
HAL Id: hal-02102504
https://hal-lara.archives-ouvertes.fr/hal-02102504

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling divisible loads with return messages on
heterogeneous master-worker platforms

Olivier Beaumont, Loris Marchal, Yves Robert

To cite this version:
Olivier Beaumont, Loris Marchal, Yves Robert. Scheduling divisible loads with return messages
on heterogeneous master-worker platforms. [Research Report] LIP RR-2005-21, Laboratoire de
l’informatique du parallélisme. 2005, 2+19p. �hal-02102504�

https://hal-lara.archives-ouvertes.fr/hal-02102504
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Scheduling divisible loads with return

messages on heterogeneous master-worker

platforms

Olivier Beaumont,
Loris Marchal,
Yves Robert

Mai 2005

Research Report No 2005-21

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Scheduling divisible loads with return messages on

heterogeneous master-worker platforms

Olivier Beaumont, Loris Marchal, Yves Robert

Mai 2005

Abstract

In this paper, we consider the problem of scheduling independent tasks, or
divisible loads, onto an heterogeneous star platform, with both heterogeneous
computing and communication resources. We consider the case where the work-
ers, after processing the tasks, send back some results to the master processor.
This corresponds to a more general framework than the one used in many divis-
ible load papers, where only forward communications are taken into account.
To the best of our knowledge, this paper constitutes the first attempt to de-
rive optimality results under this general framework (forward and backward
communications, heterogeneous processing and communication resources). We
prove that it is possible to derive the optimal solution both for LIFO and FIFO
distribution schemes. Nevertheless, the complexity of the general problem re-
mains open: we also prove in the paper that the optimal distribution scheme
may be neither LIFO nor FIFO.

Keywords: Scheduling, divisible load, master-worker platform, heterogeneous cluster.

Résumé

Nous nous intéressons ici au problème de l’ordonnancement de tâches divisibles
sur une plate-forme de calcul hétérogène en étoile. L’hétérogénéité concerne les
ressources de calcul comme les liens de communication. Nous considérons le
cas où les esclaves, après avoir effectué des tâches, doivent envoyer les résul-
tats obtenus au processeur mâıtre. Ceci correspond à un schéma plus général
que celui utilisé dans l’essentiel de la littérature sur les tâches divisibles, où
seules les communications du mâıtre vers les esclaves sont prises en compte.
À notre connaissance, ceci est la première tentative pour obtenir des résultats
d’optimalité pour ce problème général (communications dans les deux sens,
hétérogénéité pour les puissances de calcul et de communication). Nous mon-
trons qu’il est possible de concevoir des solutions optimales pour les schémas
de communication FIFO et LIFO. Cependant, la complexité du problème reste
ouverte : nous montrons également que le schéma de communication optimal
peut n’être ni LIFO ni FIFO.

Mots-clés: Ordonnancement, tâches divisibles, plate-forme mâıtre-esclave, grappe hétérogène.

Scheduling divisible loads with return messages 1

1 Introduction

This paper deals with scheduling independent tasks on heterogeneous platforms. Quite naturally,
we target a master-worker implementation where the master initially holds (or generates data for)
a large collection of identical tasks which will be executed by the workers. In the end, results will be
returned by the workers to the master. Each worker has a different computational speed, and each
master-worker link has a different bandwidth, thereby making the platform fully heterogeneous.
The master-worker platform is often referred to as a star network in the literature, and is said to
reduce to a bus network when all master-worker links have the same bandwidth.

The scheduling problem is first to decide how many tasks the master sends to each worker,
and in which order. After receiving its share of the data, each worker executes the corresponding
tasks and returns the results to the master. Again, the ordering of the return messages must be
decided by the scheduler.

Assume that there are N tasks to be distributed by the master. Each worker Pi will execute a
fraction αiN of these tasks. An important relaxation of the problem is to allow the αi be rational
numbers instead of integers. The main motivation for this relaxation is technical: the scheduling
is better amenable to an analytical solution if rounding problems are ignored. From a practical
point of view, this simplification is harmless. Indeed, we assume that a large number of tasks is
processed (otherwise why deploy a parallel implementation?). The quality of the schedule is not
affected if, say, a rational value of α1 = 1027, 3 tasks for worker P1 is transformed into α1 = 1027
tasks. We can randomly assign the few tasks that would remain to be executed after rounding the
rational solution.

From a theoretical perspective, this relaxation is important, because it shows the equivalence
between scheduling independent tasks and divisible load scheduling, or DLS for short. As their
name suggests, divisible load applications can be divided among worker processes arbitrarily, i.e.
into any number of independent pieces. This corresponds to a perfectly parallel job: any sub-task
can itself be processed in parallel, and on any number of workers. In practice, the DLS model
is an approximation of applications that consist of large numbers of identical, low-granularity
computations. The former number of independent tasks N corresponds in the DLS model to a total
number of load units W to be distributed to the workers, where W = Nu if each task represents u
load-units. Allocating rational values of load-units is equivalent to distributing rational numbers
of tasks.

The DLS model has been widely studied in the last several years, after having been popularized
by the landmark book written in 1996 by Bharadwaj, Ghose, Mani and Robertazzi [7]. The DLS
model provides a practical framework for the mapping on independent tasks onto heterogeneous
platforms, and has been applied to a large spectrum of scientific problems: see Section 6 for further
details.

From a theoretical standpoint, the success of the DLS model is mostly due to its analytical
tractability. Optimal algorithms and closed-form formulas exist for important instances of the
divisible load problem. A famous example is the closed-form formula given in [5, 7] for a bus
network. The hypotheses are the following:

1. the master distributes the load to the workers, but no results are returned to the master

2. a linear cost model is assumed both for computations and for communications

3. all master-worker communication links have same bandwidth (but the workers have different
processing speeds)

The proof to derive the closed-form formula proceeds in several steps: it is shown that in an
optimal solution: (i) all workers participate in the computation, then that (ii) they never stop
working after having received their data from the master, and finally that (iii) they all terminate
the execution of their load simultaneously. These conditions give rise to a set of equations from
which the optimal value αi can be computed for each worker Pi.

Extending this result to a star network (with different master-worker link bandwidths), but still
(1) without return messages and (2) with a linear cost model, has been achieved only recently [6].

Scheduling divisible loads with return messages 2

The proof basically goes along the same steps as for a bus network, but the main additional
difficulty was to find the optimal ordering of the messages from the master to the workers. It
turns out that the best strategy is to serve workers with larger bandwidth first, independently of
their computing power.

The next natural step is to include return messages in the picture. This is very important
in practice, because in most applications the workers are expected to return some results to the
master. When no return messages are assumed, it is implicitly assumed that the size of the
results to be transmitted to the master after the computation is negligible, and hence has no (or
very little) impact on the whole DLS problem. This may be realistic for some particular DLS
applications, but not for all of them. For example suppose that the master is distributing files to
the workers. After processing a file, the worker will typically return results in the form of another
file, possibly of shorter size, but still non-negligible. In some situations, the size of the return
message may even be larger than the size of the original message: for instance the master initially
scatters instructions on some large computations to be performed by each worker, such as the
generation of several cryptographic keys; in this case each worker would receive a few bytes of
control instructions and would return longer files containing the keys.

Because it is very natural and important in practice, several authors have investigated the
problem with return messages: see the papers [4, 13, 22, 3, 1], whose contents are surveyed in
Section 6 on related work. However, all the results obtained so far are very partial. Intuitively,
there are hints that suggest that the problem with return results is much more complicated. The
first hint lies in the combinatorial space that is open for searching the best solution. There is no
reason for the ordering of the initial messages sent by the master to be the same as the ordering
for the messages returned to the master by the workers after the execution. In some situations
a FIFO strategy (the worker first served by the master is the first to return results, and so on)
may be preferred, because it provides a smooth and well-structured pipelining scheme. In other
situations, a LIFO strategy (the other way round, first served workers are the last to return results)
may provide better results, because faster workers would work a longer period if we serve them
first. True, but what if these fast workers have slow communication links? In fact, and here comes
the second hint, it is not even clear whether all workers should be enrolled in the computation by
the master. This is in sharp contrast to the case without return messages, where it is obvious that
all workers should participate.

To the best of our knowledge, the complexity of the problem remains open, despite the simplic-
ity of the linear cost model. In [1], Adler, Gong and Rosenberg show that all FIFO strategies are
equally performing on a bus network, but even the analysis of FIFO strategies is an open problem
on a star network.

The main contributions of this paper are the characterization of the best FIFO and LIFO
strategies on a star network, together with an experimental comparison of them. While the study
of LIFO strategies nicely reduces to the original problem without return messages, the analysis of
FIFO strategies turns out to be more involved; in fact, the optimal FIFO solution may well not
enroll all workers in the computations.

Admittedly, the complexity of the DLS problem with return messages remains open: there
is no a priori reason that either FIFO or LIFO strategies would be superior to solutions where
the ordering of the initial messages and that of return messages are totally uncorrelated (and we
give an example of such a situation in Section 2). Still, we believe that our results provide an
important step in the understanding of this difficult problem, both from a theoretical and practical
perspective. Indeed, we have succeeded in characterizing the best FIFO and LIFO solutions, which
are the most natural and easy-to-implement strategies.

The rest of the paper is organized as follows. In Section 2, we state precisely the DLS problem,
with all application and platform parameters, and we give two examples showing the difficulty
of the problem: in the first example, not all processors participate in the optimal solution; in
the second example, the optimal solution is obtained using neither a FIFO nor a LIFO strategy.
Section 3 deals with the characterization of the best LIFO solution. Section 4 is the counterpart
for FIFO strategies. We provide an experimental comparison of LIFO and FIFO strategies in
Section 5. Section 6 is devoted to an overview of related work. Finally, we state some concluding

Scheduling divisible loads with return messages 3

remarks in Section 7.

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

Figure 1: Heterogeneous star graph, with the linear cost model.

2 Framework

2.1 Problem parameters

As illustrated in Figure 1, a star network S = {P0, P1, P2, . . . , Pp} is composed of a master P0

and of p workers Pi, 1 ≤ i ≤ p. There is a communication link from the master P0 to each worker
Pi. In the linear cost model, each worker Pi has a (relative) computing power wi: it takes X.wi

time units to execute X units of load on worker Pi. Similarly, it takes X.ci time units to send the
initial data needed for computing X units of load from P0 to Pi, and X.di time units to return
the corresponding results from Pi to P0. Without loss of generality we assume that the master
has no processing capability (otherwise, add a fictitious extra worker paying no communication
cost to simulate computation at the master). Note that a bus network is a star network such
that all communication links have the same characteristics: ci = c and di = d for each worker Pi,
1 ≤ i ≤ p.

It is straightforward to specify the parameters in terms of independent tasks rather than in
terms of DLS load units. Let u be the number of floating-point operations to process a task,
δinit be the size (number of bytes) of the input file needed to process a task, and δreturn be the
size (number of bytes) of the output file generated by the processing of a task. Let si be the
speed of processor Pi (in flops). Finally, let bi denote the bandwidth (in bytes per second) of the
communication link between P0 and Pi. We have the relations

wi =
u

si

, ci =
δinit

bi

, di =
δreturn

bi

These relation show that the quantity

di

ci

=
δreturn

δinit
= z

is a constant z that depends on the application but not on the selected worker. In other words,
workers who communicate faster with the master for the initial message will also communicate
faster for the return message. In the following, we keep using both values di and ci, because many
results are valid even without the relation di = zci, and we explicitly mention when we use this
relation.

Finally, we use the standard model in DLS problem for communications: the master can only
send data to, and receive data from, a single worker at a given time-step. A given worker cannot
start execution before it has terminated the reception of the message form the master; similarly,
it cannot start sending the results back to the master before finishing the computation. However,
there is another classic hypothesis in DLS papers which we do not enforce, namely that there is

Scheduling divisible loads with return messages 4

no idle time in the operation of each worker. Under this assumption, a worker starts computing
immediately after having received its initial message, which is no problem, but also starts returning
the results immediately after having finished its computation: this last constraint does reduce the
solution space arbitrarily. Indeed, it may well prove useful for a worker Pi to stay idle a few steps
before returning the results, waiting for the master to receive the return message of another worker
Pq′ . Of course we could have given more load to Pi to prevent him from begin idle, but this would
have implied a longer initial message, at the risk of delaying the whole execution scheme. Instead,
we will tackle the problem in its full generality and allow for the possibility of idle times (even if
we may end by proving that there is no idle time in the optimal solution).

The objective function is to maximize the number of load units that are processed within T
time-units. Let αi be the number of load units sent to, and processed by, worker Pi within T
time-units. Owing to the linear cost model, the quantity

∑p

i=1 αi

T
= ρ

is a constant (see Section 2.2 for a proof), and corresponds to the achieved throughput, which we
aim at maximizing.

2.2 Linear program for a given scenario

Given a star platform with p workers, and parameters wi, ci, di, 1 ≤ i ≤ p, how can we compute
the optimal throughput?

First we have to decide which workers are enrolled. Next, given the set of participating workers,
we have to decide for the ordering of the initial messages. Finally we have to decide for the ordering
of the return messages. Altogether, there is a finite (although exponential) number of scenarios,
where a scenario refers to a schedule with a given set of participating workers and a fixed ordering
of initial and return messages. Then, the next question is: how can we compute the throughput
for a given scenario?

Without loss of generality, we can always perform all the initial communications as soon as
possible. In other words, the master sends messages to the workers without interruption. If this
was not the case, we would simply shift ahead some messages sent by the master, without any
impact on the rest of the schedule. Obviously, we can also assume that each worker initiates
its computation as soon as it has received the message from the master. Finally, we can always
perform all the return communications as late as possible. In other words, once the master starts
receiving data back from the first worker, it receives data without interruption until the end of the
whole schedule. Again, if this was not the case, we would simply delay the first messages received
by the master, without any impact on the rest of the schedule. Note that idle times can still occur
in the schedule, but only between the end of a worker’s computation and the date at which it
starts sending the return message back to the master.

The simplest approach to compute the throughput ρ for a given scenario is to solve a linear
program. For example, assume that we target a LIFO solution involving all processors, with the
ordering P1, P2, . . . , Pp, as outlined in Figure 2. With the notations of Section 2.1 (parameters
wi, ci, di and unknowns αi, ρ), worker Pi:

• starts receiving its initial message at time trecvi =
∑i−1

j=1 αjcj

• starts execution at time trecvi + αici

• terminates execution at time ttermi = trecvi + αici + αiwi

• starts sending back its results at time tback
i = T −

∑i

j=1 αjdj

Here T denotes the total length of the schedule. The idle time of Pi is xi = tback
i − ttermi , and this

quantity must be nonnegative. We derive a linear equation for worker Pi:

T −
i
∑

j=1

αjdj ≥
i−1
∑

j=1

αjcj + αici + αiwi

Scheduling divisible loads with return messages 5

P2

P1

Pp

Pi

αici αiwi
xi

αidi

Figure 2: LIFO strategy. Dark grey rectangles (of length αqcq) represent the initial messages
destined to the workers. White rectangles (of length αqwq) represent the computation on the
workers. Light grey rectangles (of length αqdq) represent the return messages back to the master.
Bold lines (of length xq) represent the idle time of the workers.

Together with the constraints αi ≥ 0, we have assembled a linear program, whose objective
function is to maximize ρ(T) =

∑p

i=1 αi. In passing, we check that the value of ρ(T) is indeed
proportional to T , and we can safely define ρ = ρ(1) as mentioned before. We look for a rational
solution of the linear program, with rational (not integer) values for the quantities αi and ρ, hence
we can use standard tools like Maple [11] or MuPAD [24].

Obviously, this linear programming approach can be applied for any permutation of initial and
return messages, not just LIFO solutions as in the above example. Note that it may well turn
out that some αi is zero in the solution returned by the linear program, which means that Pi

is not actually involved in the schedule. This observation reduces the solution space: we can a
priori assume that all processors are participating, and solve a linear program for each pair of
message permutations (one for the initial messages, one for the return messages). The solution of
the linear program will tell us which processors are actually involved in the optimal solution for
this permutation pair.

For a given scenario, the cost of this linear programming approach may be acceptable. However,
as already pointed out, there is an exponential number of scenarios. Worse, there is an exponential
number of LIFO and FIFO scenarios, even though there is a single permutation to try in these
cases (the ordering of the return messages is the reverse (LIFO) or the same (FIFO) as for the
initial messages). The goal of Sections 3 and 4 is to determine the best LIFO and FIFO solution
in polynomial time.

2.3 Counter-examples

In Figure 3 we outline an example where not all processors participate in the optimal solution. The
platform has three workers, as shown in Figure 3(a). The best throughput that can be achieved
using all the three workers is obtained via the LIFO strategy represented in Figure 3(b), and is
ρ = 61/135. However, the FIFO solution which uses only the first two workers P1 and P2 achieves a
better throughput ρ = 1/2. To derive these results, we have used the linear programming approach
for each of the 36 possible permutation pairs. It is very surprising to see that the optimal solution
does not involve all workers under a linear cost model (and to the best of our knowledge this is
the first known example of such a behavior).

Next, in Figure 4, we outline an example where the best throughput is achieved using neither
a FIFO nor a LIFO approach. Instead, the optimal solution uses the initial ordering (P1, P2, P3)
and the return ordering (P2, P1, P3). Again, we have computed the throughput of all possible
permutation pairs using the linear programming approach.

Scheduling divisible loads with return messages 6

P0

P1 P2 P3

d3 = 5d1 = 1

w1 = 1 w2 = 1 w3 = 5

c1 = 1
c2 = 1

c3 = 5

d2 = 1

(a) Platform

P2

P1

P3

(b) LIFO, throughput ρ = 61/135

P2

P1

P3

(c) FIFO with 2 processors, optimal
throughput ρ = 1/2

Figure 3: The best schedule with all the three workers (shown in (b)) achieves a lower throughput
than when using only the first two workers (as shown in (c)).

P0

P1 P2 P3

c2 = 8c1 = 7 c3 = 12

d1 = 7 d3 = 12

w1 = 6 w2 = 5 w3 = 5

d2 = 8

(a) Platform

P2

P1

P3

(b) Optimal schedule (ρ = 38/499 ≈

0.076)

P2

P1

P3

(c) FIFO schedule (ρ = 47/632 ≈ 0.074)

P2

P1

P3

(d) LIFO schedule (ρ = 43/580 ≈ 0.074)

Figure 4: An example where the optimal solution is neither FIFO nor LIFO.

Scheduling divisible loads with return messages 7

3 LIFO strategies

In this section, we concentrate on LIFO strategies, where the processor that receives the first
message is also the last processor that sends its results back to the master, as depicted in Figure 2.
We keep the notations used in Section 2.2, namely wi, ci, di and αi for each worker Pi.

In order to determine the optimal LIFO ordering, we need to answer the following questions:

• What is the subset of participating processors?

• What is the ordering of the initial communications?

• What is the idle time xi of each participating worker?

The following theorem answers these questions and provides the optimal solution for LIFO
strategies:

Theorem 1. In the optimal LIFO solution, then

• All processors participate to the execution

• Initial messages must be sent by non-decreasing values of ci + di

• There is no idle time, i.e. xi = 0 for all i.

Proof. Let us assume that c1 + d1 ≤ c2 + d2 ≤ . . . cp + dp. We will prove that the optimal solution
for a LIFO strategy on the star network of Figure 1 has the same throughput as the optimal
solution for a classical DLS problem, without return messages, on the platform represented in
Figure 5(a). The key idea is to transform the LIFO schedule of Figure 2 into the schedule of
Figure 5(b). Because the optimal schedule for the latter problem is well-known, this will lead to
the desired result.

P1 Pp

P0

PiP2

w1 wpwi

c1 + d1, 0 cp + dp, 0

w2

c2 + d2, 0 ci + di, 0

(a) Modified platform

P2

P1

Pp

Pi

xi
αiwi

αi(di + ci)

(b) Modified schedule

Figure 5: Transforming the platform on Figure 1 and the LIFO schedule into a schedule without
return transfers and with same performance.

Indeed, consider the optimal solution for the LIFO problem, and suppose that it sends ασ1

tasks to Pσ1
, then ασ2

tasks to Pσ2
,. . . , and finally ασp

tasks to Pσp
, where σ is a permutation

of the integers between 1 and p. Note that since ασi
may be 0, this formulation is general and

includes the case where some processors are not used in the optimal solution. Let us also denote
by xi the idle time on processor Pi in the optimal solution.

Then, from the discussion in Section 2.2 (see also Figure 2), we check that the αi’s are the
solution of the following (triangular and non-singular) linear system:

















cσ1
+ wσ1

+ dσ1
0 0 . . . 0

cσ1
cσ2

+ wσ2
+ dσ2

0 . . . 0
... cσ2

cσ3
+ wσ3

+ dσ3

. . .
...

...
...

. . . 0
cσ1

cσ2
cσ3

. . . cσp
+ wσp

+ dσp





































ασ1

ασ2

...

...
ασp





















=





















T − xσ1

T − xσ2

...

...
T − xσp





















Scheduling divisible loads with return messages 8

P2

P1

Pp

xi

αidiαici αiwi

Pi

Figure 6: FIFO strategies.

Given the xi’s, the solution of this linear system also provides the schedule shown in Figure 5(b)
for the classical DLS problem without return results on the platform depicted in Figure 5(a) This
problem with linear costs and without return results has been extensively studied (see [6] and the
references therein). It is known that

∑

αi is maximal if and only if

• All processors participate to the execution

• Messages must be sent by non-increasing values of ci + di (i.e. ∀i, σi = i)

• There is no idle time, i.e. xi = 0 for all i

This achieves the proof of the theorem.

Theorem 1 shows that the optimal LIFO solution is obtained by the resolution of the following
linear system:

















c1 + w1 + d1 0 0 . . . 0
c1 c2 + w2 + d2 0 . . . 0
... c2 c3 + w3 + d3

. . .
...

...
...

. . . 0
c1 c2 c3 . . . cp + wp + dp

































α1

α2

...

...
αp

















= T













1
1
1
1
1













Rather than directly solving the system and computing ρ =
∑p

i=1 αi, which would require O(p2)
operations, we can use the closed-form formula provided in [23, equations (4) and (5)]. We have
proven the following result:

Proposition 1. The optimal LIFO strategy (and the corresponding throughput) can be determined
in linear time O(p).

Finally, we point out that we have not used the relation di = zci in this section. All results for
LIFO solutions apply to platforms with uncorrelated ci and di parameters.

4 FIFO strategies

In this section, we concentrate on FIFO strategies, where the processor that receives the first
message is also the first processor to send its results back to the master, as depicted in Figure 6.

We keep the notations used in Sections 2.2 and 3, namely wi, ci, di and αi for each worker
Pi. The analysis of FIFO strategies is more difficult than the analysis of LIFO strategies: we will
show that not all processors are enrolled in the optimal FIFO solution. Throughout this section,
we assume that di = zci for 1 ≤ i ≤ p, and also that z ≤ 1. The case z > 1 is symmetric in some
sense, and will be considered at the end of the section.

Scheduling divisible loads with return messages 9

Theorem 2. In the optimal FIFO solution, then

• Initial messages must be sent by non-decreasing values of ci + di

• The set of participating processors is composed of the first q processors for the previous
ordering, where q can be determined in linear time

• There is no idle time, i.e. xi = 0 or all i.

Theorem 2 will be proven via several Lemmas. The first one states that there exists an optimal
solution where all participating processors work without idle times.

Lemma 1. There exists an optimal FIFO solution such that

∀i, αixi = 0.

Proof. Consider an optimal FIFO, where the number of participating processors is minimal. To
simplify notations, we will assume that this minimal set of participating processors (i.e. the
processors such that αi > 0) is P1, P2, . . . , Pk. xi ≥ 0 denotes the idle time on processor Pi. The
αi’s are solution of the following linear system (see Figure 6):

Aα = T11 − x,

where α = (α1, . . . , αk)t, x = (x1, . . . , xk)t, 11 = (1, . . . , 1)t and

A =

















c1 + w1 + d1 d2 d3 . . . dk

c1 c2 + w2 + d2 d3 . . . dk

... c2 c3 + w3 + d3
. . .

...
...

...
. . . dk

c1 c2 c3 . . . ck + wk + dk

















To show that A is non-singular, we use the decomposition A = L + 11dt, where

L =

















c1 + w1 0 0 . . . 0
c1 − d1 c2 + w2 0 . . . 0

... c2 − d2 c3 + w3
. . .

...
...

...
. . . 0

c1 − d1 c2 − d2 c3 − d3 . . . ck + wk

















and d =

















d1

d2

...

...
dk

















.

The matrix 11dt is a rank-one matrix, so we can use the Sherman-Morrison formula [16] (indeed,
L is a triangular, non-singular matrix and we will prove in Lemma 2 that 1 + dtL−111 6= 0):

A−1 = (L + 11dt)−1 = L−1 −
L−111dtL−1

1 + dtL−111

Therefore, α = A−1(T11−x). More precisely, if we let A−1 = a
(−1)
i,j , we have αi =

∑

j a
(−1)
i,j (T −

xj) and
∑

αi = b0 +
∑

j

bjxj ,

where b0 = T
∑

i

∑

j a
(−1)
i,j and bj = −

∑

i a
(−1)
i,j .

In order to complete the proof of the lemma, we will prove that if xj > 0, then either we can
find a solution processing more tasks, or we can find a solution processing exactly the same number
of tasks but using strictly fewer processors. In both cases we would obtain a contradiction. Let
us suppose then that there exists j such that xj > 0. The proof depends upon the value of bj :

Scheduling divisible loads with return messages 10

• First case: bj > 0
Consider x(ε) defined by: ∀j 6= i, xi(ε) = xi and xj(ε) = xj + ε. Let

α(ε) = A−1(T11 − x(ε)).

Since by assumption αi(0) > 0, then αi(ε) > 0 if ε is sufficiently small, so that the set of
x(ε)j ’s defines a valid solution. But in this case

∑

αi(ε) = b0 +
∑

j

bjxj(ε) =
∑

αi(0) + bjε >
∑

αi(0),

which contradicts our optimality assumption for the values αi(0) = αi.

• Second case: bj < 0
The proof is similar, except that we define x(ε) by: ∀j 6= i, xi(ε) = xi and xj(ε) = xj − ε.

• Third case: bj = 0
We define x(ε) by: ∀j 6= i, xi(ε) = xi and xj(ε) = xj − ε. Let

α(ε) = A−1(T11 − x(ε)).

As long as both xj(ε) > 0 and ∀i, αi(ε) > 0, the xi(ε)’s define a valid and optimal solution,
since

∑

αi(ε) = b0 +
∑

j

bjxj(ε) =
∑

αi(0) − bjε =
∑

αi(0).

Let us increase the value of ε until either xj(ε) = 0 or ∃i, αi(ε) = 0:

– If xj(ε) = 0, we have found an optimal solution such that xj = 0.

– If ∃i, αi(ε) = 0, we have found an optimal solution where less than k processors
participate to the execution.

In the following, we will therefore restrict our search to optimal solutions where no idle time
occurs on any processor. In order to keep notations simple, we will assume that the participating
processors are P1, . . . , Pk and that load units are sent to these processors in the order P1, P2, . . . , Pk.
The following lemma gives an analytical expression for the total number of load units that can be
processed using processors P1, . . . , Pk in that order.

Lemma 2. The total number of load units that can be processed in time T = 1, using processors
P1, . . . , Pk in that order, is

ρ =

k
∑

i=1

αi =

∑k

i=1 ui

1 +
∑k

i=1 uidi

,

where

ui =
1

di + wi

i
∏

j=1

(

dj + wj

cj + wj

)

.

Proof. Since we restrict our search to solutions such that x = 0, then with the notations of the
proof of Lemma 1, we have

Aα = T11 = 11.

We have ρ =
∑k

i=1 αi = 11tA−111, We use the decomposition A = L + 11dt and the Sherman-
Morrison formula, as in the proof of Lemma 1, to derive that

ρ = 11tL−111 −
(11tL−111)(dtL−111)

1 + dtL−111
=

11tL−111

1 + dtL−111
.

In order to obtain an analytical expression for
∑

αi, we need the following Lemma:

Scheduling divisible loads with return messages 11

Lemma 3. Let u = L−111. Then,

ui =
1

di + wi

i
∏

j=1

(

dj + wj

cj + wj

)

Proof. We use induction to prove that ∀i, et
iLu = 1, where ei is the i-th canonical vector:

• Clearly, et
1Lu = c1+w1

di+wi

d1+w1

c1+w1
= 1 so that the lemma holds true for i = 1

• Let us assume now that the lemma holds true for i − 1, i.e.

i−2
∑

l=1

cl − dl

dl + wl

l
∏

j=1

(

dj + wj

cj + wj

)

+
ci−1 + wi−1

di−1 + wi−1

i−1
∏

j=1

(

dj + wj

cj + wj

)

= 1.

Then,

∑i−1
l=1

cl−dl

dl+wl

∏l

j=1

(

dj+wj

cj+wj

)

+ ci+wi

di+wi

∏i

j=1

(

dj+wj

cj+wj

)

=
∑i−2

l=1
cl−dl

dl+wl

∏l

j=1

(

dj+wj

cj+wj

)

+ ci−1−di−1

di−1+wi−1

∏i−1
j=1

(

dj+wj

cj+wj

)

+ ci+wi

di+wi

∏i

j=1

(

dj+wj

cj+wj

)

= 1 − ci−1+wi−1

di−1+wi−1

∏i−1
j=1

(

dj+wj

cj+wj

)

+ ci−1−di−1

di−1+wi−1

∏i−1
j=1

(

dj+wj

cj+wj

)

+ ci+wi

di+wi

∏i

j=1

(

dj+wj

cj+wj

)

= 1 +
∏i−1

j=1

(

dj+wj

cj+wj

)(

1 + ci−1−di−1

di−1+wi−1
− ci−1+wi−1

di−1+wi−1

)

= 1

which achieves the proof Lemma 3.

Moreover, since
∑

αi =
11tL−111

1 + dtL−111

we obtain
∑

αi =

∑k

i=1 ui

1 +
∑k

i=1 uidi

,

which achieves the proof of Lemma 2.

Lemma 2 provides an analytical expression for the throughput achieved using a given FIFO
ordering and a given set of participating processors. The following lemma provides the optimal
ordering for a given, fixed, set of participating processors (remember that we assume that z =
di

ci
≤ 1):

Lemma 4. Let P1, . . . , Pk be the set of participating processors. We assume that c1 ≤ c2 ≤
. . . ≤ ck. Then, the throughput is optimal if and only if initial messages are successively sent to
P1, P2, . . . , Pk.

Proof. Let ρopt denote the optimal throughput (over the set of all possible communication order-
ings) that can be achieved using the set of processors P1, P2, . . . , Pk, and let σopt be the corre-
sponding optimal permutation. Then, using Lemma 2,

ρopt =
∑

αi =

∑k

i=1 ui

1 +
∑k

i=1 uidσ
opt

i

,

where

ui =
1

dσ
opt

i
+ wσ

opt

i

i
∏

j=1

(

dσ
opt

j
+ wσ

opt

j

cσ
opt

j
+ wσ

opt

j

)

.

Scheduling divisible loads with return messages 12

Assume by contradiction that there exists an index m such that cσ
opt
m

> cσ
opt

m+1
and let us denote

by σ the permutation defined by σm = σopt

m+1, σm+1 = σopt

m and σi = σopt

i otherwise. Let us also
denote by α′

i and u′
i the values of α and u with the permutation σ.

Since

u′
i =

1

dσi
+ wσi

i
∏

j=1

(

dσj
+ wσj

cσj
+ wσj

)

,

we have that ∀i 6= m,m + 1, u′
i = ui. Moreover, define

K =
∏m−1

j=1

(

dσj
+wσj

cσj
+wσj

)

=
∏m−1

j=1

(

d
σ
opt
j

+w
σ
opt
j

c
σ
opt
j

+w
σ
opt
j

)

.

Then

u′
m = K

1

cσm
+ wσm

= K
1

cσ
opt

m+1
+ wσ

opt

m+1

,

u′
m+1 = K

dσm
+ wσm

(cσm
+ wσm

)(cσm+1
+ wσm+1

)
= K

dσ
opt

m+1
+ wσ

opt

m+1

(cσ
opt

m+1
+ wσ

opt

m+1
)(cσ

opt
m

+ wσ
opt
m

)
,

um = K
1

cσ
opt
m

+ wσ
opt
m

,

and

um+1 = K
dσ

opt
m

+ wσ
opt
m

(cσ
opt

m+1
+ wσ

opt

m+1
)(cσ

opt
m

+ wσ
opt
m

)
.

Let us now evaluate

∆ = u′
m(1 − ρoptdσm

) + u′
m+1(1 − ρoptdσm+1

) − um(1 − ρoptdσ
opt
m

) − um+1(1 − ρoptdσ
opt

m+1
).

∆ = u′
m(1 − ρoptdσ

opt

m+1
) + u′

m+1(1 − ρoptdσ
opt
m

) − um(1 − ρoptdσ
opt
m

) − um+1(1 − ρoptdσ
opt

m+1
)

= K(1 − ρoptdσ
opt

m+1
)

(

1
d

σ
opt
m+1

+w
σ
opt
m+1

−
d

σ
opt
m

+w
σ
opt
m

(c
σ
opt
m+1

+w
σ
opt
m+1

)(c
σ
opt
m

+w
σ
opt
m

)

)

+

K(1 − ρoptdσ
opt
m

)

(

d
σ
opt
m+1

+w
σ
opt
m+1

(c
σ
opt
m+1

+w
σ
opt
m+1

)(c
σ
opt
m

+w
σ
opt
m

) −
1

c
σ
opt
m

+w
σ
opt
m

)

= K(1 − ρoptdσ
opt

m+1
)

(

c
σ
opt
m

−d
σ
opt
m

(c
σ
opt
m+1

+w
σ
opt
m+1

)(c
σ
opt
m

+w
σ
opt
m

)

)

+ K(1 − ρoptdσ
opt
m

)

(

d
σ
opt
m+1

−c
σ
opt
m+1

(c
σ
opt
m+1

+w
σ
opt
m+1

)(c
σ
opt
m

+w
σ
opt
m

)

)

= K(1−z)
(c

σ
opt
m+1

+w
σ
opt
m+1

)(c
σ
opt
m

+w
σ
opt
m

)

(

(1 − ρoptzcσ
opt

m+1
)cσ

opt
m

− (1 − ρoptzcσ
opt
m

)cσ
opt

m+1

)

= K(1−z)
(c

σ
opt
m+1

+w
σ
opt
m+1

)(c
σ
opt
m

+w
σ
opt
m

)

(

cσ
opt
m

− cσ
opt

m+1

)

> 0 by assumption

Therefore,

∑

i u′
i(1 − ρoptdσi

) =
∑

i6=m,m+1 ui(1 − ρoptdσ
opt

i
) + ∆ + um(1 − ρoptdσ

opt
m

) + um+1(1 − ρoptdσ
opt

m+1
)

=
∑

i ui(1 − ρoptdσ
opt

i
) + ∆

>
∑

i ui(1 − ρoptdσ
opt

i
)

> ρopt

Thus,
∑

i u′
i > ρopt(1 +

∑

i u′
idσi

) and finally

∑

i u′
i

1 +
∑

i u′
idσi

> ρopt.

Scheduling divisible loads with return messages 13

We have proved that if there exists an index m such that cσ
opt
m

> cσ
opt

m+1
, then it is possible,

by switching those processors, to obtain a solution that processes strictly more load units. An
easy induction shows that initial messages must be sent successively to processors P1, . . . , Pk if
c1 ≤ . . . ≤ ck.

Lemma 4 provides the communication ordering, once the set of participating processors is fixed.
We still need to provide an algorithm for determining the optimal set of participating processors.
This is the objective of the next two lemmas:

Lemma 5. Let ρopt denote the optimal throughput that can be achieved. Then, only those workers
Pi such that

di ≤
1

ρopt

should participate to the execution.

Proof. Suppose that the set of participating processors is P1, . . . , Pk and that there exists a pro-
cessor such that (1 − ρoptdi) < 0. Since ci ≤ ck, then di ≤ dk and therefore

(1 − ρoptdk) < 0.

In what follows, we prove that the throughput achieved without using Pk is larger than the
throughput with Pk. Let us denote by u′

i the values of the u’s when Pk does not participate to
the execution. Since Pk is the last processor, given the definition of u, we have ∀i < k, u′

i = ui.
Therefore,

∑k−1
i=1 u′

i(1 − ρoptdi) =
∑k−1

i=1 ui(1 − ρoptdi)

=
∑k

i=1 ui(1 − ρoptdi) − uk(1 − ρoptdk)

>
∑k

i=1 ui(1 − ρoptdi) since uk > 0 and (1 − ρoptdk) < 0
> ρopt.

Therefore,
∑k−1

i=1 u′
i(1 − ρoptdi) > ρopt and finally

∑k−1
i=1 u′

i

1 +
∑k−1

i=1 u′
idi

> ρopt.

Therefore, we have proved that, the optimal throughput ρopt being known, if there exists a
processor Pi such that (1 − ρoptdi) < 0, then it cannot contribute to process any load, which
achieves the proof of the lemma.

Lemma 6. Let ρopt denote the optimal throughput that can be achieved. Then, all those workers
Pi such that

di ≤
1

ρopt

should participate to the execution.

Proof. Consider the set of processors Sopt that achieves the optimal throughput ρopt. To simplify
notations, let Sopt = {P1, P2, . . . , Pr}. According to Lemma 5, we have (1 − ρoptdi) ≥ 0 for
Pi ∈ Sopt. Assume (by contradiction) that there exists another worker, say Pm, which does not
belong to Sopt but which satisfies to (1 − ρoptdm) ≥ 0. Then we claim that adding Pm at the end
of Sopt improves the throughput.

Indeed, we have ρopt = U
1+D

, with U =
∑r

i=1 ui and D =
∑r

i=1 uidi, and where the ui’s are
given by Lemma 3. Because Pm is added at the end of the schedule, it does not change the value
of the previous ui. Adding Pm leads to the new throughput ρ′ = U+um

1+D+umdm
. We have

ρ′ − ρopt =
um

1 + D + umdm

(1 − ρoptdm) ≥ 0,

hence the result.

Scheduling divisible loads with return messages 14

We are almost done! If we sort the communication parameters so that d1 ≤ d2 ≤ . . . ≤ dp

(which is equivalent to sorting the ci’s or the ci +di’s because di = zci for all i), we know that the
optimal throughput ρopt is achieved when we use only those workers Pi such that di ≤

1
ρopt , and

all of them, in the natural ordering. In other words, the optimal solution is obtained when using
the first q processors in their natural order, for some value of q between 1 and p. The simplest
algorithm to determine q is to try all the p possible values. It is possible to compute all the p
corresponding throughputs in polynomial time, and to keep the best of them. Even better, owing
to the formula given in Lemma 2, we can determine the optimal FIFO throughput in linear time,
provided that we take care to update values on the fly in constant time when moving from q to
q + 1 workers. Indeed,

ρq =

q
∑

i=1

αi =

∑q

i=1 ui

1 +
∑q

i=1 uidi

and

ui =
1

di + wi

i
∏

j=1

(

dj + wj

cj + wj

)

.

Therefore, we can determine ρq+1 from ρq in constant time using the following equations:

uq+1 =

(

dq + wq

cq + wq

)

uq, Nq+1 = Nq + uq+1, Dq+1 = Dq + dq+1uq+1

and finally

ρq+1 =
Nq+1

1 + Dq+1
.

This concludes the proof of Theorem 2. For the sake of completeness, we state the counterpart
of Proposition 1:

Proposition 2. The optimal FIFO strategy (and the corresponding throughput) can be determined
in linear time O(p).

To conclude the study of FIFO solutions, we must deal with the case z > 1, where di = zci.
Assume that we have a FIFO solution on a platform as in Figure 6, whose parameters are wi, ci, di

and with z > 1. If we read the figure upside down, with time flying backwards, we have a FIFO
solution for the platform whose parameters are wi, di, ci. This simple observation leads to the
optimal FIFO solution when z > 1: solve the problem with wi, di, ci as explained in this section
(because ci = 1

z
di with 1

z
≤ 1, Theorem 2 is applicable) and flip over the solution. Note that

this implies that initial messages are sent in non-increasing order of the ci’s, rather than in non-
decreasing order as was the case for z < 1. In passing, this also shows that when z = 1, i.e.
ci = di, the ordering of participating workers has no importance (but some workers may not be
enrolled). This last statement can be checked directly with Lemma 2: if z = 1, then ui = 1

di+wi
,

and these values are indeed independent of the ordering.

5 Simulations

In this section, we present the results of some simulations conducted with the LIFO and FIFO
strategies. We cannot compare these results against the optimal schedule, since we are not able to
determine the optimal solution as soon as the number of workers exceeds a few units. For instance,
for a platform with 100 workers, we would need to solve (100!)2 linear programs of 100 unknowns
(one program for each permutation pair). Rather than computing the solution for all permutation
pairs, we use the optimal FIFO algorithm as a basis for the comparisons.

The algorithms tested in this section are the following:

• optimal FIFO solution, as determined in Section 4, called OPT-FIFO

Scheduling divisible loads with return messages 15

• optimal LIFO solution , as determined in Section 3, called OPT-LIFO

• a FIFO heuristic using all processors, sorted by non-decreasing values of ci (faster commu-
nicating workers first), called FIFO-INC-C

• a FIFO heuristic using all processors, sorted by non-decreasing values of wi (faster computing
workers first, called FIFO-INC-W).

In the following, we present the relative performance of these heuristics on a master/worker
platform with 100 workers. For these experiments, we chose z = 0.8, meaning that the returned
data represents 80% of the input data. The performance parameters (communication and com-
putation costs) of each worker may vary from 50% around an average value. The ratio of the
average computation cost over the average communication cost is used to distinguish between the
experiments, as the behavior of the heuristics highly depends on this parameter. This ratio is
called the w/c-ratio in the following.

Figure 7 presents the throughput of the different heuristics for a w/c-ratio going from 1/10 to
100. These results are normalized so that the optimal FIFO algorithm always gets a throughput
of 1. We see that both OPT-FIFO and FIFO-INC-C give good results. The other heuristics
(FIFO-INC-W and OPT-LIFO) perform not so well, except when the w/c-ratio is high: in this
case, communications have no real impact on the schedule, and almost all schedules may achieve
good performances.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1 10 100

re
la

tiv
e

th
ro

ug
hp

ut

ratio w/c

OPT-FIFO
OPT-LIFO

FIFO-INC-C
FIFO-INC-W

Figure 7: Performance of the heuristics relative to the optimal FIFO schedule, for different com-
putation/communication costs ratios.

In Section 4, we showed that using all processors is not always a good choice. In Figure 8
we plot the number of processors used by the OPT-FIFO algorithm for the previous experiments:
for small values of the w/c-ratio, a very small fraction of the workers is enrolled in the optimal
schedule.

Finally, Figure 9 presents the relative performance of all heuristics when the size of the data
returned is the same as the size of the input data (z = 1). With the exception of this new
hypothesis (z = 1 instead of z = 0.8), the experimental settings are the same as for Figure 7. We
show that for a w/c-ratio less than 10, only the OPT-FIFO algorithm gives good performance:
the FIFO-INC-C heuristic is no longer able to reach a comparable throughput. We also observe
what we have proved at the end of Section 4: when z = 1 the ordering of the workers has no
importance, FIFO-INC-C and FIFO-INC-W are FIFO strategies involving all the workers but in
different orders, and give exactly the same results.

6 Related work

In addition to the landmark book [7] quoted in Section 1, several sources to DLS literature are
available: see the two introductory surveys [8, 21], the special issue of the Cluster Computing

Scheduling divisible loads with return messages 16

 0

 20

 40

 60

 80

 100

 0.1 1 10 100

nb
 o

f p
ro

ce
ss

or
s

re
al

ly
 u

se
d

ratio w/c

Figure 8: Number of workers enrolled in the optimal FIFO schedule, for different computa-
tion/communication cost ratios.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1 10 100

re
la

tiv
e

th
ro

ug
hp

ut

ratio w/c

OPT-FIFO
OPT-LIFO

FIFO-INC-C
FIFO-INC-W

Figure 9: Performance of the heuristics relative to the optimal FIFO schedule, when ci = di

(z = 1).

Scheduling divisible loads with return messages 17

journal entirely devoted to divisible load scheduling [15], and the Web page collecting DLS-related
papers is maintained [20].

DLS applications include linear algebra [10], image processing [17, 19], video and multimedia
broadcasting [2, 3], database searching [12, 9], and the processing of large distributed files [25].
These applications are amenable to the simple master-worker programming model and can thus be
easily implemented and deployed on computing platforms ranging from small commodity clusters
to computational grids [14].

The DLS model comes in two flavors, with a linear cost model and with an affine cost model.
The linear cost model is the original model, and has been widely adopted because of its simplicity:
several closed-form formulas are available for star, tree, mesh networks among others [7, 20]. The
affine cost model (which amounts to introduce a start-up overhead in the communication cost,
and/or in the computation cost) has been advocated more recently, for two main reasons: (i) it
is more realistic than the linear model; and (ii) it cannot be avoided when dealing with multiple-
round scenarios, where the master is allowed to send data to the workers with several messages
rather than with a single one. Multiple-round strategies are better amenable to pipelining than
one-round approaches, but using a linear cost model would then favor sending a large collection
of infinitely small messages, hence the need to add communication latencies. However, latencies
render the problem more complex: the DLS problem has recently been proved NP-hard on a star
network with the affine model [18].

When dealing with one-round scenarios, as in this paper, the linear model is more realistic,
especially is the total work to be distributed to the slaves is large. From a theoretical perspective,
one major question was to determine whether adding return messages, while retaining the linear
model, would keep the DLS scheduling problem polynomially tractable. We failed to answer this
question, but we have been able to characterize optimal solutions for LIFO and FIFO strategies.

Relatively few papers have considered adding return messages in the study of DLS problems.
Pioneering results are reported by Barlas [4], who tackles the same problem as in this paper (one
round, star platform) but with an affine framework model. Barlas [4] concentrates on two par-
ticular cases: one called query processing, where communication time (both for initial and return
messages) is a constant independent of the message size, and the other called image processing,
which reduces to linear communication times on a bus network, but with affine computation
times. In both cases, the optimal sequence of messages is given, and a closed-form solution to
the DLS problem is derived. In [13], the authors consider experimental validation of the DLS
model for several applications (pattern searching, graph coloring, compression and join opera-
tions in databases). They consider both FIFO and LIFO distributions, but they do not discuss
communication ordering.

Rosenberg [22] and Adler, Gong and Rosenberg [1] also tackle the DLS model with return
messages, but they limit themselves to a bus network (same link bandwidth for all workers). They
introduce a very detailed communication model, but they state results for affine communication
costs and linear computation costs. They have the additional hypothesis that worker processors
can be slowed down instead of working at full speed, with allows them not to consider no idle
times between the end of the execution and the emission of the return messages. They state the
very interesting result that all FIFO strategies are equivalent, and that they perform better than
any other protocol. Note that our results, although not derived under the same model, are in
accordance with these results: when the star platform reduces to a bus platform, the results of
Section 4 show that all processors should be involved in the computation, and that their ordering
has no impact on the quality of the solution.

Finally, we point out that Altilar and Paker [3] also investigate the DLS problem on a star
network, but their paper is devoted to the asymptotic study of several multi-round strategies.

7 Conclusion

In this paper we have dealt with divisible load scheduling on a heterogeneous master-worker plat-
form. We have shown that including return messages from the workers after execution, although

Scheduling divisible loads with return messages 18

a very natural and important extension in practice, leads to considerable difficulties. These diffi-
culties were largely unexpected, because of the simplicity of the linear model.

We have not been able to fully assess the complexity of the problem, but we have succeeded
in characterizing the optimal LIFO and FIFO strategies, and in providing an experimental com-
parison of these strategies against simpler greedy approaches.

Future work must be devoted to investigate the general case, i.e. using two arbitrary permu-
tation orderings for sending messages from, and returning messages to, the master. This seems to
be a very combinatorial and complicated optimization problem.

References

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing of bags of tasks in heterogeneous
clusters. In 15th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA’03),
pages 1–10. ACM Press, 2003.

[2] D. Altilar and Y. Paker. An optimal scheduling algorithm for parallel video processing. In
IEEE Int. Conference on Multimedia Computing and Systems. IEEE Computer Society Press,
1998.

[3] D. Altilar and Y. Paker. Optimal scheduling algorithms for communication constrained par-
allel processing. In Euro-Par 2002, LNCS 2400, pages 197–206. Springer Verlag, 2002.

[4] G. Barlas. Collection-aware optimum sequencing of operations and closed-form solutions
for the distribution of a divisible load on arbitrary processor trees. IEEE Trans. Parallel
Distributed Systems, 9(5):429–441, 1998.

[5] S. Bataineh, T. Hsiung, and T.G.Robertazzi. Closed form solutions for bus and tree networks
of processors load sharing a divisible job. IEEE Transactions on Computers, 43(10):1184–
1196, Oct. 1994.

[6] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling divisible loads
on star and tree networks: results and open problems. IEEE Trans. Parallel Distributed
Systems, 16(3):207–218, 2005.

[7] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi. Scheduling Divisible Loads in Parallel
and Distributed Systems. IEEE Computer Society Press, 1996.

[8] V. Bharadwaj, D. Ghose, and T. Robertazzi. Divisible load theory: a new paradigm for load
scheduling in distributed systems. Cluster Computing, 6(1):7–17, 2003.

[9] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divisible task scheduling - concept and
verification. Parallel Computing, 25:87–98, 1999.

[10] S. Chan, V. Bharadwaj, and D. Ghose. Large matrix-vector products on distributed bus
networks with communication delays using the divisible load paradigm: performance and
simulation. Mathematics and Computers in Simulation, 58:71–92, 2001.

[11] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt. Maple Reference
Manual, 1988.

[12] M. Drozdowski. Selected problems of scheduling tasks in multiprocessor computing systems.
PhD thesis, Instytut Informatyki Politechnika Poznanska, Poznan, 1997.

[13] M. Drozdowski and P. Wolniewicz. Experiments with scheduling divisible tasks in clusters
of workstations. In Proceedings of Euro-Par 2000: Parallel Processing, LNCS 1900, pages
311–319. Springer, 2000.

Scheduling divisible loads with return messages 19

[14] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, Inc., San Francisco, USA, 1999.

[15] D. Ghose and T. Robertazzi, editors. Special issue on Divisible Load Scheduling. Cluster
Computing, 6, 1, 2003.

[16] G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins, 1989.

[17] C. Lee and M. Hamdi. Parallel image processing applications on a network of workstations.
Parallel Computing, 21:137–160, 1995.

[18] A. Legrand, Y. Yang, and H. Casanova. Np-completeness of the divisible load scheduling
problem on heterogeneous star platforms with affine costs. Research Report CS2005-0818,
GRAIL Project, University of California at San Diego, march 2005.

[19] X. Li, V. Bharadwaj, and C. Ko. Distributed image processing on a network of workstations.
Int. J. Computers and Applications (ACTA Press), 25(2):1–10, 2003.

[20] T. Robertazzi. Divisible Load Scheduling. http://www.ece.sunysb.edu/~tom/dlt.html.

[21] T. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–68, 2003.

[22] A. L. Rosenberg. Sharing partitionable workloads in heterogeneous NOws: greedier is not
better. In Cluster Computing 2001, pages 124–131. IEEE Computer Society Press, 2001.

[23] J. Sohn, T. Robertazzi, and S. Luryi. Optimizing computing costs using divisible load analysis.
IEEE Transactions on parallel and distributed systems, 9(3):225–234, Mar. 1998.

[24] The MuPAD Group (B. Fuchssteiner et al.). MuPAD User’s Manual. John Wiley and sons,
1996.

[25] R. Wang, A. Krishnamurthy, R. Martin, T. Anderson, and D. Culler. Modeling commu-
nication pipeline latency. In Measurement and Modeling of Computer Systems (SIGMET-
RICS’98), pages 22–32. ACM Press, 1998.

http://www.ece.sunysb.edu/~tom/dlt.html

	1 Introduction
	2 Framework
	2.1 Problem parameters
	2.2 Linear program for a given scenario
	2.3 Counter-examples

	3 LIFO strategies
	4 FIFO strategies
	5 Simulations
	6 Related work
	7 Conclusion

