel computer.

MA

MA

MA

LALA

LALALA

LA

MA

MA

client

MA

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
������

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Figure 1: General view of DIET.

The information stored on an SeD is a list of the data available on its server (with their distribution
and the way to access them), the list of problems that can be solved on it, and all information concerning
its load (memory available, number of resources available, . . .). A SeD can give performance prediction
for a given problem using the performance evaluation module FAST [25, 15]. Finally, computation in
interactive mode are executed by a federation of Computational Resource Daemons located on the

1: while (extra nodes > 0) do
2: if extra nodes < MSPA then
3: remove extra nodes from the one of the bottom agents. Exit
4: else if (extra nodes == MSPA || extra nodes == MSPA + 1) then
5: remove one bottom agent with all its servers. Exit
6: else
7: remove agent = extra nodes mod MSPA
8: if remove agent > (MAPAl × MSPA) + MAPAl then
9: remove MAPAl agents with all its servers.

10: add MSPA /* servers to the agent that now have neither agent nor server connected to it*/

11: left nodes = extra nodes − ((MAPAl × MSPA) + MAPAl) + MSPA

12: extra nodes = left nodes

13: else
14: remove remove agent agents with all its servers
15: left nodes = extra nodes − ((remove agent × MSPA) + remove agent)
16: extra nodes = left nodes

Algorithm 2: Node Removal Algorithm

1: while (extra nodes > 1) do
2: if all bottom-level agents have maximum number of servers then
3: add one node to the bottom agent
4: add parent servers as his servers
5: extra nodes −−
6: else
7: if extra nodes ≤ MSPA then
8: add one agent to the agent having child agents < MAPA
9: add extra nodes − 1 servers to this newly added agent. Exit

10: else
11: add agent = extra nodes mod MSPA
12: if extra nodes ≥ add agent + add agent × MSPA then
13: while (add agent > 0) do
14: add one agent to the agent having child agents < MAPA
15: add MSPA servers to this new added agent
16: add agent −−
17: extra nodes = extra nodes − add agent + add agent × MSPA

18: else
19: add agent −−
20: go to line 13

Algorithm 3: Node Addition Algorithm

(2)

MAMA

LA LA LA

LA

LA

LA

MA MA MA

(3) (4) (5)

Client

MA

(1)

Figure 2: Deployment ordering for a DIET system.

different processors of a parallel server. A batch approach can also be used and the computation requests
are sent to the batch system directly by the Server Daemon. Figure 2 shows each step of initialization
in the DIET system. The architecture is built in hierarchical order with each component connecting to
its parent.

5.2 Model with DIET

We make some assumptions to use DIET for model validation. The MA and LA are considered as having
the same performance because we observed only negligible differences in their performance. We assume
that an agent can connect either agents or servers but not both and that the root of the tree is always
an MA. Thus all clients will submit their request to the DIET hierarchy through one MA.

When client requests are sent to the agent hierarchy, DIET is optimized such that large data items like
matrices are not included in the problem parameter descriptions (only their sizes are included). These
large data items are included only in the final request for computation from client to server. Since we
are primarily interested in modeling throughput for the agent hierarchy as an example of a hierarchical
middleware system, we assume that large data items are already in-place on the server.

6 Experimental results

In this section we present experiments designed to test the ability of our deployment model to correctly
identify good real-world deployments. In Section 6.1 the experimental design and the corresponding
parameterization of our deployment model are presented. Section 6.2 presents experiments testing the
accuracy of our deployment performance model; the accuracy of this model is key to providing confidence
in the deployment algorithms. These algorithms are tested in Section 6.3 with experiments comparing
the performance of the best deployment identified by our deployment algorithms against the performance
of other intuitive deployments.

In this section we present experiments designed to test the accuracy of our performance models for
hierarchical deployments (Section 6.2) and the ability of our deployment optimization algorithms to
identify deployments that are appropriate to a given resource environment and workload (Section 6.3).
The next section describes the experimental design.

6.1 Experimental design

Software: DIET is used for all deployed agents and servers. The deployment arrangements are defined
according to experimental goals and will be described in the following sections. Once a deployment has
been chosen, GoDIET [12] is used to perform the actual software deployment. The desired hierarchical
arrangement of agents and servers is defined in an XML file; GoDIET reads this file, generates and
distributes all needed DIET configuration files, launches first agents and then servers in an appropriate
hierarchical order, and manages cleanup of all processes after the experiment is finished. DIET is written
in C++ and CORBA and GoDIET is written in Java. We used development versions of both packages
for these experiments; however, stable versions of both software packages are publicly available [5].

Job types: Since our performance model and deployment approach focus on maximizing steady-state
throughput, our experiments focus on testing the maximum sustained throughput provided by different

deployments. As an initial study we consider dgemm, a simple matrix multiplication provided as part of
the Basic Linear Algebra Subprograms (BLAS) package [14]. All servers in our test deployments provide
the dgemm service and all clients request this service. Furthermore, for each specific throughput test we
use a single problem size.

Workload: Measuring the maximum throughput of a system is non-trivial: if too little load is intro-
duced the maximum performance may not be achieved, if too much load is introduced the performance
may suffer as well. Thus we use small quantities of steady-state load in the form of a client script that
uses a continual loop to launch one request, wait for the response, and then sleep 0.05 seconds. With
one client script there is at most a single request in the system. We then introduce load gradually by
launching one client script every five seconds; four scripts are launched on each of 35 client machines. A
full throughput test thus takes 700 seconds.

Resources: For these experiments we used a 55-node cluster at the Ecole Normale Supérieure in
Lyon, France. Each node provided dual AMD Opteron 246 processors at 2 GHz, a cache size of 1024 KB,
and 2 GB of memory. All nodes are connected by both a Gb ethernet and a 100 Mb/s ethernet; unless
otherwise noted all communicates were sent over the Gigbit network. As measured with the Network
Weather Service [27], available bandwidth on this network is 909.5 Mb/s and latency is 0.08 msec.

Model parameterization: To collect the values needed to calculate MSPA and MAPA, we measure
the performance for a benchmark task (Xser) using a small hierarchy of one agent and one server. We
assume that the maximum throughput of an agent or a server can be calculated as the inverse of the
time required by that element to treat a single request. Thus we measured the time required to treat a
request at the server level and at the agent level. At the agent-level the processing time depends on the
number of children attached to the agent so we collected benchmarks for a variety of sizes of star-based
hierarchies. We then used a linear fit of the results to generate a simple model for agent-level throughput
as a function of number of children. To measure data transfer within the hierarchy, we used tcpdump to
monitor all data transferred between elements and ethereal to analyze the data. With these benchmarks
we obtained predictions of all the variables that were not known such as WXser

i ,W in
i andW out

i .

The benefit of this estimation approach is that measurements of the time required to treat a request
are fairly easy to collect and each benchmark can be run in a few minutes with only a single client script.
However, this approach assumes that there is no overhead to running requests in parallel and that all
resources can be perfectly shared. Estimates generated in this fashion will therefore tend to overestimate
the throughput of servers and agents.

6.2 Performance model validation

The usefulness of our deployment approach depends heavily on the ability to predict the maximum
steady-state throughput of each element in a deployment. This section presents experiments designed to
answer this question.

0 40 80 120
0

50

100

150

200

Number of clients

R
eq

ue
st

s
/ s

ec
on

d

(a)

1 SeD
2 SeDs

Predicted Measured
0

50

100

150

200

T
hr

ou
gh

pu
t (

re
q/

se
c)

(b)

1 SeD
2 SeDs

Figure 3: Star hierarchies with one or two servers for dgemm 150x150 requests. (a) Real-world platform
throughput for different load levels. (b) Comparison of predicted and actual maximum throughput.

The first test, shown in Figure 3, uses a workload of dgemm150x150 to compare the performance
of two hierarchies: an agent with one server versus an agent with two servers. For this scenario, the
model predicts that both hierarchies are limited by server performance and that, therefore, performance
will roughly double with the addition of the second server. These predictions are accurate: the model
correctly predicts the absolute performance of these deployments and also predicts that the two-server
deployment will be the better choice.

0 40 80 120 160
0

200

400

600

800

1000

1200

Number of clients

R
eq

ue
st

s
/ s

ec
on

d

(a)

1 SeD
2 SeDs

Predicted Measured
0

400

800

1200

T
hr

ou
gh

pu
t (

re
q/

se
c)

(b)

1 SeD
2 SeDs

Figure 4: Star hierarchies with one or two servers for dgemm 10x10 requests. (a) Throughput at different
load levels. (b) Comparison of predicted and actual maximum throughput.

Figure 4 uses a workload of dgemm10x10 to compare the performance of the same one and two server
hierarchies. The model correctly predicts that both deployments are limited by agent performance and
that the addition of the second server will in fact hurt performance. The error in the magnitude of
the performance prediction is about 20-30%. Agent throughput is predicted based on easy-to-collect
measurements of time spent by requests at the agent-level; We believe that the error in these predictions
arises from the fact that some overhead is introduced by trying to run so many requests in parallel on the
agent machine. Our model also over-estimates the negative effect of adding servers on agent performance.
Thus, for small numbers of children-per-agent the model over-estimates agent performance and for large
numbers of children the model under-estimates performance.

Figure 5 compares performance using a Gb/s network versus a 100 Mb/s network; two-server hier-
archies are used in both cases with a workload of dgemm10x10. The model correctly predicts that the
network is not the limiting factor on steady-state performance. Given the message sizes transferred by
DIET and the networks available to us for these experiments, we were not able to test a configuration
where the network performance was the limiting factor. In future work we plan to test the network
model more thoroughly.

In summary, our deployment performance model is able to accurately predict server throughput
and can predict the impact of adding servers to a server-limited or agent-limited deployment. Some
readers may wonder at this point if we use the results of this section to improve the model so that our
deployment construction phase can be more effective. One of the goals of this work is that our approach
could be applied to optimize the deployment of other hierarchical systems. The model parameterization
described in Section 6.1 is straightforward and can be done rapidly for other systems; the tests described
in this section are more difficult to design and run. Thus, we do not modify the model to provide an
accurate example of the results one could obtain in applying this approach to other systems. The best
deployment algorithm accuracy could be obtained by adjusting our model parameterization to account
for the results of this section. However, adding this adjustment phase to model parameterization greatly
complicates the parameterization phase and we prefer to maintain an approach that could be applied
rapidly to other software and resource environments. Thus, for the following section we maintain the
easy-to-obtain original model parameterization.

0 40 80 120
0

200

400

600

800

1000

Number of clients

R
eq

ue
st

s
/ s

ec
on

d

(a)

Gb/s
100 Mb/s

Predicted Measured
0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

re
q/

se
c)

(b)

Gb/s
100 Mb/s

Figure 5: Star hierarchies with two servers using a Gb/s or a 100 Mb/s network. Workload was dgemm

10x10. (a) Throughput at different load levels. (b) Comparison of predicted and actual maximum
throughput.

6.3 Deployment selection validation

In this section we test the ability of the deployment algorithm to select an appropriate arrangement of
agents and servers for deployment. We were not able to find alternative deployment algorithms that could
be applied to our scenario as a comparison; in our experience, given the lack of automatic tools users
typically define deployments by hand using intuition about the scenario. Thus we compare the model-
defined deployment against several alternatives that, in our experience, would be reasonable intuitive
choices with users.

We wish to find the best deployment on our 50-machine cluster for a workload of dgemm150x150.
Our deployment algorithm predicts that the best deployment uses a top-level agent and two middle-level
agents where each middle-level agent can support 7 servers. This deployment thus contains 14 servers
and 17 machines in total. To check whether the algorithm selected the correct number of servers, Figure 6
compares this Automatic deployment against deployments with the same two-level hierarchy of agents
but with different numbers of servers. The Larger deployment contains twice as many servers (14 on
each middle-level agent so 28 in total) while the Smaller deployment contains roughly half as many
servers (4 on each middle-level agent so 8 in total). The Automatic deployment provides a significantly
higher maximum throughput than the others.

0 50 100 150 200
0

200

400

600

800

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of clients

Automatic Max = 689 req/sec
Larger Max = 631 req/sec
Smaller Max = 540 req/sec

Figure 6: Comparison of automatically-generated hierarchy with hierarchies containing twice as many
and half as many servers.

Although it is important that the deployment approach can select an appropriate number of resources,
it is also important that it select an appropriate hierarchy. We therefore design two alternative deploy-
ments that we have found to be typical hierarchical styles for users. To remove the effect of the number
of servers, we use exactly 14 servers, the number chosen by our approach, for these deployments. The
Star deployment uses 14 servers attached directly to the top-level agent. The Balanced tries to balance
work amongst the agents by using the same branching factor at all levels of the hierarchy; for 14 servers
the most balanced hierarchy uses a top-level agent with 4 middle-level agents and 3 or 4 servers attached
to each mid-level agent. Figure 7 shows these three platforms.

7

A

A A

A
A

A A A A

4 4 3 3

n

Agent node

n server nodes

link between nodes

14

7

Automatically−defined by model Star graph Balanced platform

A

Figure 7: Types of platforms compared

Figure 8 compares the performance achieved by these three deployments. The Automatic approach
performs the best and provides a significant advantage over the Star topology. However, the Balanced

approach performs almost as well as the Automatic approach. This result is not surprising: the two
hierarchies are in fact fairly similar in structure.

0 40 80 120 160 200 240
0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of clients

Automatic Max = 689 req/sec
Balanced Max = 673 req/sec
Star Max = 620 req/sec

Figure 8: Comparison of automatically-generated hierarchy with intuitive alternative hierarchies.

7 Conclusion and Future Work

This paper has presented an approach for determining an appropriate hierarchical middleware deployment
for a homogeneous resource platform of a given size. The approach determines how many nodes should
be used and in what hierarchical organization; the goal is to maximize steady-state throughput. The
model provides an optimal real-valued solution without resource constraints; we then apply round-up or
round-down to obtain integer factors for the hierarchy definition. We also provide algorithms to modify
the obtained hierarchy to limit the number of resources used to the number available. We instantiate the
model for the hierarchical scheduling system used in the DIET Network Enabled Server environment. Our
experiments validated the throughput performance model used for servers and agents and demonstrated
that the automatic deployments performed well as compared to other intuitive deployments.

This article provides only the first step for automatic middleware deployment planning. We plan to
test our approach with experiments on large clusters using bigger (and a variety of) problem sizes. While
our current approach depends on a predicted workload, it will be interesting to develop re-deployment
approaches that can dynamically adapt the deployment to workload levels after the initial deployment.
We also plan to extend the model to consider heterogeneous computation abilities for agents and test our
approach on heterogeneous clusters. Our final goal is to develop deployment planning and re-deployment
algorithms for middleware on heterogeneous clusters and Grids.

Acknowledgement

This work has been supported by INRIA, CNRS, ENS Lyon, UCBL, Grid5000 from the French Depart-
ment of Research, and the INRIA associated team I-Arthur. The authors would like to thank Frédéric
Desprez for his insightful ideas and guidance, Stephane D’Alu for technical support on the Grid’5000
platform, and Ashish Meena (LIFL, France) for helpful and stimulating discussions.

References

[1] http://www.managesoft.com/solution/distribution/index.xml.

[2] http://www.unipress.com/footprints/deploy.html.

[3] http://www.hpl.hp.com/research/smartfrog/.

[4] http://www.newboundary.com/products/prismdeploy/.

[5] http://graal.ens-lyon.fr/DIET/.

[6] Simplifyng system deployment using the Dell OpenManage Deployment Toolkit, October 2004. Dell
Power Solutions.

[7] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and S. Vadhiyar.
Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical Report CS-01-467, University of
Tennessee, Knoxville, TN, July 2001.

[8] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric allocation of
independent tasks on heterogeneous platforms. In International Parallel and Distributed Processing
Symposium IPDPS’2002. IEEE Computer Society Press, 2002.

[9] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state scheduling on heterogeneous
clusters: why and how? In 6th Workshop on Advances in Parallel and Distributed Computational
Models APDCM 2004. IEEE Computer Society Press, 2004.

[10] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta, and K. Vahi. The role of
planning in grid computing. In The International Conference on Automated Planning & Scheduling
(ICAPS), Trento, Italy, June 2003.

[11] E. Caron, P.K. Chouhan, and A. Legrand. Automatic Deployment for Hierarchical Network Enabled
Server. In The 13th Heterogeneous Computing Workshop (HCW 2004), page 109b (10 pages), Santa
Fe. New Mexico, April 2004.

[12] E. Caron and H. Dail. GoDIET: a tool for managing distributed hierarchies of DIET agents and
servers. Research report RR-2005-06, Laboratoire de l’Informatique du Parallélisme (LIP), February
2005. Also available as INRIA Research Report RR-5520.

[13] E. Caron, F. Desprez, F. Lombard, J. Nicod, M. Quinson, and F. Suter. A Scalable Approach to
Network Enabled Servers. In B. Monien and R. Feldmann, editors, Proceedings of the 8th Inter-
national EuroPar Conference, volume 2400 of LNCS, pages 907–910, Paderborn, Germany, August
2002. Springer-Verlag.

[14] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. Van de Geijn. Parallel implementation
of BLAS: General techniques for level 3 BLAS. Technical Report CS-TR-95-40, University of Texas,
Austin, October 1995.

http://www.managesoft.com/solution/distribution/index.xml
http://www.unipress.com/footprints/deploy.html
http://www.hpl.hp.com/research/smartfrog/
http://www.newboundary.com/products/prismdeploy/
http://graal.ens-lyon.fr/DIET/

[15] Frédéric Desprez, Martin Quinson, and Frédéric Suter. Dynamic performance forecasting for network
enabled servers in an heterogeneous environment. In International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2001). CSREA Press, June 25-28 2001.

[16] W. Goscinski and D. Abramson. Distributed Ant: A system to support application deployment
in the Grid. In GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04), pages 436–443, Pittsburgh, PA, USA, November 2004. IEEE Computer
Society.

[17] R.S. Hall, D. Heimbigner, and A.L. Wolf. A cooperative approach to support software deployment
using the Software Dock. In Proceedings of the 1999 International Conference on Software Engi-
neering (ICSE’99), pages 174–183, New York, May 1999. Association for Computing Machinery.

[18] Andr’e Van Der Hoek, Dennis Heimbigner, Er L. Wolf, and Richard S. Hall. The software dock: A
distributed, agent-based software deployment system, October 05 1997.

[19] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide area net-
works using AI planning techniques. In International Parallel and Distributed Processing Symposium
IPDPS’2003, Nice, France, 2003.

[20] T. Kichkaylo and V. Karamcheti. Optimal resource aware deployment planning for component
based distributed applications. In The 13th High Performance Distributed Computing (HPDC 2004),
Honolulu, HI, June 2004.

[21] S. Lacour, C. Pérez, and T. Priol. Deploying CORBA components on a Computational Grid: General
principles and early experiments using the Globus Toolkit. Technical Report PI-1611, IRISA, March
2004.

[22] C. Martin and O. Richard. Parallel launcher for cluster of PC. In G. R. Joubert, A. Murli, F. J.
Peters, and M. Vanneschi, editors, Parallel Computing, Advances and Current Issues. Proceedings
of the International Conference ParCo2001, pages 473–480, Naples, Italy, September 2001. Imperial
College Press, London.

[23] S. Matsuoka, H. Nakada, M. Sato, and S. Sekiguchi. Design Issues of Network Enabled Server Sys-
tems for the Grid, 2000. Grid Forum, Advanced Programming Models Working Group whitepaper.

[24] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards a Global
Computing Infrastructure. Future Generation Computing Systems, Metacomputing Issue, 15(5-
6):649–658, 1999.

[25] Martin Quinson. Dynamic performance forecasting for network-enabled servers in a metacomputing
environment. In International Workshop on Performance Modeling, Evaluation, and Optimization
of Parallel and Distributed Systems (PMEO-PDS’02), in conjunction with IPDPS’02, April 15-19
2002.

[26] Eric D. Taillard and Istituto Dalle Molle. Ant systems. Technical report, February 24 1999.

[27] R. Wolski, N.T. Spring, and J. Hayes. The Network Weather Service: A distributed resource
performance forecasting service for metacomputing. The Journal of Future Generation Computing
Systems, 15(5-6):757–768, 1999.

	1 Introduction
	2 Related Work
	3 Steady-state modeling for hierarchical systems
	3.1 Architectural Model
	3.2 Steady State Operation

	4 Deployment construction
	5 Model implementation
	5.1 DIET overview
	5.2 Model with DIET

	6 Experimental results
	6.1 Experimental design
	6.2 Performance model validation
	6.3 Deployment selection validation

	7 Conclusion and Future Work

