N

N
N

HAL

open science

A practical type system for generalized recursion

Tom Hirschowitz, Serguei Lenglet

» To cite this version:

Tom Hirschowitz, Serguei Lenglet. A practical type system for generalized recursion.

Report] Laboratoire de I'informatique du parallélisme. 2005, 24-50p. hal-02102506

HAL Id: hal-02102506
https://hal-lara.archives-ouvertes.fr /hal-02102506
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research

https://hal-lara.archives-ouvertes.fr/hal-02102506
https://hal.archives-ouvertes.fr

Laboratoire de I’ nformatique du Parallélisme

O
% Ecole Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON 1 5668

A practical type system for generalized
recursion

Tom Hirschowitz and Serguei Lenglet ~ May 2005

Research Report N° 2005-22

Ecole Normale Supérieure de Lyon, 46 Allée d talie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37 Fax : +33(0)4.72.72.80.80 Adresse électronique : 1ip@ens-lyon.fr

CENTRE NATIONAL
DE LA RECHERCHE 1 N] A
SCIENTIFIQUE J

A practical type system for generalized recursion

Tom Hirschowitz and Serguei Lenglet

May 2005

Abstract

The ML language is equipped with a sophisticated module system, especially
thanks to its notions of functor (higher-order functions on modules) and of
controlled type abstraction (opaque or transparent types).

Nevertheless, an important weakness of this system hinders modularization:
the impossibility to define mutually recursive modules. In particular, mutually
recursive functions must all reside in the same module.

Recently, Leroy extended the OCaml language, a dialect of ML, with an unsafe
notion of recursive modules. In this extension, one can define recursive modules,
but the system does not check that they are well-founded. If not, the system
throws an exception at runtime, which is annoying given the strong typing of
ML.

Powerful type systems have been proposed to tackle this issue, but they require
rather deep modifications to the ML type system.

This report presents a system requiring only local modifications to the ML
type system. We prove its soundness by injection into one of the evoked more
general formalisms.

Keywords: Programming languages, semantics, typing, modularity, recursion.

Résumé

Le langage ML est doté d’un systéme de modules sophistiqué, notamment grace
aux foncteurs (fonctions d’ordre supérieur sur les modules) et & son mécanisme
d’abstraction de types controlée (types manifestes ou abstraits).

Cependant, une faiblesse importante de ce systéme géne la modularisation
des programmes: 'impossibilité de définir des modules de fagon mutuelle-
ment récursive. Notamment, les définitions de fonctions mutuellement récur-
sives doivent toutes résider dans le méme module.

Récemment, Leroy a étendu le langage OCaml, un dialecte de ML, avec une
notion non stre de modules récursifs. Avec cette extension, on peut définir des
modules récursifs, mais le systéme ne vérifie pas que ces définitions sont bien
fondées. Lorsqu’elles ne le sont pas, le systéme lance une exception & ’exécution,
ce qui cadre mal avec le typage fort de ML.

Des systémes de types assez généraux ont été proposés récemment pour gérer
ce probléme, mais leur mise en ceuvre demande une modification en profondeur
du typage de ML.

Ce rapport propose un systéme ne nécessitant que des modifications locales au
typage de ML. Nous prouvons sa streté par injection dans I’'un des formalismes
plus généraux évoqués ci-dessus.

Mots-clés: Langages de programmation, sémantique, typage, modularité, récursion.

Contents
1 Introduction

2 Motivation for)\,: immediate in-place update

[

2.1 Lazyevaluationo
2.2 Backpatching
2.3 In-placeupdate L
2.4 Relaxed in-place udpate
2.5 Immediate in-place update Lo

The language)\,

3.1 Syntax e
3.2 Dynamic semantics Lo
3.3 Recursive modules oo oL

Abstract degree theory

4.1 Intuitionso
4.2 Basic definitionso
4.3 Graph comparison Lo

A powerful type system

A simpler type system

6.1 Typesystem
6.2 Soundness

Generalized degrees

A.1 Simple properties of generalized degrees
A2 Imternal merging

Soundness

B.1 Weakening and strengthening lemmas
B.2 Subject reduction
B.3 Progress

O W W W

10
13

13
13
14
17

18

23
23
25

27
27
29

1 Introduction

The ML language [19] is equipped with a sophisticated module system [18, 14, 8, 5], especially
thanks to its notions of functor (higher-order functions on modules) and of type abstraction (opaque
or transparent types). Nevertheless, an important weakness of this system hinders modularization:
the impossibility to define mutually recursive modules: mutually recursive functions must all reside
in the same module.

Recently, Leroy extended the OCaml language [17], a dialect of ML, with an unsafe
notion of recursive modules. In this extension, one can define recursive modules, but the
system does not check that they are well-founded. If they are not, the system eventually
throws an exception at runtime, which weakens ML typing. Powerful type systems have
been proposed to tackle this issue [9, 7], but they require rather deep modifications to the
ML type system, which are particularly annoying at the level of types, where they introduce
new, complex forms of functor types. This paper presents a system requiring only local
modifications to the ML type system. We prove its soundness by injection into a more power-
ful type system. The latter slightly improves over the one proposed in Hirschowitz’s PhD thesis [9].

Instead of trying to define the most powerful notion of recursion, we only target the common
patterns of recursive module programming, which include basic modules, of the shape struct
end, but also functor applications. A well-known example using functor applications is an
implementation of Okasaki’s bootstrapped heaps [20] with recursive modules by Dreyer etal. [6].
In Fig. 1, we consider a simpler, often wished-for example [15]. Such definitions are difficult to
type-check in a separate compilation setting. Indeed, their safety depends on the body of the
functor Set.Make and in particular on the way it uses the argument variable, which is impossible
to encode in its signature. Our solution relies on two main technical devices:

Refined functor types We distinguish functors types according to the way their bodies depend
on their arguments. Thus, Set.Make has a weak functor type (whose arrow is written
01 = 09 instead of 07 — o92. This makes the necessary information available during
type-checking.

Weak and strong dependencies We distinguish two kinds of dependencies, strong and weak.
Intuitively, the dependency of a module expression e on a variable x is weak only if

1. the value denoted by z is represented by a heap block, and

2. the evaluation of e does not lead to inspect the contents of this heap block.
Since we are designing a static dependency analysis, we use an approximation of this notion.

The formal setting of our study is the A,-calculus, a A-calculus with a very powerful let rec
construct, which has been shown to be efficiently compilable [11]. This calculus adequately models
ML recursive modules, and allows to abstract over the complex issues of typing recursive modules
w.r.t. type components [6]. In its experimental extension of OCaml with recursive modules, Leroy
implemented a type-checking algorithm described in an informal note [15]. The discussion and
formalization of this algorithm are beyond the scope of this paper.

The paper is organized as follows. In Sect. 3, we present A\, and its operational semantics, along
with some examples illustrating how the language models recursive modules. In Sect. 6, we present
our type system for)., which relies on an abstract notion of degree to model the dependencies of
modules on their free variables. This section also explains why the soundness of the type system
is difficult to prove directly. Section 5 introduces a more powerful and more complex type system,
whose soundness can be proved directly (see appendices A and B). After stating the soundness
theorem, we prove the soundness of the simple type system of Sect. 6 by direct injection into the
complex one. We do not examine related work in this research report.

module A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
end = struct
type t = Leaf of string | Node of ASet.t
let compare t1 t2 = match (t1, t2) with
| (Leaf sl1, Leaf s2) -> Pervasives.compare sl s2
| (Leaf _, Node _) ->1
| (Node _, Leaf _) -> -1
| (Node nl, Node n2) -> ASet.compare nl n2
end
and ASet : Set.S with type elt = A.t = Set.Make(A)

Figure 1: Recursive functor application in OCaml

2 Motivation for)\,: immediate in-place update

The particular choice of A, as a model for recursive modules has to be motivated. We do this
in the present section, explaining its definition in the light of the compilation scheme used for
recursive modules in OCaml. For compiling recursive modules, several known methods apply. We
successively review them and explain how this leads to A..

2.1 Lazy evaluation

A very flexible way of compiling recursive modules is to use lazy evaluation, which allows to
compile any definition. The idea is that recursive modules are first defined as thunks, and then
their evaluation is forced. This raises an exception at execution time in case the definition is
ill-founded.

For example, in OCaml syntax, a definition of the shape
module rec A : T = ¢
is compiled to

let rec A = lazy e in
let A = Lazy.force A

As long as e does not force the evaluation of A, the evaluation goes well, thus allowing to imple-
ment the example in Fig. 1. Nevertheless, lazy evaluation entails runtime tests and indirections,
which make it a rather inefficient method. Moreover, it weakens the strong typing of ML.

2.2 Backpatching

Another method that also allows to compile any definition is to use a backpatching semantics, as
done in the Scheme language [13]. The idea consists in first assigning a reference cell to each
recursive variable, initialized with some dummy value (denoted by nil in the following). Then, the
right-hand sides are evaluated. Until this point, any attempt to dereference the cells is a run-time
error. Finally, the reference cells are updated with the obtained values, and the definitions can be
considered fully evaluated.

The backpatching scheme leaves some flexibility as to when the reference cells bound to
recursively-defined variables are dereferenced. In Scheme, every occurrence of these variables
in the lexical scope of the letrec binding causes an immediate dereference. In Boudol’s
compilation scheme for the Ag intermediate language [3], the dereferencing is further delayed
because arguments to functions are passed by reference rather than by value. The difference is
best illustrated on the definition x = (Ay.Az.if 2 =0 then 1 else y (2 — 1)) z. In Scheme, this

definition compiles down to the following intermediate code

letxz =ref nil in
x:= (Ay.Az.if z=0 then 1 else y (z —1)) Iz

and therefore fails at run-time because the reference x is accessed at a time when it still contains
nil. In Boudol’s compilation scheme, the y parameter is passed by reference, resulting in the
following compiled code:

letr =ref nil in
z:=(AyAz.if 2=0 then 1 elsely (z—1)) z

Here, z is passed as a function argument without being dereferenced, therefore ensuring that the
recursive definition evaluates correctly. The downside is that the recursive call to y has now to be
preceded by a dereferencing of y.

Using the second solution, it is possible to implement the example in Fig. 1. However, in both
cases, a drawback of the backpatching approach is that recursive calls to a recursively-defined
function must go through one additional indirection. For well-founded definitions, this indirection
seems superfluous, since no further update of the reference cells is needed. In practice, compilers
recognize and optimize some common kinds of recursive definitions, typically functions, but it
appears preferable to rely on a more general method.

2.3 In-place update

The in-place update scheme [4] is a variant of the backpatching implementation of recursive defini-
tions that avoids the additional indirection just mentioned. It is used in the OCaml compilers [16].

The in-place update scheme implements let rec definitions that satisfy the following two con-
ditions. For any mutually recursive definition z; = e; ...z, = e,, first, the value of each definition
should be represented at run-time by a heap allocated block of statically predictable size; second,
for each 4, the computation of e; should not need the value of any of the definitions e;, but only
their names ;. As an example of the second condition, the recursive definition f = Az.(...f...) is
accepted, since the computation of the right-hand side does not need the value of f. We say that
it weakly depends on f. In contrast, the recursive definition f = (f 0) is rejected. We say that the
right-hand side strongly depends on f.

The evaluation of a let rec definition with in-place update consists of three steps. First, for
each definition, allocate an uninitialized block of the expected size, and bind it to the recursively-
defined identifier. Those blocks are called dummy blocks. Second, compute the right-hand sides
of the definitions. Recursively-defined identifiers thus refer to the corresponding dummy blocks.
Owing to the second condition, no attempt is made to access the contents of the dummy blocks.
This step leads, for each definition, to a block of the expected size. Third, the contents of the
obtained blocks are copied to the dummy blocks, updating them in place. One could argue that
the obtained values could directly fill the dummy blocks. However, this would require a special
evaluation scheme, whereas here, they are evaluated just like any other expression.

For example, consider a mutually recursive definition x1 = e1, 2 = ey, where it is statically
predictable that the values of the expressions e; and ey will be represented at runtime by heap
allocated blocks of sizes 2 and 1, respectively. Here is what the compiled code does, as depicted
in Fig. 2. First, it allocates two uninitialized heap blocks, at addresses ¢; and ¢35, of respective
sizes 2 and 1. This is called the pre-allocation step. As a second step, it computes e, where x
and xy are bound to ¢; and /s, respectively. The result is a heap block of size 2, with possible
references to the two uninitialized blocks. The same process is carried on for es, resulting in a
heap block of size 1. The third and final step copies the contents of the two obtained blocks to the
two uninitialized blocks. The result is that the two initially dummy blocks now contain the proper
cyclic data structures, without the indirection inherent to the backpatching semantics.

2.4 Relaxed in-place udpate

In spite of its advantages, the in-place update scheme cannot be used directly for compiling recursive
modules. Indeed, the conditions for it to be sound are impossible to check syntactically. We have

1. Pre-allocation:

zi[e]e] v2[¢]

g

2. Evaluation:

3. Modification en place:

x1 X2

Figure 2: The in-place update scheme

seen in Sect. 1 that some functor applications are highly desirable as right-hand sides of recursive
module definitions. However, recursive modules are intended to remain compatible with separate
compilation, so it is impossible to check that a functor application will not dereference its argument
without knowing the body of the functor.

This is why Leroy implemented another solution [15], which he calls relazed in-place update. It
is a variant of the in-place udpate scheme, which prevents segmentation faults by initializing the
dummy blocks with sound values. A sound value is a value that can be initialized with a value
of the same type, which when used raises the exception Undefined_recursive_module. A sound
module is defined has having only sound components.

The sound values are those of either functional or lazy type, which we can initialize with fun
X -> raise Undefined_recursive_module and lazy (raise Undefined_recursive_module),
respectively.

Furthermore, it is insufficient to simply apply the in-place update scheme with additional ini-
tialization of sound values. Indeed, this requires that all the recursively-defined modules contain
only sound values, and the example in Fig. 1 contains the module ASet, which has a empty com-
ponent of type ASet.t. In order to solve this problem, Leroy refines the in-place update scheme
as follows. In order to compile a recursive definition of the shape module rec X;: M;= mjand

. Xn: M,= my, the compiler first separates sound modules from unsound ones, and rejects
programs containing forward references to unsound modules, in the following sense.

Definition 1 (Forward reference)
A forward reference is a pair (i,j) such that i < j, and m; mentions x;.

Then, all the sound modules X; are bound to blocks initialized with sound values of the expected
type. Then, the definitions X; = m; are successively evaluated, and immediately updated in place
if necessary: if m; is unsafe, then it is simply let bound to X;; otherwise it is used to update X;
in place.

Remark 1 (Reordering)
In fact, if possible, the compiler reorders the definitions to prevent forward references to unsound
modules. In the following, we consider this step as preprocessing.

Let us see how the examples of Sect. 1 are compiled. In the example in Fig. 1, the module A is

module type T = sig
val £ : int -> int
end

module rec A : T = B

and B : T = struct
let £ x = x

end

A.f 0;;

Figure 3: Another recursive modules example in OCaml

sound, since compare has a functional type, and ASet is unsafe. After reordering, ASet is evaluated
first. The generated code is

(* Step 1 : allocation and initialization *)

let A = { compare = fun x -> raise (Undefined_recursive_module) }
in

(* Step 2 : evaluation *)

let ASet = Set.Make (A) in

update (A, {compare = fun x y -> match (x, y) with ...});

The exceptionUndefined_recursive_module is not raised, because the functor Set.Make does not
access A.compare.

Consider now the code in Fig. 3. The call to A.f throws the Undefined_recursive_module
exception. Indeed, here is how this code is compiled: A and B only contain compoennts of functional
type, so they are both sound. The module A is evaluated first. The generated code is

(¥ Step 1 : allocation and initialization x)

let A = { f = fun x -> raise (Undefined_recursive_module) }
and B = { f = fun x -> raise (Undefined_recursive_module) } in
(* Step 2 : evaluation *)

update (A, B);
update (B, {f = fun x -> x});

It clearly appears why the call to A.f 0 raises an exception : A is updated before B, so the
copied block contains fun x -> raise (Undefined_recursive_module) .

Compared to in-place update, relaxed in-place update allows to compile more programs and
to retain the efficiency of in-place update. However, if one of the recursively-defined values is
accessed before it has been updated, then an exception is raised. This maintains the soundness
of the language, since it avoids segmentation faults, but weakens it, because more programs will
behave badly.

2.5 Immediate in-place update

The goal of this work is to set up a type system for checking that recursive definitions are well-
founded. So, a first remark is that we can get rid of a limitation of the relaxed in-place update
scheme, namely the fact that only sound modules may be forward referenced. Indeed, if we succeed,
we won’t need to initialize the pre-allocated modules with dummy values, since the type system
ensures that their fields won’t be accessed before being updated with correct values. So, the only
condition we should impose on forward referenced modules is to have a predictable size, in order,
at least, to be able to pre-allocate a memory block for them. Fortunately, for the case of modules,

the size may always be guessed from the types. Thus, all modules may be forward referenced, as
long as their fields are not accessed before being updated.

Here, we consider a slightly more general setting, possibly in order to apply our type system
also to the base language (thus allowing function application as right-hand sides of plain recursive
definitions): we assume that not all expressions have a statically predictable size. Thus, the
compilation of a list of mutually recursive definitions proceeds as follows. First, we assume that
the guessable sizes have been provided by a prior static analysis, over which we completely abstract.
So, definitions of predictable size are annotated with a natural number representing it. At this
point, we reject programs where definitions of unpredictable size are forward referenced. If the
program is correct, here is what the compiled code does. For each definition X =[,; m of known
size n, an uninitialized memory block of size n is allocated, and bound to X in the following. Then,
the first definition is computed, which gives a value v. If this definition was of known size n, then v
should be a block of size n, and its pre-allocated block gets updated with v. This process is carried
on for each definition. We call this method the immediate in-place update scheme.

An example of execution is presented in Fig. 4. The definition is 1 = e1,22 = es,23 = €3,
where e; and e3 are expected to evaluate to blocks of sizes 2 and 1, respectively, but where the
representation for the value of e is not statically predictable. The pre-allocation step only allocates
dummy blocks for 1 and x3. The value v; of e; is then computed. It can reference x; and x3,
which correspond to pointers to the dummy blocks, but not 2, which would not make any sense
here. This value is copied to the corresponding dummy block. Then, the value v of e5 is computed.
The computation can refer to both dummy blocks, and can also strongly depend on x7, but not
on zy. Finally, the value vs of eg is computed and copied to the corresponding dummy block.

Example 1
The program of Fig. 8, compiled by immediate in-place update, may become correct. Indeed, if A is
assumed to have an unpredictable size, the generated code is:

(* phase 1 : pre-allocation *)
let B = alloc 1 in
(* phase 2 : evaluation and update %)

let A = B in
update (B, {f = fun x -> x});

Here, alloc 1 denotes an instruction that allocates a new heap block of size 1. Because A is
assumed to have an unpredictable size, the evaluation of A merely creates an alias of B, which does
not copy the uninitialized block. Thus, the update works for both A and B. Note however that in
the context of recursive modules, A would have a known size, and the example would be rejected by
our type system.

The immediate in-place update scheme implements more definitions than previous ones. More-
over, it is also simpler that the relaxed in-place update scheme, which imposes that forward ref-
erences point to modules containing only fields of functional or lazy types. This justifies the use
of immediate in-place update in this paper. Namely, we formalize our type system for a language
called Ao, initially proposed in Hirschowitz’s PhD thesis [9], which features powerful enough re-
cursive definitions to represent OCaml’s recursive modules, and which is compilable via immediate
in-place update.

3 The language X\,

3.1 Syntax

The syntax of A, is defined in Fig. 5. The meta-variables X and x range over names and variables,
respectively. Variables are used as binders, as usual. Names are used for accessing record fields, as
an external interface to other parts of the expression. Figure 5 also recapitulates the meta-variables
and notations we introduce in the remainder of this section. The syntax includes the A-calculus
constructs; variables x, abstraction Azx.e, and application e; e2. The language also includes records,

1. Pre-allocation:

T1

2. Computing ej:

[eTe]

3. Updating z; with vy:

X1 &3

4. Computing e and binding its value to xs:

YN uﬂ

5. Computing es:

6. Updating z3 with vs:
€2

x1

Figure 4: The refined in-place update scheme

x € Vars Variable
X € Names Name
Expression:
ecexpr == z|Ar.e|er ez A-calculus
| {Xi=z1.. Xp =2} X Records
|

let rec 101 €1...%, On €n, in e Recursive defs

Size indication:
< = =) |:m (’I’L a natural)

Meta variables:

s = Xo=x... X, =2, Record
b = I101€1...%5 % En Binding
B n= Xipziorer... X, DTy onen Structure

Syntactic sugar:
struct Xi>xi01e1... X, > x, 0n €, end Module
= letrec x101€1...T5On En
in {Xl leXn an}

Figure 5: Syntax of A,

record selection e.X and a binding construct written let rec. To simplify the formalization and
without loss of expressiveness, records are restricted to contain only variables, i.e., be of the shape
{X; =x1...X,, = z,,}. Bindings have the shape let rec x1¢1€1...2,0,€, in e, where arbitrary
expressions are syntactically allowed as the right-hand side of a definition, and every definition is
annotated with a size indication o. A size indication can be either the unknown size indication
=[7], or a known size indication =), consisting of a natural number.

Implicit syntactic constraints Records s = (X; = z;...X,, = z,,) and bindings b =
(x1 01 €1...2y Op €y,) are required to be finite maps: a record is a finite map from names to
variables, and a binding is a finite map from variables to expressions. Requiring records (resp.
bindings) to be finite maps means that they should not bind the same name (resp. variable) twice.
These conditions are implicitly assumed in the sequel. We refer to records and bindings collectively
as sequences.

In a let rec binding b = (z1 ©1 €1 ... 2, Oy €,), we say that there is a forward reference of x;
to z; if ¢ < j and x; € FV(e;). A forward reference of x; to x; is syntactically forbidden, except
when ©o; is a known size indication, i.e. ©; # =[7;. This condition should be clear in light of the
compilation scheme explained in Sect. 2. Moreover, we require that definitions of known size are
not variables, that is, for each z; =[,) e; in b, e; is not a variable.

Structural equivalence We consider expressions equivalent up to a-conversion of binding
variables in functions and let rec expressions. In the following, except if stated otherwise, when
we open a binding construct, we implicitly choose a representative witth fresh variables w.r.t. the
context.

Size We have seen that let rec-bound definitions can be annotated with natural numbers
representing their sizes. The role of these size indications is to declare in advance the expected sizes
of the memory blocks representing the values of definitions. For definitions that are not forward
referenced from previous definitions, there is no need for annotations. During the evaluation of
a list of definitions, when the currently evaluated definition becomes a value, then its real size is
matched against the syntactic size indication. If they are the same, then evaluation continues,
otherwise, it gets stuck. This is why there is a notion of size in A,.

Values and answers
v E€values = z|Azre]|{s} Value
a € answers = v |let recb, inv Answer

Figure 6: Answers in A\,

Hypothesis 1 (Size in \,)
We assume given a partial function Size, from X\, values to natural numbers, undefined on variables.

The hypothesis that variables have unknown sizes is related to the fact that definitions such
as ¢ = = are not handled by in-place update. Our semantics therefore distinguishes variable and
non-variable values.

3.2 Dynamic semantics

Values, answers, and sizes We now define the dynamic semantics of A,. As defined in Fig. 6,
Ao values comprise variables, functions Az.e and records {s}. In \,, an evaluated definition not
matching its size indication is an error, in the sense that it prevents further reductions. This
behavior is enforced by not considering such definitions as valid evaluation answers: a binding
defining only values is considered valid only if it respects sizes, in the following sense.

Definition 2 (Binding respecting sizes)
A binding b defining only values respects sizes iff for each definition (x =, v) € b, Sizeo(v) is
defined and equal to n.

We let b, range over bindings respecting sizes, written r.s. bindings for conciseness. The re-
quirement that evaluated bindings respect sizes has two immediate consequences. First, the size
indications are correct for the already evaluated definitions. Second, for a definition (z =, e), the
topmost constructor of the value of e must be determined by previous definitions. For instance, if
n = Sizeo(A2’.2'), then the binding (z=,) Az".2’, y=[,) is valid, because the topmost constructor
of the definition of y, A, is determined by the previous definition z. On the contrary, the binding
(Y =[n) T, =[n) A2".2") is invalid: 2 cannot be replaced with its value, according to the reduction
relation defined below. These constraints make A\, compilable with the in-place update compilation
scheme.

As defined below, there is no rule for eliminating let recin \,. Evaluated bindings thus remain
at top-level in the expression and also in answers. They serve as a kind of heap, or recursive run-
time environment. In Fig. 6, a valid answer a for the evaluation of a A, expression is defined to be
a value, possibly surrounded by an evaluated binding respecting sizes. It thus can have the shape
let rec 101 V1 ...Ty Opn Uy in 0.

Value binding Besides the non-standard notion of size, the dynamic semantics of A\, is unusual
in its handling of 1et rec bindings, which is adapted from the equational theory of [1]. This theory
relies on the following five fundamental equations, which resemble the rules proposed by [21].

1. The first equation is 1let rec lifting. It lifts a 1et rec node up one level in an expression. For
example, an expression of the shape e; (let rec b in es) is equated with let rec b in (e e3).

2. The second equation is internal merging. In a binding, when one of the definition begins
with another binding, then this binding can be merged with the enclosing one. An expression
of the shape let rec by,2 = (let rec by in €),bs in f is equated with let rec by,bo,z =
e,bs in f, provided no variable capture occurs.

3. The third equation is external merging, which merges two consecutive bindings. An expression
of the shape let rec b; in let rec by in e is equated with let rec by, bs in e, provided no
variable capture occurs.

10

Lf C?Textm: elv0|0X Binding contexts:
Nested lift context: Bo S b”’xO.D’b _
F u= O|L[F] Atomic dereferencing contexts:
Evaluation context: A= . Dwv|0.X
E .- F Dereferencing contexts:
| letrecb, inF ? ::|: IILEe[flec B ine
| letrecB,[F]ine —n

Figure 7: Evaluation contexts of A,

4. The fourth equation, external substitution, allows to replace variables defined in an en-
closing binding with their definitions. Given a context C, an expression of the shape
let rec b in C|[z] is equated with let recbinCle], if x = e appears in b and C neither
captures = nor the free variables of e.

5. The last equation, internal substitution, allows to replace variables defined in the same bind-
ing with their definitions. Given a context C, an expression of the shape let rec b,y =
C|[z],bs in ey is equated with let recby,y = Cles],boine; if © = ep appears in by,y =
C [z], b2, and if z is not captured by C, and no variable capture occurs.

The issue is how to arrange these operations to make the evaluation deterministic and to ensure
that it reaches the answer when it exists. Our choice can be summarized as follows. First, bindings
that are not at top-level in the expression must be lifted before their evaluation can begin. Thus,
only the top-level binding can be evaluated. As soon as one of its definitions gets evaluated,
evaluation can proceed with the next one, or with the enclosed expression if there is no definition
left. If evaluation meets a binding inside the considered expression, then this binding is lifted to
the top level of the expression, or just before the top-level binding if there is one. In this case, it
is merged with the latter, internally or externally, according to the context. External and internal
substitutions only allow to copy one of the already evaluated definitions of the top-level binding,
when they are needed by the evaluation, and from left to right only.

Remark 2 (Policy on substitution and call-by-value)

The fact that substitution is only performed when needed by the evaluation does not contradict
the fact that)\, is call-by-value. Indeed, only values are copied, and any expression reached by
the evaluation is immediately evaluated. The fact that evaluated definitions are not immediately
substituted with their values in the rest of the expression is rather a matter of presentation. In
particular, it allows Ao to properly represent recursive data structures.

Our strategy is implemented by two relations: the contraction relation ~~, handling reductions
inside the expressions, and the reduction relation —, handling top-level reductions. We write ~»+
(resp. ~*) for the transitive (resp. reflexive transitive) closure if the relation ~», and similarly for
R

The contraction relation The semantics of record selection and of function application are
defined in Fig. 8, by contraction rules, defining the local contraction relation ~». Record projection
selects the appropriate field in the record (rule PROJECT). The application of a function Az.e to a
value v reduces to the body of the function, where the argument has been bound to = by let rec
(rule BETA). Rule LIFT describes how let rec bindings are lifted up to the top of the term. Lift
contexts L are defined by

L == 0X|0Oel|lvO

Rule L1FT states that an expression of the shape L. [let rec b in €] evaluates to let rec b in L [e],
provided no variable capture occurs. For convenience, we introduce the predicate #, which holds
iff its two arguments are disjoints sets.

11

Contraction rules

x ¢ FV(v)

X ~5(X) (ProOJECT
s} s(X)) (Ar.e) v~ let rec x=pjv ine

(BETA)

dom(b) # FV(L)

L[let rec b in e] ~» let rec b in L]

(LI1FT)

Reduction rules

e~ e _ (ContexT) dom(by) # ({x} Udom(b,,b2) UFV (by,bs) UFV(e"))
Ele] —E[€]

IM
(let rec b,,z ¢ (let rec by ine),be in €’) (IM)

— (let rec by, by, xoe,by in €)

dom(b) # (dom(b,) UFV(b,))

(let rec b, in let rec b in e) — let rec b,,b ine

D(z)=wv
D[z] — D [v]

(EM)

(SussT)

Access in evaluation contexts

(let rec b, in F)(x) = by(z) (EA) (let rec by, yoF,b in e)(x) = by(z) (IA)

Figure 8: Dynamic semantics of A,

The reduction relation The reduction relation is defined in Fig. 8. Rule CONTEXT extends
the contraction relation to any evaluation context. Evaluation contexts are defined in Fig. 7. We
call a nested lift context F a series of lift contexts. We call a binding context B, of size ¢ a binding
(by, x ©O,b) where the context hole [J corresponds to the next definition to be evaluated, and this
definition is annotated by ¢. An evaluation context E is a nested lift context, possibly appearing
as the next definition to evaluate in the top-level binding, or enclosed inside a fully evaluated
top-level binding. This unusual formulation of evaluation contexts enforces the determinism of the
reduction relation. The idea is that evaluation never takes place inside or under a let rec, except
the top-level one. Other bindings inside the expression first have to be lifted to the top by rule
LirT, and then merged with the top-level binding if any, by rules EM and IM. If the top-level
binding is of the shape b,,x ¢ (let rec by in e), be, rule IM allows to merge b, with it, obtaining
by, b1, x0€e,ba. When an inner binding has been lifted to the top level, if there is already a top-level
binding, then the two bindings are merged together by rule EM. This implements the strategy
informally described above.

Finally, rules SUBST, TA, and EA describe how the variables defined by the top-level bind-
ing are replaced with their values when needed, i.e. when they appear in a dereferencing con-
text. Dereferencing contexts may take two forms. They can be binding contexts of known size
let rec by, x=[,)0,b in e. This is consistent with the fact that a definition of the shape (=, y)
is not considered fully evaluated, although y is indeed a value. Instead, the right-hand side of a
definition of size n must eventually be replaced with a non-variable value of size n. Alternatively,
evaluation contexts can be atomic dereferencing contexts wrapped by an evaluation context, i.e.,
contexts of the shape E[A], where A :=0Ov | O.X.

In X,, the value of a variable is copied only when needed for function application or record
selection. The value of a variable x is found in the current evaluation context, by looking for the
first binding of = above the calling site, as formalized by the notion of access in evaluation contexts.
There are two kinds of accesses.

e In the case of a context of the shape let rec b, in FF, if the called variable z is bound in the
top-level binding b,,, then b,(z) is the requested value.

e In the case of a context of the shape E [let rec b,,y o F,b in e], if the called variable z is
bound in the binding b,, then b,(z) is the requested value.

12

3.3 Recursive modules

Let us show simple examples showing how to encode recursive modules in A,. Other examples of A,
programs may be found elsewhere [12]. First, of course A, allows to model mutually recursive data
structures, which is necessary in order to account for recursive modules. For instance, using the
syntactic sugar struct B end in Fig. 5, we define two modules containing two mutually recursive
functions:
let rec FEven=[y; struct
even > even=p7) Ax.(x = 0) or (Odd.odd (x — 1))
end,
0dd =[n] 8trUCt
odd > odd=7) Ax.(x > 0) and (Even.even (v — 1))
end
in FEven.even 56

(where n is assumed to be the right size indication). Notice that the function definitions and
the first module do not need to have known sizes, since the only forward reference concerns the
second module Odd.

This example already allows to encode some examples with recursive modules, but not all. In-
deed, many practical uses of recursive modules include functor applications. For instance, consider
again the example in Fig. 1. Abstracting over the static part, we encode it in A, by

let rec A= struct
compare > compare=s) ... ASet.compare . ..
end,
ASet =, Set.Make A

in ...

(where n is assumed to be the right size indication). Just like in the encoding of mixin modules,
this expression evaluates correctly because Set. Make only needs a pointer to its argument to return
a correct result.

4 Abstract degree theory

Section 5 below defines a type system for \,, which is very expressive w.r.t. mutual dependencies,
since it allows to type the bindings generated by the local fixed-point encoding of mixin modules [9].
This type system relies on a notion of degree, which is also used by the simpler type system
presented in Sect. 6. Thus, we start by an abstract presentation of some theoretical properties of
degrees.

4.1 Intuitions

The purpose of the degree theory introduced in the next few sections is the dependency analysis of
bindings. This theory should be able, given a binding b = (z1 = e;1 ...z, = €,,), to answer questions
like “does the evaluation of z; require the value of ;7”, taking into account the possibility of indirect
dependency.
For instance, consider
b=(x={X ==z}
y=x.X.7
2= {Z={}}).

Directly, y strongly depends on x, and = weakly depends on z (since {X = z} is a value). This
defines the direct dependency graph of b, which does not contain any backward strong dependencies.
However, the evaluation of the binding goes wrong, since it reduces in two steps to

13

b=(z={X ==z}
y=2z7
z={Z={}}).

where y strongly depends on z. Our analysis takes such cases into account, by considering the
transitive closure of the direct dependency graph. A path of the direct relation corresponds to
an edge labeled with its last degree. Thus, a backward path ending with a strong dependency
should be considered dangerous. We will introduce a notion of binding correctness corresponding
to the absence of such paths. For mixin modules, since bindings are unordered, correctness rather
corresponds to the existence of an order, such that the obtained binding is correct.

Furthermore, when b is integrated into an expression, as in let rec b in e, we must be able
to consider the result as one definition of a new binding b’ = (b1, = (let rec b in €),by). The
evaluation of &’ makes it intuitively equivalent to b’ = (b1,b,x = e,b3). Thus, our method to
approximate the graph of b’ consists in considering that of b”, and then internalize dom(b) into x.
We do this by considering the set of paths leading from any variable y to variables dom(b) U {z}.
Roughly, for each y, we consider the path with minimum degree in this set, and represent it in the
graph of ¥’ by an edge from y to x, with this degree. This way, it takes the worst case into account,
and ensures correctness.

Finally, when substitutions occur in bindings, due to the substitution rules, the dependency
graph evolves. We identify an ordering on graphs, such that dependency graphs decrease along the
substitution rules, and decreasing preserves correctness.

4.2 Basic definitions

We first define the notion of degree structure.

Definition 3 (Degrees)

A set Degrees has a structure of degrees iff it is a lower semi-lattice (i.e., a partial order with a
meet operation), and its elements are partitioned into positive and negative elements, positive ones
being greater than negative ones, according to the partial order.

We fix an arbitrary, abstract structure of degrees Degrees for this section, whose elements are
denoted by y, ordering is denoted by >, greatest lower bound operation is denoted by A. We denote
by Positive and Negative the sets of positive and negative degrees, respectively. By definition, for
all x1 € Positive and x2 € Negative, we have y1 > x2. The meta variables x¥ and x© respectively
range over positive and negative degrees.

Definition 4 (Dependency graph)

A dependency graph over a set of nodes Nodes is a finite subset of Nodes x Nodes x Degrees, that is,
a finite, oriented graph, labeled with degrees. Graphs are considered equivalent modulo the following
equation:

X1
X1 A\ X2
Nl/\NQ - - == = NléNQ
_ =
X2

The nodes of dependency graphs are not relevant to the properties we want to establish, so
we do not constrain them at all. We denote them by N, and denote finite sets of them by P.
For more readability, we often write the edges of a graph N; == N, instead of (N1, Ny, x), where
Nj, Ny € Nodes. We denote the set of nodes of a graph — by Nodes(—). The set of targets of the
edges of a graph — is denoted by Targets(—), and similarly, sources are denoted by Sources(—).
The meta variable G will also range over graphs, in contexts where the graphical notation — is
ill-suited.

14

Correctness We now define two notions of correctness for dependency graphs.

Definition 5 (Transitive closure)
We define the transitive closure on dependency graphs as the fixed-point of the operation that adds

an edge Ny X2 N, for each pair of edges Ny X4 Ny and Ny 22 Ny in its argument —.

This fixed-point is always well-defined, since the considered operation does not introduce any
degree or node, so the number of edges of the generated graphs is bounded. The transitive closure
of a graph — is written —™.

Some notions on paths are defined as follows.

Definition 6 (Paths)

A path of the dependency graph — is a possibly empty list of consecutive edges. Its length is its
number of edges. If the path is not empty, then its degree is defined as the degree of its last edge.
A cycle is a non-empty path whose source and target nodes are the same. We define —* as the set
of paths of —.

We denote paths by §, and the empty path by e. The degree x of a non-empty path ¢ is
written as an annotation §X. The concatenation of two consecutive paths is written d1;d2. For a

Jr
dependency graph —, a path is also an edge of —*. We write Ny X7 Ny fora non-empty path of
Jr
degree x from N; to Na. Also, the concatenation of a non-empty path Ny X7 Ny and a possibly
+
empty path & from N, to N3 is written N7 =5 Na; X2, where xo is x1 if 6 is empty, and the
degree of § otherwise. Finally, when the two ends of concatenated paths or edges are syntactically
*
the same, we merge them. For instance, the concatenation Ny RSN Ng; Ny REN N3 is also written
N 2T Ny 22T N
Let us introduce the notion of correctness for dependency graphs. It relies on the notion of a
weak cycle: a cycle is weak if all its edges are labeled with positive degrees. Otherwise, the cycle
is said to be strong.

Definition 7 (Correctness)
A dependency graph — is correct, written -—, if it does not contain any strong cycle.

This notion is related to the following notion of ordered correctness, which relies on an order
over nodes. Orders on nodes are denoted by the symbol >. Their strict versions are denoted by

>>. For any dependency graph —, let -2, be the set of edges of — that are labeled with negative

+
edges. It can be seen as a binary relation on nodes. Moreover, we write £, for the relation
(—™1)© (the transitive closure has higher precedence than the degree annotation).

Definition 8 (Ordered correctness) n
A dependency graph — is correct with respect to the order >, or respects the order >, if £, Cp.
We write = (—,>) or - (—,>).

We have the following equivalence.

Proposition 1 (Existence of a correct ordering)
F— iff there exists an ordering &> on Nodes(—) such that - (—,>).

To prove it, we introduce the notion of a backward edge and a backward path.

Definition 9 (Backward edges and paths) .
Given a dependency graph — and an order > on nodes, an edge Ny RSN Ns, or a path Ny XN,
is said to be backward if No > Nj.

Thus, a graph is correct with respect to > if it has no backward path labeled negatively.
Preuve

15

e If - (—,>), then F—. By contrapositive. Assume — has a cycle with an edge of degree
X € Negative. Let N be the target of this edge. Then, the transitive closure —% of — has

+ +
an edge N =% N which is backward, so .7 is not included in >, and therefore - (—,>)
does not hold.

e If F—, then any topological sort of — gives an order such that the only backward paths
+
are in cycles, but as — is assumed correct, these paths all have positive degrees, so S s

included in >.

Subgraphs We now define some convenient notations for referring to subgraphs.

Definition 10 (Graph restriction and co-restriction)
For any dependency graph G and set of nodes P,

o G| p denotes the restriction of G to edges leading to nodes in P,

o p|G denotes the restriction of G to edges starting from nodes in P,

o G| _p denotes the restriction of G to edges leading to nodes not in P,

o p_||G denotes the restriction of G to edges starting from nodes not in P.
o If D is a set of degrees, then G is the set of edges of G with labels in D.

As shown by the following property, these operations commute, so we write them without
precedence, e.g., p|G|q-

Proposition 2
The following equalities hold

® |G = (Nodes\P)| G
* G—p = G)(Nodes\P)>
* (p1G))q = PIGIQ),
 p(GP)=(pO)”,
* (GP)p = (G)p)".

Definition 11 (Concatenation of graphs)
The concatenation G1;Ga of two dependency graphs is the set of edges { Ny L2, N3 | Ny LG

Ny S5 Ns}

1

Graph splitting Next, we define an operation called splitting on dependency graphs, that redi-
rects the edges leading to a node toward another node. This notion is technically useful in the
soundness proof.

Definition 12 (Graph splitting)
Let Gny»ny, = (G—gny}) U{ (N3, Na, x) | (N3, N1, x) € G}

Internalizable graph We also need the notion of internalizable graph, which is used for handling
the dependencies of bindings.

Definition 13 (Internalizable graph)
Let P be a set of nodes and a node N ¢ P. A dependency graph G is termed internalizable at P
with entry point N if pyG C G| pu(ny-

16

Graphs without degrees

Definition 14 (Unlabeled graphs as dependency graphs)
An unlabeled graph is viewed as a dependency graph by considering all its edges labeled with a
unique, negative degree.

Unlabeled graphs have an interesting property w.r.t. ordered correctness.

Proposition 3 (Ordered correctness of unlabeled graphs)
For any order on nodes > and unlabeled graph G = G1 U G2, F (G,>) iff F G1> and F G2>

Preuve A backward path can only be backward if there is at least one backward edge. O

4.3 Graph comparison

Definition 15 (Graph comparlson)
We define —1C—o as: for all Ny —>2 Ns, there exists X' < x such that N —> Ns.

Definition 16 (Graph strong comparison)
We define —1 C* —9 by

)
o for all N, X—>2 Na, there exists x < x© such that N, Lf No

(3]
o and for all Ny X, Na, there exists x < x® such that Ny =, Nj.

We say that —1 is more restrictive than —-s.

Proposition 4
o If —1 C" —», then —1C—a.

o If =2C—, then —1 CF —».
o If for all Ny X, Ny there ezists x' < x such that Ny X1 Na, then —1 CF —.

Notice that these relations are transitive and reflexive, but not antisymmetric, as shown by the
following two graphs, which are related by =* and 3%, but are obviously not the same.

x® x®
/\ /\
Ny Ny N No
_/ _/
))
X X
& %
N3 N3

We have the intuitive property that a less restrictive graph respects all the orders a more
restrictive one respects.

Proposition 5
If —>1E—>2, and l— (—>1, _) then l— (—>2, _).

Preuve When —;C—», for each path in the transitive closure of —9, there is a path with a
smaller degree in the transitive closure of —;. [J

17

Type: Tu=T N Ty Annotated function type
| {X1:71...X,:7} Record type

Generalized degree: ¢ € GDegrees ::= -00 | n | 00

Figure 9: Syntax of A\, types

Minimum (commutative) Composition
E N oo = & £ @ -0 = -0
E N -0 = -0 £ @ o0 =
m A n = miny(m,n) & @ ¢ = ¢ if¢ #o0,-00
Substitution Lambda
{{oo} = o0 o ® n = o
Hr = ¢ ifd#o0 > @® n = n
m D n = m-nn
Step Application
ifooo(-00) = -00 0 O n = ®
if_oo (€ = oo if&#-0 -0 O N o= -0
m © n = m-yn ifm>n
m © n = -00 ifm<n
Plus Minus
-0 + 1 = -o00 0 — 1 = -0
oo + 1 = o 0 — 1 = -0
n 4+ 1 = n+4nl © - 1 = o
(n+y1) — 1 = n

Figure 10: Operations on generalized degrees

5 A powerful type system

We now equip A, with a sound type system that guarantees that all recursive definitions are correct,
and that they match the expected sizes. Boudol [2] goes toward such a type system, however his
proposal does not handle sizes, resulting in a less efficient compilation scheme [3], and it does not
type-check curried function applications with sufficient precision for our purposes. Indeed, curried
function applications like (Az.\y.A\z.x y z) = y are considered to strongly depend on z, which
prevents expressions generated by the local fixed-point encoding to be well-typed. Hirschowitz and
Leroy [10] define a refined type system handling curried function applications, but not handling
sizes either. Hence, we now define a further refinement of these type systems, that allows both
powerful recursive definitions and sizes.

Types Types, written 7, have the syntax defined in Figure 9. Arrow types are annotated with
generalized degrees &, indicating how a function uses its argument. (The name of “generalized
degrees” is in relation with Boudol’s notion of degree, which are generalized by this notion.) For
instance, a function such as Az.z + 1 has type int — int, because the value of z is immediately
needed after application, whereas Azxyz.z + 1 has type int 2, ..., because the value of x is
not needed unless at least 2 more function applications are performed. We define an order on
generalized degrees, and show that they have a degree structure, with -oco as unique negative
degree. (We call generalized degrees simply degrees in the sequel, the distinction with the degrees
of MM should be clear from the context.)

18

Definition 17 (Ordering generalized degrees)
Define the order on generalized degrees as the smallest reflexive, transitive relation such that for
any & € GDegrees and n € N:

00 <E <0

n<n+1.

We denote by & A & the greatest lower bound of two generalized degrees &; and &,.

Proposition 6 (Degree structure)
Generalized degrees have a structure of degree with Negative = {-00}.

The typing judgment is of the form I' - e : 7 / 7, where T' is an environment, that is, a finite
map from variables to types, and v is a (total) mapping from variables to degrees, called a degree
environment. It indicates how e uses each variable: intuitively,

o y(z) = 0 means that e =z, or that e = {... X =x...} (« is used only as a pointer);
e y(x) = oo means that z is not free in e;
e ~(z) = -00 means that e strongly depends on z;

e and y(z) = n + 1 means that the value of z is needed only after n + 1 function applications,
e.g., x occurs in e under at least n + 1 function abstractions.

The restriction 7| p of a degree environment 7 to a set of variables P is the function that returns
v(x) on any x € P, and oo on any = ¢ P. The co-restriction v p is defined conversely. The support
supp(7) of a degree environment, - is the set Vars\y~!(c0) of variables of degree different from oc.
We impose that degree environments be of finite support: for all degree environment -y, the set
supp(y) = {x € Vars | y(x) # oo} is finite. The range rng() of a degree environment is defined as
usual.

Finally, we make two additional hypotheses related to types. First, we assume that functions
and records value have known sizes.

Hypothesis 2 (Size of functions and records ;)
We assume that for any s, Sizeo({s}) #=.

Second, we assume that the size of values can be guessed from their types.

Hypothesis 3 (Size of types)
We assume given a total function TSize, from A, types to size indications. By abuse of notation,
known size indications are identified with the natural number they carry.

The blocks corresponding to values of some given type 7 must all have size TSize,(7), when it
is known. This will be enforced below by Hypothesis 4.

Typing rules The type system for)\, is defined in Figure 11, using some notions defined by
cases in Figure 10.

Rule T-VAR expresses that the variable z is not protected by any function abstraction via the
side condition y(z) < 0.

Function abstraction (rule T-ABS) increments by 1 the degree of all variables appearing in its
body, except for its formal parameter x, whose degree is retained in the type of the function. We
write v © 1 for the function y — v(y) © 1, where degree subtraction is defined in Figure 10. Notice
that 1 © 1 = -o0, which can be surprising. In fact, it simply states that after one application, a
variable protected by one function abstraction is not considered protected anymore, as appears in
Az.x + 1 for instance.

Rule T-APp deals with function application. In the function part e;, all variable degrees are
decremented by 1, since the application removes one level of abstraction. The degrees of the
argument part es are combined with the £ annotation on the arrow type of e; via the @ operation,
defined in Figure 10. Intuitively, it represent the contribution of the free variables of the argument
to their degrees in the application. Because of call-by-value, strong dependencies in es (7y2(x) = -00)

19

<0 r T} e 1
20 e /GeNEng L
PEz:T(z) /)~y ThAze:r =1/
The:r S57/ym Tre:r /v 1<molAfQy (T-Arp)
Pheje:m /7y
dom(I) = dom(s) v <(v+1) vX E/dom(s),I‘l—s(X):I(X)/'y (T-RECORD)
DEA{st: {1}/
X € dom(I <v -1 I'kFe:{I !
€dom(l) <y e:{I}/~ (T-SeLECT)
FFeX:I(X)/~
res a fresh variable F+TykFe:7 /7
F+TyFb:T /G Fx, (G,b) v < (G U (e — res) > dom(b) > res) (T-LETREC)
I'Hletrecbine:7 /[~
I'ke:T Fe=6:Iv /G
I'te:e/0 (T-EMPTY) c: 1@ /7 v/ (T-UNKNOWN)
L' (z=peb):Ty+{z:T'(x)} /GU(y — x)
I'ke:T r=6:Iy /G —10) = TSizeo (T ==,
¢:T() /5 /G MO =0 TS) = = g
I'E(z=pebd) :Ty+{z:T(z)} /GU(y — x)

Figure 11: Typing rules for A,

remain strong in the application: £ @ -co = -oo for any £. Variables not free in ez (y2(z) = o)
do not contribute any dependency to the application. The interesting case is that of a variable x
with degree & # 00,-00 in es, i.e. not immediately needed. We do not know how many times the
function e; is going to apply its argument inside its body. However, we know that it will not do so
before £ more applications of e; e;. Hence, we can take £ for the degree of = in ey es. Finally, the
contributions from the function part (73 © 1) and the argument part (£ @ +3) are combined with
the A operator, which is point-wise minimum.

Remark 3 (Another explanation)
The & Q& operation could be defined as if .o (§2) NE1{&2}, where substitution -{-} and step if ()
are defined in Figure 10. The degree environment in the conclusion of the T-APP can also be

written (y1 © 1) A if .o (72) A E{V2}.
Ezplanation:

e the function part loses one level of abstraction, whence the v1 © 1 part;
e the argument to the function must be computed, and this is represented by the if o (v2) part;

e then the argument to the function replaces a variable of degree &, as indicated by the type of the
function. The operation -{-} computes an approzimation of the resulting degree environment.
When a variable has no free occurrence in the argument, one can safely give it the degree co.
When it has an occurrence in the argument, we reason as follows.

— If £ = -00, then the body of the function uses the argument, and we do not know how
many times it could apply it, so it is possibly more than the degree of any variable in ~ys.

— If £ = n+ 1, roughly, we know that we can safely apply the result n times, but then, it
works exactly as above, we do not know how the argument is going to be used, so we are
limited to approzimating all the degrees in supp(y2) at n + 1.

20

— If £ =0, then we approzimate all the degrees in supp(v2) at 0.

If £ =0, in fact, we could sharpen our approximation: in principle, it indicates that the body
of the function is more or less the argument variable, so we should be able to reuse the degrees
of the argument exactly. This would give the rule 0 Q@ & = £. There are at least two reasons
for not doing this.

— First, we will see that a rather standard weakening property on degrees holds: one can
replace degrees with inferior degrees in a typing judgment, without breaking its deriv-
ability. The proposed rule however, has strange consequences: it is no longer true that
the @Q operation is monotone in both of its arguments. Indeed, we have 0 < 3, but
3=3@5<0@5=5. The consequences of this are uncertain.

— Second, and it is certainly related to the first reason, sharpening our approximation
makes it too sharp for dependency graphs. Throughout the thesis, we have fized that the
notion of transitive closure of dependency graphs only takes into account the degree of
the last edges of paths. Consider a simple BETA contraction step: e = (Az.x)(\y.z)
is contracted to e; = let rec x=pp \y.z in x. With the proposed rule, the degree of z
inep isco AN0Q1 = 1. However, in es, we will see below that one has to consider the
following dependency graph, where res is a fresh variable:

1 0
z x res

It has a path from z to res, of degree 0, so the degree of z in ey is 0 at most. Thus, the
proposed rule breaks type preservation, unless we change the notion of transitive closure
for dependency graphs. This is unnecessary for our purposes.

The rule for record construction (rule T-RECORD) is straightforward, since it does not modify
the degree environment. The rule for selection (rule T-SELECT) types the components of the record
with a common degree environment 4, which must not give degree 0 to any variable. The final
degree environment has to be inferior to «'. The rationale for the restriction of +" is explained
by the following example. Consider e = xz.X. If we omit the restriction, e has type 7 in any
environment I’ such that I'(z) = 7, in the degree environment v = {x — 0}, whereas the degree of
x in e ought to be -co. For instance, consider the expression ¢/ = (Ay.{})z.X. By rule T-APp, it
is well-typed in the empty degree environment {z — oo | z € Vars}, but is stuck since no value can
be found for z.

The most complex rule is T-LETREC for mutually recursive definitions. For typing a let rec
expression let rec b in e, the T-LETREC rule introduces a typing environment I', with domain
dom(b), and adds it to the initial environment I'. In this enriched environment, it is checked that
e has the final type 7, yielding a degree environment 7.. Then, the typing of b is delegated to
the dedicated judgment, consisting of rules T-EMPTY, T-UNKNOWN, and T-KNOWN. For each
definition (x ¢, e) of the binding, these rules ensure that e has the expected type, yielding degree

environments 7,. While typing the binding, the rules build a dependency graph G, equal to

U (72 —), where v — x denotes {y W) | v(y) # oo}. Simultaneously, the rules check

z€dom(b)

that for each definition of known size x =, e, T'y(x) is indeed of size n, and also v, ~'(0) = 0.
This last verification is not very intuitive at first sight, but can be understood as follows. In A,
bindings must respect sizes, in the sense of Section 3.2. Thus, for a binding like (b, z =) y,0), ¥
should not be defined in b'. Indeed, it would make the intended value of x in the prefix (b, z =, y)
undefined. The condition 7, ~1(0) = 0 ensures that this cannot happen. Indeed, when typing the
definition x =) y, y could either have degree -oo or 0, but with the condition, it only can have
type -oo, which forces y to be defined before .

Once the binding is typed, rule T-LETREC checks that the graph G is compatible with the
order of definition and the size indications in b, which is denoted by Fy, (G,b). Let >, denote the
order of definitions in b, and Fy, (G,b) mean that - (G, >}), in the sense of ordered correctness
(see Definitions 8 and 14).

An important remark is that the absence of backward dependencies on definitions of unknown
size is trivially preserved by reduction, because dependencies become less backward along the

21

reduction. Thus, we do not need to check it explicitly in the type system, since it is part of
syntactic correctness.

Finally, the whole expression is given type 7, in a complex degree environment, computed from
the graph G U (7. — res). The expression let rec b in e can depend on a variable y in several
ways.

e The variable y can have an occurrence in e directly. Then, edges of v, — res from y to res
model this dependency.

e Also, it can have an occurrence in one of the bindings of b, say x. Then, paths of the graph
starting with this edge y — « model this dependency. Paths leading to res must be reflected
in the final degree environment, but paths stopping at a binding in b only need to be reflected
if they have a negative degree. Indeed, they cannot be part of any cycle.

Formally, the degree environment for the whole expression is required to be no greater than to
(G > dom(b) > res), where (G > dom(b) > res) is the degree environment internalizing dom(b)
into res, defined as follows, for any general degree structure, on any set of nodes.

Definition 18 (Internalized degree environment)
Let G be a graph internalizable at P with entry point N. The degree environment internalizing P
into N in G is

(G>P>N)= /\ {N1 — x| (M, X2, Na) € p—((Gyp)")}
NyeP
ANy = x| (N1 =5 N) € p((Gyp); Gy b

The graph p_((G)p)") is the set of edges of (G p)*, i.e. the set of non-empty paths of Gp,
that do not begin with a node in P. In other terms, each edge of p_((G)p)") corresponds to an
edge of p_ |G p; (Gp)* or equivalently p_ G| p; (p|G)p)*. In fact, as p|G C G| pun}, it can
also be viewed as p_ |G| p; (G)—{n})"

As announced, we assume that the function giving the size of types returns the right sizes.

Hypothesis 4 (Size of types)
We assume that the function TSizeo, from Ao types to size indications, is such that if T F v : T,
and v is not a variable, then TSize, (1) = Size,(v).

We now state some useful elementary lemmas.
The standard type weakening and strengthening lemmas are straightforward.

Lemma 1 (Type environment weakening)

IfTke:7 /7, and dom(IV) # FV(e), thenT +T"Fe: 7 /.

Lemma 2 (Type environment strengthening)
IfT+T'¢Fe:7 /7, and dom(TV) # FV(e), thenT Fe:7 /7.

We then remark that the typing judgment still holds if the degree environment +y is replaced
by another environment v < «, or if the degree vy(z) of an unused variable x is changed.

Lemma 3 (Degree environment weakening)

IfY<~vandTte:7 /v, thenTke:7 /7.

Now, we prove that the only necessary information provided by degree environments concerns
the free variables of the considered expression. Other informations could be ignored.

Lemma 4 (Degree environment strengthening)
IfT'Fe:7 /v, P2FV(e) andy'|p = p, then'Fe:7 /5"

Finally, we state two lemmas that are useful for proving the soundness of the simpler type
system presented in the next section.

22

Type: o =01 — 09 Function type
| {X1:01...Xn:0,} Record type
|[o1...0n] =0 Safe function type

Figure 12: Syntax of simplified A\, types

Lemma 5 (n abstractions)
The following typing rule is admissible for the type system of Xo.

F+{z1:m...an:mtbe:7/(vOn){x1—&...xp— &)

FI—X($17...7$n).€:T1 51e9(_n)—1) To 52@(—n>_2) e Th i>7'/’Y

Lemma 6 (n applications)
The following typing rule is admissible for the type system of Ao, provided for all i, & # 0.

FFe:Tlfl%l)Tgfz%Q)...Tniw'/'y D(x;) =1 fori=1,...,n

F'kFe(x,....zn): 7/ (yon)A{z1— & . .xn — &}

6 A simpler type system

The previous type system is too complex to be implemented as such, for instance in the OCaml
module system. We propose a more pratical restriction, which handles the most common cases.

This system relies on depedency graphs with a less expressive set of degrees: strong depedencies
are quoted by e, and weak ones by o, which give us a new set of degrees with only two elements
and with o > e.

6.1 Type system

Types Types have the syntax defined in Fig.12. A function has a type [r...7,] = 7' when
the values of its n arguments are not needed after n function applications. Otherwise it has type
71 — T9. For instance:

e \r.x + 1 has type int — int

e \ry.let rec z = x + 1 in z + y has type int = int — int: the value of = is not needed
after one application, but the value of y is needed after 2 applications

e \ry.let rec z=x+ 1 in A\t.t + z + y has type int = int = int — int: the value of z is
not needed after one application but needed after 2 applications, the value of y is not needed
after 2 applications

e \zy.let rec f = Az.x + 1 in M.t + y + = has type [int,int] = int — int: the values of z
and y are not needed after 2 function applications

Typing rules The typing rules are given in Fig. 13.To check if a function is “safe”, we consider
the depedency graph of its body: if there is no strong depedency in one of its variables (i.e. if there
is no path ended with a e with its source in {1 ...x,}), the function is typed [0y ... 0,] = 7 (rule
SAFE-ABS). The binding b of a let rec b in e is also checked (rule LETREC). As a convenient
notation, we write 71 ... 7, for the corresponding list of types, empty if n = 0. Similarly, we write
[11...7] = 7 for 7 if n = 0, and the expected type otherwise. In rule APp, the notation ¢’ = o
denotes either o/ — o, or [0,01 ...0,] = 00, With 0 = [01 ...0,] = 0¢. Similarly, we denote some
combination of safe and unsafe function types by [o1 ...0,] = 09. Also, we write ' - e : o :: 7 for
I'Fe:ocand T e:: .

23

Expressions

T+z:T(z) (VAR) mg(s) € T

'H{s}:Tos

F'ke:{I}

(RECORD) TFeX:I(X)

(SELECT)

F+{z:0'}Fe: Cke:o I'keg:o
{zio}re:o (UNSAFE-ABS) ©1:0 50 29

(Aprp)

'kXxe:o —o F'kFeies:o

=T+ {x1:01...00:0,} n>1
I"F struct Bend:o I'FBind(B) : G Sources(G**) C DV(B)

'FXzy...z,.struct Bend: [o1...0,] = 0

(SAFE-ABS)

I+Tyke:o THT,Fb:T, TFEb:G G™|domp) S

I'Fletrecbine:o

(LETREC)

Bindings

T'kFe:T I'Eb:T
I'0:e (EMPTY) c:I'@) i

' (z=peb): Ty +{z:T(x)}

(UNKNOWN)

Pke:T'(x) TEb:TY TSizeo (I'(7)) = =)
' (z=peb): Ty +{z:T'(x)}

Expression depedency graph

v is not a variable

(KNOWN)

T F v 5 o pv(o) (G-WEAK) I'-e: ofye (G-STRONG)
- P|FV(v

p>0 n>m>1 e=2X1...X, Pke:fo1...00] =0
I‘I—(e xl...xm) i (0‘{95}/\0‘{351“.%”})

(G-App)

res ¢ dom(b) UFV (b, e) 'k (b,res=pe) : G G| dom(b) Db
' 1let rec b in € :: Fy(1et rec b in e)HG+

(G-STRUCT)

Binding depedency graph |T'Fb:: G
Vo € dom(b),T' - b(x) = 7,

FEb:: U (Yo —)
z€dom(b)

(G-BIND)

Figure 13: Simple typing rules for A,

24

Types

[{73] = Al

[0" — o] = [0'] = [o]
[o1...on]=0] = [o1] ... =2 [on] — [o]
Degrees

[¢] = -o0

] = 1

Degree environments

[Vi(z) = [v(@)] if z €dom(y)

[Vi(z) = oo if z ¢ dom(7)
Graphs

6] = {eBye Xyl

Figure 14: Translation

Depedency graph construction rules Variables are generally typed e, except if (Fig. 13):

e it is protected by an abstraction (rule G-ABS)

e it is an argument of a function typed [0y ...0,] = o (rule G-APP)

6.2 Soundness

In this section we will prove the soundness of this system by injection into the previous one. The
translation is given in Fig. 14.

We state first a trivial proposition (the depedency graph construction rules give directly the
proof).

Proposition 7 (Shape of the graph of an expression)

IfT't e vy, then dom(y) = FV(e) and v < o|py(e). Further, we have the following.
e If e is of the shape €' X or is a variable, then v = o py(c).
e Letm >0 andp > 0. If e is of the shape (2. X1 ... Xp T1... %), then vy < o (:y AOj (a2}
We also remark that the translation never gives degree 0 to any variable.

Proposition 8 (Degrees given by the translation)
For all depedency graph -y, mg([v]) C {-o0,1,00}.

Theorem 1 (Soundness of the simple type system)
IfTFexyandThe:o then [T Fe:[o] /7]
IfTHb: G and T Fb:Ty then [T Fb: [T] / [G]-

Preuve The proof is by mutual induction on e and b, and case analysis on the last typing rule.

e VAR
We have e = z, then by Prop. 7 we have [y] = -00|(;, then by rule T-VAR, we have
[[]F = - [C](=) / [V]-

e UNSAFE-ABS

We have that e is an expression of the shape Az.e’, 0 = 01 — 03, and v < oFv(e) and
dom(v) = FV(e), by Prop. 7. So we have ([y] © 1)(x + -00) = -00| py(e)u{z}- Let 7' = @ py(e)
; we have [v] > ([vy] © 1){x — -00) and T F €’ :: 4. By induction we have [[' + {z : o1}] I
e’ : [o2] / [7'], which by Lemma 3 gives [’ + {x : o1}] F €' : [o2] / ([7] © 1){z — -00}, so by
rule T-ABS, we have [['] - Az.e : [o1] == [o1] / [7].

25

e APP

We have that e is an expression of the shape e; es, and ' e : 0/ = 0, and ' ey : 0/. We
proceed by case analysis on the last rule of the derivation of I' I- e :: v. We have two cases:

— G-ApPpP. In this case, e; has the shape e3 x1...2py_1, Wwithn >m > 1, e; = x,, and
es = x.X1...X,, and we have I' - e3 : [01,...0,] = ¢”. So, we have some record
types Iy ...I,, such that I'(z) = {I1}, and for all : € {1...p — 1}, [,.X; = {I;+1}, and
I,(X,) = [o1,...0,] = 0. But obviously, this type is the only derivable type for es, so
o' =0m, 0 =0 =[0om,...0n] = 0", and 0 =[Oy 41,...0,] = 0.

By rule T-VAR, we obtain [I'] = 2 : {[-Jof1} /-00| {5}, and then by successive application
of rule T-SELECT, [[] F e5 : [on] % ... = [on] — [0”] / -00|(x). Finally, by
Lemma, 6, we obtain [I'] e : [o] /-00| {2} A 1| {2,...2,,}, Which is the expected result.

— Otherwise, the last rule applied is rule G-STRONG, and we have v = e/ fy). By
induction we have [I] F e; : [o'] = [o] / [n] and [T] F ez : [o] / [12], with
Vi = ®|Fv(e,)- But [v] = -00/pv(e), s0 [] = ([11] ©1) A-00 @[y2], then by rule T-App,
we have [I']F e1 e2: [o] / [v]-

e RECORD

We have a derivation of the shape:

rmg(s) C dom(T)
I'k{s}:Tos

For all X € dom(s), by rule T-VAR, we have [I'] - s(X) : [I'](s(X)) / 7/, with 7" = 0} ng(s)-
But by Prop. 7 we have v < o|py({s}). S0 [7] < 1jpv(e) =7 + 1, so by T-RECORD, we have
[CIEA{s}:[TTes/]

e SELECT

We have that e is of the shape ¢’.X, and by Prop. 7, v = e|ry() = ®Fy(e). We have
' ¢ :: v by rule G-STRONG, so by induction we have [I'] F ¢ : {[I]} / [7]. So by T-
SELECT, [I'] F €. X : [I(X)] / [v]—1. But we have [y] -1 = -00|py(e) — 1 = -00| pv(ery = [,
so we have [I'] F ¢’ .X : [I(X)] / []-

e SAFE-ABS

By Prop. 7, we have v < o|py(¢). By inversion, we have e = Az;...x,.struct B end and
IV =T+{z1:01...2: 0n}, such that I" - struct B end : ¢/, with ¢ = [01...0,] = ¢’
Furthermore, by typing of struct B end, we have G such that I+ b :: G with b = Bind(B),
and Sources(G™®) C DV(B). Finally, by rule RECORD, we have IV + {s} :: v, with

Vs = O|FV({s})-

Thus, taking res a fresh variable and letting H = GU(ys — res), we have by rule G-STRUCT
that TV F struct B end :: FV(struct B end)||H+-

But in fact, the graphs ry(struct B ena)| H * and FV(struct B end)”G+ are equal. Indeed, consider
+
any path x LH y, with € FV(struct B end). If this path contains no edge to res, then
it is in FV(struct B end)||G+- Otherwise,
— there is no other edge to res,
— it is the last edge of the path,

— and x = o, by construction of H.

But since rng(s) # FV(struct B end), this last edge is not the only edge of the path, so the

Jr
path can be decomposed into x LG 2z =5 y. So, there is a path with source z in G, whose
degree is necessarily less than or equal to o, which gives the expected result.

26

A

Then, since Sources(Gt®) C DV(B), we obtain that as a degree environment,
FV(struct B end)HG+ = O|FV(struct B end); 50 W€ derive I - struct B end :: O| FV(struct B end)»
and by induction hypothesis, we have [I'] F struct B end : [¢'] / 1|rv(struct B ena)-

So, by Lemma 5, we have exactly [I"] F e : [o] / (n+1) gy, which gives the expected
result by weakening.
LETREC

We have that e is of the shape let rec b in €¢/. By typing hypothesis, we have I', and G
such that letting IV =T + Ty, I+ b: T, IVF e : o, and T - b :: G.

Moreover, by the second hypothesis, we get H and a fresh variable res such that I' - (b, res=[
€’) :: H. By construction, this H can be seen as the union of G’ and 7/ — res such that
Gl domv) Cb, [F b G and T' - €’ :: o/, which by weakening implies I'" = b :: G’ and
I'ke .

By induction hypothesis, this gives [I'] F b: [I's] / [G'] and [T'] F €’ : [o] / [7']- Moreover,
[G°] =[G']F*, so ka, (G,D).

Finally, we have [v] = [rv(e) | HT] = rv(e) [H]T < ([H] > dom(b) > res). Indeed, by
definition of a degree environment internalization, given x € dom([H] > dom(b) > res),
we have © € FV(e) and there are two possibilities: either there exists y € dom(b) such that

oot
T &[[H]] Yy, Or T i>[[Hﬂ res. In both cases, we have a path with the same ends and at most
the same degree in py () [H] .

Thus, we can apply rule T-LETREC so derive [T'] Fe: [o] / [v]-

UNKNOWN and KNOWN

Easy by construction of the graphs of bindings and Prop. 7.

Generalized degrees

We now turn to proving the soundness of the proposed type system.

Al

Simple properties of generalized degrees

We start the proof with a number of algebraic lemmas on degrees and degree operations. The
following lemmas should be read as universally quantified over the degrees &, &', &, &, &3. We
adopt the convention that @ has highest precedence, followed by A, and then @ and ©.

Lemma 7

S B N A R

(Giel)a@sHm<sHQHol.

(N Q&G =6QGNEEQE.
§Q(ENEG)=6QL N6 Q.
((£1@&)aé =60 (L Aag).

(on)@¢ =¢ca¢ on.
0e1®1=1,00101=108101= .
FE40, thene®161 =¢.

[fed 0,0}, then €1 @1 =¢.

27

9. -c0c@¢ <E.
10. If¢ <& then{@l1<¢@landfécl<ol.
11. IfED1 <01 thenE @2 < €.
12. (GinE)el=(EGel)A(ol).
13. If & < &, then § Q& < Q.
Preuve
1. If & = -00, we obtain -co < 1 which is true. If £, = oo we obtain co < co. Otherwise, the
claim reduces to &1 1 <& @ 1.
2. If &3 = -00, we obtain -co on both sides of the equality. If &3 = oo, both sides are equal to
0o. Otherwise we get £ A & on both sides.
3. If &, = -00, both sides are equal to -co. If & = oo, then £, Aés = €3 and & Q& = oo, so both
sides are equal to & @ &3. Otherwise, we argue by case on &3. If £&3 = -00, then we obtain -oco
on both sides, and if £5 = oo, we obtain & @ &, for both sides. Otherwise, {3 A €3 = n # -0,
061 Q(LANG)=a=Na=QEANEQE.
4. If &3 = -00, both sides are equal to -oo. If £&3 = 0o, we obtain oo on both sides. Otherwise,
both sides are equal to & @ &s.
5. Both sides reduce to co if £ = oo, to -00 if £ = -00, and to £ © n otherwise.
6. By definition of @ and ©.
7. By definition of ® and ©.
8. By definition of @ and ©.
9. If £ =-00 or £ = 0o, both sides of the inequality are equal to £. Otherwise, the inequality is
equivalent to -oo < &, which is true for any &.
10. By definition of & and ©.
11. Since £E@1> 1,61 >1s0& >1,and so by Item 8, ¢ =& &1 1, and the result follows
by applying Property 10 to £® 1 < & © 1.
12. By symmetry, we can assume w.l.o.g. that & < &. Then & A & = &, and by Property 10,
Goenn(oel)=aol
13. If & = oo, then £ @ &, = 0o, which is necessarily greater than £ @ &;. Otherwise, if & = -00,
then & = -00, and £ @& = £ Q & = -00. Otherwise, & is a natural number, so £ @ & = €.
But as & < &, & # oo. Hence, if £ = -o00, then £ @ & = -oc0, which is necessarily inferior to
£ @&y, Otherwise, & and & are both natural numbers, so £ @& =€ =£Q &,
14. By definition.
O

28

A.2 Internal merging

We use internalized degree environments to model the IM reduction rule, at the level of dependency
graphs. Given G, internalizable at P into N, internalizing P into NN in G also corresponds to an
operation on GG. The link is made by the following definition of internalized graph.

Definition 19 (Internalized graph)
Let G be a dependency graph internalizable at P with entry point N. Let the graph internalizing P
into N in G be

Internalize(G, P, N) = p,HG”,pU{N} U({(G>P>N)— N).
The connection with internalized degree environments is explained below.

Remark 4 (Forgotten dependency paths)

Internalized degree environments do not take into account the dependency paths stopping before the
final target N that have a positive degree. This refinement is mostly technical, and we can explain
it with an ezample. For evample, let e = let rec x =, (A\y.Az.{}) = in {}. We certainly want
e to be well-typed, and expect x to have degree co in the expression (A\y.Az.{}) x. This is what
the type system does, since oo @ 0 = co. However, consider now the reduct ¢’ = let rec x =[n]
(let rec y=pyz in(Az.{})) in {}. If the operation (- > - > -) took all dependencies into account,
the degree of x in let rec y=p x in(Az.{}) would be 0, thus breaking type preservation.

Notice that a variable of degree co can occur free in the considered expression. This is harmless
though, since these forgotten dependencies cannot be part of any cycle: other definitions than x
cannot depend on y, and the intended one for x does not depend on y either (it is equal to \z.{}).
However, this phenomenon forces us to eliminate backward dependencies on definitions of unknown
size independently, although one could have hoped that it could be done by examining dependency
graphs.

In this section, we prove some properties of internalized graphs and degree environments. For
more generality, we reason on an arbitrary set of nodes, although the considered degree structure
remains that of generalized degrees. So, a degree environment is a total function from nodes to
generalized degrees, of finite support. Moreover, we remark that generalized degrees respect the
following hypothesis.

Proposition 9 (Unique negative degree)
We assume that the considered degree structure has a unique negative degree.

Internalized degree environments and graphs give environments and graphs that contain enough
information for ensuring the correctness of the initial graphs, in the sense that they detect all
dependencies cycles containing negative degrees, and that they correctly predict the dependencies
after reduction. This is shown by the next two lemmas, which use the following property.

Proposition 10 (Complete internalized graph)
Let G be a graph internalizable at P with entry point N. For all path Ny Lg No of G, with
Nl ¢ P’

e either Ny € P and £ € Positive,

. ¢
e or Ny € P, £ € Negative and N1 —|yemnalize(c,P,N) Vs

+
£
e or Ny " Internalize(G,P,N) Na.

Preuve We proceed by induction on the number of edges not in p_|G|_puiny-

3

+
Internalize(G,P,N)

o If all edges are in p_|G||_puiny, then, trivially Ny Ns.

29

O

If n + 1 edges are outside p_|G|_puiny, let N3 i N4 be the first of these. We have

3 3 &2 £ £
N1 —>2_; N2 = N1 —1>Z~ N3 —a N4 —> NQ, with N1 : I*nternallze(G P,N) 3. We know

that N3 ¢ P and Ny € PU{N}. We dlstlngmsh the following three cases.

— Ny = N. Then, (G> P> N)(N3) = {2, 50 N3 2>|nterna|ize(G,P,N) Ny, and we conclude
by induction hypothesis on N, LG Ns.
— The rest of the path, Ny Lg N3, contains only nodes in P, i.e.it is a path of p |G| p.

. 3 § + .
* Iff € Negatlve’ then N3 —>Interna|ize(G,P,N) N’ so N —)Internalize(G,P,N) N: we are
in the second case.
x Otherwise, we are in the first case.

&4 & &
— The rest of the path Ny —>G Ny is of the shape Ny —>PHG”P N5 G Ng ——¢ No.

By hypothesis, as p”G” p = p”Gﬂ GH,p, we have P”GH p C GHPU{N} ﬂ GH P =
G|(ny, 80 N¢ = N, and N3 — ~= Internalize(G,P,N) Ng. If the last path Ng —> Ny is
empty, then £ = £, and we are in the third case. Otherwise, by induction hypothe51s
there are three possibilities.

* Ng — Internallze(G PN No, and Ny —>|ntemahze(c PN) Ns: we are in the third case.

x Ny € P and & € Positive, and we are in the first case.

* N2 € P f € Negatlve and NG Internallze(G P,N) N and Nl Internallze(G P,N) N:
we are in the second case.

Lemma 8 (Complete internalized graph)
Let G be a graph internalizable at P with entry point N. Let > be a total order on Nodes(G), such

that

P> N,

for all N' ¢ P, if N' > N, then N' > P,
F (Internalize(G, P, N),>),

and = (p| G p,>).

We have - (G, D).

Preuve We prove that all negative paths of G are forward. Let N; Lg Ns a path of G, with
& € Negative.

If Ny ¢ P, by Property 10, and as £ € Negative, there are two possibilities.

— Ny € P and Ny — Internallze(GPN) N. By hypothesis, - (Internalize(G, P, N),>), so
N; > N, and, by hypothesis, this implies that N; > P, so N; > N2 and the considered
path is forward.

- N; iﬁ;tema“ze(aRN) Ny, so N1 > Ny by correctness of Internalize(G, P, N), and the

considered path is forward.
If Ny € P.
— If all nodes of the considered path are in P, then it is included in p G p, and is forward
by hypothesis.
— Otherwise, consider the first node not in P: it is necessarily N because p|G C G| pu{n}-
So the considered path is of the shape Ny — Lg No.

PuGuPu{N}

30

x If the second part of the path, NV LE Ny, is empty, then then considered path is
from N7 € P to N, and by hypothesis N7 > N.

* Otherwise, the same reasoning as above demonstrates that IV > Ns, so by transi-
tivity of >, we have N1 > Ns.

O

Lemma 9 (Complete internalized degree environment)

Let P and Q be disjoint sets of nodes, N € Q, and G a dependency graph internalizable at P with
entry point N and internalizable at PUQ with entry point Ny, such that Targets(G) C PUQU{ Ny},
and Sources(G) # {No}. We have

(Internalize(G, P, N) > Q > Ny) < (G > (PUQ) > Ny).

Preuve By hypothesis, we have No ¢ P U Q, and p|G C G| puiny, pug|G € G puguine}. Let
v = (Internalize(G, P, N) > Q > Ny) and 7' = (G > PUQ > Ny). Let G; = Internalize(G, P, N).
First, notice that the conditions on G imply that Targets(G1) C QU{Ny}, and Sources(G1)#{No}.
Consequently, QHGl - Ganu{ No}- So the two degree environments are well-defined.

For any node Ny, let £ =~/(N;7), and let R = P U Q. There are two possibilities, by definition
of (> >).

1 § «
* M ==, (Gia NQ_ T RIGIR
there are two possibilities.

N3 and ¢ € Negative. We have N; ¢ P, so by Property 10,

~ NsePand Ny ¢, N, so,as N €Q, v(Ny) < &.
~ Ny ¢ Pand Ny (. Ny, so, as N3 € R\ P, we have N3 € Q and (V) < €,

No LGH{NO} No, with N1 ¢ R. By Property 10 again, as Ny ¢ R, we know that

o« N LEHR
N1 Lgl NQ, SO ’y(Nl) S f

The next lemma deals with external merging (reduction rule EM). In fact, this reduction rule is
also modeled through internalizing degree environments. For instance, consider the reduction step
(let rec by in let rec by in e) — (let rec by, by in e). With respect to degree environments,
the redex internalizes b, and then by, while the reduct internalizes b; and b2 at once.

Lemma 10 (Two steps internalized degree environment)
Let P and Q be disjoint sets of nodes, and N ¢ PUQ, and G be a dependency graph internalizable
at P with entry point N, such that Targets(G) C PUQ U{N}, and Sources(G) # {N}. We have

(Internalize(G, P,N) > Q> N) < (G > (PUQ) > N).

Preuve Let v = (Internalize(G,P,N) > @ > N) and v/ = (G > PUQ > N). Let G; =
Internalize(G, P, N). First, notice that the conditions on G imply that Targets(G1) € Q U {N},
and Sources(G1) # {N}. Consequently, o G1 C G1jjou{ny}- So the two degree environments are
well-defined.

For any node Ny, let £ =~/(N;7), and let R = P U Q. There are two possibilities, by definition
of (> >).

e N; LR_HG”R N, L;HG”R N3 and & € Negative. We have Ny ¢ P, so by Property 10,
there are two possibilities.

~ NsePand Ny =, N, soy(Ny) <&
~ Ny ¢ Pand Ny > Ny, so, as N3 € R\ P, we have N3 € Q and (V) < €,

31

o N SLx N, LGH{N} N, with N7 ¢ R. By Property 10 again, as N ¢ R, we know that

Z"HR
N E N soy(Ny) <€

The next two results concern degree strengthening. The idea is to ensure that only the free
variables matter in degree environments.

Proposition 11 (Degree environment restriction)
Let P and Q be disjoint finite sets of variables, a node N ¢ P U Q, and G be a dependency graph
internalizable at P with entry point N. We have (G > P > N) o = ((pug|G) > P> N).

Preuve Let G' = pyq|G, v = (G> P> N) o and v/ = (G' > P > N). First notice that
supp(y') C Sources(G’) \ P = Sources(G) N Q 2 supp(7y). So, for any node outside @, both return
0.

Then, let G; = QHGHP‘ Let Gll = Q”Gl”p. But G’ = qu”G, so G1 = G/l

Similarly, let G3 = p”G”p and G2 = p”G I\P- We have G5 = G/Q

Let G3 = PHGH{N} and G3 = p”G {N}- We have G3 = G/

Let G4 = Q”G”{N} and G = Q”G {N}- We have G4 = G/

Now, for all Ny € @Q, ~(No) is the minimum of the set of degrees & such that

No S5, N =55, Ny if € s negative, or Ny <5 Ny <55 Ny <5, N, or Ny ==, N.
But, as we have seen, each of these paths corresponds to a path of the form Ny i>G’1 Ny Lgé Ny

or Ny —>G/ Ny == L & Na —>G/ N or Ny —>G/ N. So~'(Ng) < v(Np). The converse argument

shows that v(Ny) < v (NO) and therefore v(No) =+'(No). O

Corollary 1 (Graph / Degree restriction)
Let P and Q be disjoint finite sets of variables, No ¢ P U Q, and for all N € P U{Ny}, vn be a

degree environment. Let for each N € PU{Ny}, vy = YN pugs G = U (yw — N), and
NePU{Ny}
&= |J ON—N). Wehave (G> P> No) o= (G > P> Ny).
NePU{No}

Then, we state some technical lemmas used to prove the subject reduction property. First, we
give a sufficient condition for separating an internalized degree environment, in the following sense.

Proposition 12 (Graph separation)
Let G1 and G4 be two dependency graphs such that

N ¢ Sources(G1 U G2),

Targets(G1 UG2) C PW{N},

Targets(G1) # Sources(Gz), and

Targets(G2) # Sources(G).
We have (GiUGy > P> N)=(G; > P> N)A(Gy> P> N).

Preuve First, the supports of both degree environments are included in (Sources(Gy) U
Sources(G2)) \ P. Now, let us fix a node N’ in this set. The set (G; U G2)" of paths
of G1 U Gy is equal to the union Gf U GJ, since no path can combine edges from both
subgraphs. Furthermore, since N ¢ Sources(G; U G2), for any G in {(G1 U G2),G1, G2}, we

32

have pugny—GTip = poj((Gyp)") and puiny— Gy = po((G)p)* Gygwy). So, for any
N’ € supp((G1 UGy > P> N)), N' ¢ PU{N}, and

(G1UG2) > P> N)(N') =
[S]
. £
min({x | N' “={, Lap N N" € PYU{E| N ==, o) N

S}
. £
= min({x® | N' X N",N" € PYU{§ | N = (i r) NY)

(GYuGY)
— min({x® | N’ X_9>G1+ N",N" € PYU{¢| N’ LGT N}uU
(x| N X_SQ;; N",N" € PYU{¢|N' =5 . N})
— min((x® | N X N N"ePYU{E| N =5 . N} A

G GY
o
min({x® | N 2= . N".N" € PLU{§| N < N})

= (G1> P> N)(N')A(Go>> P> N)(N').

The next property allows to ignore an irrelevant sub-graph when computing an internalized
degree environment.

Proposition 13 (Graph irrelevance)
Let Gy and G be two dependency graphs such that Targets(Go) # P U {N} and p|(G1 U Gs2) C
(Gy U Gg)”PU{N}. We have (G1UG2 > P> N)=(G; > P> N).

Preuve Let v = (G1UG2 > P > N) and v = (G; > P > N). Notice that the hypotheses imply
Nodes(G2) # P U {N}. Obviously, we have v < 4. Now, assume £ = y(N’) # oco. There are two
possibilities.

o N/ i)TGlUGﬁ“p N", for some N” € P. But (G; U Gg)”P = Gyyp, so N’ i’a”p N", and

7 (N) <&

o N/ i’?cluGQ)Hp Ny i>Glu02 N. But the last edge cannot be in Ga, so N’ i’a”p

Ny =, N, and +/(N) < €.

The next property factors the decrementing operation over an internalized degree environment.
Proposition 14 (Decrement)
Let P be a set of nodes, and N ¢ P. For all N' € PU{N}, let yn' be a degree environment, such

that N ¢ supp(yn'). We have

(U v =N U((w-1)—N)>P>N)>(|J (w—N)>P>N)-1

N'eP N’ePU{N}
Preuve Let G = U (ynr — N’) and G’ = U (yvr — N)U ((yy — 1) — N). Let
N’e PU{N} N’eP

v=(G> P> N)and v = (G' > P > N). We have to prove that v/ > v — 1. Assume
N, € supp(v’), and let £ = +/(Ny). We know that N ¢ P, and there are two possibilities:

+
[] N1 i)G/HP NQ. But GIHP = G”p, SO ’}/(Nl) -1 S f —1.
& " 3 & "
* Ni =g, N2 ==y, N Let & = yn(N2). We have £ = ¢ — 1, and N G,

’

¢
Ny gy Nosony(N) —1<€ —1<6.

33

The next property factors the apply operation over an internalized degree environment.
Proposition 15 (Apply)
Let P be a set of nodes, and N ¢ P. For all N' € PU{N}, let yn' be a degree environment, such
that N ¢ supp(yn+). We have

(U v —N)U((wel) —N)>P>N)>(|J (w—N)>P>Nol

N'eP N’ePU{N}
Preuve Let G = U (yn+ — N’) and G’ = U (yv — N)U ((yw ©1) — N). Let
N’€PU{N} N'eP

v=(G> P> N)and v = (G' > P > N). We have to prove that 7/ > v © 1. Assume
N; € supp(v’), and let £ =+/(N1). We know that Ny ¢ P, and there are two possibilities:

+
o N; i)G/HP Ns. But GIHP = G”p, S0 ’Y(Nl) ol<fol<E.
& * § & "
* Ni =g, N2 ==y, N Let ¢ = yn(Nz2). We have § = &' O 1, and Ny =g ,

’

¢
No ==g iy Vosor(N)olsdol<d

The next property does the same with application to a fixed degree &.

Proposition 16
Let & be a generalized degree, P a set of nodes, and N ¢ P. For all N' € PU{N}, let vy be a
degree environment, such that N ¢ supp(yn/). We have

(U v —N)u(@yw —N)>P>N)>¢a((] (mw—N)>P>N).
N'eP N’€PU{N}

Preuve Let G = U (yn+ — N') and G’ = U (yn+ — N')U (£ @Qyy — N). Let
N'ePU{N} N'eP

y=(G> P> N)and v = (G' > P> N). Let Ny € supp(v’), with & =+/(N1). We know that

N, ¢ P, and there are two possibilities.

oo+
o If N} ﬁ’c/ Ny, then obviously v(N1) = -00, s0 £ @ v(N7) = -o0.

e

¢ IF Ny 2o, Ny 50, N, with & = € @yx(Na). Then, Ny 2 Ny W N 5o we

have v(N1) < &1, so by Lemma 7, £ @~y(N;) < £Q¢&.

The next property does the same for the operation that lowers all the antecedents of 0 to -co.
This operation is implicitly used in rules T-LETREC and T-SELECT.

Proposition 17
Let P be a set of nodes, and N ¢ P. For all N' € PU{N}, let yn' be a degree environment, such

that N ¢ supp(yn'). Let also v be a degree environment such that v < ((U (yn+ — N")) >
N’€ PU{N}
P> N) and y~'(0) = 0. Finally, let v = YN A -00| 4y -1(0)- We have

y<((J v — N)U (3 — N)) > P> N).
N’'eP

34

Preuve Let 7' = ((U (yn+ — N')U (vy — N)) > P > N). For any node N; € supp(Y’), let
N'eP
& =~'(N1). We have Ny ¢ P, and there are two possibilities.

o If Ny S+ Na, then obviously v(Ny) < €.

P

o If Ny 5% N, . N, then:

P
— If £ = v (1), then obviously y(Ny) < €.
— Otherwise, yn(N1) =0, so v(N1) < 0, so y(Ny) = -oc.

Now, we examine a particular case of incrementing some edges in the graph unerlying a degree
environment.

Proposition 18 (Increment)
Let N ¢ P and for all N' € P U{N}, assume given a degree environment yn+ such that N ¢

supp(yn+). Let then G = U (ynv — N') and G’ = ((yn +1) — N) U U (ynr — N').
N’€PU{N} N’eP
We have
(G>P>N)+1<(G">P>N).

Preuve Let G; = U (yn+ — N') and G2 = (yy +1) — N.
N'eP
Let alsoy=(G> P> N)+1landy =(G' > P> N).
Let Ny € supp(y’). We must show that v(Ny) < +/(N7). So, we examine each path in G’ that
could contribute to 7/(N1), and find a path of inferior degree in G, which contributes to v(N7).
There are two kinds of paths of G’ contributing to /(IVy).

+
o NV} L’G/Hp Ny. But G'yp = G|p, and moreover if the path contributes to 4/(V1), then

£ =-00,807(N1) <€+4+1=-00=¢.

*

o Ni “hg, N2 —Sg o ON. Let € = yn(Na). We have € = € + 1, and Ny <5

P "Iy

’

Ny S5 o Nosoy(Ny) <€ +1=¢

O

Proposition 19 (Splitting)
Let N and N’ be two nodes, P be a set of nodes, G be a dependency graph internalizable at P with
entry point N, such that N’ ¢ Targets(G).

Then, let G' = Gn,n'. We have (G' > P> N')= (G > P> N).

Preuve Let v = (G > P> N)and v’ = (G' > P> N’). Notice that N, N’ ¢ P,so Gp = G'||p.
e First, we prove v’ <. Let N1 € supp(y). We know that Ny ¢ P. Let £ = v(N;y). There are

two possibilities.

+
- N LG“P Na, with No € P. Then, this path is also a path of G| p, so 7/(N1) < €.

*

£ £
— Nl —)G“P N2—>
N',s0~'(N1) < €.

. s i 3
Ciny with Ny € P. Then, by definition of splitting, Ny AT

e Then, we prove v < /. Let Ny € supp(y’). We know that N7 ¢ P. Let £ = 4/(N7). There
are two possibilities.

35

+
- M i)G/up Ns, with No € P. Then, this path is also a path of G| p, so y(Ny) <&.
VN

Ny LG with No € P. Then, by definition of splitting, and as

N, 50 4(N1) < &,

"Iy
N' ¢ Targets(G), we have N N

e

Gii{ny

Finally, we prove that a more restrictive dependency graph gives a more restrictive internalized
degree environment.

Proposition 20 ((- > - >) is monotone)
If G1 T Ga, then (G > P> N) < (G2 > P> N).

Preuve For all N’ € supp((G2 > P > N)), (Go > P > N)(N') = £ gives N” € PU{N},

and a path N’ iﬁé N". But as G; C G, there exists £ < £ such that N’ E—%Z N, so

(G1> P> N)(N') < (Go > P> N)(N'). O

B Soundness

B.1 Weakening and strengthening lemmas
We first prove the weakening and strengthening lemmas stated in Sect. 5.

Lemma 1 (Type environment weakening) IfT'Fe: 7 /v, and dom(I)#FV(e), thenT+I" F
e:T /7.

Lemma 2 (Type environment strengthening) If '+ I" e : 7 / ~, and dom(I"”) # FV(e),
thenTke:7 /.

Both lemmas are proved straightforwardly by induction on the derivation.
Lemma 3 (Degree environment weakening) Ify' <~y andTkte:7 /v, thenTkFe:7 /.
Preuve We reason by induction on the typing derivation, and by case on the last typing rule used.
e Rules T-LETREC, T-VAR, T-APP, T-SELECT. By transitivity of < on degrees.
e Rule T-RECORD. By induction hypothesis.

e Rule T-ABs, e = Az.e;. Given the typing rules, we have a derivation of T' + {z : 71} F

e1 212/ (yol)z—§) with T =71 £, . But by Lemma 7, (v ©1) < (y©1), so
(Y ol(r—E&) < (yol)z— £), and so by induction hypothesis, we have a derivation of
F+{x:m}tFe:m /(Y ©1){(r—E). The expected result follows by another application of
rule T-ABs.

O

Lemma 4 (Degree environment strengthening) IfT'Fe:7 /~, P D FV(e) and 'y" P =P
thenTke:7/~.

Preuve By induction on the typing derivation of e and by case on the last rule used.
e Rule T-VAR, e = y. Trivial.
e Rule T-ABS, ¢ = Ax.e;. By typing hypothesis,

—T+z:mbe:m/(yel){z—E),

36

3
- T=T7T — To.

We know that v and 4/ coincide on P 2 FV(e), so (y&1){z— &) and (7' ©1){z+— &) coincide
on PU{z} D FV(e)U{x}, so they coincide on FV(e1) C FV(e)U{z}. By induction hypothesis,
we deduce '+ {z:m} ke :m/ (Y ©1){z—E),sobyrule T-ABS, T'Fe: 7/~

Rule T-APP, e = e1 es. By typing hypothesis:
— F|_6127',i>’7'/’)/1,
-].—‘"6227',/’)/2,
—r<Mme)Agan.
Let ~1 = 71| p and vy = 72| p- By induction hypothesis, we derive I' - e; : Pt / 71, and

T'keq:7 /7% So, in order to reconstruct the derivation for T'e: 7 / 4/, we only have to
show v/ < ((7{ ©1) AE@Q~5). But

MeAEQy = pOl)AEQyyp
(ne1)AEQR)p

VAR R AVA

g
’Y'\ P
,yl

Rule T-LETREC, e = let rec b in e;. By typing hypothesis, we have

— a fresh res,

— dom(T'y) = dom(b),

— for all x € dom(b), T + Ty - b(z) : T's(2) / Va,
— the conditions on sizes,

fI‘—i—I‘bl—el:T/'ye,
- Gy = U Yo — T,

zedom(b)
— G =Gy Uy, — res,
- '_)\o (Gb’b)7

— v < (G > dom(b) > res).

The variable res can be chosen outside the support of 7. Let @ = dom(b), with v,es = 7e.
Let for each z € QU {res}, v, = vz qup> G, = U v — x, and G = G} U (v, — res). We
z€Q

can see GG as U Vo — .

zeQU{res}
By induction hypothesis, we derive for all z € dom(b), I' + I', F b(x) : T'y(x) / ~., and
I'+Tyt e :7 /7. Moreover, G C Gy, so -y, (G},b) holds. Furthermore, the conditions
on sizes still hold. In particular, if o, %=, then 7, ~*(0) =0, s0 7, ~1(0) = 72| pug * = 0.
Finally, by Corollary 1, we have (G > Q > res), p = (G’ > Q > res). Moreover, by typing
hypothesis, we have v p < (G > Q > res)l p» 507 p < (G' > Q> res). But by hypothesis,
Np =7 p %07 <7 p < (G"> Q> res), which gives the last premise needed to derive
Fke:7 /7.
Rule T-RECORD. We have a derivation of the shape

dom(I) =dom(s) <+ +1 VX edom(s),['F s(X):1(X)/~
F'ke:7 /%

with 7 = {I} and e = {s}.
By induction hypothesis, we derive for all X € dom(s) I' - s(X) : I(X) / 7' p, so we get
Pke:r /9 p+1. Buty | p+1=(+ 1), p = 7 p, which gives the expected result.

37

e Rule T-SELECT, e = e;.X. We have a derivation of the shape

X € dom(I) y<y —1 ke :{I}/m
Pke:I(X)/~

By induction hypothesis, with v; = 1| p, we derive I' - e1 : {I} /1. Thus, we can apply rule
T-SELECT again to obtain I' - e : 7 /4] —1. But then | —1 =9y p—1= (71 — 1), p 2 VP,
which gives the expected result.

B.2 Subject reduction

We now examine the standard subject reduction property, which states that reduction preserves
typing. We begin with a simple sufficient correctness condition in the presence of irrelevant sub-
graphs.

Proposition 21 (Binding correctness criterion)
Let b be a binding and P = dom(b). Let G1 and Gy be two dependency graphs such that
Targets(G2) # Sources(G1) U P. We have Fx, (G1 U Ga,b) iff Fa, (G1,D).

Preuve The predicate 5, (G1 U G2,b) only concerns paths with ends in P, since it checks the
compatibility of (G1)™>° and Hfmd with >;. But: such a path cannot end with an edge of Ga
since Targets(G2) # P, so it ends with an edge of G;. However, as Targets(G2) # Sources(G1), no
edge of G; can be preceded by an edge of G2, so the concerned paths are all paths of G1, and so
Fa, (G1UGa,b) is equivalent to Fy, (G1,b). O

Next, we prove that contraction rules preserve typing.

Lemma 11 (Subject contraction)
Ife;~ey andTkey:7 /7, thenT Fea:7 /7.

Preuve By case on the reduction rule.
e Rule PROJECT, e; = {s}.X, e2 = s(X).
We have a derivation of the shape
VY €dom(s),TFs(Y): I(Y) /9" 4 <+4"+1

IH{s}: {1} /9 y<q -1
FE{s}.X:I(X)/~

So, v <+ —1<+"+1-1=+", which gives the desired result.

e Rule BETA, e; = (Az.e) v, e2 = let rec x=p7jv ine, x ¢ FV(v). By typing, we have a
derivation of the shape

F'+{z:m}rFe:7/(moeliz—¢E

Fl—)\x.etTUi)T/’}/l
Tkher:7 /7y

Phov:r /v

(T-AppP)

with 7 < (71 ©1) A€ @Q~,. As degree environments are of finite supports, we can assume
w.l.o.g. that « ¢ supp(v,) by a-conversion, and choose res fresh. Now, to reconstruct a typing
derivation for eg, let v. = (y1 © 1){(x — &) and G = (7, —) U (e — res). First, we have
Mmel),=Mmoel)(z—o0) =7, 2161

38

— If £ = co, then we have G = G, and

(G > {z} > res) if-oo (Vo) A e
if'OO ('Yv) A 76\:8
('71 S) 1) Nifooo (’Yv)

Y.

VIV

— Otherwise, as z, res ¢ supp(vy), we have GT = GU{yiwes | y € supp(vs)}. Therefore,

(G > {z} > res) = ifooo() A Ve {z} N f\ supp(e) = Yer{z} N if-oo () A ({10}) =
Yerfz} A€ @7y But we have seen that ve\, > 711 © 1,50 as 7 < (1 ©1) A Qry,, we
have 7 < ye\, A E Q7.

e Rule LIFT. ¢; = L[let rec b in e3], e2 = let rec b in L[es], with dom(b) # FV(L). By
case on the lift context L.

— L =0 e4. We have a typing derivation of the shape

|_)\o (Gb;b) F+Fb|_63:7—/i>7—/763
F—I—Fb'—blrb/Gb

I‘I—letrecbineg:7-’i>7—/~y1 m

T-AppP
' (letrecbines)es:7 /7 ()

with

x res fresh,

*x dom(T',) = dom(b),

* Gb = U (73? — J“)a

zedom(b)

* G =Gy U (ye, — res),

* 1 < (G > dom(b) > res),
and 7 < (y1 O 1) AEQ s,
By a-conversion, we can assume that supp(yz2) # dom(b) U {res}. By Lemma 1, we
can derive I' + Ty - e4 : 7 / 72, and then by rule T-App, T + Ty Fe3eq : 7 / 7/,
with 7/ = (e, © 1) A& @ 5. So, in order to derive ' F ez : 7 / v, we let G/ =

U (e—2)u(y — res).
z€dom(b)

We only have to prove that v < (G’ > dom(b) > res). For this, we partition G’ as
follows.

*

G = GoU((Yes ©1) AEQyq) — Tes)
Gy U ((Yes ©1) — res) U (£ Q yg — res)
= G3UGy,

with G5 = Gp U ((Yes © 1) — res) and G4 = £ @ y9 — res. We have

x res ¢ Sources(G3 U Gy),

* Targets(G3 U G4) C dom(b) W {res},

* Targets(G3) C (dom(b) U {res}) # supp(y2) = Sources(Gy),
and Targets(G4) C {res} # Sources(G3).
Therefore, we can apply Property 12, and obtain (G’ > dom(b) > res) = (G5 >
dom(b) > res) A (G4 > dom(b) > res). Obviously, we have (G4 > dom(b) > res) =
§ Q.
Moreover, by Property 15, we have

*

(G3 > dom(b) > res) > (G > dom(b) > res) © 1.

39

Hence, by Lemma 7, we have

MmOl <(G>dom(b) > res) o1

<
< (G35 > dom(b) > res).

So,

(MO AEQy < (G3 > dom(b) > res) N Qg

<
< (G3 > dom(b) > res) A (G4 > dom(b) > res)
< (G’ > dom(b) > res).

So, putting it all together:
Y< (1B 1) AEQy < (G > dom(b) > res),
which gives the desired result.

L. = v 0. We have a typing derivation of the shape

F-I-Fb'—egZTl/’yeg
Lo+ DpF0:T /Gy Fa, (G, b)

F"UZT/LT/’yl I'letrecbhines: 7 /7
kv (letrecbineg):7 /7%

(T-App)

with

*

res fresh,
dom(T",) = dom(b),
Gb = U ('Yx I (E),

zedom(b)
G = Gy U (e, — reS8),
72 < (G > dom(b) > res),
and v < (11 ©1) A Q.
By a-conversion, we can assume that supp(y1) # dom(b) U { fresh}. By Lemma 1, we
derive ' + Ty - v : 7/ LI / 7. So, by rule T-ApP, ' + Ty, F v es : 7/, with
Y =1 O1)AEQy,.
So, in order to derive '+ es : 7 / v, we let G' = G, U (/ — res), and we only have
to prove that v < (G’ > dom(b) > res). For this, let G3 = G, U (£ @ ., — res) and
Gy=(moel)—res. Wehave G' = G, U (11 ©1) AEQr,,) — 1es) = G U Gy.
By Property 12, as res ¢ Sources(G’), Targets(G') C dom(b) U {res}, Targets(Gs) C
dom(b) U {res} # Sources(G4) = supp(71), and Targets(G4) C {res} # Sources(G3), we
have (G’ > dom(b) > res) = (G5 > dom(b) > res) A (G4 > dom(b) >> res).
Let v = (Gs > dom(b) > res), and notice (G4 > dom(b) > res) = 71 © 1. Thus, we
just have to prove vo > £ @ ~5. But by Property 16, we have 79 > £ Q (G > dom(b) >
res), which gives the desired result by Lemma 7.

*

*

*

*

*

L =0.X. We have a typing derivation of the shape,
I'Ees: {T}] Yes I'Eb:Ty /Gy Fa, (Gp,b)

y<y —1 X € dom(I) I'kletrecbines:{I}/m
ke : I(X) /vy

with
* res fresh,
« T/ =T +Ty,
*x dom(T',) = dom(b),
* G =GpU (Yes — T1E8),
* and y1 < (G > dom(b) > res).

40

We can reconstruct

I'bes: {I}] Yes
I"I—e(;XI(X) / (7@3 —1) F’I—b:I‘b/Gb |—)\O (Gb,b)
e :1(X) /v

where

* v = (G’ > dom(b) > res),

* and G = Gp U ((ye, — 1) — res).
We then just have to prove that ' > .

But v < —1 < (G > dom(b) > res) — 1, which by Prop. 14 is inferior to ((Gs U
((Yes — 1) — res)) > dom(b) > res), which is exactly 7'

Now, we turn to proving that the global reduction rules preserve typing. We begin with some
results on internal merging.

Proposition 22 (Internal merging)

Ifelmeg andTkey:7 /7, thenTkFea:7 /7.

Preuve We know that e = let rec b,,z9 © (let rec by ineg),by ines and
es = letrecb,,bi,zg ¢ e3,by in ey. Let b = (by,x0 © (let rec by inesz),b2) and

b = (by,b1,x0 © €3,b2). We know that dom(by) # dom(b) U FV(b) U FV(e4). We have a typing
derivation of the shape

F+Fb|—6427'/’ye4 F+Fbl—b:Fb/Gb I_)\O(Gb,b)
Pkhep:7 /7y

with

res fresh,

e dom(T',) = dom(b),

b Gb: U (’yﬂb’—>x))

zedom(b)

G =Gy U (Ye, — res),
e and v < (G > dom(b) > res).

By a-conversion, we can assume supp(y) # dom(b) U {res} U dom(by). For zy ¢ let rec by in eg,
we have

T4+Ty 4Ty Fes:To(x0) / Ves L4+ Ty + Ty, Fby T, [/ Gey Pa. (Go.b1)
It let rec by ines: T'y(x0) / Vaq

with

resg fresh,

dom(T,) = dom(by),

e Gn= |J (mw—u),

yedom(by)

Go = Gp, U (e, — Te80),

41

e and 75, < (Go > dom(by) > reso).

Let G}, = G- 20} U (Ves — 20) U G, and G' = Gy U (ye, — res).

By weakening, we obtain I' +T'y + 'y, F ey : Ty (z) / v5 for all € dom(b) \ {zo}. Further, we
know that for all x € dom(b') \ {0}, if 0, # =, then 72 ~1(0) = 0. For xo, if o, ==[7], then let
Yes = Yes \-00|4,,-1(0)- By degree weakening, we have I' + I'y + Ty, I e3 : I'y(20) / ve,, and by
Property 17, we obtain v,, < (Gp, U(v,, — reso) > dom(by) > resg). So, w.l.o.g., we can assume
that ., ~1(0) = 0.

So, in order to derive T' F ey : 7 / 7, we just have to prove that v < (G’ > dom(b’) >> res) and
Fa, (G}, 0).

Let Gi = Gp, U (Yes — x0), Y0 = (Go > dom(by) > resg), and v = (Gf, > dom(b1) > xo).
Now, let G = U (Y2 —) U (70 — 20) U (Ye, — 1es) and Ga = U (Vo —

z€edom(b)\{zo} zedom(b)\{zo}

z) U (75 — 20) U (Ye, — res).

But we have Gy = Gozy>resys S0 by Property 19, vo = 7{, so G1 = Ga.

Now, let us examine (G’ > dom(b1) > o). Let G3 = U (V2 —) U (Ye, — re€S).

zedom(b)\{zo}

We have G' = G, U G3, and Targets(Gs) # dom(b1) U g, so by Property 13, (G’ > dom(by) >
xo) = (G > dom(b1) > x¢) = 7g. Further, G3 = G'||_dom(b,)U{z0} = dom(b1)— | G’ || —dom(b1)U{wo}s SO
as Ga = G3 U (v) — x,), we have G2 = Internalize(G’, dom(b1), zp). Thus, we can apply Lemma 9
to obtain (G2 > dom(b) > res) < (G’ > dom(b’) > res).

But G1 = Ga, so (G1 > dom(b) > res) = (G2 > dom(b) > res). Further, we know that
Vo < 70, thus G E Gy, so v < (G > dom(b) > res) < (G1 > dom(b) > res), so finally
v < (G > dom(V') > res).

Now we prove Fy, (Gy,0'). We have v,, < 7, s0 Gy E Gy|_qz} U (W) — w0) =
Internalize(GY, dom(b1), z0). But F (G, >p), so + (Internalize(G}, dom(b1), zo),>p). Further, as
the nodes of this graph are not in dom(b;), we also have F (Internalize(G},dom(by), z), >y).
Moreover, dom(bl)HGIb” dom(b1) - dom(bl)HGb1 || dom(b1) C Gy, So, since F (Gp,,>p), we obtain
H (dom(bl)HG;;” dom(by)? >p,). Thus, we can apply Lemma 8 to obtain F (G},b’). Finally,

F (=P >4) follows from the shape of b’ and b (—?"* 1>;) and + (Hffed, D>,)
O

We continue with external merging.
Proposition 23 (External merging)
Ifel%eg andTkey:7 /v, thenT Feq:7 /7.

Preuve We know that e; = let rec b, in let rec b in e3 and e; = let rec b,,b in e3. We have
a typing derivation of the shape

I'+ T, Flet rec b in 6327’/’7}, I'+T%, I—bv:Fbv/va Fx, (va,bv)
Pkhep:7 /7y

with

res fresh,

dom(Ty,) = dom(b,),

«G,= | (n—oun)

zedom(by)

G'u = va U (7b — 7"65),

and v < (G, > dom(b,) > res).

42

ForT'+ T, + let rec bines: 7 /v, we have

F—i—l’bv—i—l‘bl—egzr/%s F-i—Fb“—i-Fbl—b:Fb/Gb |—,\0 (Gb,b)
I'Fletrecbines:7 /v

with

resg fresh,

dom(T',) = dom(b),

e G= |J (mw—u),

yedom(b)

G = Gy U (Yey — 1€50),
e and 7, < (Gp > dom(b) > resp).

Let b/ =b,,b and G}, = Gy, U Gy, and G’ = Gy U (e, — Tesg). The only non trivial points to
prove I' - ey : 7 / 7y are to prove that by, (G},b") and v < (G’ > dom(V') > resg).

1. For the first point, we obtain (Hf,red, >y) from the shape of & and + (Hi’:ed, >3,) and

F (Hfmd, >>p). Further, by Property 23, we get - (G1 U Ga,>p), which gives the desired
result.

2. For the second point, it is enough to prove that (G, > dom(b,) > res) < (G’ > dom(V') >
resg). Let v, = (G > dom(b) > reso), Gy = G1 U (v, — res), and G, = G U (7, — resp).

We have immediately (G) > dom(b,) > res) = (G > dom(b,) > resp), and G, C Gl
which implies (G, > dom(b,) > res) < (G, > dom(b,) > res), and therefore (G, >
dom(by,) > res) < (G > dom(b,) > resp). So, we only have to prove (GI > dom(b,) >
resg) < (G' > dom(b') > reso).

Now, we have dom(b)fHGl||7dom(b)u{reso} = G and G = Gi U Gy, with
dom®)|G" € G'||domp)u{reso} and Targets(G1) # dom(b) U {resp}, so by Prop-
erty 13, (G' > dom(b) > resgp) = (Gp» > dom(b) > resp) = ~. So,

Internalize(G’, dom(b), resg) = G1 U (v, — reso) = G-

So, by Lemma 10, (G’ > dom(V') > resg) = (Internalize(G’,dom(b), resg) > dom(b,) >
resg) = (G > dom(b,) > reso).

Next, we examine rule CONTEXT. We prove that typing is compositional, which entails the
desired result, in combination with Lemma 11.

Proposition 24 (Typing is compositional)
Assume given an expression e and an evaluation context E, such that T' - Ele] : 7 / v, with a
sub-derivation T Fe: 7'/« fore. IfT'Fe' : 7"/~ and FV(e') CFV(e), then T FEe]: 7 / 7.

Preuve Simple induction on the typing derivation of E[e]. The condition on free variables
preserves the well-formedness of bindings w.r.t. backward dependencies on definitions of unknown
sizes. [J

Finally, we turn to rule SUBST. We distinguish internal substitution (access by rule IA) from
external substitution (access by rule EA). The proof for rule EA is not too difficult, but the one
for rule TA is harder. By application of this rule a binding of the shape b1 = (b,,y o F[A [z]],b)
becomes by = (by,y ¢ F[A [v]],b), where v = b,(z). The idea is that the dependency graph of by is
less restrictive than the one of by, because for each edge induced by v in by, there is an equivalent
path through z in b;. Thus, after internal merging we obtain an greater degree environment, which
is safe.

43

Proposition 25 (Dereferencing context)
IfTkov: Ty [v, D(x) =7y, and T - Alx] : 7 / 7, then y(x) = -00 and there exists vy, such that
supp(7,) € supp(w) and ' Afo]: 7 [y Ay

Preuve By case on A.
e A = [wv;. We have a derivation of the shape

I‘(x):ﬁiw':ﬂ, Phwvi:im /7 y1(x) = -00
FFA[z]:7 /%

with 7 < (y1 © 1) A £ Q ~y, for some ;. We have immediately vy(z) = -0o. Let v, = v, © 1.
Wehave'Fv:m LR 7 / Y, and by Lemma 3, we obtain T'F v : 7 i>7'/%/\'y1. So, we
derive
PFovi:m /72 I‘I—v:ﬁiw'/'yv/\'yl
CHA:7/vAY,

since YA, = YA (O L) S (MO AEQpRA(1wE 1) = (1w A7 ©1)A§ Q. Finally,
supp(7;,) = supp(Vu)-

e A =[.X. We have a derivation of the shape
X € dom(I) y<y -1 INz) =1, ={I}
FFA[z]: I(X) /)~

with y1(z) <0, so y(x) = -00. Let v/, =, — 1 and ' = v A). The degree environment
~., has the same support as 7, and is such that v <. We have I' - v : {I} / 74, so by
Lemma 3, we obtain I' - v : {I} / v, A 1. So we can derive

X € dom(I) FFv:r, /(M Aw)
PHAW :I(X)/ (M1 Ayw)—1

Finally, we prove that v/ = vy A7y, < (1 — 1) A(w —1) = (71 Ayw) — 1, so we derive
TEAP]:I(X)/+.

O

Proposition 26 (Lift context)

Assume T Fe:7 /~, Tke 7 /9, such that v/ = v A, for some v,. If T FL[e] : 1, / 7,
then there exists ~y,, with supp(v,) C supp(yy), such that T F L{e'] : 7. / (o A~),). Moreover,
< oo (7).

Preuve By case on L.
e L = v 0. We have a derivation of the shape

Fl—v:Tiw']L/'yl Tke:7 /% < (mel)Afay
F"L[G]:TL/’)/L

First, 9. < £Q~y < if-o(7). Then, let v/ = {@Q~,. By Lemma 7, £Q(yA~,) = EQyALQry,,.
So, we obviously can derive I' =L [e'] : 7 / (7 A ,,). We have supp(v,) C supp(7s)-

e L =0 e;. The derivation has the shape

I‘I—e:Tli>TL/’y F'kFei:m /m nw<(yeh)Af@y
PFLe]:m /

with 7 =7 LN 7. First, . < (76 1) <if-(y). Let v, = v, © 1. We obviously can derive
TEL[e]:m /L A, and have supp(v,,) = supp(7v).

44

e L =0.X, similar, with v/ =, — 1.
O

Proposition 27 (Nested lift context)

Assume T Fe:7 /v, T kHe 7 /4, such that v' = v A, for some y,. If T +TFle]:m / v,
then there exists ., with supp(,) C supp(yy), such that T' = Fle'] : ¢ / (v A7)). Moreover,
7 <ifeso (7).

Preuve By induction on F.
e F =[. Immediate, with 7, = 7,.

e F =1L[F;]. We have a sub-derivation T' - Fy [e] : 7. / 7. By induction hypothesis, v, <
if_oo(7) and there exists v./, with supp(./) C supp(y), such that T' =Ty [e'] : 7 / (. A7Y).
By Property 26, 77 < ifooo(7) < if-oo(7y), and there exists v/, with supp(y,,) C supp(yv),
such that TFTFle] : mr / (97 A).

O

Proposition 28 (Internal substitution preserves dependencies)
Assume

* b= (by,yoF[A[z]],b1),

o V' = (by,yoF[A[v]],b1),

v = by(z),

dom(T;) = dom(b),

V(zoze.) €b,T + Ty e, :Ty(2) /7. and if o, #=[7), then TSizeo(I'y(2)) = o2,

e G= U (vz — 2).

z€dom(b)

Then, there exist some v, for each z € dom(b), such that V(z o, e,) e b/, T+ Ty Fe. : Tp(2) /7.,
with G’ = U (v, — 2), GC G, and if o, #=[y), then . ~1(0) = 0.
z€dom(b)

Preuve As b,(x) = v, wehave '+ Ty, F v : 7, / 7,. For each z € dom(b) \ {y}, take v, = ~,. By
Properties 25 And 27, we obtain that v, (z) = -co and there exists v¥ such that supp(+v¥) C supp(7yz),
and T+ T = F[A [v]] : To(y) / vy AvY. In fact, we let v, = 7, A-00| supp(42)- By Lemma 3, we obtain
[+ Ty FF[A[v] : To(y) / 7, Moreover, v, ' (0) € 7,71 (0) U (00| sypp(2)) ~(0) = 0. Finally, we

prove that G’ = G'U-00|gpp(¥) — ¥ 18 less restrictive than G. Now, let 2 Lg, zo, with £ # oo.
If it is an edge of GG, then there is nothing to prove.
Otherwise, it means that zo = y, £ = -00, and Y¥(z1) = &'. So, 7:(21) # oo because

supp(7¥) C supp(7z), S0 z1 VM)G x ﬂg y, and therefore z; Efé y. O

Proposition 29 (Internal substitution)
Assume e; = let rec by, yoF[A[z]],b in e3, v = by(x), and e3 = let rec b,,yoF[A[v]],b in e3.
IfTker:7 /v, thenT Feg:7 /7.

Preuve Let by = b,,y o F[A[z]],b and by = b,,y o F[A [v]],b. We have a typing derivation of the
shape
F+Fb1|_e3:7—/'ye3 F+Fb1|_b1:Fb1/Gb1 l_)\o (Gabl)
ke :7/x

with

45

res fresh,

dom(T'y,) = dom(by),

o Gy, = U ('Yz - Z),

z€dom(by)

G = Gy, U (Yey — TE5),
e and v < (G > dom(by) > res).
By Property 28, we have ¥(z o, ¢.) € ', T + T, F e, : Ty (2) / 7. with 4.71(0) = 0 and

z z
with G/ = U (v, — 2), G C G’. So, since size indications are unmodified, we conclude

z€dom(b)
immediately with Properties 20 And 5. O

Proposition 30 (External substitution)
Assume e; = let rec b, in F[A[z]], ea = let rec b, in F[A[v]], with v = b,(x). If Tk ey : 7/
v, thenT'Feq:7 /7.

Preuve Let e3 = F[A [z]] and ey = F[A [v]]. We have a typing derivation of the shape

F+Fbv Fes: 7—/763 F+Fbv F b, : Fbv /va |_)\o (Gabv)
Phe:7/7

with

res fresh,

dom(T',,) = dom(b,),

e, = |J (r—a

z€dom(b,)

G = Gy, U (e, — Te8),

e and v < (G > dom(b,) > res).

By Properties 25 And 27, we obtain that 7., (z) = -co (and so © —> res) and there exists 7/,
such that supp(y,) C supp(vz), I' + s, F F[A[v]] : 7 / (7es A7y). Let now 7., = 7e, A7, and
G = U (v. — 2) U (7., — res). We show that G C G'.
zedom(b,)
For this, first remark that G’ = G U (v, — res). Then, let z; i’c/ za, with £ # oo. If it is
an edge of G, then there is nothing to prove.

Otherwise, it means that zo = res and v.(z1) = & As 7.(z1) # 00, V2(21) # o0 because

supp(y,) € supp(7yz), so 21 Vﬂ)c T ﬁ’c res, and therefore z; ﬂg res.

Thus, we conclude the proof easily. [

Finally, we easily prove the subject reduction property.

Lemma 12 (Subject reduction)
Ifey —es andThey:7 /v, thenThea: 7/ 7.

Preuve By case analysis on the applied reduction rule, made trivial by the preceding properties. [J

46

B.3 Progress

Now, we prove the standard progress property. A first issue is that when a variable is encountered
in a dereferencing context, the reduction replaces it with its definition in the top-level binding, until
its intended value is found, that is, a non-variable definition. However, it might never be found,
either if the binding contains a cycle of variables (i.e. 10122 ... Zp—1 01T, With 1 = x,), or if b
is incomplete (i.e.x1 ©1 T2 ...Tp_1 On—1 &, with z,, ¢ dom(b)). For distinguishing these cases more
easily, we define binding scraping as follows. It allows us to prove that when well-typed, closed
bindings get evaluated, they do not have such defects.

Definition 20 (Scrape bindings)
For any binding b, not necessarily respecting sizes, for any set P of variables, and for any variable
x € dom(b), we define binding scraping recursively by:

bh(zr) = bx) if b(x) ¢ Vars or b(z) =y ¢ dom(b)
bh(x) = cycle if x € P and b(x) € Vars
bho(z) = b (z1up) (b(z)) otherwise.

We also define b*(x) to be bj(x) if it is a non-variable value, different from cycle.
For the binding b1 = (y =}, #), bj(y) is undefined, but b1j(y) = is different from cycle. Let
us now prove elementary properties of binding scraping.

Proposition 31
Binding scraping is well-defined.

Preuve Let the measure p be defined from pairs of a binding and a set of variables to natural
numbers by u(b, P) =| dom(b) \ P |.
First, we notice that if (b, P) = 0, then binding scraping immediately returns, on any variable
x. Indeed, if b(x) ¢ Vars, it returns b(x). Otherwise, if the variable b(z) is in dom(b), then it is
also in P, so u(b, P) = cycle, and if the variable b(x) is not in dom(b), then u(b, P) = b(x).
Then, as the measure decreases by 1 at each recursive call, we conclude that b%(z) is
well-defined for any = € dom(b). O

Proposition 32
For any evaluated b not necessarily respecting sizes, b*(x) = by(z) iff bj(x) ¢ VarsU{cycle}.

Proposition 33
If b defines only values (x oy) € b and b*(y) is undefined, then either there exists z ¢ dom(b) such
that by (y) = z, or by(y) = cycle.

Proposition 34

Assume b defines only values and T' F let rec b,b' ine: 7 /v, withT +T" F b(z) : T'(z) / V&
being the immediate sub-derivation corresponding to x. Then, bj(x) # cycle and there exists '
such that T + TV F bj(x) : T"(x) / +'.

Preuve First, we prove that bj(x) # cycle, by contradiction. Assume that b contains bindings of
the shape 1 ¢1 €3 ... 21 Op—1 Tp, with z, = 1. Then, for each ¢ < n, the degree environment
~; corresponding to x; is such that ~;(z;+1) < 0. But by typing, the underlying dependency cycle
is correct, so for all 4, v;(z;+1) = 0. However, at least one of these dependency edges x; 9, Tit1
is backward, since they form a cycle. Let for example x;, SN Zi,+1 be backward. By syntactic
correctness, o;, # =[], 80 there exists a natural number ng such that ¢;, = =[,,. But typing also
implies that 7;, ~1(0) = (), which contradicts the fact that the variable y preceding x;, in the cycle
verifies ~;, (y) = 0.

Then, we prove the more general property that for any P, if b} (x) # cycle, then I' + T
b5 (x) : I'(z) / +' for some «'. We proceed by induction on the computation of b%(z).

o If b (x) = b(x), then by typing there is a sub-derivation of I' + IV - b5 (2) : IV(2) / va-

47

o If bi(x) = b?x}up(b(x)), then b(z) is a variable y in dom(b). So, by induction hypothesis,
as by, p(y) = bp(x) # cycle, we obtain I' + I' = by, p(y) : I(y) / + for some +'. But,
obviously, IV(x) = T(y), which concludes the proof.

Finally, we can prove the progress property, stating that a well-typed expression either is a valid
answer, or reduces to another expression. Our proof proceeds in two steps. First, we prove that
a well-typed expression either is an answer, or reduces to another expression, or needs a variable,
i.e. is of the shape F [A [z]], or is of the shape let rec b in e. Then, we prove the progress property
on top level, closed expressions.

Lemma 13 (Partial progress)
IfT e : 7 and e is not an answer, then either there ezists €’ such that e — e’ or e =F [A[z]], or
e =1let rec b in f for some b and f.

Preuve By induction on e.
If e is not of the shape let rec b in f and is not an answer and is not of the shape F [A [z]] for
some x, the we distinguish the following cases:

e ¢ =1L [eg], with eg ¢ values. If ey = let rec b in f, then rule L1FT applies. Otherwise, by
induction hypothesis we are in one of the following cases.
— eg =F[A[z]], and e is stuck on z too, i.e. e = L[F[A [z]]].
— Otherwise, if eg — e{), we reason by case analysis on the applied reduction rule.

x IM, EM or SUBST. This contradicts ey # let rec b in f.

* CONTEXT. Then ey = F[f] and e, = F[f’], with f ~» f’. Then e reduces by the
same rule, since L [F] is an evaluation context.

e ¢ = Uz, and v1 ¢ Vars. By typing, v; is a function, and e reduces by rule BETA.
e ¢ =0v.X, and v ¢ Vars. By typing, v is a record defining X, so e reduces by rule PROJECT.

O

Lemma 14 (Progress)
If0Fe:7 /oo, then either e is an answer, or there exists ¢’ such that e — ¢'.

Preuve By Lemma 13, if e is not an answer, there are only three possibilities. If e reduces to some
€/, then there is nothing to prove. Otherwise, if e = F [A[z]], it contradicts the well-typedness of
e. Otherwise, e = let rec b in f. First, if f has the shape let rec V' in g, then rule EM applies.
Otherwise, we proceed by case on b.

1. If b defines only values, then we distinguish two cases. If b does not respect sizes, then let b,
be its maximal prefix respecting sizes. The binding b has a prefix of the shape b, =, v,
with v not of size n. If v is a variable y, then by typing y € dom(b) and the grah G of b

contains an edge y —>¢ x, so by ordered correctness, y € dom(b,), and e reduces by rule
SUBST.

Otherwise, b = b,. f cannot be an answer, because otherwise, either it would have the shape
let rec b,’ in v which contradicts f # let rec b’ in g, or it would be a value, and so e
would be an answer itself.

So, by Lemma 13, we are in one of the two following cases.

e [— f’. By case analysis on the reduction:

— IM, EM, or SuBsT. Contradicts f # let rec b’ in g.

48

— CoONTEXT. We have f = F[g] and f' = Fl¢], with g ~» ¢’. So, rule CONTEXT
applies for e as well, since let rec b, in F is an evaluation context.
o f =T[Ax]]. Then, e = let rec b, in F[A [z]]. By typing, we have z € dom(b,), so
rule SUBST applies.

2. If b does not define only values, then b is of the shape by, y¢g, b1, where by defines only values

and ¢ is not a value. As above, if by does not respect sizes, then e reduces by rule SUBST.
Otherwise by = b,. If g is of the shape let rec b’ in ¢/, then rule IM applies. Otherwise, g
cannot be a result, so we are in one of the following cases, by Lemma 13.

e If g — ¢/, by case on the reduction.

— IM, EM, or SuBsT. Contradicts g # let rec b’ in ¢'.
— CONTEXT : then g = Fgo] and ¢’ = F[g}], with gg ~~ g{, so the global context is
an evaluation context and rule CONTEXT applies for e.
o If g = F[A[z]]. By case on F. First, we know that « ¢ dom(y = g¢,b;1), since by
Property 27, x has degree -oo in the degree environment for y. Moreover, by typing
x € dom(b,), so rule SUBST applies.

Finally, we obtain a standard soundness theorem.

Theorem 2 (Soundness)
The evaluation of a closed well-typed expression may either not terminate or reach an answer.

References

[1]

2]

3]

[4]

[5]

(6]

7]

8]

[9]

[10]

Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Annals
of pure and applied logic, 117(1-3):95-178, 2002.

Gérard Boudol. The recursive record semantics of objects revisited. Research report 4199,
INRIA, 2001. Preliminary version presented at Esop’01, LNCS 2028.

Gérard Boudol and Pascal Zimmer. Recursion in the call-by-value lambda-calculus. Fixed
Points in Computer Science, 2002.

Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract machine.
Science of Computer Programming, 8(2):173-202, 1987.

Derek R. Dreyer, Karl Crary, and Robert Harper. A type system for higher-order modules.
In 30th symposium Principles of Programming Languages, 2003.

Derek R. Dreyer, Robert Harper, and Karl Crary. Toward a practical type theory for recursive
modules. Technical Report CMU-CS-01-112, Carnegie Mellon University, Pittsburgh, PA,
March 2001.

Derek R. Dreyer, Robert Harper, and Karl Crary. A type system for well-founded recursion.
Technical Report CMU-CS-03-163, Carnegie Mellon University, 2003.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In 21st symposium Principles of Programming Languages, pages 123-137. ACM Press,
1994.

Tom Hirschowitz. Mizin modules, modules, and extended recursion in a call-by-value setting.
PhD thesis, University of Paris VII, December 2003.

Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In Daniel Le
Métayer, editor, Furopean Symposium on Programming, volume 2305 of LNCS, pages 6—20,
2002.

49

[11] Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation of extended recursion in call-
by-value functional languages. Submitted for publication to HOSC, 2004.

[12] Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation of extended recursion in call-
by-value functional languages. Higher-Order and Symbolic Computation, 2005. to appear.

[13] Richard Kelsey, William Clinger, and Johnathan Rees. The revised® report on the algorithmic
language scheme, 1998.

[14] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st symposium Princi-
ples of Programming Languages, pages 109-122. ACM Press, 1994.

[15] Xavier Leroy. A proposal for recursive modules in Objective Caml. Available on the Web,
http://pauillac.inria.fr/~“xleroy/publi/recursive-modules-note.pdf, 2003.

[16] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérome Vouillon. The
OCaml 3.06 reference manual, 2002. Available on the Web, http://caml.inria.fr/.

[17] Xavier Leroy, Damien Doligez, Jacques Garrigue, and Jérome Vouillon. The Objective Caml
system. Software and documentation available on the Web, http://caml.inria.fr/, 1996—
2003.

[18] David B. MacQueen. Modules for Standard ML. Lisp and Functional Programming, pages
198-207, 1984.

[19] Robin Milner, Mads Tofte, and David MacQueen. The Definition of Standard ML. The MIT
Press, 1990.

[20] Chris Okasaki. Purely Functional Data Structures, chapter 10. Cambridge University Press,
1998.

[21] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38-94, 1992.

50

