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� Introduction

The impressive e�ort put in the design and the implementation of the High Performance Fortran
�HPF� language ��� in the past year has brought data�parallelism to the forefront of the research
scene� Data�parallel programming appears today as a major advance in the long quest towards a
portable parallel programming environment� available from low cost workstation clusters to mas�
sively parallel computers� We are now witnessing the emergence of a number of data�parallel
languages� most of them derived from Fortran or C� and mainly designed by the constructors
of massively parallel machines for their customers� Unfortunately� their design has often been
primarily motivated by pragmatic and short�term considerations� and comparatively few studies
have been done on their principles� on their semantic expressivity� or on the associated program
validation methods� This results in poor language design� semantic �hand�waving� and pitfalls�
unmaintainable programs and� ultimately� a waste of time and money�

Current data�parallel languages can be classi�ed into two categories� depending on the diversity
of their data�parallel control structures�

� Low�level languages � such as HPF or Thinking Machine�s C�� o�er parallel data�types �dis�
tributed arrays� shapes� etc�� and assignment commands between parallel objects �possibly
including rearrangement�� But the overall control structure is still scalar� inherited from the
original language� There is no speci�c data�parallel control besides the conditioning where
construct which restricts the current extent of parallelism� Such languages are very close to
the ���year old Actus language of Perrot ����� probably the �rst attempt towards a semantic
approach of data�parallelism�

� High�level languages � such as MasPar�s MPL or the recent HyperC ����� de�ne� besides the
scalar control structure inherited from the original language� a rich set of data�parallel control
structures� They include the data�parallel extensions of usual scalar constructs such as for�
while� switch� and their associated non�local control�transfer commands break and continue�
This additional semantic facility has proved to be appropriate for a clean description of many
data�parallel algorithms� in the same way as using the C break construct often leads to a
clearer coding� In this respect� these languages can be called fully data�parallel � as they go
much beyond embedding data�parallel assignments into a scalar control harness�

Several researchers have attempted to give a formal semantics to such data�parallel languages�
and to use it to prove programs correct� Most works have focused on the data�parallel assignment
�see for instance ��
�� and to some extent ����� that is a low�level approach in the above classi�cation�
An early attempt for the Actus language can be found in ���� there� the entire Actus language
is considered� at the price of considerable technical complexity� In contrast� we have shown in
our previous papers that it is possible to de�ne a kernel data�parallel language� called L� which
encapsulates the main features of the low�level languages �
�� We have described a natural semantics
for it� and an assertional proof system ���� Moreover� we have shown the possibility of de�ning a
weakest precondition �WP� calculus for L ���� It can be used as a basis to demonstrate the �relative�
completeness of this proof system� It also opens the way to a computer�aided validation tool for L
programs based on the automatic generation of veri�cation conditions ��� 	��

This contribution of this paper is to extend these results to the case of high�level languages �
First� we describe an extended version of the L kernel language� called L�� which captures the notion
of data�parallel non�local control transfer � We give it a natural semantics based on the multi�context
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approach of �
�� We de�ne an extended notion of assertion� and we describe the associated proof
rules� This is illustrated by the proof of a simple data�parallel factorial program�

� The L language

An extensive presentation of the L language can be found in �
�� For the sake of completeness� we
brie�y recall its natural semantics as described in ����

��� Informal description

In the data�parallel programming model� the basic objects are arrays with parallel access� Two kinds
of actions can be applied to these objects� componentwise operations� and global rearrangements �
A program is a sequential composition of such actions� Each action is associated with the set of
array indices at which it is applied� An index at which an action is applied is said to be active�
Other indices are said to be idle� The set of active indices is called the activity context or the extent
of parallelism� It can be seen as a boolean array where true denotes activity and false idleness�

The L language is designed as a common kernel of data�parallel languages like C� ����� Hy�
perC ���� or MPL ����� We do not consider the scalar part of these languages� mainly imported
from the C language� For the sake of simplicity� we consider only arrays of dimension one� also
called vectors � indexed by integers� It follows that all variables of L are parallel� and all the objects
are vectors of scalars� with one component at each index� As a convention� the parallel objects
are denoted with uppercase letters� The legal expressions are pure expressions� i�e� without side
e�ects� de�ned like the pure functions of HPF� The value of a pure expression at index u only
depends on the values of the variables at index u� The expressions are evaluated by applying op�
erators componentwise to parallel values� We do not further specify the syntax and semantics of
such expressions� The component of parallel object X located at index u is denoted by X ju� We
introduce a special vector constant called This� The value of its component at each index u is the
value u itself� Thisju � u� Note that This is a pure expression and that all constructs de�ned here
are deterministic�

Assignment� X �� E� At each active index u� component X ju is updated with the local value of
pure expression E�

Communication� get X from A into Y � At each active index u� pure expression A is evaluated to
an index v� then component Y ju is updated with the value of component X jv� We always
assume that v is a valid index� �Notice that the remote expression X is restricted to be a
variable��

Sequencing� S� T � The execution of the actions of T starts on the termination of the last action
of S�

Iteration� loop B do S end� The actions of S are repeatedly executed with the current extent of
parallelism� until pure boolean expression B evaluates to false at each currently active index�

Conditioning� where B do S end� The body S of a conditioning block is executed in a new activity
context de�ned as follows� The initially idle indices remain idle during the execution S� The
initially active indices where pure boolean expression B evaluates to false are turned idle
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M �� N � R �� N �

loop �M � �� do
where �M � �� do

M ��M � ��
R �� R�M

end
end

Figure �� The data�parallel factorial� L version�

during the execution of S� they are called deselected � The remaining ones remain active
during the execution of S� they are called selected � The initial activity context is restored on
termination of S�

Note that the MPL data�parallel while construct can be expressed by a where nested in a loop� As
This is a pure L expression� note also that the local computations may depend on the value of the
local index�

In this paper� we will consider the running example shown in Figure �� Given an initial integer
vector N with all components N ju � �� we want to compute an integer vector R such that� at each
index u� Rju � factorial�N ju�� The idea is to build the decreasing product chain at each index until
� is reached� and then to remain in active wait until � is reached at all indices�

��� A natural semantics for L

We describe the semantics of L in the style of Kahn and Plotkin�s natural semantics by induction
on the syntax of L�

An environment � is a function from identi�ers to vector values� The set of environments is
denoted by Env� For convenience� we extend the environment functions to parallel expressions�
��E� denotes the value obtained by evaluating parallel expression E in environment �� We do not
specify any further the internals of expressions� Note that ��This�ju � u by de�nition�

De
nition � Pure expression� A parallel expression E is pure if for any index u� and any envi�

ronments � and ���

��X � ��X�ju � ���X�ju�� ���E�ju � ���E�ju��

Let � be an environment� X a vector variable and V a vector value� We denote by ��X � V � the
new environment �� where ���X� � V and ���Y � � ��Y � for all Y �� X �

A context c is a boolean vector� It speci�es the activity at each index� cju is true i� index u is
active� The set of contexts is denoted by Ctx� We distinguish a particular context denoted by True
whose components all have value true � For the sake of consistency with Section ��� we introduce
the notation active �

active � c
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A state is a pair made of an environment and a context� The set of states is denoted by State�
State � �Env � Ctx� � f	g where 	 denotes the unde�ned state�

The semantics ��S �� of a program S is a strict function from State to State� ��S ���	� � 	� and
��S �� is extended to sets of states as usual� The following paragraphs de�ne �� �� for L programs�

Assignment� At each active index� the component of the parallel variable is updated with the new
value�

��X �� E ����� c� � ���� c�

with �� � ��X � V � where V ju � ��E�ju if active ju� and V ju � ��X�ju otherwise� The
activity context is preserved� Notice that since E is pure� the evaluation of ��E�ju requires
no communications� it is local�

Communication� It acts very much as an assignment� except that the assigned value is the value
of another component�

��get X from A into Y ����� c� � ���� c��

with �� � ��Y � V � where V ju � ��X�j��A�ju if active ju� and V ju � ��Y �ju otherwise� Again�
the evaluation of ��A�ju is local� and context is preserved�

Sequencing� Sequential composition denotes functional composition�

��S� T ����� c� � ��T �����S ����� c���

Iteration� Iteration is expressed by classical loop unfolding� It terminates when the pure boolean
expression B evaluates to false at each active index�

�� loop B do S end ����� c� �

���
��
�� loop B do S end �����S ����� c��

if 
u � �activeju � ��B�ju�
��� c� otherwise

If the unfolding does not terminates� then we take the usual convention�

�� loop B do S end ����� c� � 	

Conditioning� The denotation of a where construct is the denotation of its body with a new context�
The new context is the conjunction of the previous one with the value of the pure conditioning
expression B� If ��S ����� c� ��B�� � ���� c��� then we have

��where B do S end ����� c� � ���� c��

If ��S ����� c� ��B�� � 	� then we put ��where B do S end ����� c� � 	� Observe that the value
of c� is ignored here� i�e� the initial context is restored on exit from the where block� The
evaluation of ��B� is local�

Remark� In the L language� the activity context is preserved by terminating executions� for
any program S such that ��S ����� c� � ���� c��� we have c � c�� This will no longer be the case for
the extended language below�






� Extending L with non�local control transfer commands

The MPL or HyperC languages include the data�parallel extensions of the for� while� switch control
structures� with their associated escape commands break and continue� Their intended meaning is
the following� When an escape command is executed at a currently active index� the activity at
this index is turned to idle until the end of the corresponding enclosing block� We say it is then
asleep� On the other hand� executing an escape command at an idle index has no e�ect� Once the
control has reached the end of the block� the initial �awakeness� is restored at all indices� This is
thus the straightforward data�parallel generalization of the usual scalar behavior� which is to jump

at the exit label of the block� the jump has been generalized to a temporary idleness � which is
needed because of the global nature of control�

��� Informal description

A simple way to give account of this behavior in the L language is to extend it with a new block
de�nition structure begin S end� together with a escape command executable in the scope of the
block� Such a block will be called an escaping block � Yet� this is not su cient to model the complex
interplay between the break and continue escape commands in C� to do this one would have to be
able to escape from more than one enclosing block! The solution is thus to de�ne several types of
begini S end escaping blocks with their respective escape escapei commands� labelled i � �� � � � � N �

The use of escaping blocks is illustrated by the program below� We consider vectors of size ��
where indices range between � and �� The comments at the end of each line show the evolution of
the currently active index list� Recall that expression This evaluates to the local index value�

begin� �� Indices �� �� � are active ��

where �This � �� do �� �� � ��
begin� �� �� � ��

where �This � �� do �� � ��
escape� �� None ��

end �� � ��

end �� � ��
end �� �� � ��

end �� �� �� � ��

For usual data�parallel languages derived from C� N � � is su cient� type � de�nes for instance
the scope of the break command� which corresponds to escape�� type � de�nes the scope of the
continue command� which corresponds to escape�� �Note that an additional type could be de�ned
to handle the data�parallel extension of the C return command��

Thanks to these data�parallel non�local transfer commands� our running example can be recast
as in Figure �� On executing the escape� command at line 
 at an active index u such thatM ju � ��
this index falls asleep� and it remains idle until the end of the enclosing type � block at line �� The
loop at line � terminates as soon as all indices have turned idle� that is� after all indices have
escape��d� Once the global control reaches line �� all asleep indices wake up� The reader may wish
to compare this behavior with the usual C code�
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M �� N � R �� N � ���
begin� ���

loop True do ���
where �M � �� do escape� end� �
�
M ��M � �� ���
R �� R�M ���

end ���
end ���

Figure �� The data�parallel factorial� L� version�

m�n� r�n� for ���� �if �m��� break� m��� r��m��

Let L� be the L language extended with N block de�nition structures begini S end� � � i � N � and
the N corresponding escape commands escapei�

��� A natural semantics for L�

The original notion of activity of L becomes now two�fold in L��

Conditioning context� It is de�ned by the where conditioning blocks� An index is said to be selected
or not according to the value of the conditioning expression�

Escaping context� It is de�ned for each escaping begini block� An index can be awake or asleep�
On executing an escapek command� all currently active indices fall asleep until the end of the
enclosing escaping block of type k�

An index is active in L� if it is both selected with respect to the enclosing conditioning block and�
awake with respect to the enclosing escaping blocks of each type� An index not active is said to be
idle�

The original notion of state ��� c� in L can then be similarly extended� A state is now a triple
��� c�"a�� where � is the environment� c is a boolean vector and "a � ha�� � � � � aNi is a list of boolean
vectors� Vector c denotes the conditioning context� for each index u� cju is true if u is selected� and
false otherwise� Each vector ai denotes the escaping context of type i� for each index u� aiju is true
if u is awake in block i� and it is false if it is asleep�

It is convenient to extend the notation de�ned in Section ����

active � c� �
�i�N

i��
ai�

Thanks to this convention� the semantic equations of L� for assignment� communication� sequencing
and iteration are obvious extensions of the corresponding parts of L�s semantics� We only list below
the remaining cases�

�



Conditioning block� On entering a conditioning block� the conditioning context is saved� It is re�
stored on exiting the block� The new conditioning context within the block is the conjunction
of the initial one with the current value of the pure expression B�

��where B do S end ����� c�"a� � ���� c� "a��

with ��S ����� c � ��B�� "a� � ���� c�� "a��� Observe that the escaping context is not restored� If
��S ����� c� ��B�� "a� � 	� then we simply put ��where B do S end ����� c� "a� � 	�

Escaping block� On entering an escaping block of type k� the escaping context of type k is saved�
It is restored on exiting the block�

�� begink S end ����� c� "a� � ���� c�� "a��

with ��S ����� c� "a� � ���� c�� "a��� and "a� � ha��� � � � � � a
��
k��� ak� a

��
k��� � � � � a

��
N
i� if ��S ����� c� "a� � 	�

then we put �� begink S end ����� c�"a� � 	�

Escape� On executing an escapek command� all currently active indices fall asleep with respect to
escaping type k� This amounts to restricting the escaping context of type k with the negation
of the current activity context�

�� escapek ����� c�"a� � ��� c�"a
��

with "a� � ha�� � � � � ak��� ak � active � ak��� � � � � aNi�

Remark� In the L language� we have stressed that the activity context is preserved by the
terminating executions� Because of the escapei commands of L�� this invariant is no longer true�
an initially active index may be idle at the termination� Yet� it can be proved that an initially idle
index remains idle throughout the execution�

� Assertions and speci�cations

As for the semantics� we show in this section that the notion of assertion de�ned for L programs
can be conveniently extended to L� programs by considering multiple activity contexts� For the
sake of completeness� we brie�y recall the structure of L assertions as described in ����

��� An assertion language for L programs

We de�ne an assertion language for the partial correctness of L programs in the lines of ���� Such
a speci�cation is denoted by a formula fPreg S fPostg where S is the program text� and Pre

and Post are logical assertions on variables of S� This formula means that� if precondition Pre is
satis�ed in the initial state of program S� and if S terminates� then postcondition Post is satis�ed
in the �nal state� A proof system gives a formal method to derive such speci�cation formulae by
syntax�directed induction on programs� Axioms correspond to statements� and inference rules to
control structures� Then� proving that a program meets its speci�cation is equivalent to deriving
the speci�cation formula fPreg S fPostg in the proof system�
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Such a proof system for the L language is described in ���� A fundamental property of this
axiomatic semantics in the usual scalar case is compositionality � To achieve this goal� the assertion
language has to include su cient information on variable values� Similarly� our assertion language
has to include some information about the current activity context as well as variable values� We
therefore de�ne two�part assertions fP�Cg� where P is a predicate on vector program variables�
and C is a pure boolean vector expression which evaluates into an activity context�

Our assertion language has two kinds of variables� scalar variables and vector variables� As a
convention� scalar variables will be denoted with a lowercase initial letter� and vector ones with an
uppercase one� We have a similar distinction for arithmetic and logical expressions� As usual� scalar
�resp� vector� expressions are inductively de�ned with usual arithmetic and logical connectives�
Basic scalar �resp� vector� expressions are scalar �resp� vector� variables and constants� Vector
expression can be subscripted� If the subscript expression is a scalar expression� then we have a
scalar expression� the meaning of X ju is the component of X at index u� Otherwise� if the subscript
expression is a vector expression� then we have another vector expression� the meaning of X jA is
a vector whose component at index u is the value of component of X at index Aju� The meaning
of a vector expression is obtained by componentwise evaluation� We introduce a scalar conditional
expression with a C�like notation c#e � f � Its value is the value of expression e if c is true� and f
otherwise� Similarly� the value of a conditional vector expression� denoted by C#E � F � is a vector
whose component at index u is Eju if Cju is true� and F ju otherwise�

Predicates are usual �rst�order formulae� They are inductively de�ned from boolean scalar
expressions with logical connectives and existential or universal quanti�ers binding scalar variables�
It turns out that there is no need to consider quanti�cation on vector variables�

We introduce a substitution mechanism for vector variables� Let P be a predicate or any vector
expression� X a vector variable� and E a vector expression� P �E�X � denotes the predicate� or
expression� obtained by substituting all the occurrences of X in P with E� Note that all vector
variables are free by de�nition of our assertion language� The usual Substitution Lemma ��� extends
to this new setting� Let � be an environment and P a predicate� We use the usual notation � j� P

to denote that � is a model of predicate P � that is� P evaluates to true under assignment ��

Lemma � Substitution lemma� For every predicate on vector variables P � vector expression E

and environment ��
� j� P �E�X � i� ��X � ��E�� j� P

��� Extending assertions to L� programs

Going from L to L� semantics amounts to replacing the single activity context by a conditioning
context and a list of escaping contexts� We thus extend the context part of L assertions in a similar
way� Assertions are of the form fP�C� "Ag� where

� P is a predicate on program variables�

� C is a pure boolean vector expression which evaluates into the current conditioning context�

� "A � hA�� � � � � ANi is a list of pure boolean vector expressions� each Ai evaluates into the
current escaping context of type i�

�



The activity context is the conjunction of these contexts� It is the value of C �
V
i�N
i�� Ai� For

convenience� we denote this expression by C � "A� All de�nitions of ��� can be extended to this
new setting as shown below� We extend the notion of satis�ability �denoted by j�� to states and
assertions�

De
nition � Satis
ability� Let ��� c� "a� be a state� fP�C� "Ag an assertion�

��� c�"a� j� fP�C� "Ag i� � j� P and ��C� � c and �i � ��Ai� � ai

By convention� 	 satis�es any assertion� The set of states satisfying fP�C� "Ag is denoted by
��fP�C� "Ag ��� or fP�C� "Ag when no confusion may arise�

De
nition � Assertion implication� Let fP�C� "Ag and fQ�D� "Bg be two assertions� We say that

the former implies the latter with respect to context�

fP�C� "Ag � fQ�D� "Bg i� P � Q and P � �u � ��Cju � Dju� � �i � �Aiju � Biju��

Observe that this de�nition extends the usual one� fP�C� "Ag � fQ�D� "Bg i� ��fP�C� "Ag �� �
��fQ�D� "Bg ���

��� A proof system for L� programs

We may now de�ne the validity of a speci�cation of a L� program with respect to its semantics�
Because 	 satis�es any assertion� our notion validity is relative to termination� it de�nes partial
correctness �

De
nition 	 Speci
cation validity� Let S be a L� program� and let fP�C� "Ag and fQ�D� "Bg be

two assertions� We say that the speci�cation is valid� denoted by

j� fP�C� "Ag S fQ�D� "Bg

if for each state ��� c� "a� such that ��� c� "a� j� fP�C� "Ag

��S ����� c� "a� j� fQ�D� "Bg�

Following the notation of ���� let Change�S� be the set of variables appearing on the left of as�
signments or as targets of get instructions� Only these variables can have their values changed by
executing S� Let Var�C� be the set of variables which appear in expression C� The value of C
depends on these variables only� We describe below a restricted proof system where we assume
everywhere that context expressions are not modi�ed by program bodies� Change�S��Var�C� � �
and Change�S� � ��i�N

i�� Var�Ai�� � ��

Assignment� X �� E� We extend the usual backwards axiom by taking into consideration that
vector variable X is modi�ed only at the active indices� that is indices where C � "A evaluates
to true�

The global activity is preserved by assignments� the initial activity is the same as the �nal one�
As the conditioning and escaping activities are described by boolean vector expressions � we

	



can describe the respective initial activities only if the values of the expressions describing the
�nal ones are not changed by the assignment� An easy su cient condition is that X �� Var�C�
and �i � X �� Var�Ai��

X �� Var�C� and �i � X �� Var�Ai�

fP ���C � "A�#E � X��X �� C� "Ag X �� E fP�C� "Ag

Communication� get X from A into Y � As noticed before� a get is an assignment of a remote value�

Y �� Var�C� and �i � Y �� Var�Ai�

fP ���C � "A�#X jA � Y ��Y �� C� "Ag get X from A into Y fP�C� "Ag

Sequencing� S� T � It is a straightforward generalization of the usual case�

fP�C� "Ag S fR�C�� "A�g� fR�C�� "A�g T fQ�D� "Bg

fP�C� "Ag S� T fQ�D� "Bg

Iteration� loop B do S end� The usual loop invariant here must be invariant with respect to both
the variable values and each of the activity types�

fI � 
u � ��C � "A�ju �Bju�� C� "Ag S fI� C� "Ag

fI� C� "Ag loop B do S end fI � �u � ��C � "A�ju � Bju�� C� "Ag

Conditioning block� where B do S end� Following the semantics� the initial conditioning context
is saved on entering the block and restored on exiting� The conditioning context within
the block is the conjunction of the conditioning context expression and the conditioning
expression� This is taken into account by and�ing conditioning context expression C with
condition expression B� and restoring C on exiting� Yet� this makes sense only if the value
of C has been left unchanged� The restriction Change�S�� Var�C� � � is an easy su cient
condition for this to hold�

fP�C �B� "Ag S fQ�C�� "A�g� Change�S��Var�C� � �

fP�C� "Ag where B do S end fQ�C� "A�g

Escaping block� begink S end� Similarly� the initial escaping context of type k is saved on entering
an escaping block and restored on exiting� Again� the restriction Change�S�� Var�Ak� � �
is su cient to guarantee that the value of Ak has been left unchanged�

fP�C� "Ag S fQ�C�� "A��g� Change�S�� V ar�Ak� � �

fP�C� "Ag begink S end fQ�C�� "A�g

with "A� � hA��
�� � � � � A

��
k��� Ak� A

��
k��� � � � � A

��
N
i

��



Escape� escapek � All currently active indices fall asleep with respect to escaping type k� The new
escaping context expression of type k is the conjunction of the previous one with the negation
of the global activity�

fP�C� "Ag escapek fP�C� "A
�g

with "A� � hA�� � � � � Ak��� Ak � �C � "A�� Ak��� � � � � ANi

Consequence rule� Following De�nition �� we can state the consequence rule�

fP�C� "Ag � fP �� C� "A�g fP �� C�� "A�g S fQ�� D�� "B�g fQ�� D�� "B�g � fQ�D� "Bg

fP�C� "Ag S fQ�D� "Bg

This rule allows us to strengthen preconditions� and to weaken postconditions of speci�cations�

Proposition � Soundness� This proof system is sound� if

� fP�C� "Ag S fQ�D� "Bg

then

j� fP�C� "Ag S fQ�D� "Bg�

Proof The proof is done by induction on the structure

of S� The cases of the assignment and communication commands are simple consequences of

the Substitution Lemma � thanks to the restriction X �� Var�C� and �i � X �� Var�Ai�� As

an example� we give the proof of the case of escaping block�

Let ��� c�"a� be a state satisfying fP�C� "Ag� By de�nition of the escaping block con�

struct� assume �� begink S end ����� c�"a� � ���� c�� "a�� with ��S ����� c� "a� � ���� c�� "a��� and

a� � ha��� � � � � � a
��
k��� ak� a

��
k��� � � � � aNi� By assumption� ���� c�� "a��� j� fQ�C�� "A��g� In partic�

ular� "a�� � ��� "A����

As Change�S��Var�Ak� � �� we have ��Ak� � ���Ak�� Thus� "a� � ��� "A��� We get ���� c�� "a�� j�
fQ�C�� "A�g� as wanted� �

Remark� Two additional rules will be introduced in the next section to deal with auxiliary
variables in preconditions and in programs�

� An extended example

We demonstrate this proof system by giving the proof annotation of our running example with
assertions� in the manner of ����� Let P be our original program in Figure �� Let T denote the
constant boolean vector whose components are all true� We aim at proving

f�u � �N ju � ��� T� hTig P f�u � �Rju � N ju � � � �� ��� T� hTig

The main step is to de�ne a convenient syntactic loop invariant� Observe that the activity context
decreases as iterations go� It is thus necessary to add a new auxiliary variable A� which is meant to
contain the value of the activity context at each iteration� It is su cient to set it to true initially and

��



��� M �� N � R �� N �

��� begin�
���� A �� True�

��� loop True do
�
�� where �M � �� do A �� False� escape� end�

��� M ��M � ��
��� R �� R�M

��� end
��� end

Figure �� The data�parallel factorial� L� version with the auxiliary variable

to set it to false just before executing the escape� command� this assignment will then be completed
exactly at the currently active indices� that is at the indices bound to fall asleep immediately� This
new program P � is displayed on Figure �� According to this intuition� variable A is false at least
at all sleeping indices� �u � �Aju � �M ju � ���� and the role of line �


��

where �M � �� do A �� False� escape� end

is to tune the value of A so that �u � �Aju � �M ju � ���� Thus� at each iteration� the escape��d
indices are exactly those indices u such that Aju is false� and the activity of type � is described by
expression A� A good candidate for an invariant is thus fI � �u � �Aju � �M ju � ���� T� hAig�
with

I � �u � ��Rju � N ju� � � ��M ju� � �M ju � ���

Assume for a while that variable A acts as wanted� and that the following annotation can be
derived�

fI � �u � �Aju � �M ju � ���� T� hAig

where �M � �� do A �� False� escape� end

fI � �u � �Aju � �M ju � ���� T� hAig

Then� it is tedious but easy to check that the annotation for the entire program displayed on
Figure 
 is valid�

It remains to prove that the annotation of line �
�� is indeed correct� This is the only piece
of program where the escaping context is explicitly manipulated� Note that variable A appears
both in the escaping context expression and in the left part of an assignment� The assignment rule
cannot be applied� as explained above� We are thus bound to introduce a new auxiliary variable
A� in the initial assertion in order to save the initial value of the escaping context� First� we show

fI � �u � �Aju � �M ju � ���� �u � �A�ju � Aju�� T� hA�ig

where �M � �� do A �� False� escape� end

fI � �u � �Aju � �M ju � ���� T� hAig

The annotation is displayed on Figure �� The crucial step is to show that �d�� �e�� that is� boolean

��



We use the following de�nitions�

I � �u � ��Rju � N ju � � � ��M ju�� �M ju � ���
I � � �u � �Aju � �Rju �M ju � N ju � � � ��M ju�� Aju � �Rju � N ju � � � �� ��

� �M ju � ���
I �� � �u � �Aju � �Rju � �M ju � �� � N ju � � � �� �M ju � ��� � Aju � �Rju � N ju � � � �� ��

� �M ju � ���

f�u � �N ju � ��� T� hTig �a�
��� M �� N � R �� N �

fI� T� hT ig �b�
��� begin�

fI� T� hT ig �c�
���� A �� True�

fI � �u � Aju� T� hT ig �d�
fI � �u � Aju� T� hAig �e�

fI � �u � �Aju � �M ju � ���� �u � Aju� T� hAig �f�
��� loop True do

fI � �u � �Aju � �M ju � ���� 
u � Aju� T� hAig �g�
�
�� where �M � �� do A �� False� escape� end�

fI � �u � �Aju � �M ju � ���� T� hAig �h�
fI �� � �u � �Aju � �M ju � ���� T� hAig �i�

��� M ��M � ��
fI � � �u � �Aju � �M ju � ���� T� hAig �j�

��� R �� R�M
fI � �u � �Aju � �M ju � ���� T� hAig �k�

��� end

fI � �u � �Aju � �M ju � ��� � �u � Aju� T� hAig �l�
fI � �u � �M ju � ��� T� hAig �m�

f�u � �Rju � N ju � � � �� ��� T� hAig �n�
��� end

f�u � �Rju � N ju � � � �� ��� T� hTig �o�

Figure 
� The annotated data�parallel factorial with an auxiliary variable
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We use the same de�nition as on Figure 
�

fI � �u � �A�ju � �M ju � ��� � �u � �A�ju � Aju�� T� hA�ig �a�
��� where M � � do

fI � �u � �Aju � �M ju � ���� �u � �A�ju � Aju�� �M � ��� hA�ig �b�
��� A �� False�

fI � �u � �Aju � �M ju � ���� �u � �A�ju � Aju�� �M � ��� hA�ig �c�
��� escape�

fI � �u � �Aju � �M ju � ���� �u � �A�ju � Aju�� �M � ��� h�A� � �M � ���ig �d�
fI � �u � �Aju � �M ju � ���� �u � �A

�ju � Aju�� �M � ��� hAig �e�
fI � �u � �Aju � �M ju � ���� �M � ��� hAig �f�

�
� end

fI � �u � �Aju � �M ju � ���� T� hAig �g�

Figure �� The annotated inner where block of the factorial�

vector expressions A� � �M � �� and A have the same value as soon as predicate

�u � �Aju � �M ju � ���� �Aj
�
u
� Aju�

is satis�ed� This stems from a simple �but tedious� case analysis on the truth value of Aju�

� If Aju is true� then both �M ju � �� and A�ju are true� Thus� �A� � �M � ���ju is true�

� If Aju is false� then �M ju � �� is false� Thus� �A
� � �M � ���ju is false as well�

Let us now introduce an additional rule to our proof system to get rid of such auxiliary variables�

Auxiliary variable elimination in preconditions� If a variable Aux appears in the precondition only�
then it can be substituted by any expression E�

fP�C� "Ag S fQ�D� "Bg Aux �� Var�S��Var�Q��Var�D�� Var� "B�

fP �E�Aux �� C�E�Aux�� "A�E�Aux �g S fQ�D� "Bg

It can be shown that this rule is sound� Substituting A � � E� for A� � � Aux� in the initial
precondition on Figure � yields the wanted formula�

fI � �u � �Aju � �M ju � ���� T� hAig

where �M � �� do A �� False� escape� end

fI � �u � �Aju � �M ju � ���� T� hAig

It remains to get rid of auxiliary variable A in the factorial program P �� We can again add a
new rule in our proof system� which enables to forget everything about such auxiliary variables� in
the lines of the method proposed by Gries and Owicki �����

�




De
nition � Auxiliary variables� Let V be a set of variables� We say that variables of V are

auxiliary in program S if they only appear in assignment commands of the form Z �� E� or

communication commands of the form get X from A into Z� with Z � V �

It is clear that removing all commands containing variables of V does not modify the overall
behavior of the program� nor the �nal values of the variables not in V � The role of such auxiliary
variables is limited to convey information from the control �ow and the activity context to the
environment� If S is a program� and V is a set of auxiliary variables for S� then S n V denotes the
program obtained by stripping S from all commands involving variables of V �

Elimination of auxiliary variables in programs� If something which does not depend on auxiliary
variables has been proved about a program equipped with auxiliary variables� then it is true
of the program without them�

fP�C� "Ag S fQ�D� "Bg

V is a set of auxiliary variables for S

V � �Var�P � �Var�C��Var� "A�� Var�Q� �Var�D�� Var� "B�� � �

fP�C� "Ag S n V fQ�D� "Bg

It can be shown that this rule is sound� It is clear that fAg is a set of auxiliary variables for P ��
and that P � n V is exactly P � From the proved formula

f�u � �N ju � ��� T� hT ig P � f�u � �Rju � N ju � � � �� ��� T� hT ig

we can �nally infer the desired formula�

f�u � �N ju � ��� T� hTig P f�u � �Rju � N ju � � � �� ��� T� hTig

� Conclusion

This work shows that the classical approach towards the natural semantics and assertional proof
systems for scalar languages can be extended to modern data�parallel languages� It can even be
tuned to handle complex escape control structures as found in high�level data�parallel languages
such as MasPar�s MPL or the recent HyperC� Our running example shows that the proof of such
programs can be built according to the usual intuition by annotating the program text with inter�
mediate assertions� This is a major result� as the amount of information is much larger than in the
scalar case� and yet the formal manipulations are basically of the same complexity�

To our understanding� this is a strong argument in favor of data�parallel programming as op�
posed to �control��parallel Occam�like programming� data�parallelism allows to handle the valida�
tion of parallel programs �for free�� which is in striking contrast to the technical complexity of the
validation methods for Occam programs�

This work can be continued in several directions� On a technical level� it would be interesting
to study the completeness of the proof system �at least for programs without iteration�� is it
always possible to add auxiliary variables to convey enough information from the control �ow to

��



the environment# Also� we have shown in �
� that any L� program S can be transformed into an
equivalent L program S�� up to auxiliary variables� In ���� we have presented a proof system for L
programs� What is the relationship between the proof of S in L�� and the proof of the equivalent
program S� in L# Also� the MPL and HyperC languages do not include the escape mechanism
explicitly� but rather through the specialized break and continue commands� can we de�ne any
specialized proof rules to handle these constructs directly#

On a broader level� the extension of usual proof systems to complex data�parallel languages
such as MPL or HyperC� enables to reuse in this new setting all the know�how developed for
the validation of scalar programs� methodologies� computer�aided veri�cation environments �e�g��
����� heuristics� etc� This opportunity opens a quite exciting research direction which could make
large�scale parallel programming really possible� We are currently investigating this new frontier�

Acknowledgments� This work has greatly bene�ted from discussions with Yann Le Guyadec
and Bernard Virot� We thank Ga�etan Hains for his detailed comments and suggestions�

References

�� K�R� Apt and E�R� Olderog� Veri�cation of Sequential and Concurrent Programs� Text and Monographs
in Computer Science� Springer Verlag� �

��

�� L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� On the expressivity of a waekest precondition calculus
for a simple data�parallel language� In Parallel Processing� ConPar��� � VAPP VI� Lect� Notes Comp�
Science� Linz� Austria� September �

��

�� L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� A proof system for a simple data�parallel program�
ming language� In C� Girault� editor� Proc� of the IFIP WG�	�
 Int� Conf� on Application in Parallel
and Distributed Computing� Caracas� V�en�ezuela� April �

�� Elsevier�

�� L� Boug�e and J��L� Levaire� Control structures for data�parallel SIMD languages� semantics and imple�
mentation� FGCS� �������	�� �

��

�� M� Clint and K�T� Narayana� On the completeness of a proof system for a synchronous parallel pro�
gramming langage� In Third Conf� Found� Softw� Techn� and Theor� Comp� Science� Bangalore� India�
December �
���

�� High Performance Fortran Forum� High Performance Fortran language speci�cation �draft version��
CITI�CRPC� Rice Univ�� Houston� January �

�� Version ��� Draft�

�	 J� Gabarr�o and R� Gavald�a� An approach to correctness of data parallel algorithms� Technical Report
LSI�
���
� Univ� Polit�ecnica de Catalunya� October �

�� To appear in Journ� of Parallel and Distr�
Computing� �

��

�� M�J�C� Gordon� Programming Language Theory and its Implementation� Int� Series in Comp� Sciences�
Prentice Hall� �
���

�
 J��L� Levaire� Using the Centaur system for data�parallel SIMD programming� a case study� In Proc�
�th European Symposium on Programming ESOP���� volume ��� of Lect� Notes Comp� Science� pages
�������� Springer�Verlag� February �

��

��� MasPar Computer Corporation� Sunnyvale CA� Maspar Parallel Application Language Reference Man�
ual� �

��

��� S� Owicki and D� Gries� Verifying Properties of Parallel Programs � An Axiomatic Approach� Commu�
nication of the ACM� �
�����	
����� May �
	��

��� N� Paris� HyperC speci�cation document� Technical Report 
���� HyperParallel Technologie� �

��

��



��� R�H� Perrot� A language for array and vector processors� ACM Trans� on Programming languages and
Systems� ������		��
�� 	
�

��� A� Stewart� An axiomatic treatment of SIMD assignment� Bit� ���	����� �

��

��� Thinking Machine Corporation� Cambridge MA� C� programming guide� �

��

��


