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Abstract

The high-quality floating-point implementation of use-
ful functions f : R → R, such as exp, sin, erf requires
bounding the error ε = p−f

f of an approximation p with
regard to the function f . This involves bounding the infi-
nite norm ∥ε∥∞ of the error function. Its value must not be
underestimated when implementations must be safe.

Previous approaches for computing infinite norm are
shown to be either unsafe, not sufficiently tight or too te-
dious in manual work.

We present a safe and self-validating algorithm for auto-
matically upper- and lower-bounding infinite norms of er-
ror functions. The algorithm is based on enhanced inter-
val arithmetic. It can overcome high cancellation and high
condition number around points where the error function is
defined only by continuous extension.

The given algorithm is implemented in a software tool.
It can generate a proof of correctness for each instance on
which it is run.

Foreword

This file is the long version of the article published in
A. Mathur, W. E. Wong and M. F. Lau edi-
tors: QSIC 2007, Proceedings of the Seventh
International Conference on Quality Software,
pages 153–160, Los Alamitos, CA, 2007. IEEE
Computer Society.

It is augmented with the proof of Proposition 3.1 that was
too long to be included in the published proceedings.

1. Introduction

Floating-point environments are the base of many soft-
ware systems. Examples include scientific computing, fi-

nancial applications and embedded systems. These soft-
ware systems use floating-point implementations of useful
functions f : R → R: exp, sin, cos, erf or some composites
like exp−1, for instance.

When it comes to implement such a function f , an ap-
proximation to f must be used [14, 13]. This approxima-
tion leads to some error ε(x) for each argument x in the
definition domain I .

The quality of an implementation is determined by the
maximal error in the definition domain. High quality imple-
mentations must provide guarantees of their validity. Con-
sidering the error ε as a function of x, determining and certi-
fying the maximal error means computing the infinite norm
of ε,

∥ε∥I∞ = max
x∈I

|ε(x)| ,

without underestimating it.
This paper analyzes the requirements to an algorithm for

such infinite norms. Previous approaches are shown to be
unsafe or unsatisfactory. We propose a self-validating algo-
rithm for this task. We have implemented the algorithm in
a software tool*.

1.1. Framework: implementation of functions

The most useful mathematical functions f : R → R,
as for example exp, sin, log or erf , some of which are
called elementary [14], are implemented in so-called math-
ematical libraries (libm). Techniques [14, 6] used for im-
plementing elementary functions transpose to other useful
smooth functions f ∈ C∞.

Implementations are mostly based on the
IEEE 754 floating-point standard [3]. This stan-
dard defines binary floating-point formats Ft ={
2E ·m|E ∈ Z,m ∈ Z, 2t−1 ≤ |m| ≤ 2t − 1

}
∪ {0}

*available at http://lipforge.ens-lyon.fr/ projects/
arenaireplot/



of precision t. For example, with the required bounds
on E, F24 is the single precision format. The standard
specifies also rounding modes, for example round-to-
nearest, ◦ (x). The basic operations defined by the
standard, ⊕,⊖,⊗,⊘ and sqrt, are the rounding of their
infinitely precise equivalents, +,−,×, / and √ . For
example, a⊕ b = ◦ (a+ b).

Current hardware shows particularly high performance
on addition and multiplication [13]. Elementary func-
tions f̃ : R → R are thus implemented in software or
microcode following an approach where tabulation is com-
bined with polynomial approximation:

1. Argument reduction uses algebraic properties of the
function f̃ to relate it to a function f . The argument x
of f lies in a small domain I , most usually around 0.
Argument reduction may use tables with pre-computed
values. This step may induce some error, called reduc-
tion error.

2. In the small domain I , the function is then approxi-
mated by a polynomial p = c0 + x · (c1 + x . . .) of
some degree with floating-point coefficients ci ∈ Ft.
This step causes the so-called approximation er-
ror ε = p−f

f .

3. Implemented in floating-point arithmetic, for example
as P = c0 ⊕ x ⊗ (c1 ⊕ x . . .), the polynomial p is
evaluated in an arithmetic subject to rounding. The
induced error is called round-off error E = p−P

p [7].

4. A reconstruction step finally combines table values
and polynomial approximations in order to retrieve the
original function f̃ from the approximation p of f . Its
error is called reconstruction error [14, 13].

The errors of the different steps combine to one overall-
error, which is the error of the floating-point number re-
turned by the code of the function on argument x with re-
gard to the real value f̃(x) [1, 7].

As an example consider the function f = exp−1. Sup-
pose that error-free argument reduction has already brought
its argument on the domain I =

[
− 1

4 ;
1
4

]
. The function can

be approximated on this domain using the polynomial

p(x) = x · (c1 + x · (c2 + x · (c3 + x · (c4 + x · c5))))

where

c1 = 1

c2 = 2097145 · 2−22

c3 = 349527 · 2−21

c4 = 87609 · 2−21

c5 = 4369 · 2−19

Let this polynomial be implemented in Horner’s scheme in
IEEE 754 single precision:

P (x) = x⊗ (c1⊕x⊗ (c2⊕x⊗ (c3⊕x⊗ (c4⊕x⊗ c5))))

Figure 1 plots the approximation and round-off-error and
their combination in the overall error.
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Figure 1. Sources of error as functions of x

1.2. Challenge and contributions

The quality of an implementation of a function is mainly
determined by its overall-error [7, 1, 13]. Moreover, specifi-
cations for the implementation of functions often fix a max-
imum bound for this error [7, 6].

Showing that the overall-error of an implementation is
less than a specified bound is the key to the proof of its cor-
rectness. Since the safety of a software system may rely on
an implementation of a function, the bound on the overall-
error must be computed in a safe way. When it comes to
guarantee the bound, it must not be underestimated in any
case.
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The overall-error is generally upper bounded considering
the different errors separately. Amongst them, the reduction
and reconstruction error can be handled by ad-hoc means [1,
14, 7, 10].

The round-off and approximation error are the main is-
sue. The situation in their analysis is not balanced:

• The round-off error E is a discrete function Ft → R
with chaotic behavior (see Figure 1(b)). Although clas-
sical analysis does not allow for computing upper and
lower bounds for it, different means are known and
useable.

Firstly, a manual study of the error terms induced by
each operation [10] allows for obtaining relatively tight
bounds and quite satisfactory safety. Secondly, ap-
proaches using formal proof checkers like HOL, COQ
or PVS [9, 5] increase the safety at the cost of more te-
dious and complex proofs [7]. Finally, tools like Gappa
allow for automatic analysis of round-off error and ver-
ification in formal proof checkers [7].

Using Gappa, the analysis of the discrete round-off er-
ror function becomes relatively easy and completely
safe. We will not further address this problem.

• In contrast, the approximation error ε = p−f
f of a poly-

nomial p with regard to a smooth function f gives
also a smooth function (see Figure 1(a)) in practical
cases. Classical analysis is thus appropriate for calcu-
lating and proving a bound on the infinite norm ∥ε∥I∞.
The problem may seem easy.

Nevertheless, previous approaches and algorithms do
not satisfy the needs of a safe implementation: the in-
finite norm is either underestimated or the approach is
too tedious and case-specific.

This paper studies the related approaches for bounding
such infinite norms in Section 2.1. This study makes it pos-
sible to specify a new algorithm in Section 2.2. It proposes
an implementation of this algorithm responding to these
specifications in Section 3. It is useful on real-life examples
encountered in the implementation of functions. Section 4
illustrates this point. Before concluding in Section 6, some
of its limitations will be shown in Section 5.

2. Analysis of the problem and specifications of
the algorithm

2.1. Related work

Previous approaches for bounding the infinite
norm ∥ε∥∞ of an error function ε = p−f

f fall in two
categories with regard to their incompatibility with safe
and fully automated implementation of functions:

• Floating-point techniques as proposed by Brent [4]
may return underestimations to the infinite norm. They
are therefore qualified as unsafe in this paper. Com-
mon software tools like Maple and Matlab implement
similar algorithm.

For example, reconsider the function f = exp−1
and the polynomial p given in Section 1.1. Inde-
pendently of its internal precision, Maple returns the

value 0.983491319532 . . . · 10−7 for
∥∥∥p−f

f

∥∥∥[− 1
4 ,

1
4 ]

∞
(see Section 4 for more details). This is an
underestimate by at least 1.8 · 10−17 because
ε(843485 · 2−22) = 0.983491319722 . . . · 10−7.

Known software glitches show that even such small
differences must not be neglected. Nevertheless,
Maple has been used for bounding error functions in li-
braries like CRLibm that claim to have proofs for pro-
viding correctly rounded, bit-exact results [1].

• Other approaches increase safety but require much
more tedious, manual work or very high compu-
tation time for obtaining tight bounds. They are
all based on a high order Taylor development p∗

of the function f . The infinite norm ∥p− f∥∞
is upper bounded using the triangular inequality
|p(x)− f(x)| ≤ |p(x)− p∗(x)| + |p∗(x)− f(x)|.
The bound on ∥p∗ − f∥∞, i.e. on the remainder term
the development p∗, is generally shown using paper
and pencil. This may become very difficult for com-
posites of basic functions, even more if the process is
to be automated.

Krämer gives a technique used in the development of
the FI LIB library [12]. The approach uses interval
arithmetic for bounding ∥p− p∗∥∞. The remainder
bound is shown on paper. The result may suffer from
a bug in the implementation. No formal proof is pro-
duced. The results are not very tight if they come near
the machine precision [11].

Harrison shows the correctness of an implementa-
tion of the function exp in the formal proof checker
HOL [9]. His proof is very tedious and not resistant
to changes in the implementation. The bound on the
remainder term is shown manually and just checked
automatically.

Taylor model based approaches allow for computing a
bound on the remainder term p∗ − f . Techniques have
been proposed for PVS and other Taylor model based
tools [5, 15]. They often require expensive computa-
tions [5].

3



2.2. Specifications

In order to implement a function f using a polynomial
approximation p in a safe way, one wants to know a bound u
such that, for each point x ∈ I , the approximation er-
ror |ε(x)| is not greater than u. The infinite norm ∥ε∥∞
is the best possible answer but this result is rarely directly
reachable and one just knows an approximated value. This
leads us to our first requirement for an algorithm bounding
infinite norms:

Requirement 1 (Safety). When the algorithm cannot re-
turn the exact value of ∥ε∥∞, it shall return an upper-
approximated value u.

This requirement is essential to the safety of the imple-
mentation. However it does not imply anything about the
quality of the approximated infinite norm u with respect to
the value ∥ε∥∞ it is supposed to represent. This leads to the
following requirement:

Requirement 2 (Quality). The algorithm shall return a
lower-approximated value ℓ of ∥ε∥∞.

Thus, one knows a range [ℓ, u] where the exact value lies.
An algorithm implementing the specifications inhere may
depend on some parameters. If the range [ℓ, u] is too large,
u may overestimate ∥ε∥∞ too much. In this case, one may
restart the algorithm with better chosen parameters in order
to get a better estimation of the actual value ∥ε∥∞.

Let us remark that classical numerical analysis tech-
niques generally allow one to get a point x0 where the in-
finite norm is almost reached. Most of the time, it is hence
not very difficult to obtain such a lower bound ℓ: |ε(x0)|
is a good one. The difficulty of the problem we address
comes from the fact that we want to get u ≈ ∥ε∥∞ with the
guarantee that it is an upper bound: u ≥ ∥ε∥∞.

The algorithm to compute u will probably be complex
and its implementation could contain some bugs. This
is why we introduce a third requirement to guarantee the
safety of the result:

Requirement 3 (Automatic proof). Together with the nu-
merical result [ℓ, u], the algorithm shall return a proof of
the claim ∥ε∥∞ ∈ [ℓ, u] that can be checked independently
(ideally with an automatic proof checker like COQ or PVS).

Let us now make two remarks regarding the specificity
of the context in which we compute infinite norms. First no-
tice that the algorithm will have to subtract f(x) from p(x),
two quantities very close to each other. Thus the leading
bits of p(x) and f(x) are the same and they will cancel each
other out when the subtraction will be performed. This phe-
nomenon is called catastrophic cancellation. If the compu-
tations are done with a precision of t bits and if the operands
have approximately t bits in common, the result of the sub-
traction may be totally inaccurate.

Requirement 4 (High-cancellation). The algorithm should
return accurate results, even when p is an excellent ap-
proximation to f , e.g. ε(x) is obtained from a highly-
cancellating subtraction.

There is often a point z ∈ I where the expres-
sion ε = (p − f)/f is not defined because the function f
has a zero at z. Nevertheless, the developer who imple-
ments such a function always tries to keep ε bounded in the
neighborhood of z. For this reason, most of the time, p has
a zero at z at least of the same order as f . Thus, the func-
tion ε extends by continuity at z, even if the expression in
undefined in z. This leads to our last requirement:

Requirement 5 (Continuous extension). The algorithm
should be able to return accurate results even when func-
tion ε is only defined by continuous extension at some
point z. However, the safety shall not be compromised
by this requirement: if the algorithm cannot find a finite
value u such that u ≥ ∥ε∥∞, it shall return +∞.

3. The algorithm

3.1. Assumptions

In order to satisfy these requirements, in particular the
safety requirement, we have chosen to use multi-precision
interval arithmetic [16, 2]. The general property of inter-
val arithmetic is the so-called inclusion property: given
a function φ and an interval I , the computer evaluation
of φ on I in interval arithmetic returns an interval J such
that φ(I) ⊆ J . Interval arithmetic naturally takes round-off
into account internally. It provides mathematically valid re-
sults. We will define below a procedure eval satisfying this
property.

In the following, the considered intervals are always sup-
posed compact. If I denotes an interval, I will denote its
upper bound, I will denote its lower bound, mid(I) =
(I + I)/2 and diam(I) = I − I .

We will further assume that f and ε = (p − f)/f are
smooth functions on I given as expression trees. Our al-
gorithm manipulates some derivatives of functions. These
derivatives are obtained by symbolic differentiation. This is
a design choice; other techniques may be appropriated (see
Section 5).

3.2. General scheme of the algorithm

The proposed algorithm uses the following elementary
theorem:

Theorem 3.1. Let φ be a differentiable function on a closed
interval [a, b]. The function has a maximum on [a, b] and
this maximum is reached:
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• either at a or b;

• or at a point c such that φ′(c) = 0.

The same holds for the minimum.

The principle of our algorithm consists in applying the
previous theorem to ε, and boxing rigorously the zeros of
function ε′, using a sub-procedure boxZeros (described in
Section 3.4). The general scheme of the algorithm is shown
in Algorithm 1.

Algorithm: CertifiedInfnorm
Input: An error function ε = (p− f)/f and a closed

interval [a, b]
A parameter t controlling the internal precision to be
used in the computations
A parameter ∆ controlling the maximal diameter of
the zero boxes used in the algorithm
A parameter N controlling the maximal degree of
recursion in eval

Result: An interval [ℓ, u] such that ∥ε∥∞ ∈ [ℓ, u]
begin

Box the zeros of ε′: B := boxZeros(ε′, [a, b],∆);
Add the two endpoints: Zleft := [a, a];
Zright := [b, b]; Z := {Zleft} ∪ B ∪ {Zright};
forall Zi ∈ Z do

Evaluate ε on the box Zi:
Yi := eval(ε, Zi, t, N);

end
Deduce an interval [ℓ, u] around the infinite norm;
(If asked for, generate a proof of the result);
return [ℓ, u];

end
Algorithm 1: General scheme of our algorithm

By boxing the zeros, we mean finding a finite list B of
disjoint intervals B = {Z1, Z2, . . .} such that every zero
of ε′ lies in one Zi. A parameter ∆ controls the max-
imal diameter allowed for a Zi. Note that there can be
some Zi ∈ Z that does not contain any zero of ε′ and
that a Zi may contain two distinct zeros.

Theorem 3.1 indicates that the extrema of ε are reached
either at a zero of ε′ or at an endpoint of the input inter-
val [a, b]. This is why the two thin intervals [a, a] and [b, b]
are then added to B for obtaining a list Z .

Then the algorithm evaluates ε on the boxes: it means
that for each Zi ∈ Z , we call our function eval that returns
an interval Yi that ε(Zi) ⊆ Yi. Two parameters t and N
control the accuracy of the result Yi with regard to ε(Zi).
The details of the algorithm and how the parameters influ-
ence the result will be explained in Section 3.3.

We explain now how bounds ℓ and u for the maximum
of ε can be deduced from the list of the Yi. The same

method applies for the minimum. From bounds for the min-
imum and the maximum, it is easy to get bounds for the in-
finite norm. Let x⋆ denote a point where the maximum of ε
is reached. By construction of Z , x⋆ lies in a Z ∈ Z .

As shown in Figure 2, and since ε(Z) ⊆ Y , the upper-
bound Y is greater than the maximum of the function.
Hence, the maximum of all the Yi is greater than the maxi-
mum of ε on [a, b].

Figure 2. Zoom on the maximum

Let us remark that if diam(Z) is small enough, ε(Z) will
be small too. So, if the result Y of eval(ε, Z, t,N) is tight
enough, diam(Y ) is also small. Thus, the lower-bound Y
of Y is a pretty good under-approximation of the maximum
(see Figure 2). It follows that the maximum of all the Yi is
a good under-approximation of the maximum.

These techniques are known as the computation of an in-
ner enclosure and an outer enclosure of ε(Z). For technical
details about it, see [16] for example.

Assume that eval and boxZeros can produce a formal
proof of their result (see Sections 3.3 and 3.4). To get a
proof for the whole algorithm, one just needs to implement
a proof for Theorem 3.1 and for the algorithm computing
the inner- and outer- enclosure of the image of an interval
by ε. The current version of our software produces proofs
written in English. However, the method has been designed
with the goal of generating formal proofs, which should not
be much more difficult.

As will be seen, procedure boxZeros needs to evaluate
functions on intervals; this is why we first explain proce-
dure eval.

3.3. Evaluating a function on an interval

In this section, we are going to present an algo-
rithm eval(φ, I, t,N) that computes J such that φ(I) ⊆ J .
It is given φ as an expression, the interval I , an internal pre-
cision t (in bits) and a level of recursion N . It is based on
another algorithm for direct interval evaluation, direval,
detailed first.

The expression φ is built up of n-ary basic functions ψ
such as: +, −, ×, /, exp, sin, erf . For all these functions ψ,
we have a procedure baseeval(ψ, I1, . . . , In, t) that com-
putes an interval J such that ψ(I1, . . . , In) ⊆ J . The inter-
val J has floating-point endpoints. Their precision is con-
trolled by the parameter t. A procedure direval(φ, I, t)
returning J ⊇ φ(I) can be built as follows: expression trees
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are recursively evaluated bottom-up using baseeval for the
basic functions. The correctness of this algorithm follows
from the inclusion property of interval arithmetic [2] by in-
duction on the expression tree φ. The MPFI library† im-
plements an evaluation procedure baseeval for common
functions. We use that library.

This naı̈ve algorithm does not respect Requirement 5
given in Section 2.2. In the case of a division,
baseeval(/, J1, J2, t) returns [−∞,+∞] if the denomina-
tor interval J2 contains 0. Nevertheless in such a situation
it may be the case that function φ = θ1/θ2 can be extended
by continuity in a zero z ∈ I of θ2 and that it has finite
bounds. An interval variant of L’Hôpital’s rule solves the
issue:

Proposition 3.1. If θ1 and θ2 are C∞ on I , if there is z ∈ I
such that θ1(z) = θ2(z) = 0 and if θ1/θ2 is neverthe-
less C∞ on I then

θ1
θ2

(I) ⊆
{
θ′1(x)

θ′2(y)
, with (x, y) ∈ I2

}
=
θ′1(I)

θ′2(I)
.

Proof. Let x be in I . If θ2(x) ̸= 0, it holds by the mean
value theorem, as claimed:

∃(ξ1, ξ2) ∈ I2,
θ1(x)

θ2(x)
=
θ1(z) + (x− z) · θ′1(ξ1)
θ2(z) + (x− z) · θ′2(ξ2)

=
θ′1(ξ1)

θ′2(ξ2)

If θ2(x) = 0, we may assume x = z. If z is an accumu-
lation point of the zeros of θ2, it is easy to see that it is also
an accumulation point of zeros of θ′2. In particular, by con-
tinuity of θ′2, θ′2(z) = 0. Thus, θ′1(I)/θ

′
2(I) = [−∞,+∞]

and the proposition holds.
If z is not an accumulation point of the zeros of θ2, there

exists an interval Ĩ ⊆ I where θ2 has only one zero z. Since
∀x ̸= z ∈ Ĩ ,

θ1(x)

θ2(x)
∈ θ′1(I)

θ′2(I)

by the mean value theorem, and since θ′1(I)/θ
′
2(I) is a

closed interval in R ∪ {−∞,+∞},(
lim
x→z

θ1(x)

θ2(x)

)
∈ θ′1(I)

θ′2(I)
.

The application of L’Hôpital’s rule must not endanger
the safety of the algorithm. Finding a zero z ∈ Ft is easy
in common cases using a floating-point Newton-Raphson
iteration. However, since it is obtained by an uncertified
floating-point process, the found z must not be used
immediately. It must be proven that θ1(z) = θ2(z) = 0.
The inclusion property of interval arithmetic provides
the base: since θi([z, z]) ⊆ direval(θi, [z, z], t),

†available at http://gforge.inria.fr/ projects/mpfi/

if direval(θi, [z, z], t) = [0, 0], it holds
that θi([z, z]) = [0, 0] and θi(z) = 0. If the inter-
val evaluation of direval(θi, [z, z], t) does not permit
concluding, the rule is not applied, in which case the bound
is infinite.

It might be argued that the application of L’Hôpital’s rule
in our algorithm is subject to too many conditions that are
all influenced by overestimates in the underlying interval
arithmetic. Although it may not work for general func-
tions φ, it is appropriated for functions ε = p−f

f or ε′

that are encountered in the implementation of functions f .
See Section 5 for more detailed information.

The complete algorithm direval using L’Hôpital’s rule
for evaluating a function φ on I is given in Algorithm 2.

Algorithm: direval(φ, I, t)
Input: A function φ given as an expression tree, an

interval I and a precision t
Result: An interval J such that φ(I) ⊆ J
begin

if φ is a leaf in the expression tree then return
baseeval(φ, I, t)
else

Let θ1, . . . , θn be such that φ = ψ(θ1, . . . , θn)
and let Ji = direval(θi, I, t)
if ψ is a division and 0 ∈ J2 then

Compute an approximate zero z ∈ Ft of
θ2(z) using Newton-Raphson iteration
Let T1 = direval(θ1, [z, z], t) and
T2 = direval(θ2, [z, z], t)
if T1 = [0, 0] and T2 = [0, 0] then return
direval (ψ(θ′1, θ

′
2), I, t)

else return [−∞,+∞]
end
else return baseeval(ψ, J1, . . . , Jn, t)

end
end

Algorithm 2: direval - Direct interval evaluation

The procedure direval does not always respect Re-
quirement 4: cancellation and decorrelation effects [2]
may lead to high overestimates of φ(I) by the result
of direval(φ, I, t). By the mean value theorem we can
use a centered form [2] in an interval Taylor evaluation ap-
proach: choosing a center m ∈ I , we have

φ(I) ⊆ φ([m,m]) + (I − [m,m]) · φ′(I)

The procedure eval(φ, I, t,N) thus evaluates φ on the thin
interval [m,m] using direval and recursively calls itself
with eval(φ′, I, t,N − 1) until N = 0, in which case φ′

is evaluated using direval. As shown in [2], if the diame-
ter diam(I) of the interval I is less than 1, the overestimate
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in the returned J with regard to φ(I) decreases exponen-
tially when N increases.

For proof generation, a trace of the computations in eval
is kept. This trace includes information for the use of inter-
val Taylor and interval L’Hôpital’s rule.

3.4. Boxing the zeros of a function

In order to box the zeros of a function φ on an inter-
val I we use a bisection algorithm: we first evaluate ϕ on I
with eval thus getting an interval J ; since φ(I) ⊆ J , if 0
does not belong to J then φ does not have any zero in I .

If, on the contrary, 0 ∈ J , this does not necessarily mean
that 0 ∈ φ(I) but there is a suspicion. That is where we
bisect: we cut I into two halves I1 ∪ I2 and call boxZeros
recursively on I1 and I2. We stop this process when the
diameter of the input interval is smaller than a parameter ∆.

Algorithm: boxZeros
Input: A function φ; an interval I; a parameter ∆
Result: A list B of intervals boxing the zeros of φ
begin

J := eval(φ, I, t,N) ;
if 0 ∈ J then

if diam(I) < ∆ then return {I} ;
else I1 := [I,mid(I)] ; I2 := [mid(I), I];
return
boxZeros(φ, I1,∆) ∪ boxZeros(φ, I2,∆);

end
else return {};

end
Algorithm 3: How to box the zeros

In order to generate a proof of the result, the algorithm
just retains the decisions made during the algorithm and
writes theorems of the form

(φ(I) ⊆ J) ∧ (0 ̸∈ J) ⇒ 0 ̸∈ φ(I).

The proof of φ(I) ⊆ J is given by eval.
Note that the bisection algorithm is a bit naı̈ve. A more

sophisticated algorithm like an interval version of Newton’s
iteration process (see [2]) could also be used but we have
not implemented it yet.

4. Examples

We present now two examples that show the practical
results of our algorithm. We have implemented the algo-
rithm in a software tool‡. In all the examples, we use

‡available at http://lipforge.ens-lyon.fr/ projects/
arenaireplot/

the release 0.0.2.2-alpha of the tool and compare the re-
sults with Maple 10 (Build ID 190196). Our experiments
have been done on a computer with a 2.5 GHz proces-
sor Intel Pentium 4 running GNU/Linux (kernel 2.6.19.2-
ws #1 SMP i686).

We used the procedure infnorm in the pack-
age numapprox of Maple. We set Digits to 100.

We will use a short notation for the result [ℓ, u] of our
algorithm: we write the common digits of ℓ and u followed
by the range of possible next digits. For instance, if the
result of our algorithm is [0.123456, 0.1234789], we will
write 0.1234[5− 8].

Worked example: We consider the example
described in Section 1.1. Let f be the func-
tion exp−1, I = [−0.25, 0.25] and the polynomial p
given above. We obtain for ∥ε∥I∞ with the parameter
setting N = 0, t = 165, ∆ = 2−27:

Maple 0.9834913195329190 . . . · 10−7

Our infnorm 0.98349131972[1− 3] · 10−7

Exact value 0.9834913197221 . . . · 10−7

As can be seen, the result of Maple is underestimated.
This estimation does not become better as Digits in-
creases as can be verified by increasing Digits to greater
values than 100. Contrary to what is often believed, the re-
sults of Maple seem not to converge towards the exact value
when Digits goes to infinity.

This underestimation may affect the correctness of the
implementation of function f . The result of our algorithm
gives approximately the same number of correct digits as
Maple, but it bounds rigorously the exact value giving a
trustful result. Moreover, increasing t and decreasing ∆,
we get tighter bounds of the exact value.

Log for CRLibm: The second example implements the
function f : x 7→ log2(1 + x) and is used in the library
CRLibm [1]. The infinite norm of ε = (p − f)/f must be
computed on [−1/512, 1/512] where

p(x) =

7∑
i=1

ci · xi

with

c1 =
117045327009867803036301574157545

2106

c2 =
−58522663504933901606981166592605

2106

c3 =
8663094464742397

254

c4 =
−6497320848515433

254
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c5 =
2598928339549937

253

c6 =
−541446114948727

251

c7 =
3712726891772213

254

We set the parameters to N = 2, t = 165, ∆ = 2−88

and we obtain:

Maple 0.21506063319 . . . · 10−21

Our infnorm 0.21506063323 . . . 45[7− 8] · 10−21

Exact value 0.21506063323 . . . 4573 . . . · 10−21

Maple returns its result quite instantaneously but under-
estimates the real value. Our algorithm needs about 320
seconds to produce a safe result.

5. Limitations of the algorithm

Our infinite norm algorithm given in the previous Sec-
tion 3 suffers from some limitations. These limitations are
of different kinds:

• On some instances for ε = p−f
f , the algorithm fails

to deliver a finite bounding for the infinite norm ∥ε∥∞
because of the lack of symbolic simplification. Sym-
bolic derivatives used in the algorithm for interval
Taylor evaluation and L’Hôpital’s rule may contain
subexpressions that cancel out symbolically but are the
source of numerical instabilities, such as decorrela-
tions. A typical example is the subexpression sin

√
x√

x

when evaluated on an interval containing 0. Use of
L’Hôpital’s rule without symbolical simplification of
the subexpression

√
x does not permit computing fi-

nite bounds.

• On the contrary, the use of symbolic differentiation for
evaluating the derivative of a function may not be ap-
propriate. The size of the expressions representing the
successive derivatives of a function may grow expo-
nentially. In particular fractional terms hinder the use
of high order derivatives. Functions ε = p−f

f contain
such fractions. Automatic differentiation [8] is inves-
tigated for overcoming this limitation.

• The presented algorithm has several parameters: the
precision of the interval arithmetic t, the maximal
zero box diameter ∆, and the interval Taylor recursion
level N . These parameters all have some influence on
the tightness of the result R = [l, u]. Although expe-
rienced users of the algorithm may find well-behaving
values by intuition, their influence may be too unpre-
dictable in general. In particular, one observes abrupt
changes of tightness in R with regard to ∆.

• Proof generation has quite a few drawbacks. Besides
the fact that it does not yet directly interface with a
formal proof checker, the size of the proofs may be too
large. Proofs explicitly list all interval evaluations of
basic functions, all symbolical derivatives, each sim-
plification step etc. For instance, for the worked ex-
ample (Section 4), about 45 000 theorems and lemmas
are listed. We lack a means of simplifying the proof
afterwards.

6. Conclusion

The implementation of functions f requires bounding
the approximation error ε = p−f

f of a polynomial p with
respect to f . Previous approaches are unsatisfactory. As a
solution, we have given a safe algorithm for bounding the
infinite norm ∥ε∥∞ of a smooth function ε.

In the given framework, functions ε = p−f
f often have

a high condition number and present difficulties at the ze-
ros of f . Our algorithm can overcome both issues in typical
cases. It uses a particular multi-precision interval evaluation
algorithm. This algorithm combines interval Taylor evalu-
ation with heuristics for the use of L’Hôpital’s rule. The
heuristics do not endanger safety: the algorithm automati-
cally proves the necessary conditions.

Our algorithm can generate a proof for each instance of
an infinite norm calculation problem. The proof is output in
English. This way our algorithm becomes self-validating.
The proof certifies that no contingent bug has affected cor-
rectness. This is a first step: the real goal is to interface
directly with formal proof checkers.

Our algorithm has some limitations. For instance, some
functions ε require symbolic simplification. We are plan-
ning to work on that.

The implementation of our algorithm has successfully
been used on real-life problems. All instances, taken out
of the CRLibm library [1], could be handled with quite sat-
isfactory ease.

References

[1] CRLibm, a library of correctly rounded elementary
functions in double-precision. http://lipforge.
ens-lyon.fr/www/crlibm/.

[2] G. Alefeld and D. Claudio. The basic properties of interval
arithmetic, its software realizations and some applications.
Computers and Structures, 67:3–8, 1998.

[3] ANSI/IEEE. Standard 754-1985 for binary floating-point
arithmetic, 1985.

[4] R. P. Brent. Algorithms for minimization without derivatives.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.

[5] M. Daumas, G. Melquiond, and C. Muñoz. Guaranteed
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und portable Funktionsbibliothek für reelle Argumente und
reelle Intervalle im IEEE-double-Format. Technical Report
98/7, Institut für Wissenschaftliches Rechnen und Mathema-
tische Modellbildung, Universität Karlsruhe, 1998.
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mentation. Birkhäuser, Boston, 1997.

[15] M. Neher. ACETAF: A software package for computing val-
idated bounds for Taylor coefficients of analytic functions.
ACM Transactions on Mathematical Software, 2003.

[16] A. Neumaier. Interval Methods for Systems of Equations.
Cambridge University Press, 1990.

9


