M. Adler, Y. Gong, and A. L. Rosenberg, Optimal sharing of bags of tasks in heterogeneous clusters, 15th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA'03), pp.1-10, 2003.

D. Altilar and Y. Paker, An optimal scheduling algorithm for parallel video processing, IEEE Int. Conference on Multimedia Computing and Systems, 1998.

D. Altilar and Y. Paker, Optimal scheduling algorithms for communication constrained parallel processing, Euro-Par 2002, vol.2400, pp.197-206, 2002.

G. Barlas, Collection-aware optimum sequencing of operations and closed-form solutions for the distribution of a divisible load on arbitrary processor trees, IEEE Trans. Parallel Distributed Systems, vol.9, issue.5, pp.429-441, 1998.

S. Bataineh, T. Hsiung, and T. G. Robertazzi, Closed form solutions for bus and tree networks of processors load sharing a divisible job, IEEE Transactions on Computers, vol.43, issue.10, pp.1184-1196, 1994.

O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang, Scheduling divisible loads on star and tree networks: results and open problems, IEEE Trans. Parallel Distributed Systems, vol.16, issue.3, pp.207-218, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00071663

V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi, Scheduling Divisible Loads in Parallel and Distributed Systems, 1996.

V. Bharadwaj, D. Ghose, and T. Robertazzi, Divisible load theory: a new paradigm for load scheduling in distributed systems, Cluster Computing, vol.6, issue.1, pp.7-17, 2003.

J. Blazewicz, M. Drozdowski, and M. Markiewicz, Divisible task scheduling -concept and verification, Parallel Computing, vol.25, pp.87-98, 1999.

S. Chan, V. Bharadwaj, and D. Ghose, Large matrix-vector products on distributed bus networks with communication delays using the divisible load paradigm: performance and simulation, Mathematics and Computers in Simulation, vol.58, pp.71-92, 2001.

B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt, Maple Reference Manual, 1988.

M. Drozdowski, Selected problems of scheduling tasks in multiprocessor computing systems, 1997.

M. Drozdowski and P. Wolniewicz, Experiments with scheduling divisible tasks in clusters of workstations, Proceedings of Euro-Par 2000: Parallel Processing, pp.311-319, 1900.

, The Grid: Blueprint for a New Computing Infrastructure, 1999.

D. Ghose and T. Robertazzi, Special issue on Divisible Load Scheduling. Cluster Computing, 2003.

G. H. Golub and C. F. Loan, Matrix computations. Johns Hopkins, 1989.

C. Lee and M. Hamdi, Parallel image processing applications on a network of workstations, Parallel Computing, vol.21, pp.137-160, 1995.

A. Legrand, Y. Yang, and H. Casanova, Np-completeness of the divisible load scheduling problem on heterogeneous star platforms with affine costs, 2005.

X. Li, V. Bharadwaj, and C. Ko, Distributed image processing on a network of workstations, Int. J. Computers and Applications, vol.25, issue.2, pp.1-10, 2003.

T. Robertazzi, Divisible Load Scheduling

T. Robertazzi, Ten reasons to use divisible load theory, IEEE Computer, vol.36, issue.5, pp.63-68, 2003.

A. L. Rosenberg, Sharing partitionable workloads in heterogeneous NOws: greedier is not better, Cluster Computing, pp.124-131, 2001.

J. Sohn, T. Robertazzi, and S. Luryi, Optimizing computing costs using divisible load analysis, IEEE Transactions on parallel and distributed systems, vol.9, issue.3, pp.225-234, 1998.

B. Fuchssteiner, MuPAD User's Manual, 1996.

R. Wang, A. Krishnamurthy, R. Martin, T. Anderson, and D. Culler, Modeling communication pipeline latency, Measurement and Modeling of Computer Systems (SIGMET-RICS'98), pp.22-32, 1998.
DOI : 10.1145/277858.277867