
HAL Id: hal-02102510
https://hal-lara.archives-ouvertes.fr/hal-02102510

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-oriented programming with sharing :
containment is not ownership

Daniel Hirschkoff, Tom Hirschowitz, Damien Pous, Alan Schmitt,
Jean-Bernard Stefani

To cite this version:
Daniel Hirschkoff, Tom Hirschowitz, Damien Pous, Alan Schmitt, Jean-Bernard Stefani. Component-
oriented programming with sharing : containment is not ownership. [Research Report] Laboratoire de
l’informatique du parallélisme. 2005, 2+12p. �hal-02102510�

https://hal-lara.archives-ouvertes.fr/hal-02102510
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Component-oriented programming with sharing:
containment is not ownership

Daniel Hirschkoff, Tom Hirschowitz,
Damien Pous, Alan Schmitt, and Jean-
Bernard Stefani

Mai 2005

Research Report No 2005-20

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Component-oriented programming with sharing:
containment is not ownership

Daniel Hirschkoff, Tom Hirschowitz, Damien Pous, Alan Schmitt, and Jean-Bernard Stefani

Mai 2005

Abstract
Component-oriented programming yields a tension between higher-order features (de-
ployment, reconfiguration, passivation), encapsulation, and component sharing. We
propose a discipline for component-oriented programming to address this issue, and
we define a process calculus whose operational semantics embodies this program-
ming discipline. We present several examples that illustrate how the calculus supports
component sharing, while allowing strong encapsulation and higher-order primitives.

Keywords: Component-oriented programming, higher-order process algebras, sharing.

Résumé
La pogrammation par composants génère une tension entre (1) ses aspects d’ordre
supérieur (déploiement, reconfiguration, passivation), (2) l’encapsulation et (3) le par-
tage de composants.
Nous proposons une discipline pour la programmation par composants qui résout ce
problème, et nous définissons un calcul de processus dont la sémantique opération-
nelle donne corps à cette discipline.
Nous présentons plusieurs exemples montrant que le calcul permet le partage de com-
posants, tout en préservant l’encapsulation et les opérations d’ordre supérieur.

Mots-clés: Programmation par composants, algèbres de processus d’ordre supérieur, partage.

Component-oriented programming with sharing: containment is not ownership 1

A D

B C

L L

F

Figure 1:A configuration with sharing

1 Introduction

Wide-area distributed systems and their applications are increasingly built as heterogeneous, dynamic as-
semblages of software components. This modular structure persists during execution: such systems pro-
vide the means to control their run-time modular configuration, which encompasses automatic deployment,
unanticipated evolution, passivation, run-time reconfiguration, and introspection. This expressive power
conflicts with the strong encapsulation properties generally expected from modular programs.

A key tension point iscomponent sharing, which allows two remote components to encapsulate a
common component, as depicted in Figure1, where the componentL (e.g. a software library) is shared
amongC andD. How does one preserve encapsulation in this case? In particular, what happens toL and
D if A removesC from the configuration? How canC replaceL by L ′, without necessarily impacting
D? Essentially, the difficulty lies in combining (1) encapsulation with fine-grain, objective control over
communications, (2) locality passivation, migration, and replication, and (3) access to shared components
with simple communication rules.

Previous models of component-oriented programming do not completely address these three require-
ments. Models that do not address requirement (3) comprise process calculi with hierarchical localities that
feature local communications only (i.e., no direct communication between arbitrarily distant localities in
the locality forest) [5, 4, 14, 3, 8, 18]. Indeed, sharing is representable in such models, but at the expense
of complex routing rules which are difficult to maintain. Models that do not have this routing complexity
problem, but are weak on requirement (1), include the Cell calculus [15] and process calculi with localities
that do not restrict communications betwen localities [10, 12, 20, 19, 11, 1, 16]. The tKlaim calculus [9]
is a recent variant of Klaim that allows the establishment of different communication topologies between
localities. However, the calculus still falls short of full encapsulation of sub localities, since there is no
objective control over process migration and execution.

Our starting point to solve the issue of component sharing is that, from the standpoint of the latter
kind of models (weak on (1)), the problem is reminiscent of thealiasing problem in object-oriented lan-
guages [13]: sharing is easy, but encapsulation is problematic. To solve this problem, Clarke et al. introduce
ownership types [6, 7], which attribute to each objecto anowner that controls the references too. We adapt
this idea of ownership to the setting of process calculi. However, instead of designing a type system to
preserve encapsulation, we enforce it at the level of the operational semantics, as follows. We split the
usual forest of localities into two graphs: theownership forest and thecontainment graph. Locality passi-
vation must be local for the ownership forest, and communication must be local for the containment graph.
As in type systems for ownership, we require, by scoping constraints in our semantics, that owners be
dominators: the owner of a componentc dominates (in the ownership forest) all the components holding
references toc. Owing to this condition, the aliasing problem does not arise: when updating a component
c, its owner has access to all references toc. Moreover, the containment graph may be an arbitrary directed
graph, which allows component sharing. The resulting language, an extension of the Kell calculus [18],
turns out to be an interesting model of component-oriented programming, as we show by encoding key
aspects of the Fractal component model [2].

Our main contributions are: (1) we propose a programming discipline for component-orientedprogram-
ming to address the issue of component sharing, while preserving encapsulation and higher-order features;
(2) we define a process calculus whose operational semantics embodies this programming discipline; (3)

2 Hirschkoff, Hirschowitz, Pous, Schmitt, and Stefani

we argue that our calculus is suitable to represent most idioms of component-oriented programming, by re-
viewing key concepts from a concrete component model; (4) additionally, we propose a new, more modular,
presentation of the Kell calculus.

The paper is organized as follows. §2 briefly presents the Fractal model, discusses the modeling of
Fractal components in the Kell calculus, and introduces informally several examples of component shar-
ing. §3 extends the Kell calculus with primitive component sharing. §4 shows how to program several
component sharing examples within the obtained calculus. §5 concludes the paper with a discussion of
future research.

2 Components and the Kell calculus

After giving an informal description of the Kell calculus [18], which is our starting point, we present the
main elements of a concrete component model, the Fractal model [2]. We discuss to which extent Fractal
component configurations without sharing can be interpreted as processes of the Kell calculus. We then
present various examples of component configurations with sharing, and explain informally how we extend
the Kell calculus with sharing to deal with these examples.

2.1 The Kell calculus

The Kell calculus is a higher-order process calculus with hierarchical localities (calledkells), local commu-
nication, and locality passivation. Actions in the Kell calculus are communication actions and passivation
actions. Communication is said to belocal as it may occur only within a kell, between a kell and its sub
kells, or between a kell and its immediate parent, as illustrated below.

1. Receipt of local messagea〈Q〉.T on porta bearing processQ and continuationT by local trigger
(input construct)a〈x〉 � P .

a〈Q〉.T | (a〈x〉 � P) → T | P{Q/x}

2. Receipt of messagea〈Q〉.T residing in sub kellb by local triggera↓〈x〉 � P .

b[a〈Q〉.T].S | (a↓〈x〉 � P) → b[T].S | P{Q/x}

In patterna↓〈x〉, the arrow↓ denotes a message that should come from a sub kell.

3. Receipt of messagea〈Q〉.T residing out of the enclosing kell by local triggera ↑〈x〉 � P .

a〈Q〉.T | b[a↑〈x〉 � P].S → T | b[P{Q/x}].S

In input patterna↑〈x〉, the arrow↑ denotes a message that should come from the outside of the
immediately enclosing kell.

These constructs may be combined usingjoin patterns [10] that are triggered only when the required
messages are simultaneously present, as in the following example (note that| has higher precedence than
�).

a〈Q〉.T | b[c〈R〉.U | (a↑〈x〉 | c〈y〉 � P)].S → T | b[U | P{Q/x, R/y}].S
Communication with other localities has to be explicitly programmed in the language. For instance,

in order to exchange messages, two sibling kells need the help of their common parent, as depicted in the
following example.

a[(c↓〈x〉 � c〈x〉) | b[c〈P 〉.Q] | e[(c↑〈x〉 � T)]]

→ a[(c↓〈x〉 � c〈x〉) | c〈P 〉 | b[Q] | e[(c↑〈x〉 � T)]]

→ a[(c↓〈x〉 � c〈x〉) | b[Q] | e[T {P/x}]]

Component-oriented programming with sharing: containment is not ownership 3

In this example, the parent locality contains a permanent forwarderc ↓〈x〉 � c〈x〉 that pulls messages
of the shapec〈P 〉 out of its sub kells. This allows sub kells to receive these messages using anup pattern
c↑〈x〉. The construction(ξ � P) denotes a replicated trigger, i.e., a trigger which persists after a reaction,
and is in fact a shorthand forνt.Yt,ξ,P | t〈Yt,ξ,P 〉, whereYt,ξ,P = (t〈y〉 | ξ � P | y | t〈y〉).

Passivation in the Kell calculus is depicted in the following example, where the kell nameda is de-
stroyed, and the processQ it contains is used in the guarded processP .

a[Q].T | (a[x] � P) → T | P{Q/x}

Assume, for instance, that we want to model the dynamic update of componentb, where the new version
P of the component program is received on channela. We could do so, in one atomic action, using the
following join pattern where the new versionb[P] is spawned, replacing the previousb component.

a〈P 〉 | (a〈x〉 | b[y] � b[x]) | b[Q] → b[P]

2.2 The Fractal component model and its interpretation in the Kell calculus

Fractal is a general component model which is intended to implement, deploy, monitor, and dynamically
configure complex software systems, including in particular operating systems and middleware. This mo-
tivates the main features of the model: composite components (to have a uniform view of applications at
various levels of abstraction), introspection capabilities (to monitor and control the execution of a running
system), and re-configuration capabilities (to deploy and dynamically configure a system).

A Fractal component is a run-time entity which is encapsulated, which has a distinct identity, and
which is either primitive or composite (built from other components). Bindings between components are
described explicitly, either by local,primitive bindings, using explicit component interfaces, or by remote,
composite bindings, using components whose role is to embody communication paths. Features like encap-
sulation and interfaces are rather standard. The originality of the Fractal model lies in its reflective features
and in its ability to define component configurations with sharing. In order to allow for well scoped dy-
namic reconfiguration, components in Fractal can be endowed with controllers, which provide a meta-level
access to a component internals, allowing for component introspection and the control of component be-
haviour. A Fractal component consists of two parts:contents, that correspond to its internal components,
and amembrane, which provides so-calledcontrol interfaces to introspect and reconfigure the internal
features of the component. The membrane of a component is typically composed of several controllers.

Representing a Fractal component (without sharing) in the Kell calculus is relatively straightforward.
A component nameda, takes the forma[P | Q], where processP corresponds to the membrane of the
component, and processQ, of the formc1[Q1] | . . . | cn[Qn], corresponds to the contents of the component,
with n sub componentsc1 to cn. Interfaces of a component can be interpreted as channels on which a
component can emit or receive messages. The membraneP is composed of controllers implementing the
control interfaces of the component.

The Fractal model specifies several useful forms of controllers, which can be combined and extended
to yield components with different reflective features. Let us briefly describe some of them, and sketch
their interpretation in the Kell calculus.

An attribute of a component is a configurable property that can be manipulated by the means of an
attribute controller. It can be interpreted as some value held in a memory cell by a component membrane.
A membrane providing an attribute controller interface is easy to program, by emitting the current value of
the attribute on a private channel and by providing channels to read and update this value.

νs.(get↑〈r〉 | s〈v〉 � r〈v〉) | (set↑〈v′〉 | s〈v〉 � s〈v′〉) | s〈0〉

A contents controller supports an interface to list, add, and remove sub components in the contents
of a component. A membrane providing a simplistic contents controller interface could be of the form
Add | Rmv | . . ., with the following definitions (in which the contents controller interface is manifested by
thecc channel carrying the request type (where\add means a name that is exactlyadd), the namec of
the targetted component, and either the program of the added component (including both membrane and

4 Hirschkoff, Hirschowitz, Pous, Schmitt, and Stefani

contents) or a channelr to return the removed component).

Add =(cc↑〈\add , c, x〉 � c[x]) Rmv =(cc↑〈\rmv , c, r〉 � (c[x] � r〈c, x〉))
A less simplistic encoding would take into account additional details, such as exception conditions (e.g,
the possible absence of a component to remove). However, the above definitions convey the essence of the
contents controller.

A life-cycle controller allows an explicit control over the execution of a component. As an illustration,
we can define a membraneP providing a simple interface to suspend and resume execution of sub compo-
nents (where the life-cycle interface is manifested by thelfc channel, and a sub componentc is supended
by turning it into a message on a channel of the same name as the component).

P =Suspend | Resume | . . . Suspend =(lfc↑〈\suspend , c〉 � (c[x] � c〈x〉))
Resume =(lfc↑〈\resume, c〉 � (c〈x〉 � c[x]))

Again, a more realistic implementation would be more complex, but this section only aims to show that
capturing the operational essence of a reflective component model such as Fractal (without component
sharing) is relatively direct using the Kell calculus. For another example, Schmitt and Stefani [17] pro-
vide an interpretation of abinding controller, allowing to bind and unbind its client interfaces to server
interfaces.

2.3 Component sharing

Component sharing arises in situations where some resource must be accessed by several client compo-
nents. A first example of such a situation is that of a log service, which merely provides client components
the ability to register status information. Figure1 depicts an example configuration, whereL is the log
service component, andC andD are client components. In this case, communications are unidirectional,
from the client components to the shared component, and the log service maintains its own mutable state.
Passivation of a client does not affect the execution of the log service or the processing of logging requests
previously sent by that client.

Figure1 can illustrate as well a second example of component sharing, that of a shared programming
library or module. In this case, the communication between client componentsC andD and the libraryL
is bidirectional (typically, a request/response style of communication). The expected behavior in presence
of passivation is different from the first example: if a client is passivated, requests to functions in the library
should be suspended along with the rest of the client activity.

As a third example, consider a database service used by several components of a system (for instance,
a directory service), which can again be depicted as in Figure1. Here, the communications between clients
and the service are bidirectional, but they are no longer independent as in the previous example, for the
database service maintains a mutable state that can be viewed and updated by each client component.

The previous examples correspond to pure software architectures and describe configurations on a
single machine. One can also consider mixed software/hardware configurations. For instance, consider the
case of a routerR connecting several networksN i with i ∈ I. Each networkNi connects machinesmij

with j ∈ Ji. There are several ways to model such a configuration in the Kell calculus without sharing.
If one wants to model the networks as components and have messages be directly exchanged between
machines and the networks, and between the networks and the router, then the locality of communications
and the tree structure of kells impose the following shape:

R


∏

i∈I

Ni


 ∏

j∈Ji

mij [. . .]






where
∏

i∈I Pi means the parallel composition of the processesPi.
Such an approach is not satisfactory because the passivation of the router or of a network, e.g., to model

their failure, implies the passivation of several machines. A solution consists of modelling a networkN i

by a channelni, as in Fig.2. Machines send outbound messages on the channelmsg with the destination

Component-oriented programming with sharing: containment is not ownership 5

∏
i∈I;j∈Ji

mij

[
(msg 〈k, l, x〉 � ni〈k, l, x〉) | (n↑

i 〈\i, \j, x〉 � x) | Pij

]

| R


 ∏

i,j∈I;i�=j

(n↑
i 〈\j, l, x〉 � nj〈j, l, x〉)


 |

∏
i∈I

(n↓
i 〈k, l, x〉 � ni〈k, l, x〉)

Figure 2:A router configuration

A D

B C

L

F

 •L •L

Figure 3:A Kell calculus configuration with sharing

machine addressk, l, wherek is the destination network, and the message to deliverx. Each machinem ij

contains a rule that forwards such messages to the local networkn i. Each networkNi is represented by
the replicated pulling of messages onni out of sub kells. The router pulls messages that are in a network
different from their destination—ni〈k, l, P 〉 with i �= k—and routes them to the correct network. Finally,
every machinemij picks from the local network the messages that target it using the patternn ↑

i 〈\i, \j, x〉.
This encoding, however, does not model the fact that the networks are disjoint resources shared by the
machines and connected by a router.

In this paper, we extend the Kell calculus with explicit sharing, following the ideas sketched in §1.
Technically, in our extension, the ownership forest is captured by the locality hierarchy. For instance,
in configurationC = a[b[P] | c[R | d[Q]]], componenta is the owner of componentsb andc, while c
is the owner of componentd. The containment graph is captured viareferences to shared components:
thus the process∗a denotes a reference to the component nameda. For instance, in the configuration
D = a[H | b[P | ∗e] | c[R | ∗e] | e[Q]], componenta is the owner of componente, which is shared
by componentsb andc. The scope of a componente, where it is accessible by references∗e, is the sub
tree rooted at the owner ofe, unless there is a deeper component namede whose scope encompasses the
reference. Note that the scope does not includee itself. In our extension, a reference∗e can be created
and communicated, exactly as a name. In the latter case, note that references may escape their original
scope: for instance, in the configurationD above, ifH passivates componentb, and sends it outside ofa,
then the reference to the shared componente will escape its scope. Allowing a component reference to
escape its scope makes it possible to model in a simple way a primitive form of dynamic binding for shared
components. The example of Fig.1 may then be represented in the Kell calculus with sharing as in Fig.3.

Passivation in the new calculus takes place just as in the Kell calculus without sharing. However,
communications across kell boundaries now require a reference to that kell e.g., to receive a message from
it or to send a message to it.

b[a〈Q〉.T].S | (a↓〈x〉 � P) | ∗b → b[T].S | P{Q/x} | ∗b
a〈Q〉.T | ∗b | b[a↑〈x〉 � P].S → T | ∗b | b[P{Q/x}].S

6 Hirschkoff, Hirschowitz, Pous, Schmitt, and Stefani

Process: P ::= 0 | x | P |Q | νa.P | a〈P̃ 〉.Q | a[P].Q | ∗a | ξ̃ � P

Pattern: ξ ::= a[x] | aα〈η̃〉 | ∗a
Argument pattern: η ::= x | a | \a | a != b

Place pattern: α ::= • | ↑ | ↓

Formula: F ::= ε | r | r⊥ | F |F
Resource: r ::= M̃ | a↓(M̃) | a↑(M̃) | a[P] | ∗a | a | s

Spot: s ::= � | a[�] | [�]

Message: M ::= a〈P̃ 〉

Figure 4: Processes and formulas

3 The calculus

The syntax of the calculus is in Figure4. It is based on a denumerable set ofvariables x and a denumerable
set ofnames a. Processes include the standard null process0, variablesx, parallel compositionP |Q, and
name creationνa.P , plus some less standard constructs. Messages have the shapea〈 P̃ 〉.Q, whereP̃ is a
list of processes (we usẽ· in the following to denote a list of·’s). In a〈P̃ 〉.Q, Q is called acontinuation,
because it is triggered synchronously upon consumption of the message.Kells have the shapea[P].Q,
wherea is the name of the kell,P is its contents, and, as for messages,Q is its continuation. The calculus
admits references∗a as processes, for referencing remote kells nameda, as informally described in §2.3.
References are also used to send names in messages, as illustrated in matching rules M-NAME, M-CST,
and M-NEG below. Finally, the calculus features first-class reduction rules, calledtriggers, which are
written ξ̃ � P . Here,ξ̃ denotes a list ofpatterns, where each variable and name is bound at most once (see
the definition of scoping below). A patternξ may be a kell patterna[x] for passivation of active kells, a
reference∗a, for suppression of containment links, or a message patterna α〈η̃〉, for plain communication.
In the message pattern,η̃ denotes a list of argument patterns of the shapex, a, \a, or a != b. The first two
kinds of argument patterns respectively represent input of processes and names. The third kind\a tests the
equality of the corresponding message argument witha. The last kinda != b checks that the argument
is different fromb, and inputs it asa. The directionα indicates where the received message should come
from: ↑ messages come from a parent kell,• messages come from the current kell, and↓ messages come
from a sub kell.

Processes are scoped as follows. Name restriction is a binder, as usual. Moreover, given a triggerξ̃ �P ,
the defined identifiers DI(ξ̃) of ξ̃ bind in P . We defineDI(ξ̃) as follows. Given an argument patternη,

defineDI(x) ∆= {x}, DI(a) ∆= DI(a != b) ∆= {a}, andDI(\a) ∆= ∅. Then, letDI(ξ̃) be the disjoint union
of all DI(ξ), for ξ in ξ̃, with DI(a[x]) = {x}, DI(∗a) = ∅, andDI(aα〈η̃〉) the disjoint union of allDI(η),
for η in η̃. Let structural congruence≡ be the smallest congruence including, as usual, associativity and
commutativity of parallel composition, neutrality of0 w.r.t. |, extrusion of name restriction above|, ν, and
a[·].P , and renaming of bound variables and names.

Resources The reduction relation is based on a labelled transition system (LTS), whose labels represent
a trade ofresources r. As discussed below, such a trade is typically writtenF1 � F2, whereF1 andF2

are formulas, to express that the process undergoing the transition offers the resources described byF 2,
provided the environment provides the resources inF 1. In particular, the reacting trigger̃ξ �P trades some
basic resources (messages, passivated kells) against areaction token written�: if the environment provides
the expected resources, then the trigger reacts. When composing processes, the corresponding transitions
are composed, which may involve the annihilation of some resource requests and corresponding offers, in
case they meet.

As defined in Figure4, there are two kinds of resources.Basic resources include messages (̃M |

Component-oriented programming with sharing: containment is not ownership 7

a↓(M̃) | a↑(M̃)), whereM ::= a〈P̃ 〉, passivated kells (a[P]), consumed references (∗a), and permissions
(a). They are generated directly from processes. For example, a messagea〈P 〉.Q trades a reaction token

againsta〈P 〉, yielding the transitiona〈P 〉.Q ��a〈P 〉−−−−−→ Q. As explained in §2.1, we want to control the
locality of communications, so this transition should happen in the same kell as the transition involving the
reacting trigger, and trades involving� should only take place at the same level as the reaction.

On the other hand, we cannot completely restrict trades to the level of the reaction, e.g., because the
consumed resources may come from shared kells, which syntactically may reside far above the reaction
site. This leads us to consider several kinds of reaction tokens, each of them determining the position of the
considered transition relatively to the reacting trigger. These reaction tokens are calledspots s ∈ Spots.

More precisely, consider a processS|b[a[(ξ�P)|Q]|R], where the reacting trigger isξ�P . We have just
seen that resources matching the reaction token� provided byξ � P may only come fromQ. Immediately
abovea, i.e., inR, trades may use the information that the reaction lies in some sub kell nameda. Thus,
in R, � is viewed as thesub reaction tokena[�]. Further abovea, e.g., fromS, it becomes the less precise
internal reaction token[�], which only indicates that the reaction lies in some sub kell.

Formulas Formulas are the labels of our LTS. Intuitively, they count the resources offered and requested
by the considered process. Formally,formulas are defined as in Figure4, and considered equivalent modulo
the following equation schemes:

F1|F2 = F2|F1 (1) F |ε = ε|F = F (2)
r /∈ Spots

r|r⊥ = ε
(3) s|s⊥ = s (4) .

Equation (3) specifies that basic resources (non-spots) are used linearly: they may be consumed only once;
(4) specifies that one spot may satisfy several requests, as a join pattern consumes several messages.

MATCH

ξ : F → Θ

ξ � P
F��−−−→ Θ(P)

REF

∗a ��a−−−→ ∗a
DOWN

a[M̃.P̃ |P].Q
a�a↓(fM)−−−−−−→ a[P̃ |P].Q

UP

∗a|M̃.P̃
a[�]�a↑(fM)−−−−−−−−→ ∗a|P̃

HERE

M.P
��M−−−−→ P

PASSIVATE

canon(P)

a[P].Q
��a[P]−−−−−→ Q

SUP

∗a ��∗a−−−−→ 0

NEW

P
F−→ Q a /∈ FN(F)

νa.P
F−→ νa.Q

PAR

P1
F1−→ P ′

1 P2
F2−→ P ′

2

P1|P2
F1|F2−−−−→ P ′

1|P ′
2

BOT

P
ε−→ P

HOT

P
F�s−−−→ Q

hot(F)
SN(F) # {a} ∪ DN(P)

a[P].R
F�a(s)−−−−−→ a[Q].R

COLD

P
F−→ Q

cold(F)
SN(F) # {a} ∪ DN(P)

a[P].R F−→ a[Q].R

Figure 5: The LTS

Transitions The LTS is defined in Figure5. Rule MATCH describes reaction, using the notion ofmatch-
ing defined below, which is a three arguments judgement writtenξ : F → Θ, whereΘ is a substitution.
A substitution is an element of(Vars →fin Processes) × (Names →fin Names), i.e., a pair of a finite map
from variables to processes and a finite map from names to names. Capture-avoiding substitution is defined
as usual on processes, and writtenΘ(P). Define the negationF ⊥ of a formulaF by distributing it over

8 Hirschkoff, Hirschowitz, Pous, Schmitt, and Stefani

resources, given thatr⊥⊥ = r. Let F1 � F2 denoteF⊥
1 |F2. The rule states that ifξ : F → Θ, then

the triggerξ � P has a transition toΘ(P), under the labelF � �. Thus, the reaction happens only if the
environment provides the resourcesF (recall that spot� stands here for the firing of the trigger).

By rule REF, at the level of a reaction, a reference may generate a permission to receive messages from
the kell it points to. This permission is then used in rule DOWN to actually consume the corresponding
messages. By rule UP, a reference to the reacting kell allows the reaction to consume messages from the
kell holding the reference. By rules HERE, PASSIVATE, and SUP, a reaction may consume messages, active
kells, and references at its top-level. In rule PASSIVATE, we use the notationcanon(P) to mean thatP has
no activeν. This means that suchν’s must have been extruded before by structural congruence. Formally,
a context C is a process with exactly one occurrence of the special variable�. Textual replacement of�
with some processP (possibly with capture) is writtenC{P}. A processP is in canonical form, written
canon(P), iff for all contextC �= �, if P = C{νa.Q}, thenC{νa.Q} �≡ νa.C{Q}.

The other rules specify how the transition relation is closed under active contexts. Rule NEW handles
the case ofν. Rule PAR combines the resources of several parts of the process. If one argument provides the
resources requested by the other, then the trade occurs. Formally, two derivations having an occurrence of
the MATCH rule can be put together using this rule: the restriction to only one active trigger per reaction is
enforced by the rule for reduction, presented below. Rule BOT closes transitions under parallel composition
with spectator processes.

Rule HOT allows to wrap an already existing reaction inside some parent kell: a transitionP
F�s−−−→ Q

is seen from the enclosing kell asa[P].R
F�a(s)−−−−−→ a[Q].R, where the operationa(s) over spots is defined

by a(�) ∆= a[�], anda(b[�]) ∆= a([�]) ∆= [�]. The rule is subject to two side conditions. First,F must be
hot, writtenhot(F), which means thatF matches the syntaxF ::= ε | b⊥ | b↓(M̃) | b↑(M̃) | F |F, and
additionallySN(F) # DN(P) (see below). Intuitively, the presence ofs in the label of the conclusion
imposes that the reaction occurs inP , so the side condition means that a reacting kell only has three kinds
of interactions with its context: 1) it (partially) specifies the place of reaction; 2) it exhibits authorizations
to access shared kells; 3) it consumes messages through references to shared kells (in both directions). The
second side condition enforces the fact that references point to the closest kell in the hierarchy, as informally
stated in §2.3. We call thedefined names DN(P) of a processP the set of alla’s such thatP ≡ ν b̃.Q|a[R].
for someQ, R, b̃, with a /∈ b̃. Moreover, a formula is incanonical form iff, for each resourcer, it does not
contain bothr andr⊥. We define thescoped names SN(F) of a formulaF in canonical form as follows: for

resourcesr of the shapea↓(M̃), a↑(M̃), a, anda[�], letSN(r) ∆= {a}; for other resourcesr, letSN(r) ∆= ∅.

Additionally, let SN(F1|F2)
∆= SN(F1) ∪ SN(F2) andSN(F⊥) ∆= SN(F). The rule prevents resources

consumed through a reference∗a to escape the scope of any kell nameda. For instance, a request for a
message of the shapea↓(b〈P 〉) through a reference∗a is supposed to be consumed in (one of) the closest
kell(s) nameda. Such a request leads to the formulaa⊥|a↓(b〈P 〉) � s: if a down message is found ina,

using formulaa � a↓(b〈P 〉), then the reaction occurs. However, ifP1
a⊥|a↓(b〈P 〉)�s−−−−−−−−−−→ P2, then we do not

wantc[P1|a[Q1]]
a⊥|a↓(b〈P 〉)�s−−−−−−−−−−→ c[P2|a[Q1]] to hold, because the message ought to be found inQ 1. Here,

DN(a[Q1]) = {a} which is not disjoint fromSN(a⊥|a↓(b〈P 〉)) = {a}. Note that this check is done only
when crossing kell boundaries. Indeed, we allow the presence of more than one kell nameda in parallel to
the reacting trigger.

Symmetrically to rule HOT, rule COLD allows to transfer resources from kells containing references∗a
to the reacting kella, which may be syntactically distant. LetF be cold, writtencold(F), iff F matches
the syntaxF ::= b[�]⊥ | b↑(M̃) | F |F . Rule COLD says that any transition with a cold label is viewed
identically from outside the ambient kell, provided the scoping conditions are met. In practice, rule COLD

is only used to transfer the consumption of up messages (created by rule UP) through kells.

Matching Figure6 defines the matching relation. Rule M-PAR states that matching a patternξ1|ξ2 is like
matchingξ1 andξ2 separately, and then combining the result. In the rule,+ denotes the union of finite maps
with disjoint domains. By rule M-HERE, matching a patterna•〈η̃〉 against a resourcea〈P̃ 〉 boils down to
matchη̃ againstP̃ (as defined below). Rule M-ELSEWHEREhandles the cases of down and up messages.
Given a pairζ consisting of a namea and argument patterns̃η, we letζ α stand foraα〈η̃〉. Similarly, given

Component-oriented programming with sharing: containment is not ownership 9

M-PAR

ξ1 : F1 → Θ1 ξ2 : F2 → Θ2

ξ1|ξ2 : F1|F2 → Θ1 + Θ2

M-HERE

η̃ : P̃ → Θ

a•〈η̃〉 : a〈P̃ 〉 → Θ

M-ELSEWHERE

ζ̃• : M̃ → Θ

ζ̃α : aα(M̃) → Θ

M-PASSIVATE

a[x] : a[P] → {x
→ P}
M-SUP

∗a : ∗a → ∅
M-PROC

x : P → {x
→ P}
M-NAME

a : ∗b → {a
→ b}

M-CST

\a : ∗a → ∅
M-NEG

b �= c

a != b : ∗c → {a
→ c}
M-NIL

ε : ε → ∅
M-CONS

η : P → Θ1 η̃ : P̃ → Θ2

η, η̃ : P, P̃ → Θ1 + Θ2

Figure 6: Matching

a list ζ̃ = ζ1| . . . |ζn, let ζ̃α = ζα
1 | . . . |ζα

n . The rule tunes the directions (up or down) in order to allow rule
M-HEREto apply coherently. Rules M-PASSIVATE and M-SUP are straightforward. For message contents,
Rule M-CST states that an escaped pattern\a matches itself, yielding no substitution. Rules M-NAME,
M-NEG, and M-PROC handle the input of names and variables. Rules M-NIL and M-CONS dispatch the
results.

Reduction Finally, reduction, written→, is the smallest relation satisfying the rule

P ≡ P ′ P ′ s−→ Q′ Q′ ≡ Q

P → Q
·

As exactly one spot is allowed, this rule guarantees that exactly one trigger fires.

4 Examples

Let us first present a simple example.

Example 1 Consider the following configuration.

A = a[(e↑1〈x〉 | e↑2〈y〉 � P) | c〈Q〉] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | (c↓〈z〉 � R)]

The component a can emit the message c〈Q〉, which implies that a reference ∗a to a can be used to access
this message. Hence we have the following reduction.

A → a[(e↑1〈x〉 | e↑2〈y〉 � P)] | l1[e1〈U〉 | ∗a] | l2[e2〈V 〉 | ∗a | R{Q/z}]
The component a can also receive messages from both components l1 and l2 since it is a shared sub

component of both. Hence we have the following reduction.

A → a[P{U, V/x, y} | c〈Q〉] | l1[∗a] | l2[∗a | (c↓〈z〉 � R)]

Let us now give an example of dynamic binding and reconfiguration in the calculus.

Example 2 Consider the following configuration, which models a running component receiving instruc-
tions to update its sub component c with a new code P (d), which uses a service named d.

A = update〈c, P (d)〉 | ∗a | a[(update↑〈b, x〉 � (b[y] � b[x])) | c[Pc] | d[Pd]]

It reduces in two steps to ∗a | a[(update↑〈b, x〉 � (b[y] � b[x])) | c[P (d)] | d[Pd]], where the references to d
in P (d) have been dynamically bound to d[Pd].

10 Hirschkoff, Hirschowitz, Pous, Schmitt, and Stefani

We now review the examples of §2.3 within our calculus. First, assume given two components
Queue[. . .] andPair [. . .], working as follows. They expect messages from their parent components, on
channelsQueue.push,Queue.pop,Pair .fst , and so on. The channels of these messages identify the action
to execute. The messages contain a return channel name and the corresponding arguments. On the return
channel,Queue andPair send messages which have to be picked up as down messages by the client parent
component. For convenience, we use the syntactic sugarlet x = a(P̃) in Q for νb.a〈b, P̃ 〉|(b↓〈x〉 � Q),
with some freshb used as return channel. For instance,let x = Queue.push(P, Q) in R uses the resultx
of pushingP on top ofQ in R.

Example 3 The log service example can be represented as follows (reproducing the configuration of Fig-
ure 1 with L = Log).

Log [∗Queue | . . . code to actually log . . .
| (Log .log↑〈x〉 | state 〈y〉 � let z = Queue.push(x, y) in state〈z〉)]

| A[B[. . .] | C[∗Log | . . .]] | D[∗Log | F [. . .]]

In the rest of the program, the encapsulation links toLog are represented by occurrences of the reference
∗Log. The ownership ofLog by, say,o is encoded by the fact that the sub componentLog appears at the
top-level ino. The implicit scope ofLog, restricted to processes encapsulated ino, ensures thato is a
dominator ofLog .

Example 4 The shared printer example can be represented as follows, where c stands for “client”, and j
stands for “job”.

Printer [∗Queue | ∗Pair | . . . code to actually print . . .
| (Printer .lpr↑(c, j) | state 〈q〉 � let x = Pair .pair (c, j) in

let q′ = Queue.push(x, q) in
state〈q′〉)

| (Printer .lpq↑(r) | state 〈q〉 � r〈q〉 | state〈q〉)]
| A[B[. . .] | C[∗Printer | . . .]] | D[∗Printer | F [. . .]]

The shared library example can be represented similarly. We can however emphasize the code server
aspect of the example with a representation that only requires a unidirectional communication between the
clients and the shared library. The shared library is thus modelled as a code server that allows an instance
of the library code to be made available on request in the client component that requires it.

Example 5 The shared library example can be represented as follows, where !a〈P 〉 stands for
νb.(a〈P 〉.b〈〉|(b〈〉 � a〈P 〉.b〈〉)).

Lib[!Lib.get〈P 〉] | A[B[. . .] | C[∗Lib | . . .]] | D[∗Lib | F [. . .]]

Finally, we review the router example from Figure2, which is more direct than Examples3 and4
because it does not require any data structure: we just assume that names include integers.

Example 6 The router example is depicted in Fig.7. It is very similar to Fig.2: the router is identical and
shared between the networks, the networks are now kells shared between machines and may directly pull
messages out of machines and the router. This encoding allows the failure of the router or a network to
only impact inter-machine communication, it also segregates messages in different networks.

5 Conclusion

Component sharing, as experienced with component models providing it, is a feature that proves extremely
useful when describing or programming software architectures or systems with shared resources. We have
presented in this paper an extension of the Kell calculus that provides a direct, formal interpretation of com-
ponent models with sharing. To our knowledge, this is the first calculus offering (1) encapsulation with

Component-oriented programming with sharing: containment is not ownership 11

∏
i∈I;j∈Ji

mij

[
∗Ni | (n↓

i 〈\i, \j, x〉 � x) | Pij

]
| R


 ∏

i,j∈I;i�=j

(n↑
i 〈\j, l, x〉 � nj〈j, l, x〉)




|
∏
i∈I

Ni

[
∗R | (n↓

i 〈k, l, x〉 � ni〈k, l, x〉) | (msg↑〈k, l, x〉 � ni〈k, l, x〉)
]

Figure 7:A better router configuration

fine-grain, objective control over communications, (2) locality passivation, migration and replication, and
(3) access to shared components with simple communication rules. Our approach draws on a distinction
between ownership and containment inspired by recent works on ownership types and the control of alias-
ing in object-oriented programming languages. In contrast to these works, however, our approach avoids
the burden of a type system, by primitively distinguishing ownership from containment, thus enforcing the
programming discipline directly in the operational semantics.

The work we have presented here is only preliminary, however. First, the standard issues appear-
ing when one introduces a new process calculus remain to be dealt with, e.g., the development of a
bisimulation-based behavioral theory, or of static analyses to ensure semantic properties of processes. Fur-
thermore, it would be interesting to study the exact relation between approaches to object containment and
ownership in object-oriented languages and in the Kell calculus with sharing. At a minimum, we need to
investigate the different benchmarks used in the object-oriented programming community and study how
they are handled in our calculus.

Second, two important, inter-related questions remain, that pertain (1) to the control of communications
with shared components, and (2) to the control over dynamic binding. The first issue concerns a potential
security hole in our design. It can be succinctly stated as follows: in the extended Kell calculus presented
here, the constructνa.a[a[P]] is not a perfect firewall, while it is in the plain Kell calculus. This is due
to the fact thatP may have references to shared kells, which may in turn allowP to emit and receive
messages from its environment. We see two posssible solutions to this problem.

First, one could annotate each kell constructa[·] with explicit sieves on communications with shared
components. For instance, let us writea[P]A, whereA ::= ∅ | ∗ | ã | ¬ã represents the names of shared
components the present component is allowed to communicate with. Then, define the interpretation of
annotations by�∅� = Names, �∗� = ∅, �ã� = Names \ ã, and�¬ã� = ã. The semantics of these consructs
is given by a simple modification of the rules HOT and COLD, given by adding textually the side condition
SN(F)#�A� to both of them. With these new constructs and rules, we recover the perfect firewall equation
for νa.a[a[P]∅]∅: P cannot communicate with the environment outside ofa.

The second, more radical solution is to introduce a secondν operator, say∇, that would not cross com-
ponent boundaries. Channel names bound by∇ would then represent communication channels, while free
names and names bound byν would represent global names. Distant communication would be restricted to
channels, thus preventing an incoming piece of code to arbitrarily communicate with distant components.
Global names would serve for matching against local messages. We conjecture that the presence ofν and
∇ avoids the need for directional patterns (↑, ↓, •). The calculus thus collapses to a simpler version. The
second solution might also turn out to solve the second problem (which is not the case of the first solution):
the distinction between local channels and global names might give rise to a fine-grain account of dynamic
binding, provided the pattern language is enriched adequately.

References
[1] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D.Gorla, M.Loreti, E.Moggi, R.Pugliese, E.Tuosto, B.Venneri. The KLAIM project: Theory and
practice. InGC, vol. 2874 ofLNCS. Springer, 2003.
[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani. An open component model and its support in Java. InCBSE, vol. 3054 ofLNCS.
Springer, 2004.

12 Hirschkoff, Hirschowitz, Pous, Schmitt, and Stefani

[3] M. Bugliesi, G. Castagna, S. Crafa. Boxed ambients. InTACS, vol. 2215 ofLNCS. Springer, 2001.
[4] L. Cardelli, A. D. Gordon. Mobile ambients. InFOSSACS, vol. 1378 ofLNCS. Springer, 1998.
[5] G. Castagna, F. Zappa Nardelli. The Seal calculus revisited: Contextual equivalence and bisimilarity. InFSTTCS, vol. 2556 ofLNCS. Springer,
2002.
[6] D. Clarke. Object Ownership and Containment. PhD thesis, University of New South Wales, Australia, 2001.
[7] D. Clarke, T. Wrigstad. External uniqueness is unique enough. InECOOP, vol. 2743 ofLNCS. Springer, 2003.
[8] M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, I. Salvo. M3: Mobility types for mobile processes in mobile ambients. InComputing: the
Australasian Theory Symposium, vol. 78 ofENTCS. Elsevier, 2003.
[9] R. De Nicola, D. Gorla, R. Pugliese. Global computing in a dynamic network of tuple spaces. InCOORD, vol. 3454 ofLNCS. Springer, 2005.
[10] C. Fournet, G. Gonthier. The reflexive chemical abstract machine and the Join-calculus. InPOPL. ACM Press, 1996.
[11] M. Hennessy, J. Rathke, N. Yoshida. SafeDpi: a language for controlling mobile code. InFOSSACS, vol. 2987 ofLNCS. Springer, 2004.
[12] M. Hennessy, J. Riely. Resource access control in systems of mobile agents. InInternational Workshop on High-Level Concurrent Languages,
vol. 16(3) ofENTCS. Elsevier, 1998.
[13] J. Hogg, D. Lea, A. Wills, D. deChampeaux, R. Holt.The Geneva convention on the treatment of object aliasing, 1991.
[14] F. Levi, D. Sangiorgi. Controlling interference in ambients. InPOPL. ACM Press, 2000.
[15] Y. D. Liu, S. F. Smith. Modules with interfaces for dynamic linking and communication. InECOOP, vol. 3086 ofLNCS. Springer, 2004.
[16] A. Ravara, A. Matos, V. Vasconcelos, L. Lopes. Lexically scoped distribution: what you see is what you get. InFGC, vol. 85(1) ofENTCS.
Elsevier, 2003.
[17] A. Schmitt, J.-B. Stefani. The Kell calculus: A family of higher-order distributed process calculi. InGC, vol. 3267 ofLNCS. Springer, 2005.
[18] J.-B. Stefani. A calculus of Kells. InFGC, vol. 85(1) ofENTCS. Elsevier, 2003.
[19] P. T. Wojciechowski, P. Sewell. Nomadic Pict: Language and infrastructure design for mobile agents.Concurrency, 8(2), 2000.
[20] N. Yoshida, M. Hennessy. Assigning types to processes. InLICS. IEEE, 2000.

http://gee.cs.oswego.edu/dl/aliasing/aliasing.html

	1 Introduction
	2 Components and the Kell calculus
	2.1 The Kell calculus
	2.2 The Fractal component model and its interpretation in the Kell calculus
	2.3 Component sharing

	3 The calculus
	4 Examples
	5 Conclusion

