Luc Boug
email: luc.bouge@lip.ens-lyon.fr

Gil Utard

Luc Boug E Z

Escape constructs in data-parallel languages: semantics and proof system

Keywords:

We describe a simple data-parallel kernel language which encapsulates the main dataparallel control structures found in high-level languages such as MasPar's MPL or the recent HyperC. In particular, it includes the concept of data-parallel escape, which extends the break and continue constructs of the scalar C language. We g i v e this language a natural semantics, w e de ne a notion of assertion and describe an assertional proof system. We demonstrate its use by proving a small data-parallel Mandelbrot-like program.

Introduction

The impressive e ort put in the design and the implementation of the High Performance Fortran (HPF) language 6] in the past year has brought data-parallelism to the forefront of the research scene. Data-parallel programming appears today as a major advance in the long quest towards a portable parallel programming environment, available from low c o s t w orkstation clusters to massively parallel computers. We a r e n o w witnessing the emergence of a number of data-parallel languages, most of them derived from Fortran or C, and mainly designed by the constructors of massively parallel machines for their customers. Unfortunately, their design has often been primarily motivated by pragmatic and short-term considerations, and comparatively few studies have been done on their principles, on their semantic expressivity, or on the associated program validation methods. This results in poor language design, semantic \hand-waving" and pitfalls, unmaintainable programs and, ultimately, a w aste of time and money.

Current data-parallel languages can be classi ed into two categories, depending on the diversity of their data-parallel control structures.

. Low-level languages, s u c h as HPF or Thinking Machine's C*, o er parallel data-types (distributed arrays, shapes, etc.) and assignment commands between parallel objects (possibly including rearrangement). But the overall control structure is still scalar, inherited from the original language. There is no speci c data-parallel control besides the conditioning where construct which restricts the current extent of parallelism. Such languages are very close to the 20-year old Actus language of Perrot 13], probably the rst attempt towards a semantic approach of data-parallelism.

. High-level languages, s u c h as MasPar's MPL or the recent HyperC 12], de ne, besides the scalar control structure inherited from the original language, a rich set of data-parallel control structures. They include the data-parallel extensions of usual scalar constructs such a s for, while, switch, and their associated non-local control-transfer commands break and continue. This additional semantic facility has proved to be appropriate for a clean description of many data-parallel algorithms, in the same way as using the C break construct often leads to a clearer coding. In this respect, these languages can be called fully data-parallel, as they go much b e y ond embedding data-parallel assignments into a scalar control harness.

Several researchers have attempted to give a formal semantics to such data-parallel languages, and to use it to prove programs correct. Most works have focused on the data-parallel assignment (see for instance 14], and to some extent 7]), that is a low-level approach in the above classi cation. An early attempt for the Actus language can be found in 5]: there, the entire Actus language is considered, at the price of considerable technical complexity. In contrast, we h a ve shown in our previous papers that it is possible to de ne a kernel data-parallel language, called L, which encapsulates the main features of the low-level languages 4]. We h a ve described a natural semantics for it, and an assertional proof system 3]. Moreover, we h a ve s h o wn the possibility of de ning a weakest precondition (WP) calculus for L 2]. It can be used as a basis to demonstrate the (relative) completeness of this proof system. It also opens the way to a computer-aided validation tool for L programs based on the automatic generation of veri cation conditions [START_REF] Gabarr | An approach to correctness of data parallel algorithms[END_REF][START_REF] Gordon | Programming Language Theory and its Implementation[END_REF] . This contribution of this paper is to extend these results to the case of high-level languages.

First, we describe an extended version of the L kernel language, called L 0 , which captures the notion of data-parallel non-local control transfer. W e g i v e it a natural semantics based on the multi-context approach o f 4]. We de ne an extended notion of assertion, and we describe the associated proof rules. This is illustrated by the proof of a simple data-parallel factorial program.

The L language

An extensive presentation of the L language can be found in 4]. For the sake of completeness, we brie y recall its natural semantics as described in 3].

Informal description

In the data-parallel programming model, the basic objects are arrays with parallel access. Two kinds of actions can be applied to these objects: componentwise operations, and global rearrangements.

A program is a sequential composition of such actions. Each action is associated with the set of array indices at which it is applied. An index at which an action is applied is said to be active.

Other indices are said to be idle. The set of active indices is called the activity context or the extent of parallelism. It can be seen as a boolean array w h e r e true denotes activity and false idleness.

The L language is designed as a common kernel of data-parallel languages like C 15], Hy-perC 12] o r M P L 1 0]. We do not consider the scalar part of these languages, mainly imported from the C language. For the sake of simplicity, w e consider only arrays of dimension one, also called vectors, indexed by i n tegers. It follows that all variables of L are parallel, and all the objects are vectors of scalars, with one component a t e a c h index. As a convention, the parallel objects are denoted with uppercase letters. The legal expressions are pure expressions, i.e. without side e ects, de ned like the pure functions of HPF. The value of a pure expression at index u only depends on the values of the variables at index u. The expressions are evaluated by applying operators componentwise to parallel values. We do not further specify the syntax and semantics of such expressions. The component of parallel object X located at index u is denoted by Xj u . W e introduce a special vector constant called This. The value of its component a t e a c h index u is the value u itself: Thisj u = u. Note that This is a pure expression and that all constructs de ned here are deterministic.

Assignment: X := E. A t each a c t i v e index u, component Xj u is updated with the local value of pure expression E. Communication: get X from A into Y . A t e a c h a c t i v e index u, pure expression A is evaluated to an index v, then component Y j u is updated with the value of component Xj v . W e always assume that v is a valid index. (Notice that the remote expression X is restricted to be a variable.)

Sequencing: S T. Note that the MPL data-parallel while construct can be expressed by a where nested in a loop. A s This is a pure L expression, note also that the local computations may depend on the value of the local index.

In this paper, we will consider the running example shown in Figure 1. Given an initial integer vector N with all components Nj u 1, we w ant to compute an integer vector R such that, at each index u, Rj u = factorial(Nj u). The idea is to build the decreasing product chain at each index until 1 is reached, and then to remain in active w ait until 1 is reached at all indices.

A natural semantics for L

We describe the semantics of L in the style of Kahn and Plotkin's natural semantics by induction on the syntax of L.

An environment is a function from identi ers to vector values. The set of environments is denoted by Env. F or convenience, we extend the environment functions to parallel expressions: (E) denotes the value obtained by e v aluating parallel expression E in environment . W e do not specify any further the internals of expressions. Note that (This)j u = u by de nition.

De nition 1 (Pure expression) A p arallel expression E is pure if for any index u, and any environments and 0 , (8X : (X)j u = 0 (X)j u)) ((E)j u = 0 (E)j u):

Let be an environment, X a v ector variable and V a v ector value. We denote by X V] the new environment 0 where 0 (X) = V and 0 (Y) = (Y) for all Y 6 = X.

A context c is a boolean vector. It speci es the activity a t e a c h index: cj u is true i index u is active. The set of contexts is denoted by Ctx. W e distinguish a particular context denoted by True whose components all have v alue true. F or the sake of consistency with Section 3.2 we i n troduce the notation active: active c 3 A state is a pair made of an environment and a context. The set of states is denoted by State: State = (Env Ctx) f ? g where ? denotes the unde ned state.

The semantics S]] of a program S is a strict function from Stateto State. S]](?) = ?, a n d S]] is extended to sets of states as usual. The following paragraphs de ne]] f o r L programs.

Assignment. At e a c h a c t i v e index, the component of the parallel variable is updated with the new value.

X := E]](c) = (0 c) with 0 = X V] where V j u = (E)j u if activej u , a n d V j u = (X)j u otherwise. The activity context is preserved. Notice that since E is pure, the evaluation of (E)j u requires no communications, it is local. Communication. It acts very much a s a n a s s i g n m e n t, except that the assigned value is the value of another component.

get X from A into Y]](c) = (0 c) with 0 = Y V] where V j u = (X)j (A)ju if activej u , and V j u = (Y)j u otherwise. Again, the evaluation of (A)j u is local, and context is preserved. Sequencing. Sequential composition denotes functional composition.

S T]](c) = T]](S]](c)):

Iteration: Iteration is expressed by classical loop unfolding. It terminates when the pure boolean expression B evaluates to false at each a c t i v e index.

loop B do S end]](c) = 8 > < > : loop B do S end]](S]](c)) if 9u : (activej u ^ (B)j u) (c) otherwise
If the unfolding does not terminates, then we t a k e the usual convention: loop B do S end]](c) = ?

Conditioning. The denotation of a where construct is the denotation of its body with a new context.

The new context is the conjunction of the previous one with the value of the pure conditioning expression B. I f S]](c ^ (B)) = (0 c 0), then we h a ve where B do S end]](c) = (0 c):

If S]](c ^ (B)) = ?, t h e n w e put where B do S end]](c) = ?. Observe that the value of c 0 is ignored here, i.e. the initial context is restored on exit from the where block. The evaluation of (B) is local.

Remark. In the L language, the activity c o n text is preserved by terminating executions: for any program S such that S]](c) = (0 c 0), we h a ve c = c 0 . This will no longer be the case for the extended language below.

Extending L with non-local control transfer commands

The MPL or HyperC languages include the data-parallel extensions of the for, while, switch control structures, with their associated escape commands break and continue. Their intended meaning is the following. When an escape command is executed at a currently active index, the activity a t this index is turned to idle until the end of the corresponding enclosing block. We s a y it is then asleep. On the other hand, executing an escape command at an idle index has no e ect. Once the control has reached the end of the block, the initial \awakeness" is restored at all indices. This is thus the straightforward data-parallel generalization of the usual scalar behavior, which i s t o jump at the exit label of the block: the jump has been generalized to a temporary idleness, which i s needed because of the global nature of control.

Informal description

A simple way t o g i v e account of this behavior in the L language is to extend it with a new block de nition structure begin S end, together with a escape command executable in the scope of the block. Such a block will be called an escaping block. Y et, this is not su cient to model the complex interplay b e t ween the break and continue escape commands in C: to do this one would have t o b e able to escape from more than one enclosing block! The solution is thus to de ne several types of begin i S end escaping blocks with their respective escape escape i commands, labelled i = 1 : : : N . The use of escaping blocks is illustrated by the program below. We consider vectors of size 3, where indices range between 0 and 2. The comments at the end of each line show the evolution of the currently active index list. Recall that expression This evaluates to the local index value. For usual data-parallel languages derived from C, N = 2 is su cient: type 1 de nes for instance the scope of the break command, which corresponds to escape 1 t ype 2 de nes the scope of the continue command, which corresponds to escape 2 . (Note that an additional type could be de ned to handle the data-parallel extension of the C return command.) Thanks to these data-parallel non-local transfer commands, our running example can be recast as in Figure 2. On executing the escape 1 command at line 4 at an active index u such that Mj u = 1 , this index falls asleep, and it remains idle until the end of the enclosing type 1 block at line 8. The loop at line 3 terminates as soon as all indices have turned idle, that is, after all indices have escape 1 'd. Once the global control reaches line 8, all asleep indices wake up. The reader may wish to compare this behavior with the usual C code:

M := N R := N

(1) begin 1

(2) loop True do

(3) where (M = 1) do escape 1 end [START_REF] Boug E | A proof system for a simple data-parallel programming language[END_REF] M := M ; 1

R := R M (6) end (7) end [START_REF] Gabarr | An approach to correctness of data parallel algorithms[END_REF] Figure 2: The data-parallel factorial, L 0 version.

m=n r=n for () {if (m=1) break m--r*=m } Let L 0 be the L language extended with N block de nition structures begin i S end, 1 i N, a n d the N corresponding escape commands escape i .

A natural semantics for L 0

The original notion of activity of L becomes now t wo-fold in L 0 :

Conditioning context. It is de ned by the where conditioning blocks. An index is said to be selected or not according to the value of the conditioning expression. Escaping context. It is de ned for each escaping begin i block. An index can be awake or asleep.

On executing an escape k command, all currently active indices fall asleep until the end of the enclosing escaping block o f t ype k.

An index is active in L 0 if it is both selected with respect to the enclosing conditioning block and, awake with respect to the enclosing escaping blocks of each t ype. An index not active is said to be idle.

The original notion of state (c) i n L can then be similarly extended. A state is now a triple (c a), where is the environment, c is a boolean vector and a = ha 1 : : : a N i i s a l i s t o f b o o l e a n vectors. Vector c denotes the conditioning context: for each index u, cj u is true if u is selected, and false otherwise. Each v ector a i denotes the escaping context of type i: for each index u, a i j u is true if u is awake in block i, and it is false if it is asleep.

It is convenient to extend the notation de ned in Section 2.2. active c ^(^i =N i=1 a i) Thanks to this convention, the semantic equations of L 0 for assignment, communication, sequencing and iteration are obvious extensions of the corresponding parts of L's semantics. We only list below the remaining cases.

Conditioning block. On entering a conditioning block, the conditioning context is saved. It is restored on exiting the block. The new conditioning context within the block is the conjunction of the initial one with the current v alue of the pure expression B.

where B do S end]](c a) = (0 c a 0)

with S]](c ^ (B) a) = (0 c 0 a 0). Observe that the escaping context is not restored. If S]](c ^ (B) a) = ?, t h e n w e simply put where B do S end]](c a) = ?. Escaping block. On entering an escaping block o f t ype k, the escaping context of type k is saved.

It is restored on exiting the block. begin k S end]](c a) = (0 c 0 a 0) with S]](c a) = (0 c 0 a 00) a n d a 0 = ha 00 1 : : : a 00 k;1 a k a 00 k+1 : : : a 00 N i. i f S]](c a) = ?, then we put begin k S end]](c a) = ?.

Escape. On executing an escape k command, all currently active indices fall asleep with respect to escaping type k. This amounts to restricting the escaping context of type k with the negation of the current a c t i v i t y c o n text.

escape k]](c a) = (c a 0) with a 0 = ha 1 : : : a k;1 a k : active a k+1 : : : a N i.

Remark. In the L language, we h a ve stressed that the activity c o n text is preserved by the terminating executions. Because of the escape i commands of L 0 , this invariant is no longer true: an initially active index may be idle at the termination. Yet, it can be proved that an initially idle index remains idle throughout the execution.

Assertions and speci cations

As for the semantics, we s h o w in this section that the notion of assertion de ned for L programs can be conveniently extended to L 0 programs by considering multiple activity contexts. For the sake of completeness, we brie y recall the structure of L assertions as described in 2].

An assertion language for L programs

We de ne an assertion language for the partial correctness of L programs in the lines of 1]. Such a speci cation is denoted by a formula fPr e g S fPo s t g where S is the program text, and Pr e and Post are logical assertions on variables of S. This formula means that, if precondition Pr eis satis ed in the initial state of program S, and if S terminates, then postcondition Po s tis satis ed in the nal state. A proof system gives a formal method to derive such speci cation formulae by syntax-directed induction on programs. Axioms correspond to statements, and inference rules to control structures. Then, proving that a program meets its speci cation is equivalent to deriving the speci cation formula fPr e g S fPostg in the proof system. Such a proof system for the L language is described in 3]. A fundamental property of this axiomatic semantics in the usual scalar case is compositionality. T o a c hieve this goal, the assertion language has to include su cient information on variable values. Similarly, our assertion language has to include some information about the current activity c o n text as well as variable values. We therefore de ne two-part assertions fP Cg, where P is a predicate on vector program variables, and C is a pure boolean vector expression which e v aluates into an activity context.

Our assertion language has two kinds of variables, scalar variables and vector variables. As a convention, scalar variables will be denoted with a lowercase initial letter, and vector ones with an uppercase one. We h a ve a similar distinction for arithmetic and logical expressions. As usual, scalar (resp. vector) expressions are inductively de ned with usual arithmetic and logical connectives. Basic scalar (resp. vector) expressions are scalar (resp. vector) variables and constants. Vector expression can be subscripted. If the subscript expression is a scalar expression, then we h a ve a scalar expression: the meaning of Xj u is the component o f X at index u. Otherwise, if the subscript expression is a vector expression, then we h a ve another vector expression: the meaning of Xj A is a v ector whose component at index u is the value of component o f X at index Aj u . The meaning o f a v ector expression is obtained by componentwise evaluation. We i n troduce a scalar conditional expression with a C-like notation c?e : f. Its value is the value of expression e if c is true, and f otherwise. Similarly, the value of a conditional vector expression, denoted by C?E : F, i s a v ector whose component a t i n d e x u is Ej u if Cj u is true, and Fj u otherwise.

Predicates are usual rst-order formulae. They are inductively de ned from boolean scalar expressions with logical connectives and existential or universal quanti ers binding scalar variables. It turns out that there is no need to consider quanti cation on vector variables.

We i n troduce a substitution mechanism for vector variables. Let P be a predicate or any v ector expression, X a v ector variable, and E a v ector expression. P E=X] denotes the predicate, or expression, obtained by substituting all the occurrences of X in P with E. Note that all vector variables are free by de nition of our assertion language. The usual Substitution Lemma 1] extends to this new setting. Let be an environment a n d P a predicate. We use the usual notation j = P to denote that is a model of predicate P, t h a t i s , P evaluates to true under assignment .

Lemma 1 (Substitution lemma) For every predicate on vector variables P, v e ctor expression E and environment , j = P E=X] i X (E)] j = P

Extending assertions to L 0 programs

Going from L to L 0 semantics amounts to replacing the single activity context by a conditioning context and a list of escaping contexts. We t h us extend the context part of L assertions in a similar way. Assertions are of the form fP C Ag, where

. P is a predicate on program variables . C is a pure boolean vector expression which e v aluates into the current conditioning context . A = hA 1 : : : A N i is a list of pure boolean vector expressions, each A i evaluates into the current escaping context of type i.

The activity c o n text is the conjunction of these contexts. It is the value of C ^Vi=N i=1 A i . For convenience, we denote this expression by C ^ A. All de nitions of 3] can be extended to this new setting as shown below. We extend the notion of satis ability (denoted by j =) to states and assertions.

De nition 2 (Satis ability) Let (c a) be a state, fP C Ag an assertion. (c a) j = fP C Ag

A p roof system for L 0 programs

We m a y n o w de ne the validity of a speci cation of a L 0 program with respect to its semantics. Because ? satis es any assertion, our notion validity is relative to termination, it de nes partial correctness.

De nition 4 (Speci cation validity) Let S be a L 0 program, and let fP C Ag and fQ D Bg be two assertions. We say that the speci cation is valid, denoted b y Assignment: X := E. W e extend the usual backwards axiom by taking into consideration that vector variable X is modi ed only at the active indices, that is indices where C ^ A evaluates to true. The global activity is preserved by assignments: the initial activity is the same as the nal one.

As the conditioning and escaping activities are described by boolean vector expressions, w e can describe the respective initial activities only if the values of the expressions describing the nal ones are not changed by the assignment. An easy su cient condition is that X = 2 Var(C) and 8i : X = 2 Var(A i). Escaping block: begin k S end. Similarly, the initial escaping context of type k is saved on entering an escaping block and restored on exiting. Again, the restriction Change(S) \ Var(A k) = is su cient to guarantee that the value of A k has been left unchanged.

fP C Ag S fQ C 0 A 00 g Change(S) \ V a r (A k) = fP C Ag begin k S end fQ C 0 A 0 g with A 0 = hA 00 1 : : : A 00 k;1 A k A 00 k+1 : : : A 00 N i

Escape: escape k . All currently active indices fall asleep with respect to escaping type k. The new escaping context expression of type k is the conjunction of the previous one with the negation of the global activity.

fP C Ag escape k fP C A 0 g with A 0 = hA 1 : : : A k;1 A k : (C ^ A) A k+1 : : : A N i Consequence rule. Following De nition 3, we can state the consequence rule. fP C Ag) f P 0 C A 0 g fP 0 C 0 A 0 g S fQ 0 D 0 B 0 g fQ 0 D 0 B 0 g) f Q D Bg fP C Ag S fQ D Bg

This rule allows us to strengthen preconditions, and to weaken postconditions of speci cations.

Proposition 1 (Soundness) This proof system is sound: i f f P C Ag S fQ D Bg then j = fP C Ag S fQ D Bg:

Proof

The proof is done by induction on the structure of S. The cases of the assignment and communication commands are simple consequences of the Substitution Lemma 1 thanks to the restriction X = 2 Var(C) and 8i : X = 2 Var(A i). A s an example, we give the proof of the case of escaping block.

Let (c a) be a state satisfying fP C Ag. By de nition of the escaping block construct, assume begin k S end]](c a) = (0 c 0 a 0) with S]](c a) = (0 c 0 a 00) and a 0 = ha 00 1 : : : a 00 k;1 a k a 00 k+1 : : : a N i. By assumption, (0 c 0 a 00) j = fQ C 0 A 00 g. In particular, a 00 = 0 (A 00). As Change(S)\Var(A k) = , w e h a ve (A k) = 0 (A k). T h us, a 0 = 0 (A 0). W e g e t (0 c 0 a 0) j = fQ C 0 A 0 g, a s w anted.

Remark. Two additional rules will be introduced in the next section to deal with auxiliary variables in preconditions and in programs.

An extended example

We demonstrate this proof system by giving the proof annotation of our running example with assertions, in the manner of 11]. Let P be our original program in Figure 2. Let T denote the constant boolean vector whose components are all true. We aim at proving f8u : (Nj u 1) T hTig P f8u : (Rj u = Nj u : : : 1) T hTig The main step is to de ne a convenient s y n tactic loop invariant. Observe that the activity context decreases as iterations go. It is thus necessary to add a new auxiliary variable A, which is meant t o contain the value of the activity context at each iteration. It is su cient to set it to true initially and

(1) M := N R := N

(2) begin 1 (2 0) A := True [START_REF] Boug E | On the expressivity o f a w aekest precondition calculus for a simple data-parallel language[END_REF] loop True do (4 0) where (M = 1) do A := False escape 1 end [START_REF] Boug | Control structures for data-parallel SIMD languages: semantics and implementation[END_REF] M := M ; 1 [START_REF] Clint | On the completeness of a proof system for a synchronous parallel programming langage[END_REF] R := R M [START_REF]High Performance Fortran Forum. High Performance F ortran language speci cation (draft version)[END_REF] end [START_REF] Gabarr | An approach to correctness of data parallel algorithms[END_REF] end Figure 3: The data-parallel factorial, L 0 version with the auxiliary variable to set it to false just before executing the escape 1 command: this assignment will then be completed exactly at the currently active indices, that is at the indices bound to fall asleep immediately. This new program P 0 is displayed on Figure 3. According to this intuition, variable A is false at least at all sleeping indices: 8u : (:Aj u) (Mj u = 1)). and the role of line (4 0) where (M = 1) do A := False escape 1 end is to tune the value of A so that 8u : (:Aj u , (Mj u = 1)) . T h us, at each iteration, the escape 1 'd indices are exactly those indices u such that Aj u is false, and the activity o f t ype 1 is described by expression A. A good candidate for an invariant i s t h us fI 8 u : (:Aj u) (Mj u = 1)) T hAig, with I 8u : ((Rj u = Nj u : : : Mj u) ^(Mj u 1)) Assume for a while that variable A acts as wanted, and that the following annotation can be derived: fI 8 u : (:Aj u) (Mj u = 1)) T hAig where (M = 1) do A := False escape 1 end fI 8 u : (:Aj u , (Mj u = 1)) T hAig Then, it is tedious but easy to check that the annotation for the entire program displayed on Figure 4 is valid.

It remains to prove that the annotation of line (4 0) is indeed correct. This is the only piece of program where the escaping context is explicitly manipulated. Note that variable A appears both in the escaping context expression and in the left part of an assignment. The assignment rule cannot be applied, as explained above. We a r e t h us bound to introduce a new auxiliary variable A 0 in the initial assertion in order to save the initial value of the escaping context. First, we show fI 8 u : (:Aj u) (Mj u = 1)) 8 u : (A 0 j u = Aj u) T hA 0 ig where (M = 1) do A := False escape 1 end fI 8 u : (:Aj u , (Mj u = 1)) T hAig The annotation is displayed on Figure 5. The crucial step is to show that (d)) (e), that is, boolean We use the following de nitions: We use the same de nition as on Figure 4. fI 8 u : (:A 0 j u) (Mj u = 1)) 8 u : (A 0 j u = Aj u) T hA 0 ig (a) (1) where M = 1 do fI 8 u : (:Aj u) (Mj u = 1)) 8 u : (A 0 j u = Aj u) (M = 1) hA 0 ig (b)

(2)

A := False fI 8 u : (:Aj u , (Mj u = 1)) 8 u : (:A 0 j u) : Aj u) (M = 1) hA 0 ig (c)

(3) escape 1 fI 8 u : (:Aj u , (Mj u = 1)) 8 u : (:A 0 j u) : Aj u) (M = 1) h(A 0 : (M = 1)) ig (d) fI 8 u : (:Aj u , (Mj u = 1)) 8 u : (:A 0 j u) : Aj u) (M = 1) hAig (e) fI 8 u : (:Aj u , (Mj u = 1)) (M = 1) hAig (f) (4) end fI 8 u : (:Aj u , (Mj u = 1)) T hAig (g)

Figure 5: The annotated inner where block of the factorial.

vector expressions A 0 : (M = 1) a n d A have the same value as soon as predicate 8u : (:Aj u , (Mj u = 1)) ^(:Aj 0 u) : Aj u) is satis ed. This stems from a simple (but tedious) case analysis on the truth value of Aj u .

. If Aj u is true, then both :(Mj u = 1) and A 0 j u are true. Thus, (A 0 : (M = 1)) j u is true.

. If Aj u is false, then :(Mj u = 1) is false. Thus, (A 0 : (M = 1))j u is false as well.

Let us now i n troduce an additional rule to our proof system to get rid of such auxiliary variables.

Auxiliary variable elimination in preconditions. If a variable Aux appears in the precondition only, then it can be substituted by a n y expression E. new rule in our proof system, which enables to forget everything about such auxiliary variables, in the lines of the method proposed by Gries and Owicki 11].

De nition 5 (Auxiliary variables) Let V be a set of variables. We say that variables of V are auxiliary in program S if they only appear in assignment commands of the form Z := E, o r communication commands of the form get X from A into Z, w i t h Z 2 V .

It is clear that removing all commands containing variables of V does not modify the overall behavior of the program, nor the nal values of the variables not in V . The role of such auxiliary variables is limited to convey information from the control ow and the activity c o n text to the environment. If S is a program, and V is a set of auxiliary variables for S, then S n V denotes the program obtained by stripping S from all commands involving variables of V .

Elimination of auxiliary variables in programs. If something which does not depend on auxiliary variables has been proved about a program equipped with auxiliary variables, then it is true of the program without them.

fP C Ag S fQ D Bg V is a set of auxiliary variables for S V \ (Var(P) Var(C) Var(A) Var(Q) Var(D) Var(B)) = fP C Ag S n V fQ D Bg

It can be shown that this rule is sound. It is clear that fAg is a set of auxiliary variables for P 0 , and that P 0 n V is exactly P. F rom the proved formula f8u : (Nj u 1) T hTig P 0 f8u : (Rj u = Nj u : : : 1) T hTig we can nally infer the desired formula: f8u : (Nj u 1) T hTig P f8u : (Rj u = Nj u : : : 1) T hTig

Conclusion

This work shows that the classical approach t o wards the natural semantics and assertional proof systems for scalar languages can be extended to modern data-parallel languages. It can even be tuned to handle complex escape control structures as found in high-level data-parallel languages such a s M a s P ar's MPL or the recent HyperC. Our running example shows that the proof of such programs can be built according to the usual intuition by annotating the program text with intermediate assertions. This is a major result, as the amount of information is much larger than in the scalar case, and yet the formal manipulations are basically of the same complexity.

To our understanding, this is a strong argument i n f a vor of data-parallel programming as opposed to (control-)parallel Occam-like programming: data-parallelism allows to handle the validation of parallel programs \for free", which is in striking contrast to the technical complexity of the validation methods for Occam programs.

This work can be continued in several directions. On a technical level, it would be interesting to study the completeness of the proof system (at least for programs without iteration): is it always possible to add auxiliary variables to convey enough information from the control ow t o the environment? Also, we h a ve s h o wn in 4] that any L 0 program S can be transformed into an equivalent L program S 0 , up to auxiliary variables. In 3], we h a ve presented a proof system for L programs. What is the relationship between the proof of S in L 0 , and the proof of the equivalent program S 0 in L? Also, the MPL and HyperC languages do not include the escape mechanism explicitly, but rather through the specialized break and continue commands: can we de ne any specialized proof rules to handle these constructs directly?

On a broader level, the extension of usual proof systems to complex data-parallel languages such as MPL or HyperC, enables to reuse in this new setting all the know-how d e v eloped for the validation of scalar programs: methodologies, computer-aided veri cation environments (e.g., 8]), heuristics, etc. This opportunity opens a quite exciting research direction which could make large-scale parallel programming really possible. We are currently investigating this new frontier.

Figure 1 :

 1 Figure 1: The data-parallel factorial, L version.

 i j = P and (C) = c and 8i : (A i) = a i By convention, ? satis es any assertion. The set of states satisfying fP C Ag is denoted by fP C Ag]], o r fP C Ag when no confusion may a r i s e . De nition 3 (Assertion implication) Let fP C Ag and fQ D Bg be two assertions. We say that the former implies the latter with respect to context, fP C Ag) f Q D Bg i P) Q and P) 8 u : ((Cj u = Dj u) 8 i : (A i j u = B i j u)) Observe that this de nition extends the usual one: fP C Ag) f Q D Bg i fP C Ag]] fQ D Bg]].

 j = fP C Ag S fQ D Bg if for each state (c a) such that (c a) j = fP C Ag S]](c a) j = fQ D Bg: Following the notation of 1], let Change(S) b e t h e s e t o f v ariables appearing on the left of assignments or as targets of get instructions. Only these variables can have their values changed by executing S. Let Var(C) be the set of variables which appear in expression C. The value of C depends on these variables only. W e describe below a restricted proof system where we assume everywhere that context expressions are not modi ed by program bodies: Change(S)\Var(C) = and Change(S) \ (i=N i=1 Var(A i)) = .

X = 2

 2 Var(C) a n d 8i : X = 2 Var(A i) fP ((C ^ A)?E : X)=X] C Ag X := E fP C Ag Communication: get X from A into Y . As noticed before, a get is an assignment of a remote value. Y = 2 Var(C) a n d 8i : Y = 2 Var(A i) fP ((C ^ A)?Xj A : Y)=Y] C Ag get X from A into Y fP C Ag Sequencing: S T. It is a straightforward generalization of the usual case. fP C Ag S fR C 0 A 0 g fR C 0 A 0 g T fQ D Bg fP C Ag S T fQ D Bg Iteration: loop B do S end. The usual loop invariant h e r e m ust be invariant with respect to both the variable values and each of the activity t ypes. fI 9 u : ((C ^ A)j u ^Bj u) C Ag S fI C Ag fI C Ag loop B do S end fI 8 u : ((C ^ A)j u) : Bj u) C Ag Conditioning block: where B do S end. F ollowing the semantics, the initial conditioning context is saved on entering the block and restored on exiting. The conditioning context within the block is the conjunction of the conditioning context expression and the conditioning expression. This is taken into account b y and-ing conditioning context expression C with condition expression B, and restoring C on exiting. Yet, this makes sense only if the value of C has been left unchanged. The restriction Change(S) \ Var(C) = is an easy su cient condition for this to hold. fP C ^B Ag S fQ C 0 A 0 g Change(S) \ Var(C) = fP C Ag where B do S end fQ C A 0 g

IFigure 4 :

 4 Figure 4: The annotated data-parallel factorial with an auxiliary variable

 fP C Ag S fQ D Bg Aux = 2 Var(S) Var(Q) Var(D) Var(B) fP E=Aux] C E=Aux] A E=Aux]g S fQ D Bg It can be shown that this rule is sound. Substituting A (= E) for A 0 (= Aux) in the initial precondition on Figure 5 yields the wanted formula: fI 8 u : (:Aj u) (Mj u = 1)) T hAig where (M = 1) do A := False escape 1 end fI 8 u : (:Aj u , (Mj u = 1)) T hAig It remains to get rid of auxiliary variable A in the factorial program P 0 . W e can again add a

Acknowledgments. This work has greatly bene ted from discussions with Yann Le Guyadec and Bernard Virot. We thank Ga etan Hains for his detailed comments and suggestions.

This work has been partly supported by the French CNRS Coordinated Research Program on Concurrency, Communication and Cooperation C 3 , and Department o f Defense DRET contract 91/1180.