
HAL Id: hal-02102484
https://hal-lara.archives-ouvertes.fr/hal-02102484

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Escape constructs in data-parallel languages: semantics
and proof system
Luc Bougé, Gil Utard

To cite this version:
Luc Bougé, Gil Utard. Escape constructs in data-parallel languages: semantics and proof system.
[Research Report] LIP RR-94-18, Laboratoire de l’informatique du parallélisme. 1994, 2+19p. �hal-
02102484�

https://hal-lara.archives-ouvertes.fr/hal-02102484
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398 

Escape constructs in data�parallel

languages�

semantics and proof system

Luc Boug�e

Gil Utard
June ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr 
Téléphone : (+33) 72.72.80.00    Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France



Escape constructs in data�parallel languages�

semantics and proof system

Luc Boug�e

Gil Utard

June ����

Abstract

We describe a simple data�parallel kernel language which encapsulates the main data�
parallel control structures found in high�level languages such as MasPar�s MPL or the
recent HyperC� In particular� it includes the concept of data�parallel escape� which
extends the break and continue constructs of the scalar C language� We give this lan�
guage a natural semantics � we de�ne a notion of assertion and describe an assertional
proof system� We demonstrate its use by proving a small data�parallel Mandelbrot�like
program�

Citation� This work has been submitted for presentation at the ��th Conference on

the Foundations of Software Technology and Theoretical Computer Science� December
������ �		
� Madras� India�

Keywords� Concurrent Programming� Specifying and Verifying and Reasoning about Programs�
Semantics of Programming Languages� Data�Parallel Languages� Proof System� Hoare Logic�

R�esum�e

Nous d�ecrivons un langage minimal qui capture la s�emantique des structures de contr
ole
des langages data�parall�eles tels que MPL de MasPar ou HyperC� En particulier� il �etend
le concept d��echappement du langage C scalaire� tel que le break ou continue� au cas
data�parall�ele� Nous en d�e�nissons une s�emantique naturelle� puis nous d�e�nissons une
notion d�assertion et d�ecrivons un syst�eme de preuve de programmes par assertions
selon la m�ethode axiomatique de Hoare� La mise en �uvre du syst�eme est illustr�ee par
un exemple�

R�ef�erence �a citer� Ce travail a �et�e soumis pour une pr�esentation �a la ��th Confer�

ence on the Foundations of Software Technology and Theoretical Computer Science�
December ������ �		
� Madras� India

Mots�cl�es� programmation parall�ele � sp�eci�cation et validation de programmes � s�emantique des
langages de programmation � langages data�parall�eles � syst�eme de preuve � logique de Hoare�



Escape constructs in data�parallel languages�

semantics and proof system

Luc Boug�e�z� Gil Utard�

June �� ����

Abstract

We describe a simple data�parallel kernel language which encapsulates the main data�parallel
control structures found in high�level languages such as MasPar�s MPL or the recent HyperC� In
particular� it includes the concept of data�parallel escape� which extends the break and continue

constructs of the scalar C language� We give this language a natural semantics� we de�ne a
notion of assertion and describe an assertional proof system� We demonstrate its use by proving
a small data�parallel Mandelbrot�like program�

Keywords� Concurrent Programming� Specifying and Verifying and Reasoning about Pro�
grams� Semantics of Programming Languages� Data�Parallel Languages� Proof System� Hoare
Logic�

Citation� This work has been submitted for presentation at the ��th Conference on the
Foundations of Software Technology and Theoretical Computer Science� December ����	� �

��
Madras� India�

�LIP� ENS Lyon� �� All�ee d�Italie� F������ Lyon C�edex �	� France

zAuthors contact� Luc Boug�e �Luc�Bouge�lip�ens�lyon�fr

 This work has been partly supported by the French

CNRS Coordinated Research Program on Concurrency� Communication and Cooperation C
�� and Department of

Defense DRET contract �������




Contents

� Introduction �

� The L language �

��� Informal description � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� A natural semantics for L � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Extending L with non�local control transfer commands �

��� Informal description � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� A natural semantics for L� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

	 Assertions and speci
cations �


�� An assertion language for L programs � � � � � � � � � � � � � � � � � � � � � � � � � � �


�� Extending assertions to L� programs � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�� A proof system for L� programs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

� An extended example ��

� Conclusion ��



� Introduction

The impressive e�ort put in the design and the implementation of the High Performance Fortran
�HPF� language ��� in the past year has brought data�parallelism to the forefront of the research
scene� Data�parallel programming appears today as a major advance in the long quest towards a
portable parallel programming environment� available from low cost workstation clusters to mas�
sively parallel computers� We are now witnessing the emergence of a number of data�parallel
languages� most of them derived from Fortran or C� and mainly designed by the constructors
of massively parallel machines for their customers� Unfortunately� their design has often been
primarily motivated by pragmatic and short�term considerations� and comparatively few studies
have been done on their principles� on their semantic expressivity� or on the associated program
validation methods� This results in poor language design� semantic �hand�waving� and pitfalls�
unmaintainable programs and� ultimately� a waste of time and money�

Current data�parallel languages can be classi�ed into two categories� depending on the diversity
of their data�parallel control structures�

� Low�level languages � such as HPF or Thinking Machine�s C�� o�er parallel data�types �dis�
tributed arrays� shapes� etc�� and assignment commands between parallel objects �possibly
including rearrangement�� But the overall control structure is still scalar� inherited from the
original language� There is no speci�c data�parallel control besides the conditioning where
construct which restricts the current extent of parallelism� Such languages are very close to
the ���year old Actus language of Perrot ����� probably the �rst attempt towards a semantic
approach of data�parallelism�

� High�level languages � such as MasPar�s MPL or the recent HyperC ����� de�ne� besides the
scalar control structure inherited from the original language� a rich set of data�parallel control
structures� They include the data�parallel extensions of usual scalar constructs such as for�
while� switch� and their associated non�local control�transfer commands break and continue�
This additional semantic facility has proved to be appropriate for a clean description of many
data�parallel algorithms� in the same way as using the C break construct often leads to a
clearer coding� In this respect� these languages can be called fully data�parallel � as they go
much beyond embedding data�parallel assignments into a scalar control harness�

Several researchers have attempted to give a formal semantics to such data�parallel languages�
and to use it to prove programs correct� Most works have focused on the data�parallel assignment
�see for instance ��
�� and to some extent ����� that is a low�level approach in the above classi�cation�
An early attempt for the Actus language can be found in ���� there� the entire Actus language
is considered� at the price of considerable technical complexity� In contrast� we have shown in
our previous papers that it is possible to de�ne a kernel data�parallel language� called L� which
encapsulates the main features of the low�level languages �
�� We have described a natural semantics
for it� and an assertional proof system ���� Moreover� we have shown the possibility of de�ning a
weakest precondition �WP� calculus for L ���� It can be used as a basis to demonstrate the �relative�
completeness of this proof system� It also opens the way to a computer�aided validation tool for L
programs based on the automatic generation of veri�cation conditions ��� 	��

This contribution of this paper is to extend these results to the case of high�level languages �
First� we describe an extended version of the L kernel language� called L�� which captures the notion
of data�parallel non�local control transfer � We give it a natural semantics based on the multi�context

�



approach of �
�� We de�ne an extended notion of assertion� and we describe the associated proof
rules� This is illustrated by the proof of a simple data�parallel factorial program�

� The L language

An extensive presentation of the L language can be found in �
�� For the sake of completeness� we
brie�y recall its natural semantics as described in ����

��� Informal description

In the data�parallel programming model� the basic objects are arrays with parallel access� Two kinds
of actions can be applied to these objects� componentwise operations� and global rearrangements �
A program is a sequential composition of such actions� Each action is associated with the set of
array indices at which it is applied� An index at which an action is applied is said to be active�
Other indices are said to be idle� The set of active indices is called the activity context or the extent
of parallelism� It can be seen as a boolean array where true denotes activity and false idleness�

The L language is designed as a common kernel of data�parallel languages like C� ����� Hy�
perC ���� or MPL ����� We do not consider the scalar part of these languages� mainly imported
from the C language� For the sake of simplicity� we consider only arrays of dimension one� also
called vectors � indexed by integers� It follows that all variables of L are parallel� and all the objects
are vectors of scalars� with one component at each index� As a convention� the parallel objects
are denoted with uppercase letters� The legal expressions are pure expressions� i�e� without side
e�ects� de�ned like the pure functions of HPF� The value of a pure expression at index u only
depends on the values of the variables at index u� The expressions are evaluated by applying op�
erators componentwise to parallel values� We do not further specify the syntax and semantics of
such expressions� The component of parallel object X located at index u is denoted by X ju� We
introduce a special vector constant called This� The value of its component at each index u is the
value u itself� Thisju � u� Note that This is a pure expression and that all constructs de�ned here
are deterministic�

Assignment� X �� E� At each active index u� component X ju is updated with the local value of
pure expression E�

Communication� get X from A into Y � At each active index u� pure expression A is evaluated to
an index v� then component Y ju is updated with the value of component X jv� We always
assume that v is a valid index� �Notice that the remote expression X is restricted to be a
variable��

Sequencing� S� T � The execution of the actions of T starts on the termination of the last action
of S�

Iteration� loop B do S end� The actions of S are repeatedly executed with the current extent of
parallelism� until pure boolean expression B evaluates to false at each currently active index�

Conditioning� where B do S end� The body S of a conditioning block is executed in a new activity
context de�ned as follows� The initially idle indices remain idle during the execution S� The
initially active indices where pure boolean expression B evaluates to false are turned idle

�



M �� N � R �� N �

loop �M � �� do
where �M � �� do

M ��M � ��
R �� R�M

end
end

Figure �� The data�parallel factorial� L version�

during the execution of S� they are called deselected � The remaining ones remain active
during the execution of S� they are called selected � The initial activity context is restored on
termination of S�

Note that the MPL data�parallel while construct can be expressed by a where nested in a loop� As
This is a pure L expression� note also that the local computations may depend on the value of the
local index�

In this paper� we will consider the running example shown in Figure �� Given an initial integer
vector N with all components N ju � �� we want to compute an integer vector R such that� at each
index u� Rju � factorial�N ju�� The idea is to build the decreasing product chain at each index until
� is reached� and then to remain in active wait until � is reached at all indices�

��� A natural semantics for L

We describe the semantics of L in the style of Kahn and Plotkin�s natural semantics by induction
on the syntax of L�

An environment � is a function from identi�ers to vector values� The set of environments is
denoted by Env� For convenience� we extend the environment functions to parallel expressions�
��E� denotes the value obtained by evaluating parallel expression E in environment �� We do not
specify any further the internals of expressions� Note that ��This�ju � u by de�nition�

De
nition � 
Pure expression� A parallel expression E is pure if for any index u� and any envi�

ronments � and ���

��X � ��X�ju � ���X�ju�� ���E�ju � ���E�ju��

Let � be an environment� X a vector variable and V a vector value� We denote by ��X � V � the
new environment �� where ���X� � V and ���Y � � ��Y � for all Y �� X �

A context c is a boolean vector� It speci�es the activity at each index� cju is true i� index u is
active� The set of contexts is denoted by Ctx� We distinguish a particular context denoted by True
whose components all have value true � For the sake of consistency with Section ��� we introduce
the notation active �

active � c

�



A state is a pair made of an environment and a context� The set of states is denoted by State�
State � �Env � Ctx� � f	g where 	 denotes the unde�ned state�

The semantics ��S �� of a program S is a strict function from State to State� ��S ���	� � 	� and
��S �� is extended to sets of states as usual� The following paragraphs de�ne �� �� for L programs�

Assignment� At each active index� the component of the parallel variable is updated with the new
value�

��X �� E ����� c� � ���� c�

with �� � ��X � V � where V ju � ��E�ju if active ju� and V ju � ��X�ju otherwise� The
activity context is preserved� Notice that since E is pure� the evaluation of ��E�ju requires
no communications� it is local�

Communication� It acts very much as an assignment� except that the assigned value is the value
of another component�

��get X from A into Y ����� c� � ���� c��

with �� � ��Y � V � where V ju � ��X�j��A�ju if active ju� and V ju � ��Y �ju otherwise� Again�
the evaluation of ��A�ju is local� and context is preserved�

Sequencing� Sequential composition denotes functional composition�

��S� T ����� c� � ��T �����S ����� c���

Iteration� Iteration is expressed by classical loop unfolding� It terminates when the pure boolean
expression B evaluates to false at each active index�

�� loop B do S end ����� c� �

���
��
�� loop B do S end �����S ����� c��

if 
u � �activeju � ��B�ju�
��� c� otherwise

If the unfolding does not terminates� then we take the usual convention�

�� loop B do S end ����� c� � 	

Conditioning� The denotation of a where construct is the denotation of its body with a new context�
The new context is the conjunction of the previous one with the value of the pure conditioning
expression B� If ��S ����� c� ��B�� � ���� c��� then we have

��where B do S end ����� c� � ���� c��

If ��S ����� c� ��B�� � 	� then we put ��where B do S end ����� c� � 	� Observe that the value
of c� is ignored here� i�e� the initial context is restored on exit from the where block� The
evaluation of ��B� is local�

Remark� In the L language� the activity context is preserved by terminating executions� for
any program S such that ��S ����� c� � ���� c��� we have c � c�� This will no longer be the case for
the extended language below�






� Extending L with non�local control transfer commands

The MPL or HyperC languages include the data�parallel extensions of the for� while� switch control
structures� with their associated escape commands break and continue� Their intended meaning is
the following� When an escape command is executed at a currently active index� the activity at
this index is turned to idle until the end of the corresponding enclosing block� We say it is then
asleep� On the other hand� executing an escape command at an idle index has no e�ect� Once the
control has reached the end of the block� the initial �awakeness� is restored at all indices� This is
thus the straightforward data�parallel generalization of the usual scalar behavior� which is to jump

at the exit label of the block� the jump has been generalized to a temporary idleness � which is
needed because of the global nature of control�

��� Informal description

A simple way to give account of this behavior in the L language is to extend it with a new block
de�nition structure begin S end� together with a escape command executable in the scope of the
block� Such a block will be called an escaping block � Yet� this is not su cient to model the complex
interplay between the break and continue escape commands in C� to do this one would have to be
able to escape from more than one enclosing block! The solution is thus to de�ne several types of
begini S end escaping blocks with their respective escape escapei commands� labelled i � �� � � � � N �

The use of escaping blocks is illustrated by the program below� We consider vectors of size ��
where indices range between � and �� The comments at the end of each line show the evolution of
the currently active index list� Recall that expression This evaluates to the local index value�

begin� �� Indices �� �� � are active ��

where �This � �� do �� �� � ��
begin� �� �� � ��

where �This � �� do �� � ��
escape� �� None ��

end �� � ��

end �� � ��
end �� �� � ��

end �� �� �� � ��

For usual data�parallel languages derived from C� N � � is su cient� type � de�nes for instance
the scope of the break command� which corresponds to escape�� type � de�nes the scope of the
continue command� which corresponds to escape�� �Note that an additional type could be de�ned
to handle the data�parallel extension of the C return command��

Thanks to these data�parallel non�local transfer commands� our running example can be recast
as in Figure �� On executing the escape� command at line 
 at an active index u such thatM ju � ��
this index falls asleep� and it remains idle until the end of the enclosing type � block at line �� The
loop at line � terminates as soon as all indices have turned idle� that is� after all indices have
escape��d� Once the global control reaches line �� all asleep indices wake up� The reader may wish
to compare this behavior with the usual C code�

�



M �� N � R �� N � ���
begin� ���

loop True do ���
where �M � �� do escape� end� �
�
M ��M � �� ���
R �� R�M ���

end ���
end ���

Figure �� The data�parallel factorial� L� version�

m�n� r�n� for ���� �if �m��� break� m��� r��m��

Let L� be the L language extended with N block de�nition structures begini S end� � � i � N � and
the N corresponding escape commands escapei�

��� A natural semantics for L�

The original notion of activity of L becomes now two�fold in L��

Conditioning context� It is de�ned by the where conditioning blocks� An index is said to be selected
or not according to the value of the conditioning expression�

Escaping context� It is de�ned for each escaping begini block� An index can be awake or asleep�
On executing an escapek command� all currently active indices fall asleep until the end of the
enclosing escaping block of type k�

An index is active in L� if it is both selected with respect to the enclosing conditioning block and�
awake with respect to the enclosing escaping blocks of each type� An index not active is said to be
idle�

The original notion of state ��� c� in L can then be similarly extended� A state is now a triple
��� c�"a�� where � is the environment� c is a boolean vector and "a � ha�� � � � � aNi is a list of boolean
vectors� Vector c denotes the conditioning context� for each index u� cju is true if u is selected� and
false otherwise� Each vector ai denotes the escaping context of type i� for each index u� aiju is true
if u is awake in block i� and it is false if it is asleep�

It is convenient to extend the notation de�ned in Section ����

active � c� �
�i�N

i��
ai�

Thanks to this convention� the semantic equations of L� for assignment� communication� sequencing
and iteration are obvious extensions of the corresponding parts of L�s semantics� We only list below
the remaining cases�

�



Conditioning block� On entering a conditioning block� the conditioning context is saved� It is re�
stored on exiting the block� The new conditioning context within the block is the conjunction
of the initial one with the current value of the pure expression B�

��where B do S end ����� c�"a� � ���� c� "a��

with ��S ����� c � ��B�� "a� � ���� c�� "a��� Observe that the escaping context is not restored� If
��S ����� c� ��B�� "a� � 	� then we simply put ��where B do S end ����� c� "a� � 	�

Escaping block� On entering an escaping block of type k� the escaping context of type k is saved�
It is restored on exiting the block�

�� begink S end ����� c� "a� � ���� c�� "a��

with ��S ����� c� "a� � ���� c�� "a��� and "a� � ha��� � � � � � a
��
k��� ak� a

��
k��� � � � � a

��
N
i� if ��S ����� c� "a� � 	�

then we put �� begink S end ����� c�"a� � 	�

Escape� On executing an escapek command� all currently active indices fall asleep with respect to
escaping type k� This amounts to restricting the escaping context of type k with the negation
of the current activity context�

�� escapek ����� c�"a� � ��� c�"a
��

with "a� � ha�� � � � � ak��� ak � 
active � ak��� � � � � aNi�

Remark� In the L language� we have stressed that the activity context is preserved by the
terminating executions� Because of the escapei commands of L�� this invariant is no longer true�
an initially active index may be idle at the termination� Yet� it can be proved that an initially idle
index remains idle throughout the execution�

� Assertions and speci�cations

As for the semantics� we show in this section that the notion of assertion de�ned for L programs
can be conveniently extended to L� programs by considering multiple activity contexts� For the
sake of completeness� we brie�y recall the structure of L assertions as described in ����

��� An assertion language for L programs

We de�ne an assertion language for the partial correctness of L programs in the lines of ���� Such
a speci�cation is denoted by a formula fPreg S fPostg where S is the program text� and Pre

and Post are logical assertions on variables of S� This formula means that� if precondition Pre is
satis�ed in the initial state of program S� and if S terminates� then postcondition Post is satis�ed
in the �nal state� A proof system gives a formal method to derive such speci�cation formulae by
syntax�directed induction on programs� Axioms correspond to statements� and inference rules to
control structures� Then� proving that a program meets its speci�cation is equivalent to deriving
the speci�cation formula fPreg S fPostg in the proof system�

�



Such a proof system for the L language is described in ���� A fundamental property of this
axiomatic semantics in the usual scalar case is compositionality � To achieve this goal� the assertion
language has to include su cient information on variable values� Similarly� our assertion language
has to include some information about the current activity context as well as variable values� We
therefore de�ne two�part assertions fP�Cg� where P is a predicate on vector program variables�
and C is a pure boolean vector expression which evaluates into an activity context�

Our assertion language has two kinds of variables� scalar variables and vector variables� As a
convention� scalar variables will be denoted with a lowercase initial letter� and vector ones with an
uppercase one� We have a similar distinction for arithmetic and logical expressions� As usual� scalar
�resp� vector� expressions are inductively de�ned with usual arithmetic and logical connectives�
Basic scalar �resp� vector� expressions are scalar �resp� vector� variables and constants� Vector
expression can be subscripted� If the subscript expression is a scalar expression� then we have a
scalar expression� the meaning of X ju is the component of X at index u� Otherwise� if the subscript
expression is a vector expression� then we have another vector expression� the meaning of X jA is
a vector whose component at index u is the value of component of X at index Aju� The meaning
of a vector expression is obtained by componentwise evaluation� We introduce a scalar conditional
expression with a C�like notation c#e � f � Its value is the value of expression e if c is true� and f
otherwise� Similarly� the value of a conditional vector expression� denoted by C#E � F � is a vector
whose component at index u is Eju if Cju is true� and F ju otherwise�

Predicates are usual �rst�order formulae� They are inductively de�ned from boolean scalar
expressions with logical connectives and existential or universal quanti�ers binding scalar variables�
It turns out that there is no need to consider quanti�cation on vector variables�

We introduce a substitution mechanism for vector variables� Let P be a predicate or any vector
expression� X a vector variable� and E a vector expression� P �E�X � denotes the predicate� or
expression� obtained by substituting all the occurrences of X in P with E� Note that all vector
variables are free by de�nition of our assertion language� The usual Substitution Lemma ��� extends
to this new setting� Let � be an environment and P a predicate� We use the usual notation � j� P

to denote that � is a model of predicate P � that is� P evaluates to true under assignment ��

Lemma � 
Substitution lemma� For every predicate on vector variables P � vector expression E

and environment ��
� j� P �E�X � i� ��X � ��E�� j� P

��� Extending assertions to L� programs

Going from L to L� semantics amounts to replacing the single activity context by a conditioning
context and a list of escaping contexts� We thus extend the context part of L assertions in a similar
way� Assertions are of the form fP�C� "Ag� where

� P is a predicate on program variables�

� C is a pure boolean vector expression which evaluates into the current conditioning context�

� "A � hA�� � � � � ANi is a list of pure boolean vector expressions� each Ai evaluates into the
current escaping context of type i�

�



The activity context is the conjunction of these contexts� It is the value of C �
V
i�N
i�� Ai� For

convenience� we denote this expression by C � "A� All de�nitions of ��� can be extended to this
new setting as shown below� We extend the notion of satis�ability �denoted by j�� to states and
assertions�

De
nition � 
Satis
ability� Let ��� c� "a� be a state� fP�C� "Ag an assertion�

��� c�"a� j� fP�C� "Ag i� � j� P and ��C� � c and �i � ��Ai� � ai

By convention� 	 satis�es any assertion� The set of states satisfying fP�C� "Ag is denoted by
��fP�C� "Ag ��� or fP�C� "Ag when no confusion may arise�

De
nition � 
Assertion implication� Let fP�C� "Ag and fQ�D� "Bg be two assertions� We say that

the former implies the latter with respect to context�

fP�C� "Ag � fQ�D� "Bg i� P � Q and P � �u � ��Cju � Dju� � �i � �Aiju � Biju��

Observe that this de�nition extends the usual one� fP�C� "Ag � fQ�D� "Bg i� ��fP�C� "Ag �� �
��fQ�D� "Bg ���

��� A proof system for L� programs

We may now de�ne the validity of a speci�cation of a L� program with respect to its semantics�
Because 	 satis�es any assertion� our notion validity is relative to termination� it de�nes partial
correctness �

De
nition 	 
Speci
cation validity� Let S be a L� program� and let fP�C� "Ag and fQ�D� "Bg be

two assertions� We say that the speci�cation is valid� denoted by

j� fP�C� "Ag S fQ�D� "Bg

if for each state ��� c� "a� such that ��� c� "a� j� fP�C� "Ag

��S ����� c� "a� j� fQ�D� "Bg�

Following the notation of ���� let Change�S� be the set of variables appearing on the left of as�
signments or as targets of get instructions� Only these variables can have their values changed by
executing S� Let Var�C� be the set of variables which appear in expression C� The value of C
depends on these variables only� We describe below a restricted proof system where we assume
everywhere that context expressions are not modi�ed by program bodies� Change�S��Var�C� � �
and Change�S� � ��i�N

i�� Var�Ai�� � ��

Assignment� X �� E� We extend the usual backwards axiom by taking into consideration that
vector variable X is modi�ed only at the active indices� that is indices where C � "A evaluates
to true�

The global activity is preserved by assignments� the initial activity is the same as the �nal one�
As the conditioning and escaping activities are described by boolean vector expressions � we

	



can describe the respective initial activities only if the values of the expressions describing the
�nal ones are not changed by the assignment� An easy su cient condition is that X �� Var�C�
and �i � X �� Var�Ai��

X �� Var�C� and �i � X �� Var�Ai�

fP ���C � "A�#E � X��X �� C� "Ag X �� E fP�C� "Ag

Communication� get X from A into Y � As noticed before� a get is an assignment of a remote value�

Y �� Var�C� and �i � Y �� Var�Ai�

fP ���C � "A�#X jA � Y ��Y �� C� "Ag get X from A into Y fP�C� "Ag

Sequencing� S� T � It is a straightforward generalization of the usual case�

fP�C� "Ag S fR�C�� "A�g� fR�C�� "A�g T fQ�D� "Bg

fP�C� "Ag S� T fQ�D� "Bg

Iteration� loop B do S end� The usual loop invariant here must be invariant with respect to both
the variable values and each of the activity types�

fI � 
u � ��C � "A�ju �Bju�� C� "Ag S fI� C� "Ag

fI� C� "Ag loop B do S end fI � �u � ��C � "A�ju � 
Bju�� C� "Ag

Conditioning block� where B do S end� Following the semantics� the initial conditioning context
is saved on entering the block and restored on exiting� The conditioning context within
the block is the conjunction of the conditioning context expression and the conditioning
expression� This is taken into account by and�ing conditioning context expression C with
condition expression B� and restoring C on exiting� Yet� this makes sense only if the value
of C has been left unchanged� The restriction Change�S�� Var�C� � � is an easy su cient
condition for this to hold�

fP�C �B� "Ag S fQ�C�� "A�g� Change�S��Var�C� � �

fP�C� "Ag where B do S end fQ�C� "A�g

Escaping block� begink S end� Similarly� the initial escaping context of type k is saved on entering
an escaping block and restored on exiting� Again� the restriction Change�S�� Var�Ak� � �
is su cient to guarantee that the value of Ak has been left unchanged�

fP�C� "Ag S fQ�C�� "A��g� Change�S�� V ar�Ak� � �

fP�C� "Ag begink S end fQ�C�� "A�g

with "A� � hA��
�� � � � � A

��
k��� Ak� A

��
k��� � � � � A

��
N
i

��



Escape� escapek � All currently active indices fall asleep with respect to escaping type k� The new
escaping context expression of type k is the conjunction of the previous one with the negation
of the global activity�

fP�C� "Ag escapek fP�C� "A
�g

with "A� � hA�� � � � � Ak��� Ak � 
�C � "A�� Ak��� � � � � ANi

Consequence rule� Following De�nition �� we can state the consequence rule�

fP�C� "Ag � fP �� C� "A�g fP �� C�� "A�g S fQ�� D�� "B�g fQ�� D�� "B�g � fQ�D� "Bg

fP�C� "Ag S fQ�D� "Bg

This rule allows us to strengthen preconditions� and to weaken postconditions of speci�cations�

Proposition � 
Soundness� This proof system is sound� if

� fP�C� "Ag S fQ�D� "Bg

then

j� fP�C� "Ag S fQ�D� "Bg�

Proof The proof is done by induction on the structure

of S� The cases of the assignment and communication commands are simple consequences of

the Substitution Lemma � thanks to the restriction X �� Var�C� and �i � X �� Var�Ai�� As

an example� we give the proof of the case of escaping block�

Let ��� c�"a� be a state satisfying fP�C� "Ag� By de�nition of the escaping block con�

struct� assume �� begink S end ����� c�"a� � ���� c�� "a�� with ��S ����� c� "a� � ���� c�� "a��� and

a� � ha��� � � � � � a
��
k��� ak� a

��
k��� � � � � aNi� By assumption� ���� c�� "a��� j� fQ�C�� "A��g� In partic�

ular� "a�� � ��� "A����

As Change�S��Var�Ak� � �� we have ��Ak� � ���Ak�� Thus� "a� � ��� "A��� We get ���� c�� "a�� j�
fQ�C�� "A�g� as wanted� �

Remark� Two additional rules will be introduced in the next section to deal with auxiliary
variables in preconditions and in programs�

� An extended example

We demonstrate this proof system by giving the proof annotation of our running example with
assertions� in the manner of ����� Let P be our original program in Figure �� Let T denote the
constant boolean vector whose components are all true� We aim at proving

f�u � �N ju � ��� T� hTig P f�u � �Rju � N ju � � � �� ��� T� hTig

The main step is to de�ne a convenient syntactic loop invariant� Observe that the activity context
decreases as iterations go� It is thus necessary to add a new auxiliary variable A� which is meant to
contain the value of the activity context at each iteration� It is su cient to set it to true initially and

��



��� M �� N � R �� N �

��� begin�
���� A �� True�

��� loop True do
�
�� where �M � �� do A �� False� escape� end�

��� M ��M � ��
��� R �� R�M

��� end
��� end

Figure �� The data�parallel factorial� L� version with the auxiliary variable

to set it to false just before executing the escape� command� this assignment will then be completed
exactly at the currently active indices� that is at the indices bound to fall asleep immediately� This
new program P � is displayed on Figure �� According to this intuition� variable A is false at least
at all sleeping indices� �u � �
Aju � �M ju � ���� and the role of line �


��

where �M � �� do A �� False� escape� end

is to tune the value of A so that �u � �
Aju � �M ju � ���� Thus� at each iteration� the escape��d
indices are exactly those indices u such that Aju is false� and the activity of type � is described by
expression A� A good candidate for an invariant is thus fI � �u � �
Aju � �M ju � ���� T� hAig�
with

I � �u � ��Rju � N ju� � � ��M ju� � �M ju � ���

Assume for a while that variable A acts as wanted� and that the following annotation can be
derived�

fI � �u � �
Aju � �M ju � ���� T� hAig

where �M � �� do A �� False� escape� end

fI � �u � �
Aju � �M ju � ���� T� hAig

Then� it is tedious but easy to check that the annotation for the entire program displayed on
Figure 
 is valid�

It remains to prove that the annotation of line �
�� is indeed correct� This is the only piece
of program where the escaping context is explicitly manipulated� Note that variable A appears
both in the escaping context expression and in the left part of an assignment� The assignment rule
cannot be applied� as explained above� We are thus bound to introduce a new auxiliary variable
A� in the initial assertion in order to save the initial value of the escaping context� First� we show

fI � �u � �
Aju � �M ju � ���� �u � �A�ju � Aju�� T� hA�ig

where �M � �� do A �� False� escape� end

fI � �u � �
Aju � �M ju � ���� T� hAig

The annotation is displayed on Figure �� The crucial step is to show that �d�� �e�� that is� boolean

��



We use the following de�nitions�

I � �u � ��Rju � N ju � � � ��M ju�� �M ju � ���
I � � �u � �Aju � �Rju �M ju � N ju � � � ��M ju�� 
Aju � �Rju � N ju � � � �� ��

� �M ju � ���
I �� � �u � �Aju � �Rju � �M ju � �� � N ju � � � �� �M ju � ��� � 
Aju � �Rju � N ju � � � �� ��

� �M ju � ���

f�u � �N ju � ��� T� hTig �a�
��� M �� N � R �� N �

fI� T� hT ig �b�
��� begin�

fI� T� hT ig �c�
���� A �� True�

fI � �u � Aju� T� hT ig �d�
fI � �u � Aju� T� hAig �e�

fI � �u � �
Aju � �M ju � ���� �u � Aju� T� hAig �f�
��� loop True do

fI � �u � �
Aju � �M ju � ���� 
u � Aju� T� hAig �g�
�
�� where �M � �� do A �� False� escape� end�

fI � �u � �
Aju � �M ju � ���� T� hAig �h�
fI �� � �u � �
Aju � �M ju � ���� T� hAig �i�

��� M ��M � ��
fI � � �u � �
Aju � �M ju � ���� T� hAig �j�

��� R �� R�M
fI � �u � �
Aju � �M ju � ���� T� hAig �k�

��� end

fI � �u � �
Aju � �M ju � ��� � �u � 
Aju� T� hAig �l�
fI � �u � �M ju � ��� T� hAig �m�

f�u � �Rju � N ju � � � �� ��� T� hAig �n�
��� end

f�u � �Rju � N ju � � � �� ��� T� hTig �o�

Figure 
� The annotated data�parallel factorial with an auxiliary variable

��



We use the same de�nition as on Figure 
�

fI � �u � �
A�ju � �M ju � ��� � �u � �A�ju � Aju�� T� hA�ig �a�
��� where M � � do

fI � �u � �
Aju � �M ju � ���� �u � �A�ju � Aju�� �M � ��� hA�ig �b�
��� A �� False�

fI � �u � �
Aju � �M ju � ���� �u � �
A�ju � 
Aju�� �M � ��� hA�ig �c�
��� escape�

fI � �u � �
Aju � �M ju � ���� �u � �
A�ju � 
Aju�� �M � ��� h�A� � 
�M � ���ig �d�
fI � �u � �
Aju � �M ju � ���� �u � �
A

�ju � 
Aju�� �M � ��� hAig �e�
fI � �u � �
Aju � �M ju � ���� �M � ��� hAig �f�

�
� end

fI � �u � �
Aju � �M ju � ���� T� hAig �g�

Figure �� The annotated inner where block of the factorial�

vector expressions A� � 
�M � �� and A have the same value as soon as predicate

�u � �
Aju � �M ju � ���� �
Aj
�
u
� 
Aju�

is satis�ed� This stems from a simple �but tedious� case analysis on the truth value of Aju�

� If Aju is true� then both 
�M ju � �� and A�ju are true� Thus� �A� � 
�M � ���ju is true�

� If Aju is false� then 
�M ju � �� is false� Thus� �A
� � 
�M � ���ju is false as well�

Let us now introduce an additional rule to our proof system to get rid of such auxiliary variables�

Auxiliary variable elimination in preconditions� If a variable Aux appears in the precondition only�
then it can be substituted by any expression E�

fP�C� "Ag S fQ�D� "Bg Aux �� Var�S��Var�Q��Var�D�� Var� "B�

fP �E�Aux �� C�E�Aux�� "A�E�Aux �g S fQ�D� "Bg

It can be shown that this rule is sound� Substituting A � � E� for A� � � Aux� in the initial
precondition on Figure � yields the wanted formula�

fI � �u � �
Aju � �M ju � ���� T� hAig

where �M � �� do A �� False� escape� end

fI � �u � �
Aju � �M ju � ���� T� hAig

It remains to get rid of auxiliary variable A in the factorial program P �� We can again add a
new rule in our proof system� which enables to forget everything about such auxiliary variables� in
the lines of the method proposed by Gries and Owicki �����

�




De
nition � 
Auxiliary variables� Let V be a set of variables� We say that variables of V are

auxiliary in program S if they only appear in assignment commands of the form Z �� E� or

communication commands of the form get X from A into Z� with Z � V �

It is clear that removing all commands containing variables of V does not modify the overall
behavior of the program� nor the �nal values of the variables not in V � The role of such auxiliary
variables is limited to convey information from the control �ow and the activity context to the
environment� If S is a program� and V is a set of auxiliary variables for S� then S n V denotes the
program obtained by stripping S from all commands involving variables of V �

Elimination of auxiliary variables in programs� If something which does not depend on auxiliary
variables has been proved about a program equipped with auxiliary variables� then it is true
of the program without them�

fP�C� "Ag S fQ�D� "Bg

V is a set of auxiliary variables for S

V � �Var�P � �Var�C��Var� "A�� Var�Q� �Var�D�� Var� "B�� � �

fP�C� "Ag S n V fQ�D� "Bg

It can be shown that this rule is sound� It is clear that fAg is a set of auxiliary variables for P ��
and that P � n V is exactly P � From the proved formula

f�u � �N ju � ��� T� hT ig P � f�u � �Rju � N ju � � � �� ��� T� hT ig

we can �nally infer the desired formula�

f�u � �N ju � ��� T� hTig P f�u � �Rju � N ju � � � �� ��� T� hTig

� Conclusion

This work shows that the classical approach towards the natural semantics and assertional proof
systems for scalar languages can be extended to modern data�parallel languages� It can even be
tuned to handle complex escape control structures as found in high�level data�parallel languages
such as MasPar�s MPL or the recent HyperC� Our running example shows that the proof of such
programs can be built according to the usual intuition by annotating the program text with inter�
mediate assertions� This is a major result� as the amount of information is much larger than in the
scalar case� and yet the formal manipulations are basically of the same complexity�

To our understanding� this is a strong argument in favor of data�parallel programming as op�
posed to �control��parallel Occam�like programming� data�parallelism allows to handle the valida�
tion of parallel programs �for free�� which is in striking contrast to the technical complexity of the
validation methods for Occam programs�

This work can be continued in several directions� On a technical level� it would be interesting
to study the completeness of the proof system �at least for programs without iteration�� is it
always possible to add auxiliary variables to convey enough information from the control �ow to

��



the environment# Also� we have shown in �
� that any L� program S can be transformed into an
equivalent L program S�� up to auxiliary variables� In ���� we have presented a proof system for L
programs� What is the relationship between the proof of S in L�� and the proof of the equivalent
program S� in L# Also� the MPL and HyperC languages do not include the escape mechanism
explicitly� but rather through the specialized break and continue commands� can we de�ne any
specialized proof rules to handle these constructs directly#

On a broader level� the extension of usual proof systems to complex data�parallel languages
such as MPL or HyperC� enables to reuse in this new setting all the know�how developed for
the validation of scalar programs� methodologies� computer�aided veri�cation environments �e�g��
����� heuristics� etc� This opportunity opens a quite exciting research direction which could make
large�scale parallel programming really possible� We are currently investigating this new frontier�

Acknowledgments� This work has greatly bene�ted from discussions with Yann Le Guyadec
and Bernard Virot� We thank Ga�etan Hains for his detailed comments and suggestions�

References

��
 K�R� Apt and E�R� Olderog� Veri�cation of Sequential and Concurrent Programs� Text and Monographs
in Computer Science� Springer Verlag� �

��

��
 L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� On the expressivity of a waekest precondition calculus
for a simple data�parallel language� In Parallel Processing� ConPar��� � VAPP VI� Lect� Notes Comp�
Science� Linz� Austria� September �

��

��
 L� Boug�e� Y� Le Guyadec� G� Utard� and B� Virot� A proof system for a simple data�parallel program�
ming language� In C� Girault� editor� Proc� of the IFIP WG�	�
 Int� Conf� on Application in Parallel
and Distributed Computing� Caracas� V�en�ezuela� April �

�� Elsevier�

��
 L� Boug�e and J��L� Levaire� Control structures for data�parallel SIMD languages� semantics and imple�
mentation� FGCS� �������	�� �

��

��
 M� Clint and K�T� Narayana� On the completeness of a proof system for a synchronous parallel pro�
gramming langage� In Third Conf� Found� Softw� Techn� and Theor� Comp� Science� Bangalore� India�
December �
���

��
 High Performance Fortran Forum� High Performance Fortran language speci�cation �draft version��
CITI�CRPC� Rice Univ�� Houston� January �

�� Version ��� Draft�

�	
 J� Gabarr�o and R� Gavald�a� An approach to correctness of data parallel algorithms� Technical Report
LSI�
���
� Univ� Polit�ecnica de Catalunya� October �

�� To appear in Journ� of Parallel and Distr�
Computing� �

��

��
 M�J�C� Gordon� Programming Language Theory and its Implementation� Int� Series in Comp� Sciences�
Prentice Hall� �
���

�

 J��L� Levaire� Using the Centaur system for data�parallel SIMD programming� a case study� In Proc�
�th European Symposium on Programming
 ESOP���� volume ��� of Lect� Notes Comp� Science� pages
�������� Springer�Verlag� February �

��

���
 MasPar Computer Corporation� Sunnyvale CA� Maspar Parallel Application Language Reference Man�
ual� �

��

���
 S� Owicki and D� Gries� Verifying Properties of Parallel Programs � An Axiomatic Approach� Commu�
nication of the ACM� �
�����	
����� May �
	��

���
 N� Paris� HyperC speci�cation document� Technical Report 
���� HyperParallel Technologie� �

��

��



���
 R�H� Perrot� A language for array and vector processors� ACM Trans� on Programming languages and
Systems� ������		��
�� 	
�

���
 A� Stewart� An axiomatic treatment of SIMD assignment� Bit� ���	����� �

��

���
 Thinking Machine Corporation� Cambridge MA� C� programming guide� �

��

��


