A practical type system for generalized recursion
Tom Hirschowitz, Serguei Lenglet

To cite this version:
Tom Hirschowitz, Serguei Lenglet. A practical type system for generalized recursion. [Research Report] Laboratoire de l’informatique du parallélisme. 2005, 2+50p. hal-02102506

HAL Id: hal-02102506
https://hal-lara.archives-ouvertes.fr/hal-02102506
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A practical type system for generalized recursion

Tom Hirschowitz and Sergueï Lenglet May 2005
A practical type system for generalized recursion

Tom Hirschowitz and Sergueï Lenglet

May 2005

Abstract

The ML language is equipped with a sophisticated module system, especially thanks to its notions of functor (higher-order functions on modules) and of controlled type abstraction (opaque or transparent types).

Nevertheless, an important weakness of this system hinders modularization: the impossibility to define mutually recursive modules. In particular, mutually recursive functions must all reside in the same module.

Recently, Leroy extended the OCaml language, a dialect of ML, with an unsafe notion of recursive modules. In this extension, one can define recursive modules, but the system does not check that they are well-founded. If not, the system throws an exception at runtime, which is annoying given the strong typing of ML.

Powerful type systems have been proposed to tackle this issue, but they require rather deep modifications to the ML type system.

This report presents a system requiring only local modifications to the ML type system. We prove its soundness by injection into one of the evolved more general formalisms.

Keywords: Programming languages, semantics, typing, modularity, recursion.

Résumé

Le langage ML est doté d’un système de modules sophistiqué, notamment grâce aux foncteurs (fonctions d’ordre supérieur sur les modules) et à son mécanisme d’abstraction de types contrôlée (types manifestes ou abstraits).

Cependant, une faiblesse importante de ce système gêne la modularisation des programmes: l’impossibilité de définir des modules de façon mutuellement récursif. Notamment, les définitions de fonctions mutuellement récursives doivent toutes résider dans le même module.

Récemment, Leroy a étendu le langage OCaml, un dialecte de ML, avec une notion non sûre de modules récursifs. Avec cette extension, on peut définir des modules récursifs, mais le système ne vérifie pas que ces définitions sont bien fondées. Lorsqu’elles ne le sont pas, le système lance une exception à l’exécution, ce qui cadre mal avec le typage fort de ML.

Des systèmes de types assez généraux ont été proposés récemment pour gérer ce problème, mais leur mise en œuvre demande une modification en profondeur du typage de ML.

Ce rapport propose un système ne nécessitant que des modifications locales au typage de ML. Nous prouvons sa sûreté par injection dans l’un des formalismes plus généraux évoqués ci-dessus.

Mots-clés: Langages de programmation, sémantique, typage, modularité, récursion.
Contents

1 Introduction
2 Motivation for λ_c: immediate in-place update
 2.1 Lazy evaluation
 2.2 Backpatching
 2.3 In-place update
 2.4 Relaxed in-place update
 2.5 Immediate in-place update
3 The language λ_c
 3.1 Syntax
 3.2 Dynamic semantics
 3.3 Recursive modules
4 Abstract degree theory
 4.1 Intuitions
 4.2 Basic definitions
 4.3 Graph comparison
5 A powerful type system
6 A simpler type system
 6.1 Type system
 6.2 Soundness
A Generalized degrees
 A.1 Simple properties of generalized degrees
 A.2 Internal merging
B Soundness
 B.1 Weakening and strengthening lemmas
 B.2 Subject reduction
 B.3 Progress
1 Introduction

The ML language [19] is equipped with a sophisticated module system [18, 14, 8, 5], especially thanks to its notions of functor (higher-order functions on modules) and of type abstraction (opaque or transparent types). Nevertheless, an important weakness of this system hinders modularization: the impossibility to define mutually recursive modules: mutually recursive functions must all reside in the same module.

Recently, Leroy extended the OCaml language [17], a dialect of ML, with an unsafe notion of recursive modules. In this extension, one can define recursive modules, but the system does not check that they are well-founded. If they are not, the system eventually throws an exception at runtime, which weakens ML typing. Powerful type systems have been proposed to tackle this issue [9, 7], but they require rather deep modifications to the ML type system, which are particularly annoying at the level of types, where they introduce new, complex forms of functor types. This paper presents a system requiring only local modifications to the ML type system. We prove its soundness by injection into a more powerful type system. The latter slightly improves over the one proposed in Hirschowitz’s PhD thesis [9].

Instead of trying to define the most powerful notion of recursion, we only target the common patterns of recursive module programming, which include basic modules, of the shape \texttt{struct} ... \texttt{end}, but also functor applications. A well-known example using functor applications is an implementation of Okasaki’s bootstrapped heaps [20] with recursive modules by Dreyer et al. [6]. In Fig. 1, we consider a simpler, often wished-for example [15]. Such definitions are difficult to type-check in a separate compilation setting. Indeed, their safety depends on the body of the functor \texttt{Set.Make} and in particular on the way it uses the argument variable, which is impossible to encode in its signature. Our solution relies on two main technical devices:

\textbf{Refined functor types} We distinguish functors types according to the way their bodies depend on their arguments. Thus, \texttt{Set.Make} has a weak functor type (whose arrow is written $\sigma_1 \Rightarrow \sigma_2$ instead of $\sigma_1 \to \sigma_2$). This makes the necessary information available during type-checking.

\textbf{Weak and strong dependencies} We distinguish two kinds of dependencies, strong and weak. Intuitively, the dependency of a module expression e on a variable x is weak only if

1. the value denoted by x is represented by a heap block, and
2. the evaluation of e does not lead to inspect the contents of this heap block.

Since we are designing a static dependency analysis, we use an approximation of this notion.

The formal setting of our study is the λ_c-calculus, a λ-calculus with a very powerful \texttt{let rec} construct, which has been shown to be efficiently compilable [11]. This calculus adequately models ML recursive modules, and allows to abstract over the complex issues of typing recursive modules w.r.t. type components [6]. In its experimental extension of OCaml with recursive modules, Leroy implemented a type-checking algorithm described in an informal note [15]. The discussion and formalization of this algorithm are beyond the scope of this paper.

The paper is organized as follows. In Sect. 3, we present λ_c and its operational semantics, along with some examples illustrating how the language models recursive modules. In Sect. 6, we present our type system for λ_c, which relies on an abstract notion of degree to model the dependencies of modules on their free variables. This section also explains why the soundness of the type system is difficult to prove directly. Section 5 introduces a more powerful and more complex type system, whose soundness can be proved directly (see appendices A and B). After stating the soundness theorem, we prove the soundness of the simple type system of Sect. 6 by direct injection into the complex one. We do not examine related work in this research report.
module A : sig
 type t = Leaf of string | Node of ASet.t
 val compare: t -> t -> int
end = struct
 type t = Leaf of string | Node of ASet.t
 let compare t1 t2 = match (t1, t2) with
 | (Leaf s1, Leaf s2) -> Pervasives.compare s1 s2
 | (Leaf _, Node _) -> 1
 | (Node n1, Node n2) -> ASet.compare n1 n2
end
and ASet : Set.S with type elt = A.t = Set.Make(A)

Figure 1: Recursive functor application in OCaml

2 Motivation for λc: immediate in-place update

The particular choice of λc as a model for recursive modules has to be motivated. We do this in the present section, explaining its definition in the light of the compilation scheme used for recursive modules in OCaml. For compiling recursive modules, several known methods apply. We successively review them and explain how this leads to λc.

2.1 Lazy evaluation

A very flexible way of compiling recursive modules is to use lazy evaluation, which allows to compile any definition. The idea is that recursive modules are first defined as \textit{thunks}, and then their evaluation is forced. This raises an exception at execution time in case the definition is ill-founded.

For example, in OCaml syntax, a definition of the shape

\begin{verbatim}
module rec A : T = e

is compiled to

let rec A = lazy e in
let A = Lazy.force A
\end{verbatim}

As long as \(e \) does not force the evaluation of \(A \), the evaluation goes well, thus allowing to implement the example in Fig. 1. Nevertheless, lazy evaluation entails runtime tests and indirects, which make it a rather inefficient method. Moreover, it weakens the strong typing of ML.

2.2 Backpatching

Another method that also allows to compile any definition is to use a \textit{backpatching} semantics, as done in the Scheme language [13]. The idea consists in first assigning a reference cell to each recursive variable, initialized with some dummy value (denoted by \texttt{nil} in the following). Then, the right-hand sides are evaluated. Until this point, any attempt to dereference the cells is a run-time error. Finally, the reference cells are updated with the obtained values, and the definitions can be considered fully evaluated.

The backpatching scheme leaves some flexibility as to when the reference cells bound to recursively-defined variables are dereferenced. In Scheme, every occurrence of these variables in the lexical scope of the \texttt{letrec} binding causes an immediate dereference. In Boudol's compilation scheme for the \(\lambda_B \) intermediate language [3], the dereferencing is further delayed because arguments to functions are passed by reference rather than by value. The difference is best illustrated on the definition \(x = (\lambda y.\lambda z.\text{if } z = 0 \then 1 \else y (z - 1)) \ x. \) In Scheme, this
definition compiles down to the following intermediate code

\[
\begin{align*}
&\text{let } x = \text{ref } \text{nil} \text{ in} \\
&x := (\lambda y. \lambda z. \text{if } z = 0 \text{ then } 1 \text{ else } y \ (z - 1)) \ !x
\end{align*}
\]

and therefore fails at run-time because the reference \(x\) is accessed at a time when it still contains \text{nil}. In Boudol’s compilation scheme, the \(y\) parameter is passed by reference, resulting in the following compiled code:

\[
\begin{align*}
&\text{let } x = \text{ref } \text{nil} \text{ in} \\
&x := (\lambda y. \lambda z. \text{if } z = 0 \text{ then } 1 \text{ else } !y \ (z - 1)) \ x
\end{align*}
\]

Here, \(x\) is passed as a function argument without being dereferenced, therefore ensuring that the recursive definition evaluates correctly. The downside is that the recursive call to \(y\) has now to be preceded by a dereferencing of \(y\).

Using the second solution, it is possible to implement the example in Fig. 1. However, in both cases, a drawback of the backpatching approach is that recursive calls to a recursively-defined function must go through one additional indirection. For well-founded definitions, this indirection seems superfluous, since no further update of the reference cells is needed. In practice, compilers recognize and optimize some common kinds of recursive definitions, typically functions, but it appears preferable to rely on a more general method.

2.3 In-place update

The in-place update scheme [4] is a variant of the backpatching implementation of recursive definitions that avoids the additional indirection just mentioned. It is used in the OCaml compilers [16].

The in-place update scheme implements let rec definitions that satisfy the following two conditions. For any mutually recursive definition \(x_1 = e_1 \ldots x_n = e_n\), first, the value of each definition should be represented at run-time by a heap allocated block of statically predictable size; second, for each \(i\), the computation of \(e_i\) should not need the value of any of the definitions \(e_j\), but only their names \(x_j\). As an example of the second condition, the recursive definition \(f = \lambda x. (\ldots f \ldots)\) is accepted, since the computation of the right-hand side does not need the value of \(f\). We say that it weakly depends on \(f\). In contrast, the recursive definition \(f = (f \ 0)\) is rejected. We say that the right-hand side strongly depends on \(f\).

The evaluation of a let rec definition with in-place update consists of three steps. First, for each definition, allocate an uninitialized block of the expected size, and bind it to the recursively-defined identifier. Those blocks are called dummy blocks. Second, compute the right-hand sides of the definitions. Recursively-defined identifiers thus refer to the corresponding dummy blocks. Owing to the second condition, no attempt is made to access the contents of the dummy blocks. This step leads, for each definition, to a block of the expected size. Third, the contents of the obtained blocks are copied to the dummy blocks, updating them in place. One could argue that the obtained values could directly fill the dummy blocks. However, this would require a special evaluation scheme, whereas here, they are evaluated just like any other expression.

For example, consider a mutually recursive definition \(x_1 = e_1, x_2 = e_2\), where it is statically predictable that the values of the expressions \(e_1\) and \(e_2\) will be represented at runtime by heap allocated blocks of sizes 2 and 1, respectively. Here is what the compiled code does, as depicted in Fig. 2. First, it allocates two uninitialized heap blocks, at addresses \(\ell_1\) and \(\ell_2\), of respective sizes 2 and 1. This is called the pre-allocation step. As a second step, it computes \(e_1\), where \(x_1\) and \(x_2\) are bound to \(\ell_1\) and \(\ell_2\), respectively. The result is a heap block of size 2, with possible references to the two uninitialized blocks. The same process is carried on for \(e_2\), resulting in a heap block of size 1. The third and final step copies the contents of the two obtained blocks to the two uninitialized blocks. The result is that the two initially dummy blocks now contain the proper cyclic data structures, without the indirection inherent to the backpatching semantics.

2.4 Relaxed in-place udpate

In spite of its advantages, the in-place update scheme cannot be used directly for compiling recursive modules. Indeed, the conditions for it to be sound are impossible to check syntactically. We have
1. Pre-allocation:

\[
\begin{array}{c}
\text{x1} & \bullet & \bullet \\
\text{x2} & \bullet \\
\end{array}
\]

2. Evaluation:

\[
\begin{array}{c}
\text{v1} \\
\text{x1} & \bullet & \bullet \\
\text{v2} \\
\text{x2} & \bullet \\
\end{array}
\]

3. Modification en place:

\[
\begin{array}{c}
\text{v1} \\
\text{x1} & \bullet & \bullet \\
\text{v2} \\
\text{x2} & \bullet \\
\end{array}
\]

Figure 2: The in-place update scheme

seen in Sect. 1 that some functor applications are highly desirable as right-hand sides of recursive module definitions. However, recursive modules are intended to remain compatible with separate compilation, so it is impossible to check that a functor application will not dereference its argument without knowing the body of the functor.

This is why Leroy implemented another solution [15], which he calls \textit{relaxed in-place update}. It is a variant of the in-place update scheme, which prevents segmentation faults by initializing the dummy blocks with \textit{sound} values. A sound value is a value that can be initialized with a value of the same type, which when used raises the exception \texttt{Undefined_recursive_module}. A sound module is defined as having only sound components.

The sound values are those of either functional or lazy type, which we can initialize with \texttt{fun} \(x \rightarrow \text{raise Undefined_recursive_module} \) and \texttt{lazy} (\texttt{raise Undefined_recursive_module}), respectively.

Furthermore, it is insufficient to simply apply the in-place update scheme with additional initialization of sound values. Indeed, this requires that all the recursively-defined modules contain only sound values, and the example in Fig. 1 contains the module \texttt{A_set}, which has a \texttt{empty} component of type \texttt{A_set_t}. In order to solve this problem, Leroy refines the in-place update scheme as follows. In order to compile a recursive definition of the shape \texttt{module rec X1: M1 = m1 and \ldots Xn: Mn = mn}, the compiler first separates sound modules from unsound ones, and rejects programs containing forward references to unsound modules, in the following sense.

\begin{definition}[Forward reference]

A forward reference \textit{is a pair} \((i, j)\) \textit{such that} \(i \leq j\) \textit{and} \(m_i\) \textit{mentions} \(x_j\).

\end{definition}

Then, all the sound modules \(X_i\) are bound to blocks initialized with sound values of the expected type. Then, the definitions \(X_i = m_i\) are successively evaluated, and \textit{immediately} updated in place if necessary: if \(m_i\) is unsafe, then it is simply \texttt{let} bound to \(X_i\); otherwise it is used to update \(X_i\) in place.

\begin{remark}[Reordering]

In fact, if possible, the compiler reorders the definitions to prevent forward references to unsound modules. In the following, we consider this step as preprocessing.

\end{remark}

Let us see how the examples of Sect. 1 are compiled. In the example in Fig. 1, the module \texttt{A} is
sound, since compare has a functional type, and ASet is unsafe. After reordering, ASet is evaluated first. The generated code is

(* Step 1 : allocation and initialization *)
let A = { compare = fun x -> raise (Undefined_recursive_module) }
 in
(* Step 2 : evaluation *)
let ASet = Set.Make (A) in
update (A, {compare = fun x y -> match (x, y) with ...});
...

The exception Undefined_recursive_module is not raised, because the functor Set.Make does not access A.compare.

Consider now the code in Fig. 3. The call to A.f throws the Undefined_recursive_module exception. Indeed, here is how this code is compiled: A and B only contain components of functional type, so they are both sound. The module A is evaluated first. The generated code is

(* Step 1 : allocation and initialization *)
let A = { f = fun x -> raise (Undefined_recursive_module) }
 and B = { f = fun x -> raise (Undefined_recursive_module) } in
(* Step 2 : evaluation *)
update (A, B);
update (B, {f = fun x -> x});
...

It clearly appears why the call to A.f 0 raises an exception : A is updated before B, so the copied block contains fun x -> raise (Undefined_recursive_module).

Compared to in-place update, relaxed in-place update allows to compile more programs and to retain the efficiency of in-place update. However, if one of the recursively-defined values is accessed before it has been updated, then an exception is raised. This maintains the soundness of the language, since it avoids segmentation faults, but weakens it, because more programs will behave badly.

2.5 Immediate in-place update

The goal of this work is to set up a type system for checking that recursive definitions are well-founded. So, a first remark is that we can get rid of a limitation of the relaxed in-place update scheme, namely the fact that only sound modules may be forward referenced. Indeed, if we succeed, we won't need to initialize the pre-allocated modules with dummy values, since the type system ensures that their fields won't be accessed before being updated with correct values. So, the only condition we should impose on forward referenced modules is to have a predictable size, in order, at least, to be able to pre-allocate a memory block for them. Fortunately, for the case of modules,
the size may always be guessed from the types. Thus, all modules may be forward referenced, as
long as their fields are not accessed before being updated.

Here, we consider a slightly more general setting, possibly in order to apply our type system
also to the base language (thus allowing function application as right-hand sides of plain recursive
definitions): we assume that not all expressions have a statically predictable size. Thus, the
compilation of a list of mutually recursive definitions proceeds as follows. First, we assume that
the guessable sizes have been provided by a prior static analysis, over which we completely abstract.
So, definitions of predictable size are annotated with a natural number representing it. At this point,
we reject programs where definitions of unpredictable size are forward referenced. If the
program is correct, here is what the compiled code does. For each definition \(X = [n] m \) of known
size \(n \), an uninitialied memory block of size \(n \) is allocated, and bound to \(X \) in the following. Then,
the first definition is computed, which gives a value \(v \). If this definition was of known size \(n \), then \(v
should be a block of size \(n \), and its pre-allocated block gets updated with \(v \). This process is carried
on for each definition. We call this method the immediate in-place update scheme.

An example of execution is presented in Fig. 4. The definition is \(x_1 = e_1, x_2 = e_2, x_3 = e_3 \),
where \(e_1 \) and \(e_3 \) are expected to evaluate to blocks of sizes 2 and 1, respectively, but where the
representation for the value of \(e_2 \) is not statically predictable. The pre-allocation step only allocates
dummy blocks for \(x_1 \) and \(x_3 \). The value \(v_1 \) of \(e_1 \) is then computed. It can reference \(x_1 \) and \(x_3 \),
which correspond to pointers to the dummy blocks, but not \(x_2 \), which would not make any sense
here. This value is copied to the corresponding dummy block. Then, the value \(v_2 \) of \(e_2 \) is computed.
The computation can refer to both dummy blocks, and can also strongly depend on \(x_1 \), but not on
\(x_2 \). Finally, the value \(v_3 \) of \(e_3 \) is computed and copied to the corresponding dummy block.

Example 1
The program of Fig. 3, compiled by immediate in-place update, may become correct. Indeed, if \(\lambda \)
is assumed to have an unpredictable size, the generated code is:

\[
(* \text{ phase 1: pre-allocation } *)
\]
\[
\text{let } B = \text{ alloc } 1 \text{ in }
\]
\[
(* \text{ phase 2: evaluation and update } *)
\]
\[
\text{let } A = B \text{ in }
\]
\[
\text{update } (B, \{ f = \text{ fun } x \to x \});
\]
\[
\ldots
\]

Here, alloc 1 denotes an instruction that allocates a new heap block of size 1. Because \(\lambda \) is
assumed to have an unpredictable size, the evaluation of \(\lambda \) merely creates an alias of \(B \), which does
not copy the uninitialized block. Thus, the update works for both \(\lambda \) and \(B \). Note however that in
the context of recursive modules, \(\lambda \) would have a known size, and the example would be rejected by
our type system.

The immediate in-place update scheme implements more definitions than previous ones. Moreover,
it is also simpler that the relaxed in-place update scheme, which imposes that forward references
point to modules containing only fields of functional or lazy types. This justifies the use of
immediate in-place update in this paper. Namely, we formalize our type system for a language
called \(\lambda_\circ \), initially proposed in Hirschowitz’s PhD thesis [9], which features powerful enough re-
cursive definitions to represent OCaml’s recursive modules, and which is compilable via immediate
in-place update.

3 The language \(\lambda_\circ \)

3.1 Syntax

The syntax of \(\lambda_\circ \) is defined in Fig. 5. The meta-variables \(X \) and \(x \) range over names and variables,
respectively. Variables are used as binders, as usual. Names are used for accessing record fields, as
an external interface to other parts of the expression. Figure 5 also recapitulates the meta-variables
and notations we introduce in the remainder of this section. The syntax includes the \(\lambda \)-calculus
constructs; variables \(x \), abstraction \(\lambda x.e \), and application \(e_1 e_2 \). The language also includes records,
1. Pre-allocation:

 $x_1 \bullet \bullet \quad x_3 \bullet$

2. Computing e_1:

 v_1 \quad $x_1 \bullet \bullet \quad x_3 \bullet$

3. Updating x_1 with v_1:

 $x_1 \bullet \bullet \quad x_3 \bullet$

4. Computing e_2 and binding its value to x_2:

 $x_1 \bullet \bullet \quad x_2 \bullet \quad x_3 \bullet$

5. Computing e_3:

 $v_3 \quad x_2 \quad x_3 \bullet$

6. Updating x_3 with v_3:

 $x_1 \bullet \bullet \quad x_2 \quad x_3 \bullet$

Figure 4: The refined in-place update scheme
record selection \(e.X\) and a binding construct written \(\text{let rec}\). To simplify the formalization and without loss of expressiveness, records are restricted to contain only variables, i.e., be of the shape \(\{X_1 = x_1 \ldots X_n = x_n\}\). Bindings have the shape \(\text{let rec} \; x_1 \circ_1 e_1 \ldots x_n \circ_n e_n \; \text{in} \; e\), where arbitrary expressions are syntactically allowed as the right-hand side of a definition, and every definition is annotated with a size indication \(\circ\). A size indication can be either the unknown size indication \(\equiv[n]\), or a known size indication \(\equiv[n]\), consisting of a natural number.

Implicit syntactic constraints Records \(s = (X_1 = x_1 \ldots X_n = x_n)\) and bindings \(b = (x_1 \circ_1 e_1 \ldots x_n \circ_n e_n)\) are required to be finite maps: a record is a finite map from names to variables, and a binding is a finite map from variables to expressions. Requiring records (resp. bindings) to be finite maps means that they should not bind the same name (resp. variable) twice. These conditions are implicitly assumed in the sequel. We refer to records and bindings collectively as sequences.

In a \(\text{let rec}\) binding \(b = (x_1 \circ_1 e_1 \ldots x_n \circ_n e_n)\), we say that there is a forward reference of \(x_i\) to \(x_j\) if \(i \leq j\) and \(x_j \in \text{FV}(e_i)\). A forward reference of \(x_i\) to \(x_j\) is syntactically forbidden, except when \(\circ_j\) is a known size indication, i.e. \(\circ_j \neq \equiv[n]\). This condition should be clear in light of the compilation scheme explained in Sect. 2. Moreover, we require that definitions of known size are not variables, that is, for each \(x_i \equiv[n] e_i\) in \(b\), \(e_i\) is not a variable.

Structural equivalence We consider expressions equivalent up to \(\alpha\)-conversion of binding variables in functions and \(\text{let rec}\) expressions. In the following, except if stated otherwise, when we open a binding construct, we implicitly choose a representative with fresh variables w.r.t. the context.

Size We have seen that \(\text{let rec}\)-bound definitions can be annotated with natural numbers representing their sizes. The role of these size indications is to declare in advance the expected sizes of the memory blocks representing the values of definitions. For definitions that are not forward referenced from previous definitions, there is no need for annotations. During the evaluation of a list of definitions, when the currently evaluated definition becomes a value, then its real size is matched against the syntactic size indication. If they are the same, then evaluation continues, otherwise, it gets stuck. This is why there is a notion of size in \(\lambda_0\).
Values and answers

\[
\begin{align*}
 v \in \text{values} & \quad ::= \quad x \mid \lambda x. e \mid \{s\} \quad & \text{Value} \\
 a \in \text{answers} & \quad ::= \quad v \mid \text{let rec } b_v \text{ in } v \quad & \text{Answer}
\end{align*}
\]

Figure 6: Answers in \(\lambda_o\)

Hypothesis 1 (Size in \(\lambda_o\))

We assume given a partial function \(\text{Size}_o\) from \(\lambda_o\) values to natural numbers, undefined on variables.

The hypothesis that variables have unknown sizes is related to the fact that definitions such as \(x = x\) are not handled by in-place update. Our semantics therefore distinguishes variable and non-variable values.

3.2 Dynamic semantics

Values, answers, and sizes

We now define the dynamic semantics of \(\lambda_o\). As defined in Fig. 6, \(\lambda_o\) values comprise variables, functions \(\lambda x. e\) and records \(\{s\}\). In \(\lambda_o\), an evaluated definition not matching its size indication is an error, in the sense that it prevents further reductions. This behavior is enforced by not considering such definitions as valid evaluation answers: a binding defining only values is considered valid only if it respects sizes, in the following sense.

Definition 2 (Binding respecting sizes)

A binding \(b\) defining only values respects sizes iff for each definition \((x =_{[n]} v) \in b\), \(\text{Size}_o(v)\) is defined and equal to \(n\).

We let \(b_v\) range over bindings respecting sizes, written \(r.s.\ bindings\) for conciseness. The requirement that evaluated bindings respect sizes has two immediate consequences. First, the size indications are correct for the already evaluated definitions. Second, for a definition \((x =_{[n]} e)\), the topmost constructor of the value of \(e\) must be determined by previous definitions. For instance, if \(n = \text{Size}_o(\lambda x'.x')\), then the binding \((x =_{[n]} \lambda x'.x', y =_{[n]} x)\) is valid, because the topmost constructor of the definition of \(y\), \(\lambda\), is determined by the previous definition \(x\). On the contrary, the binding \((y =_{[n]} x, x =_{[n]} \lambda x'.x')\) is invalid: \(x\) cannot be replaced with its value, according to the reduction relation defined below. These constraints make \(\lambda_o\) compilable with the in-place update compilation scheme.

As defined below, there is no rule for eliminating \text{let rec} in \(\lambda_o\). Evaluated bindings thus remain at top-level in the expression and also in answers. They serve as a kind of heap, or recursive runtime environment. In Fig. 6, a valid answer \(a\) for the evaluation of a \(\lambda_o\) expression is defined to be a value, possibly surrounded by an evaluated binding respecting sizes. It thus can have the shape \text{let rec } x_1 \circ_1 v_1 \ldots x_n \circ_n v_n \text{ in } v\.

Value binding

Besides the non-standard notion of size, the dynamic semantics of \(\lambda_o\) is unusual in its handling of \text{let rec} bindings, which is adapted from the equational theory of [1]. This theory relies on the following five fundamental equations, which resemble the rules proposed by [21].

1. The first equation is \text{let rec} lifting. It lifts a \text{let rec} node up one level in an expression. For example, an expression of the shape \(e_1 (\text{let rec } b \text{ in } e_2)\) is equated with \(\text{let rec } b \text{ in } (e_1 e_2)\).

2. The second equation is internal merging. In a binding, when one of the definition begins with another binding, then this binding can be merged with the enclosing one. An expression of the shape \(\text{let rec } b_1, x = (\text{let rec } b_2 \text{ in } e), b_3 \text{ in } f\) is equated with \(\text{let rec } b_1, b_2 \text{ in } e, b_3 \text{ in } f\), provided no variable capture arises.

3. The third equation is external merging, which merges two consecutive bindings. An expression of the shape \(\text{let rec } b_1 \text{ in } \text{let rec } b_2 \text{ in } e\) is equated with \(\text{let rec } b_1, b_2 \text{ in } e\), provided no variable capture occurs.
Lift context:
\[L ::= \Box \quad e \quad v \quad \Box.X \]

Nested lift context:
\[F ::= \Box \mid L \mid F \]

Evaluation context:
\[E ::= F \]
\[\mid \quad \text{let rec } b_0 \quad \text{in } F \]
\[\mid \quad \text{let rec } B_0 \mid F \quad \text{in } e \]

Binding contexts:
\[B_0 ::= b_0, x \circ \Box, b \]

Atomic dereferencing contexts:
\[A ::= \Box \quad v \quad \Box.X \]

Dereferencing contexts:
\[D ::= E[A] \]
\[\mid \quad \text{let rec } B_{e} = \Box \quad \text{in } e \]

Figure 7: Evaluation contexts of \(\lambda_0 \)

4. The fourth equation, \textit{external substitution}, allows to replace variables defined in an enclosing binding with their definitions. Given a context \(C \), an expression of the shape \texttt{let rec } b \texttt{in } C \mid x \texttt{is equated with } \texttt{let rec } b \texttt{in } C \mid e \texttt{if } x = e \texttt{appears in } b \texttt{and } C \texttt{neither captures } x \texttt{nor the free variables of } e. \)

5. The last equation, \textit{internal substitution}, allows to replace variables defined in the same binding with their definitions. Given a context \(C \), an expression of the shape \texttt{let rec } b_1, y = C \mid x, b_2 \texttt{in } e_1 \texttt{is equated with } \texttt{let rec } b_1, y = C \mid e_2, b_2 \texttt{in } e_1 \texttt{if } x = e_2 \texttt{appears in } b_1, y = C \mid x, b_2, \texttt{and if } x \texttt{is not captured by } C, \texttt{and no variable capture occurs.}

The issue is how to arrange these operations to make the evaluation deterministic and to ensure that it reaches the answer when it exists. Our choice can be summarized as follows. First, bindings that are not at top-level in the expression must be lifted before their evaluation can begin. Thus, only the top-level binding can be evaluated. As soon as one of its definitions gets evaluated, evaluation can proceed with the next one, or with the enclosed expression if there is no definition left. If evaluation meets a binding inside the considered expression, then this binding is lifted to the top level of the expression, or just before the top-level binding if there is one. In this case, it is merged with the latter, internally or externally, according to the context. External and internal substitutions only allow to copy one of the already evaluated definitions of the top-level binding, when they are needed by the evaluation, and from left to right only.

Remark 2 (Policy on substitution and call-by-value)

The fact that substitution is only performed when needed by the evaluation does not contradict the fact that \(\lambda_0 \) is call-by-value. Indeed, only values are copied, and any expression reached by the evaluation is immediately evaluated. The fact that evaluated definitions are not immediately substituted with their values in the rest of the expression is rather a matter of presentation. In particular, it allows \(\lambda_0 \) to properly represent recursive data structures.

Our strategy is implemented by two relations: the contraction relation \(\rightsquigarrow \), handling reductions inside the expressions, and the reduction relation \(\rightsquigarrow \), handling top-level reductions. We write \(\rightsquigarrow^+ \) (resp. \(\rightsquigarrow^\ast \)) for the transitive (resp. reflexive transitive) closure if the relation \(\rightsquigarrow \), and similarly for \(\rightsquigarrow \).

The contraction relation The semantics of record selection and of function application are defined in Fig. 8, by contraction rules, defining the local contraction relation \(\rightsquigarrow \). Record projection selects the appropriate field in the record (rule \textsc{Project}). The application of a function \(\lambda x. e \) to a value \(v \) reduces to the body of the function, where the argument has been bound to \(x \) by \texttt{let rec} (rule \textsc{Beta}). Rule \textsc{Lift} describes how \texttt{let rec} bindings are lifted up to the top of the term. Lift contexts \(\mathbb{L} \) are defined by

\[L ::= \Box.X \mid \Box \quad e \mid v \Box \]

Rule \textsc{Lift} states that an expression of the shape \(\mathbb{L} \mid \texttt{let rec } b \texttt{in } e \) evaluates to \(\texttt{let rec } b \texttt{in } \mathbb{L}[e] \), provided no variable capture occurs. For convenience, we introduce the predicate \#\#, which holds iff its two arguments are disjoint sets.

\[E ::= F \]
\[\mid \quad \text{let rec } b_0 \quad \text{in } F \]
\[\mid \quad \text{let rec } B_0 \mid F \quad \text{in } e \]
The contraction rules

\[
\{s\} X \rightsquigarrow s(X) \quad \text{(Project)} \quad x \notin \text{FV}(v) \quad (\lambda x. e) \rightsquigarrow \text{let rec } x = \{\gamma\} v \text{ in } e \quad \text{(Beta)}
\]

\[
\text{dom}(b) \neq \text{FV}(L) \quad \models \text{let rec } b \text{ in } e \rightsquigarrow \text{let rec } b \text{ in } \models [e] \quad \text{(Lift)}
\]

Reduction rules

\[
e \rightsquigarrow e' \quad \text{(Context)} \quad \text{dom}(b_1) \neq (\{x\} \cup \text{dom}(b_v, b_2) \cup \text{FV}(b_v, b_2) \cup \text{FV}(e')) \quad (\text{IM})
\]

\[
\text{dom}(b) \neq (\text{dom}(b_v) \cup \text{FV}(b_v)) \quad (\text{EM}) \quad \mathbb{D}(x) = v \quad (\text{Subst})
\]

Access in evaluation contexts

\[
(\text{let rec } b_v \text{ in } F)(x) = b_v(x) \quad \text{(EA)} \quad \text{let rec } b_v, y \in F, b \text{ in } e)(x) = b_v(x) \quad \text{(IA)}
\]

Figure 8: Dynamic semantics of \(\lambda_o\)

The reduction relation The reduction relation is defined in Fig. 8. Rule CONTEXT extends the contraction relation to any evaluation context. Evaluation contexts are defined in Fig. 7. We call a nested lift context \(F\) a series of lift contexts. We call a binding context \(B_v\) of size \(\circ\) a binding \((b_v, x \circ \square, b)\) where the context hole \(\square\) corresponds to the next definition to be evaluated, and this definition is annotated by \(\circ\). An evaluation context \(E\) is a nested lift context, possibly appearing as the next definition to evaluate in the top-level binding, or enclosed inside a fully evaluated top-level binding. This unusual formulation of evaluation contexts enforces the determinism of the reduction relation. The idea is that evaluation never takes place inside or under a let rec, except the top-level one. Other bindings inside the expression first have to be lifted to the top by rule LIFT, and then merged with the top-level binding if any, by rules EM and IM. If the top-level binding is of the shape \(b_v, x \circ (\text{let rec } b_1 \text{ in } e), b_2\), rule IM allows to merge \(b_1\) with it, obtaining \(b_v, b_1, x \circ e, b_2\). When an inner binding has been lifted to the top level, if there is already a top-level binding, then the two bindings are merged together by rule EM. This implements the strategy informally described above.

Finally, rules Subst, IA, and EA describe how the variables defined by the top-level binding are replaced with their values when needed, i.e., when they appear in a dereferencing context. Dereferencing contexts may take two forms. They can be binding contexts of known size \(\text{let rec } b_v, x = [n] \square, b \text{ in } e\). This is consistent with the fact that a definition of the shape \((x = [n] y)\) is not considered fully evaluated, although \(y\) is indeed a value. Instead, the right-hand side of a definition of size \(n\) must eventually be replaced with a non-variable value of size \(n\). Alternatively, evaluation contexts can be atomic dereferencing contexts wrapped by an evaluation context, i.e., contexts of the shape \(E[A]\), where \(A := \square v \mid \square X\).

In \(\lambda_o\), the value of a variable is copied only when needed for function application or record selection. The value of a variable \(x\) is found in the current evaluation context, by looking for the first binding of \(x\) above the calling site, as formalized by the notion of access in evaluation contexts. There are two kinds of accesses.

- In the case of a context of the shape \(\text{let rec } b_v \text{ in } F\), if the called variable \(x\) is bound in the top-level binding \(b_v\), then \(b_v(x)\) is the requested value.

- In the case of a context of the shape \(E[\text{let rec } b_v, y \in F, b \text{ in } e]\), if the called variable \(x\) is bound in the binding \(b_v\), then \(b_v(x)\) is the requested value.
3.3 Recursive modules

Let us show simple examples showing how to encode recursive modules in λ_ω. Other examples of λ_ω programs may be found elsewhere [12]. First, of course λ_ω allows to model mutually recursive data structures, which is necessary in order to account for recursive modules. For instance, using the syntactic sugar struct B end in Fig. 5, we define two modules containing two mutually recursive functions:

\[
\begin{align*}
\text{let rec } & \text{ Even=}=[\gamma] \text{ struct} \\
& \text{ even } \triangleright \text{ even }=\![\gamma] \lambda x. (x = 0) \text{ or } (\text{ Odd. odd } (x - 1)) \\
& \text{ end,} \\
& \text{ Odd }==[\eta] \text{ struct} \\
& \text{ odd } \triangleright \text{ odd }=\![\gamma] \lambda x. (x > 0) \text{ and } (\text{ Even. even } (x - 1)) \\
& \text{ end} \\
\text{ in } & \text{ Even. even } 56
\end{align*}
\]

(where n is assumed to be the right size indication). Notice that the function definitions and the first module do not need to have known sizes, since the only forward reference concerns the second module Odd .

This example already allows to encode some examples with recursive modules, but not all. Indeed, many practical uses of recursive modules include functor applications. For instance, consider again the example in Fig. 1. Abstracting over the static part, we encode it in λ_ω by

\[
\begin{align*}
\text{let rec } & \text{ A=}=[\gamma] \text{ struct} \\
& \text{ compare } \triangleright \text{ compare }=\![\gamma] \ldots \text{ ASet.compare } \ldots \\
& \text{ end,} \\
& \text{ ASet }==[\eta] \text{ Set.Make } A \\
\text{ in } & \ldots
\end{align*}
\]

(where n is assumed to be the right size indication). Just like in the encoding of mixin modules, this expression evaluates correctly because Set.Make only needs a pointer to its argument to return a correct result.

4 Abstract degree theory

Section 5 below defines a type system for λ_ω, which is very expressive w.r.t. mutual dependencies, since it allows to type the bindings generated by the local fixed-point encoding of mixin modules [9]. This type system relies on a notion of degree, which is also used by the simpler type system presented in Sect. 6. Thus, we start by an abstract presentation of some theoretical properties of degrees.

4.1 Intuitions

The purpose of the degree theory introduced in the next few sections is the dependency analysis of bindings. This theory should be able, given a binding $b = (x_1 = e_1 \ldots x_n = e_n)$, to answer questions like “does the evaluation of x_i require the value of x_j?”, taking into account the possibility of indirect dependency.

For instance, consider

\[
\begin{align*}
\text{b} &= \{ x = \{ X = z \} \} \\
\text{y} &= x. X. Z \\
\text{z} &= \{ Z = \{ \} \}.
\end{align*}
\]

Directly, y strongly depends on x, and x weakly depends on z (since $\{ X = z \}$ is a value). This defines the direct dependency graph of b, which does not contain any backward strong dependencies. However, the evaluation of the binding goes wrong, since it reduces in two steps to
\[b = (x = \{X = z\}) \\
y = z.Z \\
z = \{Z = \{\}\} \]

where \(y\) strongly depends on \(z\). Our analysis takes such cases into account, by considering the transitive closure of the direct dependency graph. A path of the direct relation corresponds to an edge labeled with its last degree. Thus, a backward path ending with a strong dependency should be considered dangerous. We will introduce a notion of binding correctness corresponding to the absence of such paths. For mixin modules, since bindings are unordered, correctness rather corresponds to the existence of an order, such that the obtained binding is correct.

Furthermore, when \(b\) is integrated into an expression, as in \(\text{let rec } b \in e\), we must be able to consider the result as one definition of a new binding \(b' = (b_1, x = (\text{let rec } b \in e), b_2)\). The evaluation of \(b'\) makes it intuitively equivalent to \(b'' = (b_1, b, x = e, b_2)\). Thus, our method to approximate the graph of \(b'\) consists in considering that of \(b''\), and then internalize \(\text{dom}(b)\) into \(x\). We do this by considering the set of paths leading from any variable \(y\) to variables \(\text{dom}(b) \cup \{x\}\). Roughly, for each \(y\), we consider the path with minimum degree in this set, and represent it in the graph \(b'\) by an edge from \(y\) to \(x\), with this degree. This way, it takes the worst case into account, and ensures correctness.

Finally, when substitutions occur in bindings, due to the substitution rules, the dependency graph evolves. We identify an ordering on graphs, such that dependency graphs decrease along the substitution rules, and decreasing preserves correctness.

4.2 Basic definitions

We first define the notion of degree structure.

Definition 3 (Degrees)

A set Degrees has a structure of degrees iff it is a lower semi-lattice (i.e., a partial order with a meet operation), and its elements are partitioned into positive and negative elements, positive ones being greater than negative ones, according to the partial order.

We fix an arbitrary, abstract structure of degrees Degrees for this section, whose elements are denoted by \(\chi\), ordering is denoted by \(\geq\), greatest lower bound operation is denoted by \(\wedge\). We denote by Positive and Negative the sets of positive and negative degrees, respectively. By definition, for all \(\chi_1 \in \text{Positive}\) and \(\chi_2 \in \text{Negative}\), we have \(\chi_1 \geq \chi_2\). The meta variables \(\chi^{\square}\) and \(\chi^{\ominus}\) respectively range over positive and negative degrees.

Definition 4 (Dependency graph)

A dependency graph over a set of nodes Nodes is a finite subset of \(\text{Nodes} \times \text{Nodes} \times \text{Degrees}\), that is, a finite, oriented graph, labeled with degrees. Graphs are considered equivalent modulo the following equation:

\[
N_1 \overset{\chi_1}{\underset{\chi_2}{\longrightarrow}} N_2 \\
\overset{\chi_1 \wedge \chi_2}{\longrightarrow} \\
N_1 \overset{\chi_1 \wedge \chi_2}{\underset{\chi_2}{\longrightarrow}} N_2
\]

The nodes of dependency graphs are not relevant to the properties we want to establish, so we do not constrain them at all. We denote them by \(N\), and denote finite sets of them by \(P\). For more readability, we often write the edges of a graph \(N_1 \overset{\chi}{\rightarrow} N_2\) instead of \((N_1, N_1, \chi)\), where \(N_1, N_2 \in \text{Nodes}\). We denote the set of nodes of a graph \(\rightarrow\) by \(\text{Nodes}(\rightarrow)\). The set of targets of the edges of a graph \(\rightarrow\) is denoted by \(\text{Targets}(\rightarrow)\), and similarly, sources are denoted by \(\text{Sources}(\rightarrow)\). The meta variable \(G\) will also range over graphs, in contexts where the graphical notation \(\rightarrow\) is ill-suited.
Correctness We now define two notions of correctness for dependency graphs.

Definition 5 (Transitive closure)
We define the transitive closure on dependency graphs as the fixed-point of the operation that adds an edge \(N_1 \xrightarrow{\chi} N_3 \) for each pair of edges \(N_1 \xrightarrow{\chi_1} N_2 \) and \(N_2 \xrightarrow{\chi_2} N_3 \) in its argument \(\rightarrow \).

This fixed-point is always well-defined, since the considered operation does not introduce any degree or node, so the number of edges of the generated graphs is bounded. The transitive closure of a graph \(\rightarrow \) is written \(\rightarrow^+ \).

Some notions on paths are defined as follows.

Definition 6 (Paths)
A path of the dependency graph \(\rightarrow \) is a possibly empty list of consecutive edges. Its length is its number of edges. If the path is not empty, then its degree is defined as the degree of its last edge. A cycle is a non-empty path whose source and target nodes are the same. We define \(\rightarrow^* \) as the set of paths of \(\rightarrow \).

We denote paths by \(\delta \), and the empty path by \(\epsilon \). The degree \(\chi \) of a non-empty path \(\delta \) is written as an annotation \(\delta^\chi \). The concatenation of two consecutive paths is written \(\delta_1; \delta_2 \). For a dependency graph \(\rightarrow \), a path is also an edge of \(\rightarrow^+ \). We write \(N_1 \xrightarrow{\chi_1}^+ N_2 \) for a non-empty path of degree \(\chi \) from \(N_1 \) to \(N_2 \). Also, the concatenation of a non-empty path \(N_1 \xrightarrow{\chi_1}^+ N_2 \) and a possibly empty path \(\delta \) from \(N_2 \) to \(N_3 \) is written \(N_1 \xrightarrow{\chi_1; \delta^\chi} N_3 \), where \(\chi \) is \(\chi_1 \) if \(\delta \) is empty, and the degree of \(\delta \) otherwise. Finally, when the two ends of concatenated paths or edges are syntactically the same, we merge them. For instance, the concatenation \(N_1 \xrightarrow{\chi_1}^+ N_2; N_2 \xrightarrow{\chi_2}^* N_3 \) is also written \(N_1 \xrightarrow{\chi_1; \chi_2}^* N_3 \).

Let us introduce the notion of correctness for dependency graphs. It relies on the notion of a weak cycle: a cycle is weak if all its edges are labeled with positive degrees. Otherwise, the cycle is said to be strong.

Definition 7 (Correctness)
A dependency graph \(\rightarrow \) is correct, written \(\vdash \rightarrow \), if it does not contain any strong cycle.

This notion is related to the following notion of ordered correctness, which relies on an order over nodes. Orders on nodes are denoted by the symbol \(\succeq \). Their strict versions are denoted by \(\succ \). For any dependency graph \(\rightarrow \), let \(\mathcal{O} \) be the set of edges of \(\rightarrow \) that are labeled with negative edges. It can be seen as a binary relation on nodes. Moreover, we write \(\mathcal{O}^+ \) for the relation \((\rightarrow^+)\mathcal{O} \) (the transitive closure has higher precedence than the degree annotation).

Definition 8 (Ordered correctness)
A dependency graph \(\rightarrow \) is correct with respect to the order \(\succeq \), or respects the order \(\succeq \), if \(\rightarrow^+ \succeq \mathcal{O} \). We write \(\vdash (\rightarrow, \succeq) \) or \(\vdash (\rightarrow, \succ) \).

We have the following equivalence.

Proposition 1 (Existence of a correct ordering)
\(\vdash \rightarrow \) iff there exists an ordering \(\succeq \) on Nodes(\(\rightarrow \)) such that \(\vdash (\rightarrow, \succeq) \).

To prove it, we introduce the notion of a backward edge and a backward path.

Definition 9 (Backward edges and paths)
Given a dependency graph \(\rightarrow \) and an order \(\succeq \) on nodes, an edge \(N_1 \xrightarrow{\chi} N_2 \), or a path \(N_1 \xrightarrow{\chi}^* N_2 \) is said to be backward if \(N_2 \succeq N_1 \).

Thus, a graph is correct with respect to \(\succeq \) if it has no backward path labeled negatively.

Preuve
\begin{itemize}
 \item If $\vdash (\rightarrow, \supseteq)$, then $\rightarrow \vdash$. By contrapositive. Assume \rightarrow has a cycle with an edge of degree $\chi \in \text{Negative}$. Let N be the target of this edge. Then, the transitive closure \rightarrow^+ of \rightarrow has an edge $N \xrightarrow{\chi}^+ N$ which is backward, so $\xrightarrow{\supseteq^+}$ is not included in \supseteq, and therefore $\vdash (\rightarrow, \supseteq)$ does not hold.
 \item If $\rightarrow \vdash$, then any topological sort of \rightarrow gives an order such that the only backward paths are in cycles, but as \rightarrow is assumed correct, these paths all have positive degrees, so $\xrightarrow{\supseteq^+}$ is included in \supseteq.
\end{itemize}

\square

\textbf{Subgraphs} We now define some convenient notations for referring to subgraphs.

\textbf{Definition 10 (Graph restriction and co-restriction)}

For any dependency graph G and set of nodes P,

- $G\|_{P}$ denotes the restriction of G to edges leading to nodes in P,
- p_G denotes the restriction of G to edges starting from nodes in P,
- $G\|_{\sim P}$ denotes the restriction of G to edges leading to nodes not in P,
- $p_{\sim P}$ denotes the restriction of G to edges starting from nodes not in P.
- If D is a set of degrees, then G^D is the set of edges of G with labels in D.

As shown by the following property, these operations commute, so we write them without precedence, e.g., $p_G G\|_Q$.

\textbf{Proposition 2}

The following equalities hold

- $p_{\sim P} G = (\text{Nodes} \setminus P)\|_P G$,
- $G\|_{\sim P} = G\|_{(\text{Nodes} \setminus P)}$,
- $(p_G G)\|_Q = p_G (G\|_Q)$,
- $p_G (G^D) = (p_G G)^D$,
- $(G^D)\|_P = (G\|_P)^D$.

\textbf{Definition 11 (Concatenation of graphs)}

The concatenation $G_1; G_2$ of two dependency graphs is the set of edges $\{N_1 \xrightarrow{\xi_2} N_3 \mid N_1 \xrightarrow{\xi_1} G_1, N_2 \xrightarrow{\xi_2} G_2, N_3\}$.

\textbf{Graph splitting} Next, we define an operation called splitting on dependency graphs, that redirects the edges leading to a node toward another node. This notion is technically useful in the soundness proof.

\textbf{Definition 12 (Graph splitting)}

Let $G_{N_1 \rightarrow N_2} = (G\|_{\{N_1\}}) \cup \{(N_3, N_2, \chi) \mid (N_3, N_1, \chi) \in G\}$.

\textbf{Internalizable graph} We also need the notion of internalizable graph, which is used for handling the dependencies of bindings.

\textbf{Definition 13 (Internalizable graph)}

Let P be a set of nodes and a node $N \notin P$. A dependency graph G is termed internalizable at P with entry point N if $p_G G \subseteq G\|_{P \cup \{N\}}$.

16
Graphs without degrees

Definition 14 (Unlabeled graphs as dependency graphs)
An unlabeled graph is viewed as a dependency graph by considering all its edges labeled with a unique, negative degree.

Unlabeled graphs have an interesting property w.r.t. ordered correctness.

Proposition 3 (Ordered correctness of unlabeled graphs)
For any order on nodes \geq and unlabeled graph $G = G_1 \cup G_2$, $\vdash (G, \geq)$ iff $G_1 \geq$ and $\vdash G_2 \geq$.

Proof A backward path can only be backward if there is at least one backward edge. \square

4.3 Graph comparison

Definition 15 (Graph comparison)
We define $\rightarrow_1 \subseteq \rightarrow_2$ as: for all $N_1 \xrightarrow{\chi} N_2$, there exists $\chi' \leq \chi$ such that $N_1 \xrightarrow{\chi'} N_2$.

Definition 16 (Graph strong comparison)
We define $\rightarrow_1 \subseteq^* \rightarrow_2$ by

- for all $N_1 \xrightarrow{\chi^\oplus} N_2$, there exists $\chi \leq \chi^\oplus$ such that $N_1 \xrightarrow{\chi^\oplus} N_2$
- and for all $N_1 \xrightarrow{\chi^\oplus} N_2$, there exists $\chi \leq \chi^\oplus$ such that $N_1 \xrightarrow{\chi} N_2$.

We say that \rightarrow_1 is more restrictive than \rightarrow_2.

Proposition 4
- If $\rightarrow_1 \subseteq^* \rightarrow_2$, then $\rightarrow_1 \subseteq \rightarrow_2$.
- If $\rightarrow_2 \subseteq \rightarrow_1$, then $\rightarrow_1 \subseteq^* \rightarrow_2$.
- If for all $N_1 \xrightarrow{\chi} N_2$ there exists $\chi' \leq \chi$ such that $N_1 \xrightarrow{\chi'} N_2$, then $\rightarrow_1 \subseteq^* \rightarrow_2$.

Notice that these relations are transitive and reflexive, but not antisymmetric, as shown by the following two graphs, which are related by \subseteq^* and \subsetneq^*, but are obviously not the same.

We have the intuitive property that a less restrictive graph respects all the orders a more restrictive one respects.

Proposition 5
If $\rightarrow_1 \subseteq \rightarrow_2$, and $\vdash (\rightarrow_1, \subseteq)$, then $\vdash (\rightarrow_2, \subseteq)$.

Proof When $\rightarrow_1 \subseteq \rightarrow_2$, for each path in the transitive closure of \rightarrow_2, there is a path with a smaller degree in the transitive closure of \rightarrow_1. \square
5 A powerful type system

We now equip \(\lambda_0 \) with a sound type system that guarantees that all recursive definitions are correct, and that they match the expected sizes. Boudol [2] goes toward such a type system, however his proposal does not handle sizes, resulting in a less efficient compilation scheme [3], and it does not type-check curried function applications with sufficient precision for our purposes. Indeed, curried function applications like \((\lambda x.\lambda y.\lambda z.x \; y \; z) \; x \; y\) are considered to strongly depend on \(x\), which prevents expressions generated by the local fixed-point encoding to be well-typed. Hirschowitz and Leroy [10] define a refined type system handling curried function applications, but not handling sizes either. Hence, we now define a further refinement of these type systems, that allows both powerful recursive definitions and sizes.

Types Types, written \(\tau \), have the syntax defined in Figure 9. Arrow types are annotated with generalized degrees \(\xi \), indicating how a function uses its argument. (The name of “generalized degrees” is in relation with Boudol’s notion of degree, which are generalized by this notion.) For instance, a function such as \(\lambda x. x + 1 \) has type \(\text{int} \xrightarrow{-\infty} \text{int} \), because the value of \(x\) is immediately needed after application, whereas \(\lambda xyz. x + 1 \) has type \(\text{int} \xrightarrow{-2} \ldots \), because the value of \(x\) is not needed unless at least 2 more function applications are performed. We define an order on generalized degrees, and show that they have a degree structure, with \(-\infty\) as unique negative degree. (We call generalized degrees simply degrees in the sequel, the distinction with the degrees of MM should be clear from the context.)
Definition 17 (Ordering generalized degrees)
Define the order on generalized degrees as the smallest reflexive, transitive relation such that for any $\xi \in \text{GDegrees}$ and $n \in \mathbb{N}$:

$$-\infty \leq \xi \leq \infty$$
$$n \leq n + 1.$$

We denote by $\xi_1 \land \xi_2$ the greatest lower bound of two generalized degrees ξ_1 and ξ_2.

Proposition 6 (Degree structure)
Generalized degrees have a structure of degree with Negative $= \{-\infty\}$.

The typing judgment is of the form $\Gamma \vdash e : \tau / \gamma$, where Γ is an environment, that is, a finite map from variables to types, and γ is a (total) mapping from variables to degrees, called a degree environment. It indicates how e uses each variable: intuitively,

- $\gamma(x) = 0$ means that $e = x$, or that $e = \{ \ldots X = x \ldots \}$ (x is used only as a pointer);
- $\gamma(x) = \infty$ means that x is not free in e;
- $\gamma(x) = -\infty$ means that e strongly depends on x;
- and $\gamma(x) = n + 1$ means that the value of x is needed only after $n + 1$ function applications, e.g., x occurs in e under at least $n + 1$ function abstractions.

The restriction $\gamma|_P$ of a degree environment γ to a set of variables P is the function that returns $\gamma(x)$ on any $x \in P$, and ∞ on any $x \notin P$. The co-restriction $\gamma|_P$ is defined conversely. The support $\text{supp}(\gamma)$ of a degree environment γ is the set $\text{Vars} \setminus \gamma^{-1}(\infty)$ of variables of degree different from ∞. We impose that degree environments be of finite support: for all degree environment γ, the set $\text{supp}(\gamma) = \{ x \in \text{Vars} \mid \gamma(x) \neq \infty \}$ is finite. The range $\text{rng}(\gamma)$ of a degree environment is defined as usual.

Finally, we make two additional hypotheses related to types. First, we assume that functions and records value have known sizes.

Hypothesis 2 (Size of functions and records λ_\circ)
We assume that for any s, $\text{Size}_\circ(\{s\}) \neq }=\#\gamma$.

Second, we assume that the size of values can be guessed from their types.

Hypothesis 3 (Size of types)
We assume given a total function TSize_\circ from λ_\circ types to size indications. By abuse of notation, known size indications are identified with the natural number they carry.

The blocks corresponding to values of some given type τ must all have size $\text{TSize}_\circ(\tau)$, when it is known. This will be enforced below by Hypothesis 4.

Typing rules
The type system for λ_\circ is defined in Figure 11, using some notions defined by cases in Figure 10.

Rule T-Var expresses that the variable x is not protected by any function abstraction via the side condition $\gamma(x) \leq 0$.

Function abstraction (rule T-Abss) increments by 1 the degree of all variables appearing in its body, except for its formal parameter x, whose degree is retained in the type of the function. We write $\gamma \ominus 1$ for the function $y \mapsto \gamma(y) \ominus 1$, where degree subtraction is defined in Figure 10. Notice that $1 \ominus 1 = -\infty$, which can be surprising. In fact, it simply states that after one application, a variable protected by one function abstraction is not considered protected anymore, as appears in $\lambda x. x + 1$ for instance.

Rule T-App deals with function application. In the function part e_1, all variable degrees are decremented by 1, since the application removes one level of abstraction. The degrees of the argument part e_2 are combined with the ξ annotation on the arrow type of e_1 via the \otimes operation, defined in Figure 10. Intuitively, it represent the contribution of the free variables of the argument to their degrees in the application. Because of call-by-value, strong dependencies in $e_2 \ (\gamma_2(x) = -\infty)$
\[
\begin{align*}
\frac{\gamma(x) \leq 0}{\Gamma \vdash x : \Gamma(x) / \gamma} & \quad \text{(T-VAR)} \\
\frac{\Gamma \vdash \{x : \tau'\} \vdash e : \tau / (\xi \ominus 1)(x \mapsto \xi)}{(T-ABS)} \\
\frac{\Gamma \vdash e_1 : \tau' / \xi / \gamma_1}{\Gamma \vdash e_2 : \tau' / \gamma_2 \quad \gamma \leq (\gamma_1 \ominus 1) \land \xi \ominus \gamma_2} & \quad \text{(T-APP)} \\
\frac{\text{dom}(I) = \text{dom}(s) \quad \gamma' \leq (\gamma + 1) \quad \forall X \in \text{dom}(s), \Gamma \vdash s(X) : I(X) / \gamma}{\Gamma \vdash \{s\} : \{I\} / \gamma'} & \quad \text{(T-RECORD)} \\
\frac{X \in \text{dom}(I) \quad \gamma \leq \gamma' - 1}{\Gamma \vdash e : \{I\} / \gamma'} & \quad \text{(T-SELECT)} \\
\frac{\text{res a fresh variable}}{\Gamma \vdash e : \tau / \gamma_0} & \quad \text{(T-LETREC)} \\
\frac{\Gamma \vdash e : e / \emptyset}{\text{(T-EMPTY)}} \\
\frac{\Gamma \vdash \{x : \Gamma(x) / \gamma \}}{\Gamma \vdash (x = \gamma)[e] : \Gamma_b + \{x : \Gamma(x)\} / G \cup (\gamma \mapsto x)} & \quad \text{(T-UNKNOWN)} \\
\frac{\Gamma \vdash e : \Gamma(x) / \gamma}{\Gamma \vdash (x = [n] \epsilon)[b] : \Gamma_b + \{x : \Gamma(x)\} / G \cup (\gamma \mapsto x)} & \quad \text{(T-KNOW)}
\end{align*}
\]

Figure 11: Typing rules for \(\lambda \).

remain strong in the application: \(\xi \ominus -\infty = -\infty \) for any \(\xi \). Variables not free in \(e_2 \) (\(\gamma_2(x) = \infty \)) do not contribute any dependency to the application. The interesting case is that of a variable \(x \) with degree \(\xi' \neq -\infty, -\infty \) in \(e_2 \), i.e. not immediately needed. We do not know how many times the function \(e_1 \) is going to apply its argument inside its body. However, we know that it will not do so before \(\xi \) more applications of \(e_1 e_2 \). Hence, we can take \(\xi \) for the degree of \(x \) in \(e_1 e_2 \). Finally, the contributions from the function part \((\gamma_1 \ominus 1) \) and the argument part \((\xi \ominus \gamma_2) \) are combined with the \(\land \) operator, which is point-wise minimum.

Remark 3 (Another explanation)

The \(\xi_1 \ominus \xi_2 \) operation could be defined as \(-\infty(\xi_2) \land \xi_1 \{\xi_2\} \), where substitution \(\cdot\{\cdot\} \) and step \(-\infty() \) are defined in Figure 10. The degree environment in the conclusion of the T-APP can also be written \((\gamma_1 \ominus 1) \land -\infty(\gamma_2) \land \xi \{\gamma_2\}\).

Explanation:

- the function part loses one level of abstraction, whence the \(\gamma_1 \ominus 1 \) part;
- the argument to the function must be computed, and this is represented by the \(-\infty(\gamma_2) \) part;
- then the argument to the function replaces a variable of degree \(\xi \), as indicated by the type of the function. The operation \(\cdot\{\cdot\} \) computes an approximation of the resulting degree environment. When a variable has no free occurrence in the argument, one can safely give it the degree \(\infty \). When it has an occurrence in the argument, we reason as follows.
 - If \(\xi = -\infty \), then the body of the function uses the argument, and we do not know how many times it could apply it, so it is possibly more than the degree of any variable in \(\gamma_2 \).
 - If \(\xi = n + 1 \), roughly, we know that we can safely apply the result \(n \) times, but then, it works exactly as above, we do not know how the argument is going to be used, so we are limited to approximating all the degrees in \(\text{supp}(\gamma_2) \) at \(n + 1 \).
If $\xi = 0$, then we approximate all the degrees in $\text{supp}(\gamma_2)$ at 0.

If $\xi = 0$, in fact, we could sharpen our approximation: in principle, it indicates that the body of the function is more or less the argument variable, so we should be able to reuse the degrees of the argument exactly. This would give the rule $0 @ \xi = \xi$. There are at least two reasons for not doing this.

First, we will see that a rather standard weakening property on degrees holds: one can replace degrees with inferior degrees in a typing judgment, without breaking its derivability. The proposed rule however, has strange consequences: it is no longer true that the @ operation is monotone in both of its arguments. Indeed, we have $0 \leq 3$, but $3 = 3 \not{\leq} 5 \leq 0 @ 5 = 5$. The consequences of this are uncertain.

Second, and it is certainly related to the first reason, sharpening our approximation makes it too sharp for dependency graphs. Throughout the thesis, we have fixed that the notion of transitive closure of dependency graphs only takes into account the degree of the last edges of paths. Consider a simple Beta contraction step: $e_1 = (\lambda x.x)(\lambda y.z)$ is contracted to $e_2 = \text{let rec } x=y\mapsto z \text{ in } x$. With the proposed rule, the degree of z in e_1 is $\infty \land 0 @ 1 = 1$. However, in e_2, we will see below that one has to consider the following dependency graph, where res is a fresh variable:

$$
\begin{array}{c}
z \downarrow 1 \\

gamma \rightarrow x \\
\uparrow 0 \rightarrow \text{res}
\end{array}
$$

It has a path from z to res, of degree 0, so the degree of z in e_2 is 0 at most. Thus, the proposed rule breaks type preservation, unless we change the notion of transitive closure for dependency graphs. This is unnecessary for our purposes.

The rule for record construction (rule T-RECORD) is straightforward, since it does not modify the degree environment. The rule for selection (rule T-SELECT) types the components of the record with a common degree environment γ', which must not give degree 0 to any variable. The final degree environment has to be inferior to γ'. The rationale for the restriction of γ' is explained by the following example. Consider $e = x.X$. If we omit the restriction, e has type τ in any environment Γ such that $\Gamma(x) = \tau$, in the degree environment $\gamma = \{x \mapsto 0\}$, whereas the degree of x in e ought to be $-\infty$. For instance, consider the expression $e' = (\lambda y.\{\})x.x$. By rule T-APP, it is well-typed in the empty degree environment $\{z \mapsto \infty \mid z \in \text{Vars}\}$, but is stuck since no value can be found for x.

The most complex rule is T-LETRec for mutually recursive definitions. For typing a let rec expression $\text{let rec } b \text{ in } e$, the T-LETRec rule introduces a typing environment Γ_b with domain $\text{dom}(b)$, and adds it to the initial environment Γ. In this enriched environment, it is checked that e has the final type τ, yielding a degree environment γ_e. Then, the typing of b is delegated to the dedicated judgment, consisting of rules T-EMPTY, T-UNKNOWN, and T-KNOWN. For each definition $(x \Leftarrow y)$ of the binding, these rules ensure that e has the expected type, yielding degree environments γ_x. While typing the binding, the rules build a dependency graph G, equal to

$$
\bigcup_{x \in \text{dom}(b)} (\gamma_x \rightarrow x), \quad \text{where } \gamma \rightarrow x \text{ denotes } \{y \mapsto x \mid \gamma(y) \neq \infty\}.
$$

Simultaneously, the rules check that for each definition of known size $x =_{[n]} e$, $\Gamma_b(x)$ is indeed of size n, and also $\gamma_x^{-1}(0) = \emptyset$.

This last verification is not very intuitive at first sight, but can be understood as follows. In λ_e, bindings must respect sizes, in the sense of Section 3.2. Thus, for a binding like $(b, x =_{[n]} y, b')$, y should not be defined in b'. Indeed, it would make the intended value of x in the prefix $(b, x =_{[n]} y)$ undefined. The condition $\gamma_x^{-1}(0) = \emptyset$ ensures that this cannot happen. Indeed, when typing the definition $x =_{[n]} y$, y could either have degree $-\infty$ or 0, but with the condition, it only can have type $-\infty$, which forces y to be defined before x.

Once the binding is typed, rule T-LETRec checks that the graph G is compatible with the order of definition and the size indications in b, which is denoted by $\vdash_{\lambda_e} (G, b)$. Let \triangleright_b denote the order of definitions in b, and $\vdash_{\lambda_e} (G, b)$ mean that $\vdash (G, \triangleright_b)$, in the sense of ordered correctness (see Definitions 8 and 14).

An important remark is that the absence of backward dependencies on definitions of unknown size is trivially preserved by reduction, because dependencies become less backward along the
reduction. Thus, we do not need to check it explicitly in the type system, since it is part of syntactic correctness.

Finally, the whole expression is given type τ, in a complex degree environment, computed from the graph $G \cup (\gamma_e \rightarrow res)$. The expression let rec b in e can depend on a variable y in several ways.

- The variable y can have an occurrence in e directly. Then, edges of $\gamma_e \rightarrow res$ from y to res model this dependency.
- Also, it can have an occurrence in one of the bindings of b, say x. Then, paths of the graph starting with this edge $y \rightarrow x$ model this dependency. Paths leading to res must be reflected in the final degree environment, but paths stopping at a binding in b only need to be reflected if they have a negative degree. Indeed, they cannot be part of any cycle.

Formally, the degree environment for the whole expression is required to be no greater than to $(G \triangleright \text{dom}(b) \triangleright res)$, where $(G \triangleright \text{dom}(b) \triangleright res)$ is the degree environment internalizing $\text{dom}(b)$ into res, defined as follows, for any general degree structure, on any set of nodes.

Definition 18 (Internalized degree environment)

Let G be a graph internalizable at P with entry point N. The degree environment internalizing P into N in G is

$$(G \triangleright P \triangleright N) = \bigwedge_{N_2 \in P} \{ N_1 \mapsto \chi \upharpoonright (N_1 \xrightarrow{x} N_2) \in p_{-\triangleright}((G_p)^+) \}$$

$$\wedge \{ N_1 \mapsto \chi \mid (N_1 \xrightarrow{x} N) \in p_{-\triangleright}((G_p)^+; G_{\{N\}}) \}.$$

The graph $p_{-\triangleright}((G_p)^+)$ is the set of edges of $(G_p)^+$, i.e. the set of non-empty paths of G_p, that do not begin with a node in P. In other terms, each edge of $p_{-\triangleright}((G_p)^+)$ corresponds to an edge of $p_{-\triangleright}G_p; (G_p)^+$ or equivalently $p_{-\triangleright}G_p; (p_\chi G_p)^+$. In fact, as $p_\chi G \subseteq G_{P \cup \{N\}}$, it can also be viewed as $p_{-\triangleright}G_p; (G_p)^+$.

As announced, we assume that the function giving the size of types returns the right sizes.

Hypothesis 4 (Size of types)

We assume that the function TSize_\circ, from λ_0 types to size indications, is such that if $\Gamma \vdash v : \tau$, and v is not a variable, then $\text{TSize}_\circ(\tau) = \text{TSize}_\circ(v)$.

We now state some useful elementary lemmas.

The standard type weakening and strengthening lemmas are straightforward.

Lemma 1 (Type environment weakening)

If $\Gamma \vdash e : \tau / \gamma$, and $\text{dom}(\Gamma') \neq \text{FV}(e)$, then $\Gamma + \Gamma' \vdash e : \tau / \gamma$.

Lemma 2 (Type environment strengthening)

If $\Gamma + \Gamma' \vdash e : \tau / \gamma$, and $\text{dom}(\Gamma') \neq \text{FV}(e)$, then $\Gamma \vdash e : \tau / \gamma$.

We then remark that the typing judgment still holds if the degree environment γ is replaced by another environment $\gamma' \leq \gamma$, or if the degree $\gamma(x)$ of an unused variable x is changed.

Lemma 3 (Degree environment weakening)

If $\gamma' \leq \gamma$ and $\Gamma \vdash e : \tau / \gamma$, then $\Gamma \vdash e : \tau / \gamma'$.

Now, we prove that the only necessary information provided by degree environments concerns the free variables of the considered expression. Other informations could be ignored.

Lemma 4 (Degree environment strengthening)

If $\Gamma \vdash e : \tau / \gamma$, $P \supseteq \text{FV}(e)$ and $\gamma |_P = \gamma |_P$, then $\Gamma \vdash e : \tau / \gamma'$.

Finally, we state two lemmas that are useful for proving the soundness of the simpler type system presented in the next section.
Figure 12: Syntax of simplified λ_0 types

Lemma 5 (n abstractions)
The following typing rule is admissible for the type system of λ_0.

\[\Gamma + \{ x_1 : \tau_1 \ldots x_n : \tau_n \} \vdash e : \tau / (\gamma \ominus n) \xrightarrow{\xi_1 \ldots \xi_n} x_1 \ldots x_n \mapsto \xi_n \]
\[\Gamma \vdash \lambda(x_1, \ldots, x_n). e : \tau \xrightarrow{\xi_1 \ominus (n-1)} \ldots \xrightarrow{\xi_n \ominus (n-2)} \tau_n \xrightarrow{\xi_n} \lambda(x_1, \ldots, x_n) \]

Lemma 6 (n applications)
The following typing rule is admissible for the type system of λ_0, provided for all i, $\xi_i \neq 0$.

\[\Gamma \vdash e : \tau_1 \xrightarrow{\xi_1 \ominus (n-1)} \ldots \xrightarrow{\xi_n \ominus (n-2)} \tau_n \xrightarrow{\xi_n} \lambda(x_1, \ldots, x_n) : \tau / (\gamma \ominus n) \wedge \{ x_1 \mapsto \xi_1 \ldots x_n \mapsto \xi_n \} \]

6 A simpler type system

The previous type system is too complex to be implemented as such, for instance in the OCaml module system. We propose a more practical restriction, which handles the most common cases.

This system relies on dependency graphs with a less expressive set of degrees: strong dependencies are quoted by \cdot, and weak ones by \circ, which give us a new set of degrees with only two elements and with $\circ \geq \cdot$.

6.1 Type system

Types Types have the syntax defined in Fig.12. A function has a type $[\tau_1 \ldots \tau_n] \Rightarrow \tau'$ when the values of its n arguments are not needed after n function applications. Otherwise it has type $\tau_1 \rightarrow \tau_2$. For instance:

- $\lambda x.x + 1$ has type $\text{int} \rightarrow \text{int}$
- $\lambda xy. \text{let rec} \ z = x + 1 \text{ in } z + y$ has type $\text{int} \Rightarrow \text{int} \rightarrow \text{int}$: the value of x is not needed after one application, but the value of y is needed after 2 applications
- $\lambda xy. \text{let rec} \ z = x + 1 \text{ in } \lambda t + z + y$ has type $\text{int} \Rightarrow \text{int} \Rightarrow \text{int} \rightarrow \text{int}$: the value of x is not needed after one application but needed after 2 applications, the value of y is not needed after 2 applications
- $\lambda xy. \text{let rec} \ f = \lambda z.x + 1 \text{ in } \lambda t + y + x$ has type $[\text{int}, \text{int}] \Rightarrow \text{int} \rightarrow \text{int}$: the values of x and y are not needed after 2 function applications

Typing rules The typing rules are given in Fig. 13. To check if a function is “safe”, we consider the dependency graph of its body: if there is no strong dependency in one of its variables (i.e. if there is no path ended with a \cdot with its source in $\{x_1 \ldots x_n\}$), the function is typed $[\sigma_1 \ldots \sigma_n] \Rightarrow \tau$ (rule Safe-Rec). The binding b of a let rec b in e is also checked (rule LetRec). As a convenient notation, we write $\tau_1 \ldots \tau_n$ for the corresponding list of types, empty if $n = 0$. Similarly, we write $[\tau_1 \ldots \tau_n] \Rightarrow \tau$ for τ if $n = 0$, and the expected type otherwise. In rule App, the notation $\sigma' \Rightarrow \sigma$ denotes either $\sigma' \rightarrow \sigma$, or $[\sigma', \sigma_1 \ldots \sigma_n] \Rightarrow \sigma_0$, with $\sigma = [\sigma_1 \ldots \sigma_n] \Rightarrow \sigma_0$. Similarly, we denote some combination of safe and unsafe function types by $[\sigma_1 \ldots \sigma_n] \Rightarrow \sigma_0$. Also, we write $\Gamma \vdash e : \sigma : \gamma$ for $\Gamma \vdash e : \sigma$ and $\Gamma \vdash e : \gamma$.

23
Figure 13: Simple typing rules for λ_σ
Types
\[
\begin{align*}
\llbracket \{I\} \rrbracket &= \{\llbracket I \rrbracket \} \\
\llbracket \sigma' \to \sigma \rrbracket &= \llbracket \sigma' \rrbracket \xrightarrow{-\infty} \llbracket \sigma \rrbracket \\
\llbracket \sigma_1 \ldots \sigma_n \Rightarrow \sigma \rrbracket &= \llbracket \sigma_1 \rrbracket \xrightarrow{n_1} \ldots \xrightarrow{n_k} \llbracket \sigma_n \rrbracket \xrightarrow{1} \llbracket \sigma \rrbracket
\end{align*}
\]

Degrees
\[
\begin{align*}
\llbracket e \rrbracket &= -\infty \\
\llbracket \varepsilon \rrbracket &= 1
\end{align*}
\]

Degree environments
\[
\begin{align*}
\llbracket \gamma \rrbracket (x) &= \llbracket \gamma (x) \rrbracket \quad \text{if } x \in \text{dom}(\gamma) \\
\llbracket \gamma \rrbracket (x) &= \infty \quad \text{if } x \notin \text{dom}(\gamma)
\end{align*}
\]

Graphs
\[
\llbracket G \rrbracket = \{ x \xrightarrow{G} y | x \xrightarrow{\sigma} y \}
\]

Figure 14: Translation

Dependency graph construction rules Variables are generally typed \(\varepsilon \), except if (Fig. 13):

- it is protected by an abstraction (rule G-Abs)
- it is an argument of a function typed \([\sigma_1 \ldots \sigma_n] \Rightarrow \sigma \) (rule G-App)

6.2 Soundness

In this section we will prove the soundness of this system by injection into the previous one. The translation is given in Fig. 14.

We state first a trivial proposition (the dependency graph construction rules give directly the proof).

Proposition 7 (Shape of the graph of an expression)

If \(\Gamma \vdash e : \gamma \) then \(\text{dom} (\gamma) = \text{FV} (e) \) and \(\gamma \leq \circ_{FV(e)} \). Further, we have the following.

- If \(e \) is of the shape \(e'.X \) or is a variable, then \(\gamma = \bullet_{\text{FV}(e)} \).
- Let \(m > 0 \) and \(p \geq 0 \). If \(e \) is of the shape \((x.X_1 \ldots X_p \ x_1 \ldots x_m) \), then \(\gamma \leq \bullet_{\{x\}} \land \circ_{\{x_1 \ldots x_m\}} \).

We also remark that the translation never gives degree 0 to any variable.

Proposition 8 (Degrees given by the translation)

For all dependency graph \(\gamma \), \(\text{rng}(\llbracket \gamma \rrbracket) \subseteq \{-\infty, 1, \infty\} \).

Theorem 1 (Soundness of the simple type system)

If \(\Gamma \vdash e : \gamma \) and \(\Gamma \vdash e : \sigma \) then \(\llbracket \Gamma \rrbracket \vdash e : \llbracket \sigma \rrbracket / \llbracket \gamma \rrbracket \).

If \(\Gamma \vdash b : G \) and \(\Gamma \vdash b : \Gamma_b \) then \(\llbracket \Gamma \rrbracket \vdash b : \llbracket \Gamma_b \rrbracket / \llbracket G \rrbracket \).

Proof The proof is by mutual induction on \(e \) and \(b \), and case analysis on the last typing rule.

- **VAR**

 We have \(e = x \), then by Prop. 7 we have \(\llbracket \gamma \rrbracket = -\infty \| (x) \), then by rule T-VAR, we have \(\llbracket \Gamma \rrbracket \vdash x : \llbracket \Gamma \rrbracket (x) / \llbracket \gamma \rrbracket \).

- **UNSAFE-ABS**

 We have that \(e \) is an expression of the shape \(\lambda x. e' \), \(\sigma = \sigma_1 \to \sigma_2 \), and \(\gamma \leq \circ_{\text{FV}(e)} \) and \(\text{dom}(\gamma) = \text{FV}(e) \), by Prop. 7. So we have \(\llbracket \gamma \rrbracket \ominus 1 (x \mapsto -\infty) = -\infty \| \text{FV}(e) \cup \{x\} \). Let \(\gamma' = \bullet_{\text{FV}(e')} \).

 - We have \(\llbracket \gamma \rrbracket \geq (\llbracket \gamma \rrbracket \ominus 1 (x \mapsto -\infty)) \) and \(\Gamma \vdash e' : \gamma' \). By induction we have \(\llbracket \Gamma + \{ x : \sigma_1 \} \rrbracket \vdash e' : \llbracket \sigma_2 \rrbracket / \llbracket \gamma' \rrbracket \), which by Lemma 3 gives \(\llbracket \Gamma + \{ x : \sigma_1 \} \rrbracket \vdash e' : \llbracket \sigma_2 \rrbracket / (\llbracket \gamma \rrbracket \ominus 1 (x \mapsto -\infty)) \), so by rule T-ABS, we have \(\llbracket \Gamma \rrbracket \vdash \lambda x. e : \llbracket \sigma_1 \rrbracket \xrightarrow{-\infty} \llbracket \sigma_1 \rrbracket / \llbracket \gamma \rrbracket \).
• **APP**

We have that \(e \) is an expression of the shape \(e_1 \, e_2 \), and \(\Gamma \vdash e_1 : \sigma' \Rightarrow \sigma \), and \(\Gamma \vdash e_2 : \sigma' \). We proceed by case analysis on the last rule of the derivation of \(\Gamma \vdash e : \gamma \). We have two cases:

- **G-APP.** In this case, \(e_1 \) has the shape \(e_3 \, x_1 \ldots x_m \), with \(n \geq m \geq 1 \), \(e_2 = x_m \) and \(e_3 = \ldots \). We have \(\Gamma \vdash e_3 : [\sigma_1, \ldots, \sigma_n] \Rightarrow \sigma'' \). So, we have some record types \(I_1, \ldots, I_p \), such that \(\Gamma(x) = \{ I_1 \} \), and for all \(i \in \{ 1, \ldots, p \} \), \(I_i \cdot x_i = \{ I_{i+1} \} \), and \(I_p(x_p) = [\sigma_1, \ldots, \sigma_n] \Rightarrow \sigma \). But obviously, this type is the only derivable type for \(e_3 \), so \(\sigma' = \sigma_m \), \(\sigma'' = [\sigma_m, \ldots, \sigma_n] \Rightarrow \sigma'' \), and \(\sigma = [\sigma_{m+1}, \ldots, \sigma_n] \Rightarrow \sigma'' \).

By rule T-VAR, we have \(\Gamma \vdash x : \{ \llbracket \cdot \circ I_1 \} / -\infty \}_{\{ x \}} \), and then by successive application of rule T-SELECT, \(\Gamma \vdash e_3 : [\sigma_1] \xrightarrow{n} \ldots \xrightarrow{2} [\sigma_m] \xrightarrow{1} [\sigma''] / -\infty \}_{\{ x \}} \). Finally, by Lemma 6, we obtain \(\Gamma \vdash e : [\sigma] / -\infty \}_{\{ x \}} \wedge -\infty \uplus \Gamma \), which is the expected result.

- Otherwise, the last rule applied is rule G-STRONG, and we have \(\gamma = \bullet_{|FV(e)} \). By induction we have \(\Gamma \vdash e_1 : [\sigma'] / \gamma \) and \(\Gamma \vdash e_2 : [\sigma] / \gamma' \), with \(\gamma = \bullet_{|FV(e_2)} \). But \(\Gamma \vdash e \cdot s : [\sigma] / \gamma \), so \(\Gamma \vdash e \cdot s : [\sigma] / \gamma \).

• **RECORD**

We have a derivation of the shape:

\[
\begin{align*}
\text{rng}(s) & \subseteq \text{dom}(
\Gamma) \\
\Gamma \vdash \{ s \} : \Gamma \circ s
\end{align*}
\]

For all \(X \in \text{dom}(s) \), by rule T-VAR, we have \(\Gamma \vdash s(X) : \llbracket X \rrbracket(s(X)) / \gamma' \), with \(\gamma' = 0_{\text{rng}(s)} \). But by Prop. 7 we have \(\gamma \leq \circ_{|FV(s)} \). So \(\llbracket X \rrbracket \leq 1_{|FV(e)} = \gamma' + 1 \), so by T-RECORD, we have \(\Gamma \vdash \{ s \} : \llbracket X \rrbracket \circ s / \llbracket \gamma \rrbracket \).

• **SELECT**

We have that \(e \) is of the shape \(e' \cdot X \), and by Prop. 7, \(\gamma = \bullet_{|FV(e')} \). We have \(\Gamma \vdash e' : \gamma \) by rule G-STRONG, so by induction we have \(\Gamma \vdash e' : \{ I \} / \llbracket \gamma \rrbracket \). So by T-SELECT, \(\Gamma \vdash e' \cdot X : [I(X)] / \llbracket \gamma \rrbracket - 1 \). But we have \(\llbracket \gamma \rrbracket - 1 = -\infty_{|FV(e')} - 1 = -\infty \circ_{|FV(e')} = \llbracket \gamma \rrbracket \), so we have \(\Gamma \vdash e' \cdot X : [I(X)] / \llbracket \gamma \rrbracket \).

• **SAFE-ABS**

By Prop. 7, we have \(\gamma \leq \circ_{|FV(e)} \). By inversion, we have \(e = \lambda x_1 \ldots x_n. \text{struct} \, B \) end and \(\Gamma' = \Gamma + \{ x_1 : \sigma_1, \ldots, x_n : \sigma_n \} \), such that \(\Gamma' \vdash \text{struct} \, B \) end : \(\sigma' \), with \(\sigma = [\sigma_1, \ldots, \sigma_n] \Rightarrow \sigma' \).

Furthermore, by typing of \(\text{struct} \, B \) end, we have \(G \) such that \(\Gamma' \vdash b : G \) with \(b = \text{Bind}(B) \), and \(\text{Sources}(G^{++}) \subseteq \text{DV}(B) \). Finally, by rule RECORD, we have \(\Gamma' \vdash \{ s \} : s \), with \(\gamma_s = \circ_{|FV(s)} \).

Thus, taking \(res \) a fresh variable and letting \(H = G \cup \gamma_s \longrightarrow res \), we have by rule G-STRUCT that \(\Gamma' \vdash \text{struct} \, B \) end : \(FV(\text{struct} \, B \) end\)\(H^+ \).

But in fact, the graphs \(FV(\text{struct} \, B \) end\)\(H^+ \) and \(FV(\text{struct} \, B \) end\)\(G^{++} \) are equal. Indeed, consider any path \(x \xrightarrow{\chi} H \), with \(x \in \text{FV(} \text{struct} \, B \) end\). If this path contains no edge to \(res \), then it is in \(FV(\text{struct} \, B \) end\)\(G^{++} \). Otherwise,

- there is no other edge to \(res \),
- it is the last edge of the path,
- and \(\chi = o \), by construction of \(H \).

But since \(\text{rng}(s) \neq FV(\text{struct} \, B \) end\), this last edge is not the only edge of the path, so the path can be decomposed into \(x \xrightarrow{\chi} G \), \(z \xrightarrow{\chi} H \). So, there is a path with source \(x \in G \), whose degree is necessarily less than or equal to \(o \), which gives the expected result.

26
Then, since $\text{Sources}(G^{++}) \subseteq \text{DV}(B)$, we obtain that as a degree environment, $\text{FV}(\text{struct } B \text{ end})^+ = \circ \text{FV}(\text{struct } B \text{ end})$, so we derive $\Gamma' \vdash \text{struct } B \text{ end} : \circ \text{FV}(\text{struct } B \text{ end})$, and by induction hypothesis, we have $[\Gamma'] \vdash \text{struct } B \text{ end} : [\sigma'] / 1_{\text{FV}(\text{struct } B \text{ end})}$.

So, by Lemma 5, we have exactly $[\Gamma'] \vdash e : [\sigma] / (n + 1)|\text{FV}(e)$, which gives the expected result by weakening.

- **LETREC**

 We have that e is of the shape $\mathtt{let \ rec \ b \ in \ e'}$. By typing hypothesis, we have Γ_b and G such that letting $\Gamma' = \Gamma + \Gamma_b$, $\Gamma' \vdash b : \Gamma_b$, $\Gamma' \vdash e' : \sigma$, and $\Gamma \vdash b : G$.

 Moreover, by the second hypothesis, we get H and a fresh variable \mathtt{res} such that $\Gamma \vdash (b, \mathtt{res} = \gamma) e') : H$. By construction, H can be seen as the union of G' and $\gamma' \rightarrow res$ such that $G^{++} \oplus \text{dom}(b) \subseteq \gamma_b$, $\Gamma \vdash b :: G'$ and $\Gamma \vdash e' :: \gamma'$, which by weakening implies $\Gamma' \vdash b :: G'$ and $\Gamma' \vdash e' :: \gamma'$.

 By induction hypothesis, this gives $[\Gamma'] \vdash b : [\Gamma_b] / [G']$ and $[\Gamma'] \vdash e' : [\sigma] / [\gamma']$. Moreover, $[G^{++} \oplus \text{dom}(b)] = [G']^{+\infty}$, so $\lambda_b (G', b)$.

 Finally, we have $[\gamma] = [\text{FV}(e)]^{H^+} = [\text{FV}(e)]^{H^+} \leq ([H] \gg \text{dom}(b) \gg \mathtt{res})$. Indeed, by definition of a degree environment internalization, given $x \in \text{dom}([H] \gg \text{dom}(b) \gg \mathtt{res})$, we have $x \in \text{FV}(e)$ and there are two possibilities: either there exists $y \in \text{dom}(b)$ such that $x \xrightarrow{\gamma_b} y$, or $x \xrightarrow{\gamma} \mathtt{res}$. In both cases, we have a path with the same ends and at most the same degree in $\text{FV}(e)^{H^+}$.

 Thus, we can apply rule T-LETREC so derive $[\Gamma'] \vdash e : [\sigma] / [\gamma]$.

- **UNKNOWN and KNOWN**

 Easy by construction of the graphs of bindings and Prop. 7.

\[\square\]

A Generalized degrees

We now turn to proving the soundness of the proposed type system.

A.1 Simple properties of generalized degrees

We start the proof with a number of algebraic lemmas on degrees and degree operations. The following lemmas should be read as universally quantified over the degrees ξ, ξ', ξ_1, ξ_2, ξ_3. We adopt the convention that $@$ has highest precedence, followed by \land, and then \lor and \ominus.

Lemma 7

1. $(\xi_1 \oplus 1) @ \xi_2 \leq \xi_1 @ \xi_2 \ominus 1$.
2. $(\xi_1 \land \xi_2) @ \xi_3 = \xi_1 @ \xi_3 \land \xi_2 @ \xi_3$.
3. $\xi_1 @ (\xi_2 \land \xi_3) = \xi_1 @ \xi_2 \land \xi_1 @ \xi_3$.
4. $(\xi_1 @ \xi_2) @ \xi_3 = \xi_1 @ (\xi_2 @ \xi_3)$.
5. $(\xi \ominus n) @ \xi' = \xi @ \xi' \ominus n$.
6. $-\infty \ominus 1 \oplus 1 = 1$, $0 \ominus 1 \oplus 1 = 1$, $0 \ominus 1 \ominus 1 = -\infty$.
7. If $\xi \neq 0$, then $\xi @ 1 \ominus 1 = \xi$.
8. If $\xi \notin \{ -\infty, 0 \}$, then $\xi @ 1 \ominus 1 = \xi$.

27
9. \(-\infty \oplus \xi \leq \xi\).

10. If \(\xi \leq \xi'\) then \(\xi \ominus 1 \leq \xi' \ominus 1\) and \(\xi \ominus 1 \leq \xi' \ominus 1\).

11. If \(\xi \ominus 1 \leq \xi' \ominus 1\) then \(\xi \ominus 2 \leq \xi'\).

12. \((\xi_1 \land \xi_2) \ominus 1 = (\xi_1 \ominus 1) \land (\xi_2 \ominus 1)\).

13. If \(\xi_1 \leq \xi_2\), then \(\xi \ominus \xi_1 \leq \xi \ominus \xi_2\).

14. \(\xi + 1 - 1, \xi - 1 \leq \xi, (\xi \land \xi') - 1 = (\xi - 1) \land (\xi' - 1)\).

\textbf{Preuve}

1. If \(\xi_2 = -\infty\), we obtain \(-\infty \leq 1\) which is true. If \(\xi_2 = \infty\), we obtain \(\infty \leq \infty\). Otherwise, the claim reduces to \(\xi_1 \ominus 1 \leq \xi_1 \ominus 1\).

2. If \(\xi_3 = -\infty\), we obtain \(-\infty\) on both sides of the equality. If \(\xi_3 = \infty\), both sides are equal to \(\infty\). Otherwise we get \(\xi_1 \land \xi_2\) on both sides.

3. If \(\xi_2 = \infty\), both sides are equal to \(-\infty\). If \(\xi_2 = \infty\), then \(\xi_2 \land \xi_3 = \xi_3 = \xi_1 \ominus \xi_2 = \infty\), so both sides are equal to \(\xi_1 \ominus \xi_1\). Otherwise, we argue by case on \(\xi_3\). If \(\xi_3 = -\infty\), then we obtain \(-\infty\) on both sides, and if \(\xi_3 = \infty\), we obtain \(\xi_1 \ominus \xi_2\) for both sides. Otherwise, \(\xi_2 \land \xi_3 = n \neq \epsilon\), so \(\xi_1 \ominus (\xi_2 \land \xi_3) = \xi_1 = \xi_1 \land \xi_1 = \xi_1 \ominus \xi_2 \land \xi_1 \ominus \xi_3\).

4. If \(\xi_3 = -\infty\), both sides are equal to \(-\infty\). If \(\xi_3 = \infty\), we obtain \(\infty\) on both sides. Otherwise, both sides are equal to \(\xi_1 \ominus \xi_2\).

5. Both sides reduce to \(\infty\) if \(\xi' = \infty\), to \(-\infty\) if \(\xi' = -\infty\), and to \(\xi \ominus n\) otherwise.

6. By definition of \(\oplus\) and \(\ominus\).

7. By definition of \(\oplus\) and \(\ominus\).

8. By definition of \(\oplus\) and \(\ominus\).

9. If \(\xi = -\infty\) or \(\xi = \infty\), both sides of the inequality are equal to \(\xi\). Otherwise, the inequality is equivalent to \(-\infty \leq \xi\), which is true for any \(\xi\).

10. By definition of \(\oplus\) and \(\ominus\).

11. Since \(\xi \ominus 1 \geq 1, \xi' \ominus 1 \geq 1\) so \(\xi' \geq 1\), and so by Item 8, \(\xi' = \xi' \ominus 1 \ominus 1\), and the result follows by applying Property 10 to \(\xi \ominus 1 \leq \xi' \ominus 1\).

12. By symmetry, we can assume w.l.o.g. that \(\xi_1 \leq \xi_2\). Then \(\xi_1 \land \xi_2 = \xi_1\), and by Property 10, \((\xi_1 \ominus 1) \land (\xi_2 \ominus 1) = \xi_1 \ominus 1\).

13. If \(\xi_2 = \infty\), then \(\xi \ominus \xi_2 = \infty\), which is necessarily greater than \(\xi \ominus \xi_1\). Otherwise, if \(\xi_2 = -\infty\), then \(\xi_1 = -\infty\), and \(\xi \ominus \xi_1 = \xi \ominus \xi_2 = -\infty\). Otherwise, \(\xi_2\) is a natural number, so \(\xi \ominus \xi_2 = \xi\).

But as \(\xi_1 \leq \xi_2, \xi_1 \neq \infty\). Hence, if \(\xi_1 = -\infty\), then \(\xi \ominus \xi_1 = -\infty\), which is necessarily inferior to \(\xi \ominus \xi_2\). Otherwise, \(\xi_1\) and \(\xi_2\) are both natural numbers, so \(\xi \ominus \xi_1 = \xi = \xi \ominus \xi_2\).

14. By definition.

\[\square\]
A.2 Internal merging

We use internalized degree environments to model the IM reduction rule, at the level of dependency graphs. Given \(G \), internalizable at \(P \) into \(N \), internalizing \(P \) into \(N \) in \(G \) also corresponds to an operation on \(G \). The link is made by the following definition of internalized graph.

Definition 19 (Internalized graph)
Let \(G \) be a dependency graph internalizable at \(P \) with entry point \(N \). Let the graph internalizing \(P \) into \(N \) in \(G \) be

\[
\text{Internalize}(G, P, N) = \text{P}_{\rightarrow}G_{\rightarrow}P \cup (\text{P} \triangleright \text{P} \triangleright N) \rightarrow N.
\]

The connection with internalized degree environments is explained below.

Remark 4 (Forgotten dependency paths)
Internalized degree environments do not take into account the dependency paths stopping before the final target \(N \) that have a positive degree. This refinement is mostly technical, and we can explain it with an example. For example, let \(e = \text{let rec } x = [n] (\lambda y. \lambda z. \{\}) \ x \in \{\} \). We certainly want \(e \) to be well-typed, and expect \(x \) to have degree \(\infty \) in the expression \((\lambda y. \lambda z. \{\}) x \). This is what the type system does, since \(\infty \odot 0 = \infty \). However, consider now the reduct \(e' = \text{let rec } x = [n] (\text{let rec } y = [?z] \ x \in \{\lambda z. \{\}) \ x \in \{\}. \) If the operation \(\cdot \triangleright \cdot \triangleright \cdot \) took all dependencies into account, the degree of \(x \) in \(\text{let rec } y = [?z] \ x \in \{\lambda z. \{\}) \) would be \(0 \), thus breaking type preservation.

Notice that a variable of degree \(\infty \) can occur free in the considered expression. This is harmless though, since these forgotten dependencies cannot be part of any cycle: other definitions than \(x \) cannot depend on \(y \), and the intended one for \(x \) does not depend on \(y \) either (it is equal to \(\lambda z. \{\}) \). However, this phenomenon forces us to eliminate backward dependencies on definitions of unknown size independently, although one could have hoped that it could be done by examining dependency graphs.

In this section, we prove some properties of internalized graphs and degree environments. For more generality, we reason on an arbitrary set of nodes, although the considered degree structure remains that of generalized degrees. So, a degree environment is a total function from nodes to generalized degrees, of finite support. Moreover, we remark that generalized degrees respect the following hypothesis.

Proposition 9 (Unique negative degree)
We assume that the considered degree structure has a unique negative degree.

Internalized degree environments and graphs give environments and graphs that contain enough information for ensuring the correctness of the initial graphs, in the sense that they detect all dependencies cycles containing negative degrees, and that they correctly predict the dependencies after reduction. This is shown by the next two lemmas, which use the following property.

Proposition 10 (Complete internalized graph)
Let \(G \) be a graph internalizable at \(P \) with entry point \(N \). For all path \(N_1 \xrightarrow{\xi} G \xrightarrow{\xi} N_2 \) of \(G \), with \(N_1 \notin P \),

- either \(N_2 \in P \) and \(\xi \in \text{Positive}, \)
- or \(N_2 \in P \), \(\xi \in \text{Negative} \) and \(N_1 \xrightarrow{\xi} \text{Internalize}(G, P, N) N \),
- or \(N_1 \xrightarrow{\xi} \text{Internalize}(G, P, N) N_2 \).

Proof We proceed by induction on the number of edges not in \(\text{P}_{\rightarrow}G_{\rightarrow}P \cup \{\} \).

- If all edges are in \(\text{P}_{\rightarrow}G_{\rightarrow}P \cup \{\} \), then, trivially \(N_1 \xrightarrow{\xi} \text{Internalize}(G, P, N) N_2 \).
• If \(n + 1 \) edges are outside \(p\rangle_{G} \setminus \{ \nodes(G) \} \), let \(N_3 \xrightarrow{\xi_3^*} G \) \(N_4 \) be the first of these. We have
\[
N_1 \xrightarrow{\xi_1^*} G N_2 = N_1 \xrightarrow{\xi_1^*} G N_3 \xrightarrow{\xi_2^*} G N_4 \xrightarrow{\xi_2^*} G N_2, \text{ with } N_1 \xrightarrow{\xi_1^*_{\text{internalize}(G,P,N)}} N_3.
\]
We know that \(N_3 \notin P \) and \(N_4 \notin P \cup \{ N \} \). We distinguish the following three cases:

- \(N_4 = N \). Then, \((G \ni P) \ni N) (N_3) = \xi_2 \), so \(N_3 \xrightarrow{\xi_2^*_{\text{internalize}(G,P,N)}} N_4 \), and we conclude by induction hypothesis on \(N_4 \xrightarrow{\xi^*_{G}} G N_2 \).
- The rest of the path, \(N_4 \xrightarrow{\xi^*_{G}} G N_2 \), contains only nodes in \(P \), i.e., it is a path of \(\parallel P \parallel G \parallel P \).
 * If \(\xi \notin \text{Negative} \), then \(N_3 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N \), so \(N_1 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N \); we are in the second case.
 * Otherwise, we are in the first case.
- The rest of the path \(N_4 \xrightarrow{\xi^*_{G}} G N_2 \) is of the shape \(N_4 \xrightarrow{\xi_1^*_{\parallel P \parallel G \parallel P}} N_5 \xrightarrow{\xi_2^*} P \parallel G \parallel P^{-} \parallel G \parallel P \xrightarrow{\xi^*_{G}} G N_2 \). By hypothesis, as \(\parallel P \parallel G \parallel P = P \parallel G \cap G \parallel P \), we have \(\parallel P \parallel G \parallel P \subseteq G \parallel P \cup \{ N \} \cap G \parallel P = G \parallel \{ N \} \), so \(N_6 = N \), and \(N_3 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N_6 \). If the last path \(N_6 \xrightarrow{\xi^*_{G}} G N_2 \) is empty, then \(\xi_1 = \xi \), and we are in the third case. Otherwise, by induction hypothesis, there are three possibilities.
 * \(N_6 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N_2 \), and \(N_1 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N_2 \); we are in the third case.
 * \(N_2 \in P \) and \(\xi \in \text{Positive} \), and we are in the first case.
 * \(N_2 \in P \), \(\xi \in \text{Negative} \), and \(N_6 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N \), and \(N_1 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N \); we are in the second case.

\[\square \]

Lemma 8 (Complete internalized graph)

Let \(G \) be a graph internalizable at \(P \) with entry point \(N \). Let \(\triangleright \) be a total order on \(\nodes(G) \), such that

- \(P \triangleright N \),
- for all \(N' \notin P \), if \(N' \triangleright N \), then \(N' \triangleright P \),
- \(\vdash \text{ (Internalize}(G, P, N), \triangleright) \),
- and \(\vdash (\parallel P \parallel G \parallel P, \triangleright) \).

We have \(\vdash (G, \triangleright) \).

Proof We prove that all negative paths of \(G \) are forward. Let \(N_1 \xrightarrow{\xi^*_{G}} G N_2 \) a path of \(G \), with \(\xi \in \text{Negative} \).

- If \(N_1 \notin P \), by Property 10, and as \(\xi \in \text{Negative} \), there are two possibilities.
 - \(N_2 \in P \) and \(N_1 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N \). By hypothesis, \(\vdash \text{ (Internalize}(G, P, N), \triangleright) \), so \(N_1 \triangleright N \), and, by hypothesis, this implies that \(N_1 \triangleright P \), so \(N_1 \triangleright N_2 \) and the considered path is forward.
 - \(N_1 \xrightarrow{\xi^*_{\text{internalize}(G,P,N)}} N_2 \), so \(N_1 \triangleright N_2 \) by correctness of \(\text{Internalize}(G, P, N) \), and the considered path is forward.
- If \(N_1 \in P \).
 - If all nodes of the considered path are in \(P \), then it is included in \(\parallel P \parallel G \parallel P \), and is forward by hypothesis.
 - Otherwise, consider the first node not in \(P \): it is necessarily \(N \) because \(\parallel P \parallel G \subseteq G \parallel P \cup \{ N \} \).

So the considered path is of the shape \(N_1 \xrightarrow{\xi_1^*_{\parallel P \parallel G \parallel P \cup \{ N \}}} N \xrightarrow{\xi^*_{\parallel G \parallel P \cup \{ N \}}} N_2 \).
• If the second part of the path, \(N \xrightarrow{\xi^*} G_{N_2} \), is empty, then the considered path is from \(N_1 \in P \) to \(N \), and by hypothesis \(N_1 \triangleright N \).
• Otherwise, the same reasoning as above demonstrates that \(N \triangleright N_2 \), so by transitivity of \(\triangleright \), we have \(N_1 \triangleright N_2 \).

\[
\square
\]

Lemma 9 (Complete internalized degree environment)

Let \(P \) and \(Q \) be disjoint sets of nodes, \(N \in Q \), and \(G \) a dependency graph internalizable at \(P \) with entry point \(N \) and internalizable at \(P \cup Q \) with entry point \(N_0 \), such that \(\text{Targets}(G) \subseteq P \cup Q \cup \{ N_0 \} \), and \(\text{Sources}(G) \neq \{ N_0 \} \). We have

\[
(\text{Internalize}(G, P, N) \triangleright Q \triangleright N_0) \leq (G \triangleright (P \cup Q) \triangleright N_0).
\]

Preuve By hypothesis, we have \(N_0 \notin P \cup Q \), and \(p \triangleright G \subseteq G \triangleleft P \cup Q \subseteq G \triangleleft P \cup Q \cup \{ N_0 \} \). Let \(\gamma = (\text{Internalize}(G, P, N) \triangleright Q \triangleright N_0) \) and \(\gamma' = (G \triangleright P \cup Q \triangleright N_0) \). Let \(G_1 = \text{Internalize}(G, P, N) \).

First, notice that the conditions on \(G \) imply that \(\text{Targets}(G_1) \subseteq Q \cup \{ N_0 \} \), and \(\text{Sources}(G_1) \neq \{ N_0 \} \). Consequently, \(Q \triangleright G_1 \subseteq G_1 \triangleright Q \cup \{ N_0 \} \). So the two degree environments are well-defined.

For any node \(N_1 \), let \(\xi = \gamma'(N_1) \), and let \(R = P \cup Q \). There are two possibilities, by definition of \((\triangleright \triangleright \cdot \cdot \cdot)\).

• \(N_1 \xrightarrow{}_{R \triangleright G_{|R}|} N_2 \xrightarrow{\xi^*} G_{|R|} N_3 \) and \(\xi \in \text{Negative} \). We have \(N_1 \notin P \), so by Property 10, there are two possibilities.
 - \(N_3 \notin P \) and \(N_1 \xrightarrow{\xi^*}_{G_1} N_3 \), so, as \(N \in Q \), \(\gamma(N_1) \leq \xi \).
 - \(N_3 \notin P \) and \(N_1 \xrightarrow{\xi^*}_{G_1} N_3 \), so, as \(N_3 \in R \setminus P \), we have \(N_3 \in Q \) and \(\gamma(N_1) \leq \xi \).

• \(N_1 \xrightarrow{\xi} R_{G_{i(N_0)}} N_2 \xrightarrow{\xi} G_{i(N_0)} N_0 \), with \(N_1 \notin R \). By Property 10 again, as \(N_0 \notin R \), we know that \(N_1 \xrightarrow{\xi^*} G_{i(N_0)} N_0 \), so \(\gamma(N_1) \leq \xi \).

\[
\square
\]

The next lemma deals with external merging (reduction rule EM). In fact, this reduction rule is also modeled through internalizing degree environments. For instance, consider the reduction step \((\text{let } \text{rec } b_1 \text{ in } \text{let } \text{rec } b_2 \text{ in } c) \rightarrow \text{let } \text{rec } b_1, b_2 \text{ in } c \). With respect to degree environments, the redex internalizes \(b_2 \) and then \(b_1 \), while the redex internalizes \(b_1 \) and \(b_2 \) at once.

Lemma 10 (Two steps internalized degree environment)

Let \(P \) and \(Q \) be disjoint sets of nodes, and \(N \notin P \cup Q \), and \(G \) be a dependency graph internalizable at \(P \) with entry point \(N \), such that \(\text{Targets}(G) \subseteq P \cup Q \cup \{ N \} \), and \(\text{Sources}(G) \neq \{ N \} \). We have

\[
(\text{Internalize}(G, P, N) \triangleright Q \triangleright N) \leq (G \triangleright (P \cup Q) \triangleright N).
\]

Preuve Let \(\gamma = (\text{Internalize}(G, P, N) \triangleright Q \triangleright N) \) and \(\gamma' = (G \triangleright P \cup Q \triangleright N) \). Let \(G_1 = \text{Internalize}(G, P, N) \).

First, notice that the conditions on \(G \) imply that \(\text{Targets}(G_1) \subseteq Q \cup \{ N \} \), and \(\text{Sources}(G_1) \neq \{ N \} \). Consequently, \(Q \triangleright G_1 \subseteq G_1 \triangleright Q \cup \{ N \} \). So the two degree environments are well-defined.

For any node \(N_1 \), let \(\xi = \gamma'(N_1) \), and let \(R = P \cup Q \). There are two possibilities, by definition of \((\triangleright \triangleright \cdot \cdot \cdot)\).

• \(N_1 \xrightarrow{\xi} R_{G_{|R|}} N_2 \xrightarrow{\xi^*} G_{|R|} N_3 \) and \(\xi \in \text{Negative} \). We have \(N_1 \notin P \), so by Property 10, there are two possibilities.
 - \(N_3 \in P \) and \(N_1 \xrightarrow{\xi^*} G_{|R|} N_3 \), so \(\gamma(N_1) \leq \xi \).
 - \(N_3 \notin P \) and \(N_1 \xrightarrow{\xi^*} G_{|R|} N_3 \), so, as \(N_3 \in R \setminus P \), we have \(N_3 \in Q \) and \(\gamma(N_1) \leq \xi \).

\[
31
\]
• $N_1 \xrightarrow{\xi} G_{1R} N_2 \xrightarrow{\xi} G_{1\{N\}} N$, with $N_1 \notin R$. By Property 10 again, as $N \notin R$, we know that $N_1 \xrightarrow{\xi} G_{1}, N$, so $\gamma(N_1) \leq \xi$.

The next two results concern degree strengthening. The idea is to ensure that only the free variables matter in degree environments.

Proposition 11 (Degree environment restriction)

Let P and Q be disjoint finite sets of variables, a node $N \notin P \cup Q$, and G be a dependency graph internalizable at P with entry point N. We have $(G \gg P \gg N)_{|Q} = ((P \cup Q \gg G) \gg P \gg N)$.

Proof Let $G' = p_{P\cup Q} G$, $\gamma = (G \gg P \gg N)_{|Q}$ and $\gamma' = (G' \gg P \gg N)$. First notice that $\text{supp}(\gamma') \subseteq \text{Sources}(G') \setminus P = \text{Sources}(G) \cap Q \supseteq \text{supp}(\gamma)$. So, for any node outside Q, both return ∞.

Then, let $G_1 = q_{P\gg Q} G$. Let $G'_1 = q_{P\gg Q} G'$. But $G' = p_{P\cup Q} G$, so $G_1 = G'_1$.

Similarly, let $G_2 = p_{P\gg Q} G$ and $G'_2 = p_{P\gg Q} G'$. We have $G_2 = G'_2$.

Let $G_3 = p_{P\gg Q} G_\{N\}$ and $G'_3 = p_{P\gg Q} G'_\{N\}$. We have $G_3 = G'_3$.

Let $G_4 = q_{Q\gg P} G_\{N\}$ and $G'_4 = q_{Q\gg P} G'_\{N\}$. We have $G_4 = G'_4$.

Now, for all $N_0 \in Q$, $\gamma(N_0)$ is the minimum of the set of degrees ξ such that $N_0 \xrightarrow{\xi} G_{1}, N_1 \xrightarrow{\xi} G_{2} N_2$ if ξ is negative, or $N_0 \xrightarrow{\xi} G_{1} N_1 \xrightarrow{\xi} G_{2} N_2 \xrightarrow{\xi} G_{3} N$, or $N_0 \xrightarrow{\xi} G_{4} N$. But, as we have seen, each of these paths corresponds to a path of the form $N_0 \xrightarrow{\xi} G_{1} N_1 \xrightarrow{\xi} G_{2} N_2$ or $N_0 \xrightarrow{\xi} G_{1} N_1 \xrightarrow{\xi} G_{2} N_2 \xrightarrow{\xi} G_{3} N$ or $N_0 \xrightarrow{\xi} G_{4} N$. So $\gamma(N_0) \leq \gamma'(N_0)$. The converse argument shows that $\gamma(N_0) = \gamma'(N_0)$, and therefore $\gamma(N_0) = \gamma'(N_0)$. □

Corollary 1 (Graph / Degree restriction)

Let P and Q be disjoint finite sets of variables, $N_0 \notin P \cup Q$, and for all $N \in P \cup \{N_0\}$, γ_N be a degree environment. Let for each $N \in P \cup \{N_0\}$, $\gamma'_N = \gamma_N|_{P\cup Q}$. $G = \bigcup_{N \in P \cup \{N_0\}} (\gamma'_N \rightarrow N)$, and $G' = \bigcup_{N \in P \cup \{N_0\}} (\gamma'_N \rightarrow N)$. We have $(G \gg P \gg N_0)_{|Q} = (G' \gg P \gg N_0)$.

Then, we state some technical lemmas used to prove the subject reduction property. First, we give a sufficient condition for separating an internalized degree environment, in the following sense.

Proposition 12 (Graph separation)

Let G_1 and G_2 be two dependency graphs such that

• $N \notin \text{Sources}(G_1 \cup G_2)$,

• Targets$(G_1 \cup G_2) \subseteq P \cup \{N\}$,

• Targets$(G_1) \neq \text{Sources}(G_2)$, and

• Targets$(G_2) \neq \text{Sources}(G_1)$.

We have $(G_1 \cup G_2 \gg P \gg N) = (G_1 \gg P \gg N) \land (G_2 \gg P \gg N)$.

Proof First, the supports of both degree environments are included in $(\text{Sources}(G_1) \cup \text{Sources}(G_2)) \setminus P$. Now, let us fix a node N' in this set. The set $(G_1 \cup G_2)^{+}$ of paths of $G_1 \cup G_2$ is equal to the union $G_1^{+} \cup G_2^{+}$, since no path can combine edges from both subgraphs. Furthermore, since $N \notin \text{Sources}(G_1 \cup G_2)$, for any G in $\{(G_1 \cup G_2), G_1, G_2\}$, we
have $p_{\cup\{N\}}\gg G^+\| P = p_{\|\|\}}((G^+\| P)\) and $p_{\cup\{N\}}\gg G^+\| (N) = p_{\underbrace{\|\|\}}((G^+\| P)\; G^+\| (N)).$ So, for any $N' \in \text{supp}((G_1 \cup G_2 \gg P \gg N)), N' \notin P \cup \{N\},$ and

$$((G_1 \cup G_2) \gg P \gg N)(N') = \min(\{\chi^\circ | N' \xrightarrow{\chi^\circ} (G_1 \cup G_2) \ N'' \in P\} \cup \{\xi | N' \xrightarrow{\xi} (G_1 \cup G_2) \ N\})$$

$$= \min(\{\chi^\circ | N' \xrightarrow{\chi^\circ} (G_1 \cup G_2) \ N'' \in P\} \cup \{\xi | N' \xrightarrow{\xi} (G_1 \cup G_2) \ N\})$$

$$= \min(\{\chi^\circ | N' \xrightarrow{\chi^\circ} (G_1 \cup G_2) \ N'' \in P\} \cup \{\xi | N' \xrightarrow{\xi} (G_1 \cup G_2) \ N\}) \wedge \min(\{\chi^\circ | N' \xrightarrow{\chi^\circ} (G_1 \cup G_2) \ N'' \in P\} \cup \{\xi | N' \xrightarrow{\xi} (G_1 \cup G_2) \ N\})$$

$$= (G_1 \gg P \gg N)(N') \wedge (G_2 \gg P \gg N)(N').$$

□

The next property allows to ignore an irrelevant sub-graph when computing an internalized degree environment.

Proposition 13 (Graph irrelevance)

Let G_1 and G_2 be two dependency graphs such that Targets(G_2) $\neq P \cup \{N\}$ and $p_{\|\|\}}((G_1 \cup G_2) \subseteq (G_1 \cup G_2)\| P_{\cup\{N\}}.$ We have $(G_1 \cup G_2 \gg P \gg N) = (G_1 \gg P \gg N).$

Preuve Let $\gamma = (G_1 \cup G_2 \gg P \gg N)$ and $\gamma' = (G_1 \gg P \gg N).$ Notice that the hypotheses imply Nodes(G_2) $\neq P \cup \{N\}.$ Obviously, we have $\gamma \leq \gamma'.$ Now, assume $\xi = \gamma(N') \neq \infty.$ There are two possibilities.

- $N' \xrightarrow{\xi} (G_1 \cup G_2) \| P \ N'' \in P.$ But $(G_1 \cup G_2)\| P = G_1\| P,$ so $N' \xrightarrow{\xi} (G_1 \cup G_2) \ N'',$ and $\gamma'(N') \leq \xi.$

- $N' \xrightarrow{\xi} (G_1 \cup G_2) \| P \ N_1 \xrightarrow{\xi} (G_1 \cup G_2) \ N.$ But the last edge cannot be in $G_2,$ so $N' \xrightarrow{\xi} (G_1 \cup G_2) \ N_1 \xrightarrow{\xi} (G_1 \cup G_2) \ N,$ and $\gamma'(N') \leq \xi.$

□

The next property factors the decrementing operation over an internalized degree environment.

Proposition 14 (Decrement)

Let P be a set of nodes, and $N \notin P.$ For all $N' \in P \cup \{N\},$ let $\gamma_{N'}$ be a degree environment, such that $N \notin \text{supp}(\gamma_{N'}).$ We have

$$\bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup ((\gamma_N - 1) \rightarrow N) \gg P \gg N) \geq \bigcup_{N' \in P \cup \{N\}} (\gamma_{N'} \rightarrow N') \gg P \gg N) - 1.$$

Preuve Let $G = \bigcup_{N' \in P \cup \{N\}} (\gamma_{N'} \rightarrow N')$ and $G' = \bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup ((\gamma_N - 1) \rightarrow N).$ Let $\gamma = (G \gg P \gg N)$ and $\gamma' = (G' \gg P \gg N).$ We have to prove that $\gamma' \geq \gamma - 1.$ Assume $N_1 \in \text{supp}(\gamma'),$ and let $\xi = \gamma'(N_1).$ We know that $N_1 \notin P,$ and there are two possibilities:

- $N_1 \xrightarrow{\xi} (G' \| P) \ N.$ But $G' \| P = G \| P,$ so $\gamma(N_1) - 1 \leq \xi - 1.$

- $N_1 \xrightarrow{\xi} (G^{*} \| P) \ N_2 \xrightarrow{\xi} (G^{*} \| (N)) \ N.$ Let $\xi' = \gamma(N_2).$ We have $\xi = \xi' - 1,$ and $N_1 \xrightarrow{\xi} (G^{*} \| P) \ N_2 \xrightarrow{\xi} (G^{*} \| (N)) \ N,$ so $\gamma(N_1) - 1 \leq \xi' - 1 \leq \xi.$

33
The next property factors the apply operation over an internalized degree environment.

Proposition 15 (Apply)
Let \(P \) be a set of nodes, and \(N \notin P \). For all \(N' \in P \cup \{ N \} \), let \(\gamma_{N'} \) be a degree environment, such that \(N \notin \text{supp}(\gamma_{N'}) \). We have

\[
(\bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup ((\gamma_{N'} \oplus 1) \rightarrow N) \gg P \gg N) \geq (\bigcup_{N' \in P \cup \{ N \}} (\gamma_{N'} \rightarrow N') \gg P \gg N) \oplus 1.
\]

Proof
Let \(G = \bigcup_{N' \in P \cup \{ N \}} (\gamma_{N'} \rightarrow N') \) and \(G' = \bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup ((\gamma_{N'} \oplus 1) \rightarrow N) \). Let \(\gamma = (G \gg P \gg N) \) and \(\gamma' = (G' \gg P \gg N) \). We have to prove that \(\gamma' \geq \gamma \oplus 1 \). Assume \(N_1 \in \text{supp}(\gamma') \), and let \(\xi = \gamma'(N_1) \). We know that \(N_1 \notin P \), and there are two possibilities:

1. \(N_1 \xrightarrow{\xi} G_{\parallel P} N_2 \). But \(G'_{\parallel P} = G_{\parallel P} \), so \(\gamma(N_1) \oplus 1 \leq \xi \oplus 1 \leq \xi \).
2. \(N_1 \xrightarrow{\xi_1} G_{\parallel P} N_2 \xrightarrow{\xi} G_{\parallel P} N \). Let \(\xi' = \gamma(N_2) \). We have \(\xi = \xi' \oplus 1 \), and \(N_1 \xrightarrow{\xi_1} G_{\parallel P} N_2 \xrightarrow{\xi'} G_{\parallel P} N \), so \(\gamma(N_1) \oplus 1 \leq \xi' \oplus 1 \leq \xi \).

\(\square \)

The next property does the same with application to a fixed degree \(\xi \).

Proposition 16
Let \(\xi \) be a generalized degree, \(P \) a set of nodes, and \(N \notin P \). For all \(N' \in P \cup \{ N \} \), let \(\gamma_{N'} \) be a degree environment, such that \(N \notin \text{supp}(\gamma_{N'}) \). We have

\[
(\bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup (\xi \otimes \gamma_{N} \rightarrow N) \gg P \gg N) \geq \xi \otimes (\bigcup_{N' \in P \cup \{ N \}} (\gamma_{N'} \rightarrow N') \gg P \gg N).
\]

Proof
Let \(G = \bigcup_{N' \in P \cup \{ N \}} (\gamma_{N'} \rightarrow N') \) and \(G' = \bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup (\xi \otimes \gamma_{N} \rightarrow N) \). Let \(\gamma = (G \gg P \gg N) \) and \(\gamma' = (G' \gg P \gg N) \). Let \(N_1 \in \text{supp}(\gamma') \), with \(\xi_1 = \gamma'(N_1) \). We know that \(N_1 \notin P \), and there are two possibilities:

1. If \(N_1 \xrightarrow{-\infty} G_{\parallel P} N_2 \), then obviously \(\gamma(N_1) = -\infty \), so \(\xi \otimes \gamma(N_1) = -\infty \).
2. If \(N_1 \xrightarrow{\xi_2} G_{\parallel P} N_2 \xrightarrow{\xi_1} G' N \), with \(\xi_1 = \xi \otimes \gamma(N_2) \). Then, \(N_1 \xrightarrow{\xi_2} G_{\parallel P} N_2 \xrightarrow{\gamma(N_2)} G' N \), so we have \(\gamma(N_1) \leq \xi_1 \), so by Lemma 7, \(\xi \otimes \gamma(N_1) \leq \xi \otimes \xi_1 \).

\(\square \)

The next property does the same for the operation that lowers all the antecedents of 0 to \(-\infty\). This operation is implicitly used in rules T-LETREC and T-SELECT.

Proposition 17
Let \(P \) be a set of nodes, and \(N \notin P \). For all \(N' \in P \cup \{ N \} \), let \(\gamma_{N'} \) be a degree environment, such that \(N \notin \text{supp}(\gamma_{N'}) \). Let also \(\gamma \) be a degree environment such that \(\gamma \leq ((\bigcup_{N' \in P \cup \{ N \}} (\gamma_{N'} \rightarrow N') \gg P \gg N) \) and \(\gamma^{-1}(0) = \emptyset \). Finally, let \(\gamma'_N = \gamma_N \land -\infty |_{\gamma_N^{-1}(0)} \). We have

\[
\gamma \leq ((\bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup (\gamma'_N \rightarrow N)) \gg P \gg N).
\]
Proof Let $\gamma' = (\bigcup_{N' \in P} (\gamma_{N'} \rightarrow N') \cup (\gamma_N \rightarrow N)) \gg P \gg N)$. For any node $N_1 \in \text{supp}(\gamma')$, let $\xi = \gamma'(N_1)$. We have $N_1 \notin P$, and there are two possibilities.

- If $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{\parallel P} N_2$, then obviously $\gamma(N_1) \leq \xi$.
- If $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{\parallel P} N_2 \xrightarrow{\xi} N$, then:
 - If $\xi = \gamma_N(N_1)$, then obviously $\gamma(N_1) \leq \xi$.
 - Otherwise, $\gamma_N(N_1) = 0$, so $\gamma(N_1) < 0$, so $\gamma(N_1) = -\infty$.

Now, we examine a particular case of incrementing some edges in the graph underlying a degree environment.

Proposition 18 (Increment)
Let $N \notin P$ and for all $N' \in P \cup \{N\}$, assume given a degree environment $\gamma_{N'}$ such that $N \notin \text{supp}(\gamma_{N'})$. Let then $G = \bigcup_{N' \in P \cup \{N\}} (\gamma_{N'} \rightarrow N')$ and $G' = ((\gamma_N + 1) \rightarrow N) \bigcup_{N' \in P} (\gamma_{N'} \rightarrow N')$.

We have $(G \gg P \gg N) + 1 \leq (G' \gg P \gg N)$.

Proof Let $G_1 = \bigcup_{N' \in P} (\gamma_{N'} \rightarrow N')$ and $G_2 = (\gamma_N + 1) \rightarrow N$.

Let also $\gamma = (G \gg P \gg N) + 1$ and $\gamma' = (G' \gg P \gg N)$.

Let $N_1 \in \text{supp}(\gamma)$. We must show that $\gamma(N_1) \leq \gamma'(N_1)$. So, we examine each path in G' that could contribute to $\gamma'(N_1)$, and find a path of inferior degree in G, which contributes to $\gamma(N_1)$.

There are two kinds of paths of G' contributing to $\gamma'(N_1)$.

- $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{G'_{\parallel P}} N_2$. But $G'_{\parallel P} = G_{\parallel P}$, and moreover if the path contributes to $\gamma'(N_1)$, then $\xi = -\infty$, so $\gamma(N_1) \leq \xi + 1 = -\infty = \xi$.
- $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{G'_{\parallel P}} N_2 \xrightarrow{\xi} G'_{\parallel N}(N)$. Let $\xi' = \gamma_N(N_2)$. We have $\xi = \xi' + 1$, and $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{G'_{\parallel P}} N_2 \xrightarrow{\xi} G'_{\parallel N}(N)$, so $\gamma(N_1) \leq \xi' + 1 = \xi$.

Proposition 19 (Splitting)
Let N and N' be two nodes, P be a set of nodes, G be a dependency graph internalizable at P with entry point N, such that $N' \notin \text{Targets}(G)$.

Then, let $G' = G_{N \gg N'}$. We have $(G' \gg P \gg N') = (G \gg P \gg N)$.

Proof Let $\gamma = (G \gg P \gg N)$ and $\gamma' = (G' \gg P \gg N')$. Notice that $N, N' \notin P$, so $G_{\parallel P} = G'_{\parallel P}$.

- First, we prove $\gamma' \leq \gamma$. Let $N_1 \in \text{supp}(\gamma)$. We know that $N_1 \notin P$. Let $\xi = \gamma(N_1)$. There are two possibilities.
 - $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{G_{\parallel P}} N_2$, with $N_2 \in P$. Then, this path is also a path of $G_{\parallel P}$, so $\gamma'(N_1) \leq \xi$.
 - $N_1 \xrightarrow{\xi \cdot \gamma_{\gamma(N_1)}}_{G_{\parallel P}} N_2 \xrightarrow{\xi} G'_{\parallel N}(N)$, with $N_2 \in P$. Then, by definition of splitting, $N_2 \xrightarrow{\xi} G'_{\parallel N'}(N')$, so $\gamma'(N_1) \leq \xi$.
- Then, we prove $\gamma \leq \gamma'$. Let $N_1 \in \text{supp}(\gamma')$. We know that $N_1 \notin P$. Let $\xi = \gamma'(N_1)$. There are two possibilities.
- $N_1 \xrightarrow[\xi^+]_{G\parallel_P} N_2$, with $N_2 \in P$. Then, this path is also a path of $G\parallel_P$, so $\gamma(N_1) \leq \xi$.

- $N_1 \xrightarrow[\xi^+]{G\parallel_P} N_2 \xrightarrow[\xi]{G_{\parallel(N)}}$, with $N_2 \in P$. Then, by definition of splitting, and as $N' \notin \text{Targets}(G)$, we have $N_2 \xrightarrow[\xi]{G_{\parallel(N)}} N$, so $\gamma(N_1) \leq \xi$.

Finally, we prove that a more restrictive dependency graph gives a more restrictive internalized degree environment.

Proposition 20 (($\gg \gg \gg \cdot$) is monotone)
If $G_1 \subseteq G_2$, then $(G_1 \gg P \gg N) \leq (G_2 \gg P \gg N)$.

Preuve For all $N' \in \supp((G_2 \gg P \gg N))$, $(G_2 \gg P \gg N)(N') = \xi$ gives $N'' \in P \cup \{N\}$, and a path $N' \xrightarrow[\xi^+]_{G_2} N''$. But as $G_1 \subseteq G_2$, there exists $\xi' \leq \xi$ such that $N' \xrightarrow[\xi^+]_{G_2} N''$, so $(G_1 \gg P \gg N)(N') \leq (G_2 \gg P \gg N)(N')$. □

B Soundness

B.1 Weakening and strengthening lemmas

We first prove the weakening and strengthening lemmas stated in Sect. 5.

Lemma 1 (Type environment weakening) If $\Gamma \vdash e : \tau / \gamma$, and $\text{dom}(\Gamma') \not\# \text{FV}(e)$, then $\Gamma + \Gamma' \vdash e : \tau / \gamma$.

Lemma 2 (Type environment strengthening) If $\Gamma + \Gamma' \vdash e : \tau / \gamma$, and $\text{dom}(\Gamma') \not\# \text{FV}(e)$, then $\Gamma \vdash e : \tau / \gamma$.

Both lemmas are proved straightforwardly by induction on the derivation.

Lemma 3 (Degree environment weakening) If $\gamma' \leq \gamma$ and $\Gamma \vdash e : \tau / \gamma$, then $\Gamma \vdash e : \tau / \gamma'$.

Preuve We reason by induction on the typing derivation, and by case on the last typing rule used.

- Rules T-LetRec, T-Var, T-App, T-Select. By transitivity of \leq on degrees.

- Rule T-Record. By induction hypothesis.

- Rule T-Abs, $e = \lambda x.e_1$. Given the typing rules, we have a derivation of $\Gamma + \{x : \tau_1\} \vdash e_1 : \tau_2 / (\gamma \diamond 1)(x \rightarrow \xi)$ with $\tau = \tau_1 \xrightarrow[\xi]{\tau_2}$. But by Lemma 7, $(\gamma' \diamond 1) \leq (\gamma \diamond 1)$, so $(\gamma' \diamond 1)(x \rightarrow \xi) \leq (\gamma \diamond 1)(x \rightarrow \xi)$, and so by induction hypothesis, we have a derivation of $\Gamma + \{x : \tau_1\} \vdash e_1 : \tau_2 / (\gamma' \diamond 1)(x \rightarrow \xi)$. The expected result follows by another application of rule T-Abs.

□

Lemma 4 (Degree environment strengthening) If $\Gamma \vdash e : \tau / \gamma$, $P \supseteq \text{FV}(e)$ and $\gamma|_P = \gamma|_P$, then $\Gamma \vdash e : \tau / \gamma'$.

Preuve By induction on the typing derivation of e and by case on the last rule used.

- Rule T-Var, $e = y$. Trivial.

- Rule T-Abs, $e = \lambda x.e_1$. By typing hypothesis,

 - $\Gamma + x : \tau_1 \vdash e_1 : \tau_2 / (\gamma \diamond 1)(x \rightarrow \xi)$,
\[-\tau = \tau_1 \xrightarrow{\xi} \tau_2.\]

We know that \(\gamma\) and \(\gamma'\) coincide on \(P \supseteq \text{FV}(e)\), so \((\gamma \ominus 1)(x \mapsto \xi)\) and \((\gamma' \ominus 1)(x \mapsto \xi)\) coincide on \(P \cup \{x\} \supseteq \text{FV}(e) \cup \{x\}\), so they coincide on \(\text{FV}(e_1) \subseteq \text{FV}(e) \cup \{x\}\). By induction hypothesis, we deduce \(\Gamma + \{x : \tau_1\} \vdash e_1 : \tau_2 / (\gamma' \ominus 1)(x \mapsto \xi)\), so by rule T-Abs, \(\Gamma \vdash e : \tau / \gamma'\).

- Rule T-App, \(e = e_1 e_2\). By typing hypothesis:
 - \(\Gamma \vdash e_1 : \tau' \xrightarrow{\xi} \tau / \gamma_1\),
 - \(\Gamma \vdash e_2 : \tau' / \gamma_2\),
 - \(\gamma \leq (\gamma_1 \ominus 1) \land \xi @ \gamma_2\).

Let \(\gamma'_1 = \gamma_{1|P}\) and \(\gamma'_2 = \gamma_{2|P}\). By induction hypothesis, we derive \(\Gamma \vdash e_1 : \tau' \xrightarrow{\xi} \tau / \gamma'_1\), and \(\Gamma \vdash e_2 : \tau' / \gamma'_2\). So, in order to reconstruct the derivation for \(\Gamma \vdash e : \tau / \gamma'\), we only have to show \(\gamma' \leq ((\gamma'_1 \ominus 1) \land \xi @ \gamma'_2)\). But
\[
(\gamma'_1 \ominus 1) \land \xi @ \gamma'_2 = (\gamma_{1|P} \ominus 1) \land \xi @ \gamma_{2|P} \\
= ((\gamma_{1|P} \ominus 1) \land \xi @ \gamma_{2|P}) \\
\geq \gamma_P \\
= \gamma'_1 P \\
\geq \gamma'.
\]

- Rule T-LetRec, \(e = \text{let rec } b \in e_1\). By typing hypothesis, we have
 - a fresh \(\text{res}\),
 - \(\text{dom}(\Gamma_b) = \text{dom}(b)\),
 - for all \(x \in \text{dom}(b)\), \(\Gamma + \Gamma_b \vdash b(x) : \Gamma_b(x) / \gamma_x\),
 - the conditions on sizes,
 - \(\Gamma + \Gamma_b \vdash e_1 : \tau / \gamma_e\),
 - \(G_b = \bigcup_{x \in \text{dom}(b)} \gamma_x \longrightarrow x\),
 - \(G = G_b \cup \gamma_e \longrightarrow \text{res}\),
 - \(\vdash_{\lambda_b} (G_b, b)\),
 - \(\gamma \leq (G \gg \text{dom}(b) \gg \text{res})\).

The variable \(\text{res}\) can be chosen outside the support of \(\gamma'\). Let \(Q = \text{dom}(b)\), with \(\gamma_{\text{res}} = \gamma_e\). Let for each \(x \in Q \cup \{\text{res}\}\), \(\gamma'_x = \gamma_{x|Q \cup \text{res}}\), \(G'_b = \bigcup_{x \in Q} \gamma'_x \longrightarrow x\), and \(G' = G'_b \cup (\gamma'_e \longrightarrow \text{res})\). We can see \(G\) as \(\bigcup_{x \in Q \cup \{\text{res}\}} \gamma_x \longrightarrow x\).

By induction hypothesis, we derive for all \(x \in \text{dom}(b)\), \(\Gamma + \Gamma_b \vdash b(x) : \Gamma_b(x) / \gamma'_x\), and \(\Gamma + \Gamma_b \vdash e_1 : \tau / \gamma'_{\text{res}}\). Moreover, \(G'_b \subseteq G_b\), so \(\vdash_{\lambda_b} (G'_b, b)\) holds. Furthermore, the conditions on sizes still hold. In particular, if \(\phi_x \neq \phi[?]\), then \(\gamma_{x^{-1}(0)} = 0\), so \(\gamma'_{x^{-1}(0)} = \gamma_{x|P \cup Q}^{-1} = 0\). Finally, by Corollary 1, we have \((G \gg Q \gg \text{res})|_P = (G' \gg Q \gg \text{res})\). Moreover, by typing hypothesis, we have \(\gamma_P \leq (G \gg Q \gg \text{res})|_P\), so \(\gamma_P \leq (G' \gg Q \gg \text{res})\). But by hypothesis, \(\gamma_P = \gamma'_P\), so \(\gamma' \leq \gamma'_P \leq (G' \gg Q \gg \text{res})\), which gives the last premise needed to derive \(\Gamma \vdash e : \tau / \gamma'\).

- Rule T-Record. We have a derivation of the shape

\[
\begin{align*}
\text{dom}(I) &= \text{dom}(s) \quad \gamma \leq \gamma' + 1 \\
\forall X \in \text{dom}(s), \Gamma &\vdash s(X) : I(X) / \gamma' \\
\Gamma &\vdash e : \tau / \gamma
\end{align*}
\]

with \(\tau = \{I\}\) and \(e = \{s\}\).

By induction hypothesis, we derive for all \(X \in \text{dom}(s)\) \(\Gamma \vdash s(X) : I(X) / \gamma'_P\), so we get \(\Gamma \vdash e : \tau / \gamma'_P + 1\). But \(\gamma'_P + 1 = (\gamma' + 1)\) \(P \geq \gamma_P\), which gives the expected result.

37
• Rule T-SELECT, \(e = e_1.X\). We have a derivation of the shape

\[
X \in \text{dom}(I) \quad \gamma \leq \gamma_1 - 1 \quad \Gamma \vdash e_1 : \{I\} / \gamma
\]

\[
\Gamma \vdash e : I(X) / \gamma
\]

By induction hypothesis, with \(\gamma_1' = \gamma_1|_P\), we derive \(\Gamma \vdash e_1 : \{I\} / \gamma_1'\). Thus, we can apply rule T-SELECT again to obtain \(\Gamma \vdash e : \tau / \gamma_1' - 1\). But then \(\gamma_1' - 1 = \gamma_1|_P - 1 = (\gamma_1 - 1)|_P \geq \gamma|_P\), which gives the expected result.

\[\square\]

B.2 Subject reduction

We now examine the standard subject reduction property, which states that reduction preserves typing. We begin with a simple sufficient correctness condition in the presence of irrelevant subgraphs.

Proposition 21 (Binding correctness criterion)

Let \(b\) be a binding and \(P = \text{dom}(b)\). Let \(G_1\) and \(G_2\) be two dependency graphs such that \(\text{Targets}(G_2) \# \text{Sources}(G_1) \cup \text{P}\). We have \(\vdash_{\lambda b} (G_1 \cup G_2, b)\) iff \(\vdash_{\lambda b} (G_1, b)\).

Preuve The predicate \(\vdash_{\lambda b} (G_1 \cup G_2, b)\) only concerns paths with ends in \(P\), since it checks the compatibility of \((G^+) \to^\infty\) and \(\to^\text{pred}_b\) with \(\to_b\). But: such a path cannot end with an edge of \(G_2\) since \(\text{Targets}(G_2) \# \text{P}\), so it ends with an edge of \(G_1\). However, as \(\text{Targets}(G_2) \# \text{Sources}(G_1)\), no edge of \(G_1\) can be preceded by an edge of \(G_2\), so the concerned paths are all paths of \(G_1\), and so \(\vdash_{\lambda b} (G_1 \cup G_2, b)\) is equivalent to \(\vdash_{\lambda b} (G_1, b)\). \(\square\)

Next, we prove that contraction rules preserve typing.

Lemma 11 (Subject contraction)

If \(e_1 \rightsquigarrow e_2\) and \(\Gamma \vdash e_1 : \tau / \gamma\), then \(\Gamma \vdash e_2 : \tau / \gamma\).

Preuve By case on the reduction rule.

- Rule PROJECT, \(e_1 = \{s\}.X, e_2 = s(X)\).

We have a derivation of the shape

\[
\forall Y \in \text{dom}(s), \Gamma \vdash s(Y) : I(Y) / \gamma'' \quad \gamma' \leq \gamma'' + 1
\]

\[
\Gamma \vdash \{s\} : \{I\} / \gamma' \\
\Gamma \vdash \{s\}.X : I(X) / \gamma
\]

So, \(\gamma \leq \gamma' - 1 \leq \gamma'' + 1 - 1 = \gamma''\), which gives the desired result.

- Rule BETA, \(e_1 = (\lambda x.e) \; v, e_2 = \text{let rec } x = [\gamma] \; v \; \text{in } e, x \notin \text{FV}(v)\). By typing, we have a derivation of the shape

\[
\vdash \{x : \tau_v\} \vdash e : \tau / (\gamma_1 \ominus 1)(x \mapsto \xi)
\]

\[
\vdash \lambda x.e : \tau_v \xrightarrow{\xi} \tau / \gamma_1
\]

\[
\vdash e_1 : \tau / \gamma
\]

(T-App)

with \(\gamma \leq (\gamma_1 \ominus 1) \land \xi @ \gamma_v\). As degree environments are of finite supports, we can assume w.l.o.g. that \(x \notin \text{supp}(\gamma_v)\) by \(\alpha\)-conversion, and choose \(\text{res}\) fresh. Now, to reconstruct a typing derivation for \(e_2\), let \(\gamma_e = (\gamma_1 \ominus 1)(x \mapsto \xi)\) and \(G = (\gamma_v \to x) \cup (\gamma_e \to \text{res})\). First, we have \((\gamma_1 \ominus 1)_{\mid x} = (\gamma_1 \ominus 1)(x \mapsto \infty) = \gamma_e_{\mid x} \geq \gamma_1 \ominus 1\).
- If $\xi = \infty$, then we have $G^+ = \top$.

\[
(G \gg \{x\} \gg res) = \begin{cases}
\text{if}_{\infty}(\gamma_v) \land \gamma_v & \\
\text{if}_{\infty}(\gamma_v) \land \gamma_v \setminus x & \\
(\gamma_v \vdash 1) & \\
\gamma.
\end{cases}
\]

- Otherwise, as x, $res \notin \text{supp}(\gamma_v)$, we have $G^+ = G \cup \{x \to res \mid x \in \text{supp}(\gamma_v)\}$. Therefore,

\[
(G \gg \{x\} \gg res) = \begin{cases}
\text{if}_{\infty}(\gamma_v) \land \gamma_v \setminus \{x\} \land \xi \in \text{supp}(\gamma_v) = \gamma_v \setminus \{x\} \land \xi \in \gamma_v. \quad & \text{But we have seen that } \gamma_v \setminus x \geq \gamma_v \vdash 1, \text{ so as } \gamma \leq (\gamma_v \vdash 1) \land \xi \in \gamma_v, \text{ we have } \gamma \leq \gamma_v \land \xi \in \gamma_v.
\end{cases}
\]

* Rule Lift: $e_1 = \llbracket \text{let rec } b \text{ in } e_3 \rrbracket$, $e_2 = \text{let rec } b \text{ in } \llbracket e_3 \rrbracket$, with $\text{dom}(b) \neq \text{FV}(L)$. By case on the lift context \mathcal{L}.

- $\mathcal{L} = \square e_4$. We have a typing derivation of the shape

\[
\Gamma \vdash \lambda_\alpha \cdot (G_b, b) \quad \Gamma + \Gamma_b \vdash e_3 : \tau' \xrightarrow{\alpha} \tau / \gamma_e \quad \Gamma + \Gamma_b + b : G_b / G_b
\]

\[
\Gamma \vdash \text{let rec } b \text{ in } e_3 : \tau' \xrightarrow{\alpha} \tau / \gamma_1 \quad \Gamma \vdash e_4 : \tau' / \gamma_2
\]

\[
\Gamma \vdash (\text{let rec } b \text{ in } e_3) e_4 : \tau / \gamma
\]

(T-App)

with

* res fresh,
* $\text{dom}(\Gamma_b) = \text{dom}(b)$,
* $G_b = \bigcup_{x \in \text{dom}(b)} (\gamma_v \rightarrow x)$,
* $G = G_b \cup (\gamma_e \rightarrow \text{res})$,
* $\gamma_1 \leq (G \gg \text{dom}(b) \gg \text{res})$,
* and $\gamma \leq (\gamma_1 \vdash 1) \land \xi \in \gamma_2$.

By α-conversion, we can assume that $\text{supp}(\gamma_2) \neq \text{dom}(b) \cup \{\text{res}\}$. By Lemma 1, we can derive $\Gamma + \Gamma_b \vdash e_4 : \tau' / \gamma_2$, and then by rule T-App, $\Gamma + \Gamma_b \vdash e_3 e_4 : \tau / \gamma'$, with $\gamma' = (\gamma_e \vdash 1) \land \xi \in \gamma_2$. So, in order to derive $\Gamma \vdash e_2 : \tau / \gamma$, we let $G' = \bigcup_{x \in \text{dom}(b)} (\gamma_e \rightarrow x) \cup (\gamma \rightarrow \text{res})$.

We only have to prove that $\gamma \leq (G' \gg \text{dom}(b) \gg \text{res})$. For this, we partition G' as follows.

\[
G' = G_b \cup (\gamma_e \vdash 1) \land \xi \in \gamma_2 \rightarrow \text{res})
\]

\[
= G_b \cup (\gamma_e \vdash 1 \rightarrow \text{res}) \cup (\xi \in \gamma_2 \rightarrow \text{res})
\]

\[
= G_3 \cup G_4,
\]

with $G_3 = G_b \cup (\gamma_e \vdash 1 \rightarrow \text{res})$ and $G_4 = \xi \in \gamma_2 \rightarrow \text{res}$. We have

* $\text{res} \notin \text{Sources}(G_3 \cup G_4)$,
* $\text{Targets}(G_3 \cup G_4) \subseteq \text{dom}(b) \cup \{\text{res}\}$,
* $\text{Targets}(G_3) \subseteq (\text{dom}(b) \cup \{\text{res}\}) \neq \text{supp}(\gamma_2) = \text{Sources}(G_4)$,
* and $\text{Targets}(G_4) \subseteq \{\text{res}\} \neq \text{Sources}(G_3)$.

Therefore, we can apply Property 12, and obtain $(G' \gg \text{dom}(b) \gg \text{res}) = (G_3 \gg \text{dom}(b) \gg \text{res}) \land (G_4 \gg \text{dom}(b) \gg \text{res})$. Obviously, we have $(G_4 \gg \text{dom}(b) \gg \text{res}) = \xi \in \gamma_2$.

Moreover, by Property 15, we have

\[
(G_3 \gg \text{dom}(b) \gg \text{res}) \geq (G \gg \text{dom}(b) \gg \text{res}) \oplus 1.
\]
Hence, by Lemma 7, we have
\[
\gamma_1 \uplus 1 \leq (G \gg \text{dom}(b) \gg \text{res}) \uplus 1 \\
\leq (G_3 \gg \text{dom}(b) \gg \text{res}).
\]
So,
\[
(\gamma_1 \uplus 1) \land \xi \uplus \gamma_2 \leq (G_3 \gg \text{dom}(b) \gg \text{res}) \land \xi \uplus \gamma_2 \\
\leq (G_3 \gg \text{dom}(b) \gg \text{res}) \land (G_4 \gg \text{dom}(b) \gg \text{res}) \\
\leq (G' \gg \text{dom}(b) \gg \text{res}).
\]
So, putting it all together:
\[
\gamma \leq (\gamma_1 \uplus 1) \land \xi \uplus \gamma_2 \leq (G' \gg \text{dom}(b) \gg \text{res}),
\]
which gives the desired result.

- \(L = v \square\). We have a typing derivation of the shape
\[
\frac{\Gamma \vdash v : \tau' \xrightarrow{\xi} \tau / \gamma_1 \\ \Gamma + \Gamma_b \vdash e_3 : \tau' / \gamma_{e_3}}{\Gamma \vdash \text{let rec } b \text{ in } e_3 : \tau' / \gamma_2}
\]
with
- \(\tau\) fresh,
- \(\text{dom}(\Gamma_b) = \text{dom}(b),\)
- \(G_b = \bigcup_{x \in \text{dom}(b)} (\gamma_{\tau} \longrightarrow x),\)
- \(G = G_b \cup (\gamma_{e_3} \longrightarrow \text{res}),\)
- \(\gamma_2 \leq (G \gg \text{dom}(b) \gg \text{res}),\)
- \(\gamma \leq (\gamma_1 \uplus 1) \land \xi \uplus \gamma_2.\)

By \(\alpha\)-conversion, we can assume that \(\text{supp}(\gamma_1) \# \text{dom}(b) \cup \{\text{fresh}\}\). By Lemma 1, we derive \(\Gamma + \Gamma_b \vdash v : \tau' / \gamma_1\). So, by rule T-APP, \(\Gamma + \Gamma_b \vdash v e_3 : \tau / \gamma',\) with \(\gamma' = (\gamma_1 \uplus 1) \land \xi \uplus \gamma_{e_3}.\)

So, in order to derive \(\Gamma \vdash e_2 : \tau / \gamma,\) we let \(G' = G_b \cup (\gamma' \longrightarrow \text{res}),\) and we only have to prove that \(\gamma \leq (G' \gg \text{dom}(b) \gg \text{res})\). For this, let \(G_3 = G_b \cup (\xi \uplus \gamma_{e_3} \longrightarrow \text{res})\) and \(G_4 = (\gamma_1 \uplus 1) \longrightarrow \text{res}.\) We have \(G' = G_b \cup (((\gamma_1 \uplus 1) \land \xi \uplus \gamma_{e_3}) \longrightarrow \text{res}) = G_3 \cup G_4.\)

By Property 12, as \(\text{res} \notin \text{Sources}(G'),\) \(\text{Targets}(G') \subseteq \text{dom}(b) \cup \{\text{res}\},\) \(\text{Targets}(G_3) \subseteq \text{dom}(b) \cup \{\text{res}\} \# \text{Sources}(G_4) = \text{supp}(\gamma_1),\) and \(\text{Targets}(G_4) \subseteq \{\text{res}\} \# \text{Sources}(G_3),\) we have \((G' \gg \text{dom}(b) \gg \text{res}) = (G_3 \gg \text{dom}(b) \gg \text{res}) \land (G_4 \gg \text{dom}(b) \gg \text{res}).\)

Let \(\gamma_0 = (G_3 \gg \text{dom}(b) \gg \text{res}),\) and notice \((G_4 \gg \text{dom}(b) \gg \text{res}) = (\gamma_1 \uplus 1).\) Thus, we just have to prove \(\gamma_0 \geq \xi \uplus \gamma_2.\) But by Property 16, we have \(\gamma_0 \geq \xi \uplus (G \gg \text{dom}(b) \gg \text{res}),\) which gives the desired result by Lemma 7.

- \(L = \square X.\) We have a typing derivation of the shape
\[
\frac{\gamma \leq \gamma_1 - 1 \quad X \in \text{dom}(I) \\ \Gamma' \vdash e_3 : \{I\} / \gamma_{e_3} \\ \Gamma' \vdash b : \Gamma_b / G_b \vdash_{\lambda_b} (G_b, b)}{\Gamma \vdash \text{let rec } b \text{ in } e_3 : \{I\} / \gamma_1
\]
with
- \(\text{res} \) fresh,
- \(\Gamma' = \Gamma + \Gamma_b,\)
- \(\text{dom}(\Gamma_b) = \text{dom}(b),\)
- \(G = G_b \cup (\gamma_{e_3} \longrightarrow \text{res}),\)
- \(\gamma_1 \leq (G \gg \text{dom}(b) \gg \text{res}).\)
We can reconstruct

\[
\begin{align*}
\Gamma' \vdash e_3 : \{I\} / \gamma_{e_3} & \quad \Gamma' \vdash e_3 X : I(X) / (\gamma_{e_3} - 1) \\
\Gamma' \vdash b : \Gamma_b / G_b & \quad \vdash_{\lambda_v} (G_b, b) \\
\Gamma' \vdash e' : I(X) / \gamma' &
\end{align*}
\]

where

* \(\gamma' = (G' \gg \text{dom}(b) \gg \text{res}) \),
* and \(G' = G_b \cup ((\gamma_{e_3} - 1) \longrightarrow \text{res}) \).

We then just have to prove that \(\gamma' \geq \gamma \).

But \(\gamma \leq \gamma_1 - 1 \leq (G \gg \text{dom}(b) \gg \text{res}) - 1 \), which by Prop. 14 is inferior to \(((G_b \cup ((\gamma_{e_3} - 1) \longrightarrow \text{res})) \gg \text{dom}(b) \gg \text{res})\), which is exactly \(\gamma' \).

\(\square \)

Now, we turn to proving that the global reduction rules preserve typing. We begin with some results on internal merging.

Proposition 22 (Internal merging)

If \(e_1 \xrightarrow{\text{IM}} e_2 \) and \(\Gamma \vdash e_1 : \tau / \gamma \), then \(\Gamma \vdash e_2 : \tau / \gamma \).

Preuve We know that \(e_1 = \text{let rec } b_v, x_0 \circ (\text{let rec } b_1 \text{ in } e_3) \), \(b_2 \text{ in } e_4 \) and \(e_2 = \text{let rec } b_v, b_1, x_0 \circ e_3, b_2 \text{ in } e_4 \). Let \(b = (b_v, x_0 \circ (\text{let rec } b_1 \text{ in } e_3) \), \(b_2 \) and \(b' = (b_v, b_1, x_0 \circ e_3, b_2) \). We know that \(\text{dom}(b_1) \neq \text{dom}(b) \cup \text{FV}(b) \cup \text{FV}(e_4) \). We have a typing derivation of the shape

\[
\begin{align*}
\Gamma + \Gamma_b \vdash e_4 : \tau / \gamma_{e_4} & \quad \Gamma + \Gamma_b \vdash b : \Gamma_b / G_b & \quad \vdash_{\lambda_v} (G_b, b) \\
\Gamma \vdash e_1 : \tau / \gamma &
\end{align*}
\]

with

- \(\text{res} \) fresh,
- \(\text{dom}(\Gamma_b) = \text{dom}(b) \),
- \(G_b = \bigcup_{x \in \text{dom}(b)} (\gamma_x \longrightarrow x) \),
- \(G = G_b \cup (\gamma_{e_4} \longrightarrow \text{res}) \),
- and \(\gamma \leq (G \gg \text{dom}(b) \gg \text{res}) \).

By \(\alpha \)-conversion, we can assume \(\text{supp}(\gamma) \# \text{dom}(b) \cup \{\text{res}\} \cup \text{dom}(b_1) \). For \(x_0 \circ \text{let rec } b_1 \text{ in } e_3 \), we have

\[
\begin{align*}
\Gamma + \Gamma_b + \Gamma_{b_1} + e_3 & : \Gamma_b(x_0) / \gamma_{e_3} & \quad \Gamma + \Gamma_b + \Gamma_{b_1} \vdash b : \Gamma_b / G_b_1 & \quad \vdash_{\lambda_v} (G_b_1, b_1) \\
\Gamma \vdash \text{let rec } b_1 \text{ in } e_3 : \Gamma_b(x_0) / \gamma_{x_0} &
\end{align*}
\]

with

- \(\text{res}_0 \) fresh,
- \(\text{dom}(\Gamma_{b_1}) = \text{dom}(b_1) \),
- \(G_{b_1} = \bigcup_{y \in \text{dom}(b_1)} (\gamma_y \longrightarrow y) \),
- \(G_0 = G_{b_1} \cup (\gamma_{e_3} \longrightarrow \text{res}_0) \),

41
• and $\gamma_{x_0} \leq (G_b \gg \text{dom}(b_1)) \gg \text{res}_0$.

Let $G'_b = G_b\|\cdot\{x_0\} \cup (\gamma_{c_3} \rightarrow x_0) \cup G_{b_2}$ and $G' = G'_b \cup (\gamma_{c_4} \rightarrow \text{res})$.

By weakening, we obtain $\Gamma + \Gamma_b + \Gamma_{b_1} \vdash e : \Gamma_b(x) / \gamma_{x}$ for all $x \in \text{dom}(b) \setminus \{x_0\}$. Further, we know that for all $x \in \text{dom}(b') \setminus \{x_0\}$, if $\phi_x \neq \gamma$, then $\gamma_{x}^{-1}(0) = \emptyset$. For x_0, if $\phi_{x_0} = \gamma$, then let $\gamma_{c_3} = \gamma_{c_3} \land \neg \infty \land \gamma_{c_3}^{-1}(0)$. By degree weakening, we have $\Gamma + \Gamma_b + \Gamma_{b_1} \vdash e_3 : \Gamma_b(x_0) / \gamma_{c_3}$, and by Property 17, we obtain $\gamma_{x_0} \leq (G_b \cup (\gamma'_{c_3} \rightarrow \text{res}_0)) \gg \text{dom}(b_1) \gg \text{res}_0$. So, w.l.o.g., we can assume that $\gamma_{c_3}^{-1}(0) = \emptyset$.

So, in order to derive $\Gamma \vdash e_2 : \tau / \gamma$, we just have to prove that $\gamma \leq (G' \gg \text{dom}(b') \gg \text{res})$ and $\vdash_{\lambda_\gamma} (G'_b, b')$.

Let $G'_b = G_b \cup (\gamma_{c_3} \rightarrow x_0)$, $\gamma_0 = (G_b \gg \text{dom}(b_1)) \gg \text{res}_0$, and $\gamma'_0 = (G'_b \gg \text{dom}(b_1)) \gg x_0$.

Now, let $G_1 = \bigcup_{x \in \text{dom}(b) \setminus \{x_0\}} (\gamma_x \rightarrow x) \cup (\gamma_{x_0} \rightarrow x_0) \cup (\gamma'_{c_4} \rightarrow \text{res})$ and $G_2 = \bigcup_{x \in \text{dom}(b) \setminus \{x_0\}} (\gamma_x \rightarrow x_0) \cup (\gamma'_{c_4} \rightarrow \text{res})$.

But we have $G_0 = G_0x_0\cdot \text{res}_0$, so by Property 19, $\gamma_0 = \gamma'_0$, so $G_1 = G_2$.

Now, let us examine $(G' \gg \text{dom}(b_1)) \gg x_0)$. Let $G_3 = \bigcup_{x \in \text{dom}(b) \setminus \{x_0\}} (\gamma_x \rightarrow x) \cup (\gamma_{c_4} \rightarrow \text{res})$.

We have $G' = G'_b \cup G_3$, and Targets(G_3) $\# \text{dom}(b_1) \cup x_0$, so by Property 13, $(G' \gg \text{dom}(b_1)) \gg x_0 = (G'_b \gg \text{dom}(b_1)) \gg x_0 = \gamma'_0$. Further, $G_3 = G'_b \| \text{dom}(b_1) \cup \{x_0\} \cup (\gamma_{c_3} \land \neg \infty \land \gamma_{c_3}^{-1}(0))$, so as $G_2 = G_3 \cup (\gamma'_0 \rightarrow x_0)$, we have $G_2 = \text{internalize}(G', \text{dom}(b_1), x_0)$. Thus, we can apply Lemma 9 to obtain $G_2 \gg \text{dom}(b) \gg \text{res} \leq (G' \gg \text{dom}(b') \gg \text{res})$.

But $G_1 = G_2$, so $(G_1 \gg \text{dom}(b) \gg \text{res}) = (G_2 \gg \text{dom}(b) \gg \text{res})$. Further, we know that $\gamma_{x_0} \leq \gamma_0$, thus $G \subseteq G_1$, so $\gamma \leq (G \gg \text{dom}(b)) \gg \text{res} \leq (G_1 \gg \text{dom}(b)) \gg \text{res}$, so finally $\gamma \leq (G' \gg \text{dom}(b') \gg \text{res})$.

Now we prove $\vdash_{\lambda_\gamma} (G'_b, b')$. We have $\gamma_{x_0} \leq \gamma'_0$, so $G_b \subseteq G_b\|\cdot\{x_0\} \cup (\gamma'_0 \rightarrow x_0) = \text{internalize}(G'_b, \text{dom}(b_1), x_0)$. But $\vdash (G_b, \gg \gg)$, so $\vdash (\text{internalize}(G'_b, \text{dom}(b_1), x_0), \gg \gg)$. Further, as the nodes of this graph are not in $\text{dom}(b_1)$, we also have $\vdash (\text{internalize}(G'_b, \text{dom}(b_1), x_0), \gg \gg)$. Moreover, $\text{dom}(b_1) \| G'_b \| \text{dom}(b_1) \subseteq \text{dom}(b_1) \| G_b \| \text{dom}(b_1) \subseteq G_b$. So, since $\vdash (G_b, \gg \gg)$, we obtain $\vdash (\text{dom}(b)) \| G'_b \| \text{dom}(b_1), \gg \gg)$. Thus, we can apply Lemma 8 to obtain $\vdash (G'_b, b')$. Finally, $\vdash (\neg \cdot_{\text{pred}}, \gg \gg)$ follows from the shape of b' and $\vdash (\neg \cdot_{\text{pred}}, \gg)$ and $\vdash (\neg \cdot_{\text{pred}}, \gg)$.

We continue with external merging.

Proposition 23 (External merging)

If $e_1 \rightarrow e_2$ and $\Gamma \vdash e_1 : \tau / \gamma$, then $\Gamma \vdash e_2 : \tau / \gamma$.

Proof We know that $e_1 = \text{let rec } b \in \text{let rec } b$ in e_3 and $e_2 = \text{let rec } b, b$ in e_3. We have a typing derivation of the shape:

$$
\Gamma + \Gamma_b + \text{let rec } b \in e_3 : \tau / \gamma_b \quad \Gamma + \Gamma_b + \text{let rec } b : \Gamma_b / G_b \quad \vdash_{\lambda_\gamma} (G_b, b_\cdot)
$$

with

- res fresh,
- $\text{dom}(\Gamma_b) = \text{dom}(b_\cdot)$,
- $G_{b_\cdot} = \bigcup_{x \in \text{dom}(b_\cdot)} (\gamma_x \rightarrow x)$,
- $G_b = G_{b_\cdot} \cup (\gamma_b \rightarrow \text{res})$,
- and $\gamma \leq (G_b \gg \text{dom}(b_\cdot)) \gg \text{res}$.

\[\square\]
For $\Gamma + \Gamma_b \vdash \text{let rec } b \text{ in } e_3 : \tau / \gamma_b$, we have
\[
\Gamma + \Gamma_b, + \Gamma_b \vdash e_3 : \tau / \gamma_{e_3} \quad \Gamma + \Gamma_b + \Gamma_b \vdash b : \gamma_b / G_b \quad \vdash_{b_0} (G_b, b)
\]
\[
\Gamma \vdash \text{let rec } b \text{ in } e_3 : \tau / \gamma_b
\]

with
- res_0 fresh,
- $\text{dom}(\Gamma_b) = \text{dom}(b)$,
- $G_b = \bigcup_{y \in \text{dom}(b)} (\gamma_y \rightarrow y)$,
- $G = G_b \cup (\gamma_{e_3} \rightarrow \text{res}_0)$,
- and $\gamma_b \leq (G_b \gg \text{dom}(b) \gg \text{res}_0)$.

Let $b' = b_v, b$ and $G'_b = G_{b_v} \cup G_b$, and $G' = G_b \cup (\gamma_{e_3} \rightarrow \text{res}_0)$. The only non trivial points to prove $\Gamma \vdash e_2 : \tau / \gamma$ are to prove that $\vdash_{b_0} (G'_b, b')$ and $\gamma \leq (G' \gg \text{dom}(b') \gg \text{res}_0)$.

1. For the first point, we obtain $\vdash (\not\rightarrow_{b'} \not\rightarrow_{\gamma'})$ from the shape of b' and $\vdash (\not\rightarrow_{b'} \not\rightarrow_{\gamma'})$. Further, by Property 23, we get $\vdash (G' \cup G_2, \not\rightarrow_{\gamma'})$, which gives the desired result.

2. For the second point, it is enough to prove that $(G_v \gg \text{dom}(b_v) \gg \text{res}) \leq (G' \gg \text{dom}(b') \gg \text{res}_0)$. Let $\gamma'_b = (G_b \gg \text{dom}(b) \gg \text{res}_0)$, $G'_v = G_1 \cup (\gamma'_b \rightarrow \text{res})$, and $G''_v = G_1 \cup (\gamma'_b \rightarrow \text{res})$.

We have immediately $(G'_v \gg \text{dom}(b_v) \gg \text{res}) = (G''_v \gg \text{dom}(b_v) \gg \text{res}_0)$, and $G_v \subseteq G''_v$, which implies $(G_v \gg \text{dom}(b_v) \gg \text{res}) \leq (G'_v \gg \text{dom}(b_v) \gg \text{res})$, and therefore $(G_v \gg \text{dom}(b_v) \gg \text{res}) \leq (G''_v \gg \text{dom}(b_v) \gg \text{res}_0)$. So, we only have to prove $(G''_v \gg \text{dom}(b_v) \gg \text{res}_0) \leq (G' \gg \text{dom}(b') \gg \text{res}_0)$.

Now, we have $\text{dom}(b) \cup G'_v \subseteq G' \cup \text{dom}(b_v) \cup \{\text{res}_0\}$ and Targets(G_1) \# dom(b) \cup \{\text{res}_0\}, so by Property 13, $(G' \gg \text{dom}(b_v) \gg \text{res}_0) = (G_b \gg \text{dom}(b) \gg \text{res}_0) = \gamma'_b$. So, $\text{Internalize}(G'_v, \text{dom}(b_v) \gg \text{res}_0) = G_{b_v} \cup (\gamma'_b \rightarrow \text{res}_0) = G''_v$. So, by Lemma 10, $(G' \gg \text{dom}(b_v) \gg \text{res}_0) = (\text{Internalize}(G'_v, \text{dom}(b_v) \gg \text{res}_0)) \gg \text{dom}(b_v) \gg \text{res}_0) = (G''_v \gg \text{dom}(b_v) \gg \text{res}_0)$.

\square

Next, we examine rule Context. We prove that typing is compositional, which entails the desired result, in combination with Lemma 11.

Proposition 24 (Typing is compositional)

Assume given an expression e and an evaluation context E, such that $\Gamma \vdash E[e] : \tau / \gamma$, with a sub-derivation $\Gamma' : e : \tau' / \gamma'$ for e. If $\Gamma' \vdash e : \tau' / \gamma'$ and $\text{FV}(e') \subseteq \text{FV}(e)$, then $\Gamma \vdash E[e'] : \tau / \gamma$.

Preuve Simple induction on the typing derivation of $E[e]$. The condition on free variables preserves the well-formedness of bindings w.r.t. backward dependencies on definitions of unknown sizes. \square

Finally, we turn to rule Subst. We distinguish internal substitution (access by rule IA) from external substitution (access by rule EA). The proof for rule EA is not too difficult, but the one for rule IA is harder. By application of this rule a binding of the shape $b_1 = (b_v, y \circ F[A[x]], b)$ becomes $b_2 = (b_v, y \circ F[A[v]], b)$, where $v = b_v(x)$. The idea is that the dependency graph of b_2 is less restrictive than the one of b_1, because for each edge induced by v in b_2, there is an equivalent path through x in b_1. Thus, after internal merging we obtain an greater degree environment, which is safe.
Proposition 25 (Dereferencing context)
If $\Gamma \vdash v : \tau_v / \gamma_v$, $\Gamma(x) = \tau_v$, and $\Gamma \vdash A[x] : \tau / \gamma$, then $\gamma(x) = -\infty$ and there exists γ_v' such that $\text{supp}(\gamma_v') \subseteq \text{supp}(\gamma_v)$ and $\Gamma \vdash A[v] : \tau / \gamma \land \gamma_v'$.

Proof By case on A.
- $A = \Box v_1$. We have a derivation of the shape

\[
\begin{align*}
\Gamma(x) &= \tau_1 \xrightarrow{\xi} \tau = \tau_v, \\
\Gamma \vdash v_1 : \tau_1 / \gamma_2 & \quad \gamma_1(x) = -\infty
\end{align*}
\]

with $\gamma \leq (\gamma_1 \oplus 1) \land \xi \oplus \gamma_2$ for some γ_1. We have immediately $\gamma(x) = -\infty$. Let $\gamma_v' = \gamma_v \oplus 1$. We have $\Gamma \vdash v : \tau_1 \xrightarrow{\xi} \tau / \gamma_v$, and by Lemma 3, we obtain $\Gamma \vdash v : \tau_1 \xrightarrow{\xi} \tau / \gamma_v \land \gamma_1$. So, we derive

\[
\begin{align*}
\Gamma \vdash v_1 : \tau_1 / \gamma_2 & \quad \Gamma \vdash v : \tau_1 \xrightarrow{\xi} \tau / \gamma_v \land \gamma_1
\end{align*}
\]

since $\gamma \land \gamma_v' = \gamma \land (\gamma_v \oplus 1) \leq (\gamma_1 \oplus 1) \land \xi \oplus \gamma_2 \land (\gamma_v \oplus 1) = (\gamma_v \land \gamma_1 \oplus 1) \land \xi \oplus \gamma_2$. Finally, $\text{supp}(\gamma_v') = \text{supp}(\gamma_v)$.

- $A = \Box X$. We have a derivation of the shape

\[
\begin{align*}
X \in \text{dom}(I) & \quad \gamma \leq \gamma_1 - 1 & \quad \Gamma(x) = \tau_v = \{I\}
\end{align*}
\]

with $\gamma_1(x) \leq 0$, so $\gamma(x) = -\infty$. Let $\gamma_v' = \gamma_v - 1$ and $\gamma' = \gamma \land \gamma_v'$. The degree environment γ_v' has the same support as γ_v and is such that $\gamma' \leq \gamma$. We have $\Gamma \vdash v : \{I\} / \gamma_v$, so by Lemma 3, we obtain $\Gamma \vdash v : \{I\} / \gamma_v \land \gamma_1$. So we can derive

\[
\begin{align*}
\Gamma \vdash v : \{I\} / \gamma_v \land \gamma_1
\end{align*}
\]

Finally, we prove that $\gamma' = \gamma \land \gamma_v' \leq (\gamma_1 - 1) \land (\gamma_v - 1) = (\gamma_1 \land \gamma_v) - 1$, so we derive $\Gamma \vdash A[v] : I(X) / \gamma'$.

\[\square\]

Proposition 26 (Lift context)
Assume $\Gamma \vdash e : \tau / \gamma$, $\Gamma \vdash \xi : \tau / \gamma'$, such that $\gamma' = \gamma \land \gamma_v$ for some γ_v. If $\Gamma \vdash L[e] : \tau_v / \gamma_v$, then there exists γ_v', with $\text{supp}(\gamma_v') \subseteq \text{supp}(\gamma_v)$, such that $\Gamma \vdash L[e'] : \tau_v / (\gamma_v \land \gamma_v')$. Moreover, $\gamma_v \leq \text{if}_{-\infty}(\gamma)$.

Proof By case on L.
- $L = v \Box$. We have a derivation of the shape

\[
\begin{align*}
\Gamma \vdash v : \tau \xrightarrow{\xi} \tau_v / \gamma_1 & \quad \Gamma \vdash e : \tau / \gamma & \quad \gamma_v \leq (\gamma_1 \oplus 1) \land \xi \oplus \gamma
\end{align*}
\]

First, $\gamma_v \leq \xi \oplus \gamma \leq \text{if}_{-\infty}(\gamma)$. Then, let $\gamma_v' = \xi \oplus \gamma_v$. By Lemma 7, $\xi \oplus (\gamma \land \gamma_v) = \xi \oplus \gamma \land \xi \oplus \gamma_v$. So, we obviously can derive $\Gamma \vdash L[e'] : \tau_v / (\gamma_v \land \gamma_v')$. We have $\text{supp}(\gamma_v') \subseteq \text{supp}(\gamma_v)$.

- $L = \Box e_1$. The derivation has the shape

\[
\begin{align*}
\Gamma \vdash e : \tau \xrightarrow{\xi} \tau_v / \gamma & \quad \gamma_v \leq (\gamma_1 \oplus 1) \land \xi \oplus \gamma
\end{align*}
\]

with $\tau = \tau_1 \xrightarrow{\xi} \tau_v$. First, $\gamma_v \leq (\gamma_1 \oplus 1) \leq \text{if}_{-\infty}(\gamma)$. Let $\gamma_v' = \gamma_v \oplus 1$. We obviously can derive $\Gamma \vdash L[e'] : \tau_v / \gamma_v \land \gamma_v'$ and have $\text{supp}(\gamma_v') = \text{supp}(\gamma_v)$.
The proposition and proofs are as follows:

Proposition 27 (Nested lift context)

Assume \(\Gamma \vdash e : \tau / \gamma \), \(\Gamma \vdash e' : \tau / \gamma' \), such that \(\gamma' = \gamma \land \gamma_v \) for some \(\gamma_v \). If \(\Gamma \vdash \mathcal{F}[e] : \tau_{\mathcal{F}} / \gamma_{\mathcal{F}} \), then there exists \(\gamma'_{v} \), with \(\text{supp}(\gamma'_{v}) \subseteq \text{supp}(\gamma_v) \), such that \(\Gamma \vdash \mathcal{F}[e'] : \tau_{\mathcal{F}} / (\gamma_{\mathcal{F}} \land \gamma'_{v}) \). Moreover, \(\gamma_{\mathcal{F}} \leq \text{if}_{\infty}(\gamma) \).

Preuve By induction on \(\mathcal{F} \).

- \(\mathcal{F} = \Box \). Immediate, with \(\gamma'_{v} = \gamma_v \).
- \(\mathcal{F} = \mathcal{L}[\mathcal{F}_1] \). We have a sub-derivation \(\Gamma \vdash \mathcal{F}_1[e] : \tau_{\mathcal{L}} / \gamma_{\mathcal{L}} \). By induction hypothesis, \(\gamma_{\mathcal{L}} \leq \text{if}_{\infty}(\gamma) \) and there exists \(\gamma''_{v} \), with \(\text{supp}(\gamma''_{v}) \subseteq \text{supp}(\gamma_v) \), such that \(\Gamma \vdash \mathcal{F}_1[e'] : \tau_{\mathcal{L}} / (\gamma_{\mathcal{L}} \land \gamma''_{v}) \). By Property 26, \(\gamma_{\mathcal{F}} \leq \text{if}_{\infty}(\gamma_{\mathcal{L}}) \leq \text{if}_{\infty}(\gamma) \), and there exists \(\gamma'_{v} \), with \(\text{supp}(\gamma'_{v}) \subseteq \text{supp}(\gamma_v) \), such that \(\Gamma \vdash \mathcal{F}[e] : \tau_{\mathcal{F}} / (\gamma_{\mathcal{F}} \land \gamma'_{v}) \).

Proposition 28 (Internal substitution preserves dependencies)

Assume

- \(b = (b_{u}, y \circ \mathcal{F}[\mathcal{A}[x]], b_{1}) \),
- \(b' = (b_{u}, y \circ \mathcal{F}[\mathcal{A}[v]], b_{1}) \),
- \(v = b_{u}(x) \),
- \(\text{dom}(\Gamma_b) = \text{dom}(b) \),
- \(\forall (z \circ_{\gamma} e_{z}) \in b, \Gamma + \Gamma_b \vdash e_{z} : \Gamma_b(z) / \gamma_z \) and if \(\circ_{\gamma} \neq \circ_{[y]} \), then \(\text{TSize}_{\circ}(\Gamma_b(z)) = \circ_{z} \).
- \(G = \bigcup_{z \in \text{dom}(b)} (\gamma_z \rightarrow z) \)

Then, there exist some \(\gamma'_z \) for each \(z \in \text{dom}(b) \), such that \(\forall (z \circ_{\gamma} e_{z}') \in b', \Gamma + \Gamma_b \vdash e'_{z} : \Gamma_b(z) / \gamma'_z \), with \(G' = \bigcup_{z \in \text{dom}(b)} (\gamma'_z \rightarrow z) \), \(G \subseteq G' \), and if \(\circ_{\gamma} \neq \circ_{[y]} \), then \(\gamma'_{-1}(0) = \emptyset \).

Preuve As \(b_{u}(x) = v \), we have \(\Gamma + \Gamma_b \vdash v : \tau_{v} / \gamma_{x} \). For each \(z \in \text{dom}(b) \setminus \{y\} \), take \(\gamma'_{z} = \gamma_{z} \). By Properties 25 And 27, we obtain that \(\gamma_{y}(x) = -\infty \) and there exists \(\gamma_{y}' \) such that \(\text{supp}(\gamma_{y}') \subseteq \text{supp}(\gamma_{x}) \), and \(\Gamma + \Gamma_b \vdash \mathcal{F}[\mathcal{A}[v]] : \Gamma_b(y) / \gamma_{y} \land \gamma_{y}'. \) In fact, we let \(\gamma_{y}' = \gamma_{y} \land \text{supp}(\gamma_{y}') \). By Lemma 3, we obtain \(\Gamma + \Gamma_b \vdash \mathcal{F}[\mathcal{A}[v]] : \Gamma_b(y) / \gamma_{y}' \). Moreover, \(\gamma_{y}'^{-1}(0) \subseteq \gamma_{y}^{-1}(0) \cup \text{supp}(\gamma_{y}')^{-1}(0) = \emptyset \). Finally, we prove that \(G' = G \cup \{ -\infty \}_{\text{supp}(\gamma'_{z})} \rightarrow y \) is less restrictive than \(G \). Now, let \(z_1 \xrightarrow{\xi} G, z_2 \), with \(\xi \neq -\infty \). If it is an edge of \(G \), then there is nothing to prove.

Otherwise, it means that \(z_2 = y \), \(\xi = -\infty \), and \(\gamma_{y}(z_1) = \xi' \). So, \(\gamma_{y}(z_1) \neq -\infty \) because \(\text{supp}(\gamma_{y}') \subseteq \text{supp}(\gamma_{x}) \), so \(z_1 \xrightarrow{\gamma_{y}(z_1)}_{G} x \xrightarrow{-\infty} y \), and therefore \(z_1 \xrightarrow{-\infty} y \). □

Proposition 29 (Internal substitution)

Assume \(e_1 = \text{let rec } b_{v}, y \circ \mathcal{F}[\mathcal{A}[x]], b \text{ in } e_3, v = b_{u}(x), \) and \(e_2 = \text{let rec } b_{v}, y \circ \mathcal{F}[\mathcal{A}[v]], b \text{ in } e_3 \). If \(\Gamma \vdash e_1 : \tau / \gamma \), then \(\Gamma \vdash e_2 : \tau / \gamma \).

Preuve Let \(b_1 = b_{u}, y \circ \mathcal{F}[\mathcal{A}[x]], b \) and \(b_2 = b_{v}, y \circ \mathcal{F}[\mathcal{A}[v]], b \). We have a typing derivation of the shape

\[
\begin{array}{c}
\Gamma + \Gamma_{b_1} \vdash e_3 : \tau / \gamma_{e_3} \\
\Gamma + \Gamma_{b_1} \vdash b_{1} : \Gamma_{b_1} / G_{b_1} \vdash_{\lambda_{v}} (G, b_1)
\end{array}
\]

with
• res fresh,
• dom(Γ_{b_i}) = dom(b_i),
• G_{b_i} = \bigcup_{z \in dom(b_i)} (\gamma_z \rightarrow z),
• G = G_{b_i} \cup (\gamma_{e_3} \rightarrow res),
• and \gamma \leq (G \gg dom(b_i) \gg res).

By Property 28, we have \forall (z \in \mathbb{d}_z \in b', \Gamma + \Gamma_{b_i} \vdash e_z : \Gamma_{b_i}(z) / \gamma'_z \rightarrow z \in \mathbb{d}_z \rightarrow z), G \subseteq G'. So, since size indications are unmodified, we conclude immediately with Properties 20 And 5. □

Proposition 30 (External substitution)

Assume \(e_1 = \text{let rec } b_v \in \mathbb{F} [\mathbb{A}[x]]\), \(e_2 = \text{let rec } b_v \in \mathbb{F} [\mathbb{A}[v]]\), with \(v = b_v(x)\). If \(\Gamma \vdash e_1 : \tau / \gamma\), then \(\Gamma \vdash e_2 : \tau / \gamma\).

Preuve Let \(e_3 = \mathbb{F} [\mathbb{A}[x]]\) and \(e_4 = \mathbb{F} [\mathbb{A}[v]]\). We have a typing derivation of the shape

\[
\Gamma + \Gamma_{b_v} \vdash e_3 : \tau / \gamma_{e_3} \quad \Gamma + \Gamma_{b_v} \vdash b_v : \Gamma_{b_v} \rightarrow G_{b_v} \vdash_{\lambda_v} (G, b_v) \quad \Gamma \vdash e_1 : \tau / \gamma
\]

with

• res fresh,
• dom(\Gamma_{b_v}) = dom(b_v),
• G_{b_v} = \bigcup_{z \in dom(b_v)} (\gamma_z \rightarrow z),
• G = G_{b_v} \cup (\gamma_{e_3} \rightarrow res),
• and \gamma \leq (G \gg dom(b_v) \gg res).

By Properties 25 And 27, we obtain that \(\gamma_{e_3}(x) = -\infty\) (and so \(x \rightarrow G\) res) and there exists \(\gamma'_z\) such that supp(\(\gamma'_z\)) \subseteq supp(\(\gamma_{e_3}\)), \(\Gamma + \Gamma_{b_v} \vdash b_v : \Gamma_{b_v} \rightarrow G_{b_v} \vdash_{\lambda_v} (G, b_v)\). Let now \(\gamma'_{e_3} = \gamma_{e_3} \land \gamma'_z\) and \(G' = \bigcup_{z \in dom(b_v)} (\gamma_z \rightarrow z) \cup (\gamma'_{e_3} \rightarrow res)\). We show that \(G \subseteq G'\).

For this, first remark that \(G' = G \cup (\gamma'_z \rightarrow res)\). Then, let \(z_1 \xrightarrow{\xi} G\) z_2, with \(\xi \neq \infty\). If it is an edge of \(G\), then there is nothing to prove.

Otherwise, it means that \(z_2 = res\) and \(\gamma'_z(z_1) = \xi\). As \(\gamma'_z(z_1) \neq \infty\), \(\gamma_x(z_1) \neq \infty\) because supp(\(\gamma'_z\)) \subseteq supp(\(\gamma_x\)), so \(z_1 \xrightarrow{\gamma_{e_3}(x)} G \ x \xrightarrow{-\infty} G\) res, and therefore \(z_1 \xrightarrow{-\infty} G\) res.

Thus, we conclude the proof easily. □

Finally, we easily prove the subject reduction property.

Lemma 12 (Subject reduction)

If \(e_1 \rightarrow e_2\) and \(\Gamma \vdash e_1 : \tau / \gamma\), then \(\Gamma \vdash e_2 : \tau / \gamma\).

Preuve By case analysis on the applied reduction rule, made trivial by the preceding properties. □
B.3 Progress

Now, we prove the standard progress property. A first issue is that when a variable is encountered in a dereferencing context, the reduction replaces it with its definition in the top-level binding, until its intended value is found, that is, a non-variable definition. However, it might never be found, either if the binding contains a cycle of variables (i.e. $x_1 \circ x_2 \ldots \circ x_{n-1} x_n$ with $x_1 = x_n$), or if b is incomplete (i.e. $x_1 \circ x_2 \ldots \circ x_{n-1} x_n$ with $x_n \notin \text{dom}(b)$). For distinguishing these cases more easily, we define binding scraping as follows. It allows us to prove that when well-typed, closed bindings get evaluated, they do not have such defects.

Definition 20 (Scrape bindings)
For any binding b, not necessarily respecting sizes, for any set P of variables, and for any variable $x \in \text{dom}(b)$, we define binding scraping recursively by:

$$
\begin{align*}
&\ b^P_p(x) = b(x) & \text{if } b(x) \notin \text{Vars} \text{ or } b(x) = y \notin \text{dom}(b) \\
&\ b^P_p(x) = \text{cycle} & \text{if } x \in P \text{ and } b(x) \in \text{Vars} \\
&\ b^P_p(x) = b^P_p(x \cup P)(b(x)) & \text{otherwise.}
\end{align*}
$$

We also define $b^P(x)$ to be $b^P_p(x)$ if it is a non-variable value, different from cycle.

For the binding $b_1 = (y =___ x)$, $b_1^P(y)$ is undefined, but $b_1^P(y) = x$ is different from cycle. Let us now prove elementary properties of binding scraping.

Proposition 31

Binding scraping is well-defined.

Proof Let the measure μ be defined from pairs of a binding and a set of variables to natural numbers by $\mu(b, P) = |\text{dom}(b) \setminus P|$.

First, we notice that if $\mu(b, P) = 0$, then binding scraping immediately returns, on any variable x. Indeed, if $b(x) \notin \text{Vars}$, it returns $b(x)$. Otherwise, if the variable $b(x)$ is in $\text{dom}(b)$, then it is also in P, so $\mu(b, P) = \text{cycle}$, and if the variable $b(x)$ is not in $\text{dom}(b)$, then $\mu(b, P) = b(x)$.

Then, as the measure decreases by 1 at each recursive call, we conclude that $b^P_p(x)$ is well-defined for any $x \in \text{dom}(b)$. □

Proposition 32

For any evaluated b not necessarily respecting sizes, $b^P(x) = b^P_p(x)$ iff $b^P_p(x) \notin \text{Vars} \cup \{\text{cycle}\}$.

Proposition 33

If b defines only values $(x \circ y) \in b$ and $b^P(y)$ is undefined, then either there exists $z \notin \text{dom}(b)$ such that $b^P_p(y) = z$, or $b^P_p(y) = \text{cycle}$.

Proposition 34

Assume b defines only values and $\Gamma \vdash \text{let rec } b', b' \text{ in } e : \tau / \gamma$, with $\Gamma + \Gamma' \vdash b(x) : \Gamma'(x) / \gamma_x$ being the immediate sub-derivation corresponding to x. Then, $b^P_p(x) \neq \text{cycle}$ and there exists γ' such that $\Gamma + \Gamma' \vdash b^P_p(x) : \Gamma'(x) / \gamma'$.

Proof First, we prove that $b^P_p(x) \neq \text{cycle}$, by contradiction. Assume that b contains bindings of the shape $x_1 \circ x_2 \ldots \circ x_{n-1} x_n$, with $x_n = x_1$. Then, for each $i < n$, the degree environment γ_i corresponding to x_i is such that $\gamma_i(x_{i+1}) \leq 0$. But by typing, the underlying dependency cycle is correct, so for all i, $\gamma_i(x_{i+1}) = 0$. However, at least one of these dependency edges $x_i \rightarrow x_{i+1}$ is backward, since they form a cycle. Let for example $x_{i_0} \rightarrow x_{i_0+1}$ be backward. By syntactic correctness, $\phi_{i_0} \neq \emptyset$, so there exists a natural number n_0 such that $\phi_{i_0} = i_{n_0}$. But typing also implies that $\gamma_{i_0}^{-1}(0) = \emptyset$, which contradicts the fact that the variable y preceding x_{i_0} in the cycle verifies $\gamma_{i_0}(y) = 0$.

Then, we prove the more general property that for any P, if $b^P_p(x) \neq \text{cycle}$, then $\Gamma + \Gamma' \vdash b^P_p(x) : \Gamma'(x) / \gamma'$ for some γ'. We proceed by induction on the computation of $b^P_p(x)$.

- If $b^P_p(x) = b(x)$, then by typing there is a sub-derivation of $\Gamma + \Gamma' \vdash b^P_p(x) : \Gamma'(x) / \gamma_x$.
• If \(b^*_{(x)}(x) = b^*_{(x)}(b(x)) \), then \(b(x) \) is a variable \(y \) in \(\text{dom}(b) \). So, by induction hypothesis, as \(b^*_{(x)}(y) = b^*_{(x)}(x) \neq \text{cycle} \), we obtain \(\Gamma + \Gamma' \vdash b^*_{(x)}(y) : \Gamma'(y) / \gamma' \) for some \(\gamma' \). But, obviously, \(\Gamma'(x) = \Gamma'(y) \), which concludes the proof.

\(\square \)

Finally, we can prove the progress property, stating that a well-typed expression either is a valid answer, or reduces to another expression. Our proof proceeds in two steps. First, we prove that a well-typed expression either is an answer, or reduces to another expression, or needs a variable, i.e. is of the shape \(F[A[x]] \), or is of the shape \(\text{let rec } b \text{ in } e \). Then, we prove the progress property on top level, closed expressions.

Lemma 13 (Partial progress)
If \(\Gamma \vdash e : \tau \) and \(e \) is not an answer, then either there exists \(e' \) such that \(e \rightarrow e' \) or \(e = F[A[x]] \), or \(e = \text{let rec } b \text{ in } f \) for some \(b \) and \(f \).

Preuve By induction on \(e \).
If \(e \) is not of the shape \(\text{let rec } b \text{ in } f \) and is not an answer and is not of the shape \(F[A[x]] \) for some \(x \), we distinguish the following cases:

- \(e = \mathbb{L}[e_0] \), with \(e_0 \notin \text{values} \). If \(e_0 = \text{let rec } b \text{ in } f \), then rule LIFT applies. Otherwise, by induction hypothesis we are in one of the following cases:
 - \(e_0 = F[A[x]] \), and \(e \) is stuck on \(x \) too, i.e. \(e = \mathbb{L}[F[A[x]]] \).
 - Otherwise, if \(e_0 \rightarrow e'_0 \), we reason by case analysis on the applied reduction rule.
 * IM, EM or SUBST. This contradicts \(e_0 \neq \text{let rec } b \text{ in } f \).
 * CONTEXT. Then \(e_0 = F[f] \) and \(e'_0 = F[f'] \), with \(f \rightsquigarrow f' \). Then \(e \) reduces by the same rule, since \(\mathbb{L}[F] \) is an evaluation context.

- \(e = v_1.v_2 \), and \(v_1 \notin \text{Vars} \). By typing, \(v_1 \) is a function, and \(e \) reduces by rule BETA.

- \(e = v.X \), and \(v \notin \text{Vars} \). By typing, \(v \) is a record defining \(X \), so \(e \) reduces by rule PROJECT.

\(\square \)

Lemma 14 (Progress)
If \(\emptyset \vdash e : \tau / \infty \), then either \(e \) is an answer, or there exists \(e' \) such that \(e \rightarrow e' \).

Preuve By Lemma 13, if \(e \) is not an answer, there are only three possibilities. If \(e \) reduces to some \(e' \), then there is nothing to prove. Otherwise, if \(e = F[A[x]] \), it contradicts the well-typedness of \(e \). Otherwise, \(e = \text{let rec } b \text{ in } f \). First, if \(f \) has the shape \(\text{let rec } b' \text{ in } g \), then rule EM applies. Otherwise, we proceed by case on \(b \).

1. If \(b \) defines only values, then we distinguish two cases. If \(b \) does not respect sizes, then let \(b_v \) be its maximal prefix respecting sizes. The binding \(b \) has a prefix of the shape \(b_v, x = [n] v \), with \(v \) not of size \(n \). If \(v \) is a variable \(y \), then by typing \(y \in \text{dom}(b) \) and the graph \(G \) of \(b \) contains an edge \(y \xrightarrow{n} G; x \), so by ordered correctness, \(y \in \text{dom}(b_v) \), and \(e \) reduces by rule SUBST.

Otherwise, \(b = b_v \). \(f \) cannot be an answer, because otherwise, either it would have the shape \(\text{let rec } b_v' \text{ in } v \) which contradicts \(f \neq \text{let rec } b' \text{ in } g \), or it would be a value, and so \(e \) would be an answer itself.

So, by Lemma 13, we are in one of the two following cases.

- \(f \rightarrow f' \). By case analysis on the reduction:
 - IM, EM, or SUBST. Contradicts \(f \neq \text{let rec } b' \text{ in } g \).
– CONTEXT. We have \(f = F[g] \) and \(f' = F[g'] \), with \(g \hookrightarrow g' \). So, rule CONTEXT applies for \(e \) as well, since \(\text{let rec } b_0 \text{ in } F \) is an evaluation context.

– \(F = F[A[x]] \). Then, \(e = \text{let rec } b_0 \text{ in } F[A[x]] \). By typing, we have \(x \in \text{dom}(b_0) \), so rule SUBST applies.

2. If \(b \) does not define only values, then \(b \) is of the shape \(b_0 \circ y \circ g_1 \), where \(b_0 \) defines only values and \(g \) is not a value. As above, if \(b_0 \) does not respect sizes, then \(e \) reduces by rule SUBST. Otherwise \(b_0 = b_k \). If \(g \) is of the shape \(\text{let rec } b' \text{ in } g_k \'), then rule IM applies. Otherwise, \(g \) cannot be a result, so we are in one of the following cases, by Lemma 13.

– If \(g \hookrightarrow g' \), by case on the reduction.

– 1M, EM, or SUBST. Contradicts \(g \neq \text{let rec } b' \text{ in } g_k \).

– CONTEXT : then \(g = F[g_0] \) and \(g' = F[g_0'] \), with \(g_0 \sim g_0' \), so the global context is an evaluation context and rule CONTEXT applies for \(e \).

– If \(g = F[A[x]] \). By case on \(F \). First, we know that \(x \notin \text{dom}(y = g, b_1) \), since by Property 27, \(x \) has degree \(-\infty\) in the degree environment for \(y \). Moreover, by typing \(x \in \text{dom}(b_v) \), so rule SUBST applies.

\[\square \]

Finally, we obtain a standard soundness theorem.

Theorem 2 (Soundness)

The evaluation of a closed well-typed expression may either not terminate or reach an answer.

References

