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Abstract
Safe Ambients (SA) are a variant of the Ambient Calculus (AC) in which types
can be used to avoid certain forms of interferences among processes called grave
interferences.
An abstract machine, called GcPan, for a distributed implementation of typed
SA is presented and studied. Our machine improves over previous proposals for
executing AC, or variants of it, mainly through a better management of special
agents (the forwarders), created upon code migration to transmit messages to
the target location of the migration. Well-known methods (such as reference
counting and union-find) are applied in order to garbage collect forwarders,
thus avoiding long – possibly distributed – chains of forwarders, as well as
avoiding useless persistent forwarders.
The proof of correctness of GcPan, and a description of a distributed imple-
mentation of the abstract machine in OCaml are given.
Correctness is established by proving a weak bisimilarity result between GcPan
and a previous abstract machine for SA, and then appealing to the correct-
ness of the latter machine. This is simpler than comparing GcPan directly
with SA, but it involves reasoning modulo ‘administrative reduction steps’ in
both machines and therefore standard techniques for simplifying proofs of weak
bisimilarity results are not applicable.
More broadly, this study is a contribution towards understanding issues of
correctness and optimisations in implementations of distributed languages en-
compassing mobility.
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Résumé
Le calcul des Safe Ambients (SA) est une variable du calcul des Mobile Am-
bients qui permet, par le truchement d’un système de types, d’éviter certaines
formes d’interférences appelées interférences graves.
Nous définissons ici une machine abstraite, appelée GcPan, pour l’exécution de
processus SA typés. GcPan diffère de Pan, une machine abstraite introduite
précédemment pour SA, par le fait qu’elle utilise des techniques classiques de
programmation distribuée (comptage de références, union-find) afin d’améliorer
les performances. En particulier, ces modifications permettent une meilleure
gestion des agents de retransmission qui sont créés par la machine au moment où
l’on fait migrer du code. Ces agents, dont le rôle est de faire suivre les messages
vers la nouvelle destination d’un agent qui a migré, ne sont jamais supprimés
dans la machine Pan. Dans le contexte d’une implantation distribuée, cela peut
engendrer des châınes de retransmetteurs arbitrairement longues, et passant par
plusieurs sites physiques.
Au-delà de la comparaison avec la Pan, la GcPan se démarque des autres ma-
chines abstraites ayant été proposées pour l’exécution de calculs d’Ambients
selon des critères de simplicité et d’efficacité. Le fait d’adopter le calcul des
Safe Ambients plutôt que le calcul originel des Mobile Ambients, notamment,
nous permet d’éviter d’avoir à gérer des interférences graves. Par ailleurs, nous
découplons la structuration logique déterminée par un processus et la descrip-
tion de la répartition des sous-processus au niveau physique.
Nous présentons la preuve de correction de la machine proposée, et nous dé-
crivons une implantation répartie que nous avons développée. La propriété de
correction s’énonce comme un résultat de bisimilarité faible entre la GcPan et
la Pan (qui, à son tour, est correcte vis-à-vis du calcul des Safe Ambients).

Mots-clés: ambients mobiles, machine abstraite, transmetteurs, glanage de cellules, bisimulation
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Introduction

In recent years there has been a growing interest for core calculi encompassing distribution and mobility.
In particular, these calculi have been studied as a basis for programming languages. Examples include
Join [8], Nomadic Pict [23], Kells [1], Ambients [5], Klaim [16].

In this paper we study issues of correctness and optimisations in implementations of such languages.
Although our technical work focuses on of Ambient-based calculi, we believe that the techniques can
be of interest for the study of other languages: those mentioned above, and more broadly, distributed
languages with mobility.

The underlying model of the Ambient calculus is based on the notion of location, called ambient.
Terms in Ambient-based calculi describe configurations of locations and sub-locations, and computation
happens as a consequence of movement of locations. The three primitives for movement allow: an ambient
to enter another ambient (In-movement), an ambient to exit another ambient (Out-movement), a process
to dissolve an ambient boundary thus obtaining access to its content (Open-movement).

A few distributed implementations of Ambient-like calculi have appeared [9, 11, 17]. The study of
implementation is important to understand the usefulness of the model from a programming language
point of view. Such studies have shown that the open primitive, the most original one in the Ambient
model, is also the most difficult to implement.

Another major difficulty for a distributed implementation of an ambient-like language is that each
movement operation involves ambients on different hierarchical levels. For instance, the ambients affected
by an out operation are the moving ambient and its initial and final parents; before the movement is
triggered, they reside on three different levels. In [3, 4] locks are used to achieve a synchronisation among
all ambients affected by a movement. In a distributed setting, however, this lock-based policy can be
expensive. For instance, the serialisations introduced diminish the parallelism of the whole system. In
[9] the synchronisations are simulated by means of protocols of asynchronous messages. The abstract
machine Pan [11] has two main differences. The first is that the machine executes typed Safe Ambients
[13] (SA) rather than untyped Ambients. Typed SA is a variant of the original calculus that eliminates
certain forms of interference in ambients, called grave interferences. These arise when an ambient tries
to perform two different movement operations at the same time, as for instance n[in h.P | out n.Q | R].
The second reason for the differences in Pan is the separation between the logical structure of an ambient
system and its physical distribution. Exploiting this, the interpretation of the movement associated to
the capabilities is reversed: the movement of the open capability is physical, that is, the location of some
processes changes, whereas that of in and out is only logical, that is, some hierarchical dependencies
among ambients may change, but not their physical location. Intuitively, In and Out reductions are
acquisition of access rights, and Open is exercise of them.

In Pan, the implementation of the open capability exploits forwarders – a standard technique in
distributed systems – to retransmit messages coming from the inside of an ambient that has been opened.
Forwarders lead to two major problems:

• persistence: along the execution of the Pan, some forwarders may become useless, because they
will never receive messages. However, these are never removed, and thus keep occupying resources
(very often in examples, the ambients opened are leaves, and opening them introduces useless
forwarders).

• long communication paths: as a consequence of the opening of several ambients, forwarder chains
may be generated, which induce a loss of performances by increasing the number of network mes-
sages.

In this paper, we introduce GcPan, an abstract machine for SA that is more efficient than Pan.
The main improvements are achieved through a better management of forwarders, which in the GcPan
enjoy the following properties:

• finite lifetime: we are able to predict the number of messages that will be transmitted by a for-
warder, so that we can remove the latter once these messages have all been treated;

• contraction of forwarder chains: we enrich the machine with a mechanism that allows us to im-
plement a union-find algorithm to keep forwarder chains short, so as to decrease the number of
messages exchanged.

1



The basis of the algorithms we use (e.g., Tarjan’s union-find algorithm [21]) are well-known. However,
adapting them to Ambient-like calculi requires some care, due to the specific operations proposed by these
languages.

We provide a formal description of our machine, and we establish a weak bisimilarity result between
Pan and GcPan. We then rely on the correctness of the Pan w.r.t. the operational semantics of SA,
proved in [11], to deduce correctness w.r.t. SA.

An original aspect of our analysis w.r.t. the proof in [11] is that we compare two abstract machines,
rather than an abstract machine and a calculus. This involves reasoning modulo ‘administrative reduction
steps’ on both sides of the comparison to establish the bisimulation results. However, the fact that, in
the GcPan, chains of forwarders are contracted using the union-find algorithm prevents us from setting
up a tight correspondence between the two machines. This moreover entails that standard techniques for
simplifying proof of weak bisimilarity results (such as those based on the expansion preorder and up-to
techniques) are not applicable. As a consequence, the bisimulation proof in which the two machines are
compared is rather long and complex. Still, deriving the correctness w.r.t. SA through a comparison
with Pan is simpler than directly proving the correctness of our machine w.r.t. SA. This holds because
Pan and GcPan are both abstract machines, with a number of common features.

Not being able to apply standard proof techiques for bisimilarity, we have striven to make the proof
highly-structured and readable, for instance isolating a number of basic results about forwarders and
administrative reductions. Due to lack of space, only a few of them are reported in the paper.

Finally, we describe an implementation of our machine in OCaml. We have also used the implement-
ation to study the improvements brought by our modifications.

We believe that our study can also be of interest outside Ambient-based formalisms. For instance,
the use of forwarders is common in distributed programming (see e.g. [6, 8]). However, little attention
has been given to formal specification and correctness proofs of the algorithms being applied. The
formalisation of the management and optimisations of forwarders that we provide and, especially, the
corresponding correctness proof should be relevant elsewhere.

Outline of the paper. We start by describing the design principles of the GcPan in Section 1.
We then give the formal definition of the machine in Section 2, and prove its correctness in Section 3.
Section 4 is devoted to an extension of the GcPan to handle also a special kind of location named
immobile ambients. Section 5 gives the description of our implementation of the extended GcPan.
Finally, we discuss related work and possible future work in Section 6.

1 The Machine: Design Principles

We briefly recall the main features of the Safe Ambients (SA) calculus [14], and the Pan abstract
machine [11]. We then highlight the main problems of Pan in terms of efficiency, and present our
modifications. We end with a discussion of some of the consequences brought by these modifications.

1.1 Safe Ambients

The Safe Ambients calculus is an extension of the Mobile Ambients calculus [5] in which a tighter control
of movements is achieved though co-capabilities. The four main reduction rules are:

a[in b.P | Q] | b[in b.R | S] �−→ b[a[P | Q] | R | S] (IN)
b[a[out b.P | Q] | out b.R | S] �−→ a[P | Q] | b[R | S] (OUT )

open b.P | b[open b.Q | R] �−→ P | Q | R (OPEN)
〈M〉 | (x)P �−→ P{M/x} (COM)

Co-capabilities and the use of types (notably those for single-threadedness) make it possible to exclude
grave interferences, that is, interferences among processes that can be regarded as programming errors.
For example, in the following overlapping redexes, the choice changes completely the behaviour of one
of the ambients involved (here n).

open n | n[open n | in m] | m[in m] �−→ in m | m[in m] ��−→
open n | n[open n | in m] | m[in m] �−→ open n | m[n[open n]] ��−→
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Figure 1: Simulation of the SA reductions by the Pan.

In presence of co-capabilities, one can define a type system for single-threadedness, that avoids such
interferences [14]: a single-threaded (ST) ambient can engage in at most one external interaction, at any
time its local process has only one thread (or active capability).

In the example, n is not single-threaded since it contains two threads, willing to execute open n and
in m respectively.

Of course, this restriction does neither remove concurrency (several ambients, each of which executes
its own thread, may run concurrently), nor does it preclude non-determinism (consider for instance
a[in b] | b[in b.P ] | b[in b.Q]).

One of the benefits of the absence of grave interferences is that it is possible to define simpler ab-
stract machines and implementations for ambient-based calculi: some of the synchronisation mechanisms
required to support grave interferences in a distributed setting [9] are not necessary.

In the sequel, when mentioning well-typed processes, this will be a reference to the type system of [14].

1.2 The Pan

The Pan [11] separates the logical distribution of ambients (the tree structure given by the syntax) from
their physical distribution (the actual sites they are running on). An ambient named n is represented as
as a located agent h: n[P ]k, where h is the physical location, k the location of the parent of the ambient,
and P is its local process. There can be several ambients named n, but a location h uniquely identifies
an ambient. The physical distribution is flat, so that the SA process a[b[c[] | P ] | d[Q]] is represented by
the parallel composition (also called net) h1: a[]root ‖ h2: b[P ]h1 ‖ h3: c[]h2 ‖ h4: d[Q]h1 . For the sake of
simplicity, and when this does not lead to confusion, we sometimes use a to refer to the location of an
ambient named a.

In the Pan, an ambient has only access to its parent location and to its local process: it does not
know its sub-ambients. This simplifies the treatment of ambients interaction: communication between
locations boils down to the exchange of asynchronous messages (while manipulating lists of child locations
would mean setting many synchronisation points along computation).

An ambient interaction in the Pan is basically decomposed into three steps: an ambient that wants
to move first sends a request message to its parent and enters wait state. The father ambient then looks
for a valid match to this request, and, upon success, sends appropriate completion messages back, using
the location name contained in the request message. The scenarios corresponding to the three kinds of
movement are depicted on Figure 1, where white squares (resp. grey squares) represent locations (resp.
locations in wait state), and arrows indicate travelling messages.

We remark that, for In and Out moves, the decision is taken by the parent of the moving ambient.
Also note that in the Out move, the grandparent, that actually receives a new child, does not take part
in any interaction: this follows from the design of Pan, in which the relation between parent and child
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Figure 2: Depth and local counting. Figure 3: Depth counting: problem with the Open
rule.

‘goes upwards’. Moreover, performing an In or Out movement does not trigger any physical migration
in the Pan, only the logical distribution of ambients is affected.

On the other hand, in an Open move, the code of the process that is local to the ambient being opened
(a on Figure 1) is sent to the parent ambient (via a register message). Indeed, b has no access to its
children, and hence it cannot inform them to send their requests to b instead of a. The solution adopted
in the Pan is to use forwarders : any message reaching a will be routed to b by an agent represented by
a triangle on Figure 1, and denoted by ‘h � k’ in the following (h and k being the locations associated
respectively to a and b).

The logical structure of a Pan net is therefore a tree whose nodes are either a located ambient or a
forwarder. Request (resp. completion) messages are transmitted upwards (resp. downwards) along the
tree.

The design ideas that we have exposed entail two major drawbacks in the execution of the Pan:
persistence of forwarders (even when there are no sub-ambients and therefore no message can reach the
forwarder), and long forwarder chains which generate an overload in terms of network traffic.

1.3 The GcPan

We now explain how we address the problems exposed above, and how our choices affect the design of
the Pan.

1.3.1 Counters.

A forwarder can be thought of as a service provided to the children of an opened ambient. Our aim is
to be able to bring this service to an end once there are no more children using it. At the same time, we
wish to maintain the asynchrony in the exchange. For this, in the GcPan agents are enriched with a kind
of reference counter. Forwarders have a finite lifetime, at the end of which they are garbage collected.
The lifetime of a forwarder intuitively corresponds to the number of locations that point to it. A counter
is decremented each time a message is forwarded. If the counter is zero, then the forwarder is a leaf in
the logical structure of the net and can safely be removed.

A first remark is that we cannot predict the number of children that a created forwarder will have.
Consider indeed the SA process

r[open a | a[open a | b[rec X.(c[out b] | out b.X)]]] .

(construction rec X binds the process variable X in the recursively defined process above). There is no
way to predict the number of children that ambient a will have at the moment where it will get opened.

We can think of two ways of associating a lifetime to a forwarder (Figure 2):

Depth counting. The most natural idea is probably to decorate each located ambient with the number
of immediate sub-ambients it has. In doing this, we ignore forwarders, because request messages
that are routed via forwarders can only be emitted by located ambients.

This solution seems however difficult to implement, due to the asynchrony in the model. This is
illustrated by Figure 3: if the ambient marked ‘*’ is opened, the counters along the whole forwarders
chain should be updated before any of the children can send a message.
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Figure 4: Relocation of forwarders.

Local counting. In our approach, we only count the immediate children of a location (hence the name
local), including forwarders. As a consequence, we may well have the situation where several sub-
ambients are ‘hidden’ under a forwarder, so that the value of the counter at a given location has
no direct relationship with the number of sub-ambients.

The difficulty described above does not arise in this setting: the forwarders chain remains unaffected
by the opening, a located ambient becomes a forwarder, and this has no influence on the counting.

1.3.2 Synchronisation problems and blocked forwarders.

In the local approach, one has to be careful in transmitting request messages. Consider for instance the
forwarder marked ‘*’ on the right of Figure 2: each ambient marked with a circle can send a request
message. The intermediate forwarder cannot forward directly these two requests, since the ‘*-forwarder’
is willing to handle only one message. In the GcPan, an agent can send only one message upwards, and
whenever this message is sent, the agent commits to relocate itself if the agent it was talking to turns
out to be a forwarder.

Implementing this policy is easy for located ambients, that enter a wait state just after emitting a
request message. We only have to decorate completion messages with the appropriate information for
relocation.

For forwarders, we need to devise a similar blocking mechanism: once a forwarder has transmitted a
request message, it enters a blocked state and waits for a go� completion message, which contains the
name of the location to which the next request should be forwarded. Figure 4 illustrates this (blocked
forwarders are represented by reversed, grey triangles): message {N} is emitted by the grey ambient, and
then routed towards the parent location, which has the effect of blocking forwarders along the way. When
{N} reaches the parent ambient, go� messages are generated so that forwarders can resume execution,
just below the parent ambient.

This way short communication paths between locations are maintained: at the end of the scenario,
message {M} is closer to its destination, without having been routed yet. The technique we use is
reminiscent of Tarjan’s union-find algorithm [21].

Before explaining how counters are updated along the transmission of messages in the GcPan, we
make some observations about the communication protocols that we have just described.

Remark 1 (Race situations) Having blocked forwarders leads to race situations: consider the scenario
of Figure 4, where messages {M} and {N} are sent at the bottom of a chain of forwarders. When {N}
goes through the lowest forwarder, {M} has to wait for the arrival of the former at the top of the chain,
so that a go� message is emitted to rearrange forwarders (following the union-find algorithm). The loss,
from {M}’s point of view, is limited: once {N} has entered the parent location, {M} can reach the latter
in three steps (the go� message plus two routing steps).

Remark 2 (Relocation strategy) In the GcPan, the ambient that sits at the end of a forwarder chain
broadcasts a relocation message (go�) to all blocked forwarders in the chain. In a previous version of our
machine, this message was propagated back along the chain, unblocking the forwarders in a sequential
fashion. We prefer the current solution because it brings more asynchrony (race situations introduced a
delay of n + 2 because the relocation message had to go trough the whole chain in order to unblock all
forwarders). On the other hand, request messages carry more information in our approach (we need to
record the set of forwarders that have been crossed). However, in practice, we observe that long chains
of forwarders are very unlikely to be produced in our machine, thanks to the contraction mechanism we
adopt. Consequently, such messages have in most cases a rather limited size.
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Figure 5: A race situation.

Figure 6: Counters along an Out move: first approach.

1.3.3 Updating counters along SA movements.

Going back to the GcPan transitions corresponding to the basic SA moves (the match transitions of
Figure 1), we need to be able to maintain coherent counters along the three kinds of movement. This is
achieved as follows (the names we use correspond to Figure 1):

In: The overall result of the transition will be that c decrements its counter, and b increments its counter
upon reception of the OKin completion.

Open: counters do not need to be modified. We introduce here an optimisation, when b’s counter is
equal to zero (i.e., b has no child at all): in this case, we avoid creating a useless forwarder (since
there is no child to listen to).

Out: in the Pan, the match between the capability and the co-capability is done at b, and the grand-
parent c is not aware of the movement. In the GcPan, b decrements its counter, a is unaffected,
but, a priori, c has to increment its counter, since it receives a new child, a.

A possibility would be to let b pass the control on the move along to c, that is then in charge of
sending the completion messages: this solution is represented on Figure 6. Adopting this protocol
means introducing a new kind of message in the machine (message DoOut on Figure 6, from parent
to grandparent), and having two agents in wait state (the child and the parent) while the control
is at the grandparent’s location.

We chose a different solution, that does not use an additional kind of message and in which interac-
tion is more local and asynchronous. It is depicted on Figure 7: at b, we create a new forwarder that
collects the parent (b) and the child (a) under a unique agent, so that the grandparent’s counter
does not need to be updated. It may seem rather counterproductive to decide to add a forwarder
this way, considering that our goal in designing the GcPan is precisely to erase as many forwarders
as possible. We can however observe that:

• the created forwarder has a lifetime of 2, which is short;

• from the point of view of the implementation, the forwarder is created on the parent’s site, so
that the extra communication between the parent and the forwarder will be local.

Remark 3 (The cost of message transmission) After the opening of an ambient, the content mi-
grates to the parent location in a register message, that can thus be arbitrarily large. In our machine,
the parent location is in wait state until transmission of this message (this is mandatory in order to
preserve a correct meaning to counters). The migrating process is informed of its target destination in
the migrate message that precedes the physical movement. As a consequence, register messages are
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Figure 7: Counters along an Out move: our approach.

transmitted without being routed by forwarders, as is the case in the Pan (which can be the cause of grave
inefficiencies).

On the other hand, in the Pan, all messages have a fixed, small size, except for register messages
that carry a migrating process. As hinted above (see Remark 2), the relocation method we use in the
GcPan makes it necessary to decorate request messages with the list of forwarder locations they went
trough. Hence, the size of such messages is a priori unbounded. Experiments performed using our
implementation suggest however that the size of messages remains rather small.

2 Formal Definition of the Machine

2.1 GcPan Nets

The syntax of the terms of the GcPan (referred to as GcPan nets, or simply nets) is presented on
Table 1. Agents in the GcPan are either located ambients (hi: n[P ]k is the ambient n[P ] running at
h, whose parent is located at k), blocked or running forwarders (h�i is a blocked forwarder at h, while
h �i k is willing to transmit messages from h to k). In the three cases, the superscript i ∈ N represents
the value of the agent’s counter.

A message of the form k{req/E} denotes the request req, located at k, and having been transmitted
through the locations contained in the list of locations E. k{req} is an abbreviation for k{req/[]}, and
we write h :: E to denote the list obtained by adding h to E. Reception ((x)P ) and restriction ((νx)P )
are binders. Given a process P , we let FL(P ) stand for the set of free locations of P . An occurrence in
a process P is guarded if it appears under a prefix or a reception. We suppose that in every process of
the form rec X.P , all occurrences of X in P are guarded.

Other aspects of the syntax of messages are explained in Subsection 2.3.
The definition of structural congruence is standard.

Definition 4 (Structural congruence) Structural congruence is the smallest congruence ≡ such that:

1. both kinds of parallel composition, | and ‖, together with 0, form abelian monoids;

2. (νp)(A) ‖ B ≡ (νp)(A ‖ B) if p not free in B, and
(νa)(P ) | Q ≡ (νa)(P | Q) if a not free in Q;

3. (νp)(νq)A ≡ (νq)(νp)A, and (νa)(νb)P ≡ (νa)(νb)P ;

4. (νp)0 ≡ 0

5. rec X.P ≡ P{rec X.P/X}
Remark 5 (Extruding names across locations) Like for the Pan, structural congruence does not
allow a name restriction to be extruded out of a located ambient in a transparent way: the GcPan net
h: n[(νm)(in m)]k is not equivalent to (νm)h: n[in m]k. Since such a transformation is not innocuous
from an implementation point of view, this phenomenon is described as a reduction step (see below).

In order to establish the bisimulation result w.r.t. the Pan (and then compare a SA process with
the GcPan net that represents it), we introduce a translation from SA processes to GcPan nets, and a
notion of barb along the lines of the corresponding definitions for the Pan [11]. Intuitively, observables
correspond to the In and Open interactions offered by a net (in SA, a context cannot trigger an Out
movement).
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a, b, m, n, .. ∈ Names h, k, .. ∈ Locations p, q, .. ∈ Names ∪ Locations i, j, .. ∈ N x, y, .. ∈ V ariables

Networks:

A := 0 (empty net)
| Agent (agent)
| h{Msg} (emission)
| A1 ‖ A2 (composition)
| (νp)A (restriction)

Agent := h �i k (forwarder)
| h�i (blocked forwarder)
| hi: n[P ]k (located ambient)

Msg := req/E (request)
| compl (completion)

req := in n, h (agent at h wants to enter n)
| in n, h (agent at h, named n, accepts someone in)
| out n, h (agent at h wants to leave n)
| open n, h (agent at h, named n, accepts to be opened)

compl := go h (request completed, go to h)
| go� h (relocate forwarder to h)
| OKin h (request in completed, go to h)
| migrate h (request open completed, migrate to h)
| registers P (add P to the local processes)

Processes:
P := 0 M := x

| P1 | P2 | n
| (νn)P | in M
| M.P | in M
| M [P ] | out M
| 〈M〉 | out M
| (x)P | open M
| X | open M
| rec X.P
| wait.P
| {req}

Table 1: GcPan Syntax

Definition 6 (Translation from SA to GcPan) Let �.�gc be the translation of SA processes into
GcPan nets defined by:

�P �gc � root0: rootname[P ]rootparent .

Definition 7 (Barbs) Let A be a net, and n a name. We define the judgement ‘A exhibits barb n’ as
follows: A ↓n iff A ≡ (νp)

(
root: rootname[{M, h} | P ]rootparent ‖ A′) where M ∈ {in n, open n} and

n /∈ p.

2.2 Reduction Rules

The following are the rules defining the operational semantics of GcPan nets. We explain them below.
Creation

[New-Locamb] hi: m[n[P ] | Q]h′ �−→ hi+1: m[Q]h′ ‖ (νk)(k0: n[P ]h) k /∈ FL(P )

[New-Res] hi: m[(νn)P ]k �−→ (νn)(hi: m[P ]k)

Emission of request messages
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[Req-In] in m.P
k−−→

h:−
wait.P � k{in m, h}

[Req-Coin] in n.P
k−−→

h:n
wait.P � k{in n, h}

[Req-Out] out m.P
k−−→

h:−
wait.P � k{out m, h}

[Req-Coopen] open n.P
k−−→

h:n
wait.P � k{open n, h}

Transmission of request messages

[Fw-Send] h �i+1 k ‖ h{req/E} �−→ h �i ‖ k{req/h::E}
[Fw-SendGC] h �1 k ‖ h{req/E} �−→ k{req/E}
[Fw-Reloc] h �i ‖ h{go� k} �−→ h �i k

[Loc-Rcv] hi+1: n[P ]k ‖ h{req/E} �−→ hi+#E : n[P | {req}]k ‖ E{go� h}
Local reductions

[Local-Com] 〈M〉 | (x).P −−−−→−:− P{x\M} � 0

[Local-In] {in n, h} | {in n, k} −−−−→
h′:−

0 �1 h{go k} ‖ k{OKin h′}
[Local-Out] {out n, h} | out n.P

−−−→−:n
P ≫k′ h{go k′}

[Local-Open] open n.P | {open n, h} −−−−→
h′:−

wait.P �1 h{migrate h′}
Inference rules

[Proc-Agent]
P

k−−→
h:n

P ′ �s M Q does not have unguarded ambients

hi: n[P | Q]k �−→ hi+s: n[P ′ | Q]k ‖ M

[Proc-Agent’]
P

k−−→
h:n

P ′ ≫k′ M k′ /∈ FL(P |Q) Q does not have unguarded ambients

hi: n[P | Q]k �−→ (νk)′(k′ �2 k ‖ hi: n[P ′ | Q]k′ ‖ M)

[Par-Agent]
A �−→ A′

A ‖ B �−→ A′ ‖ B

[Res-Agent]
A �−→ A′

(νp)A �−→ (νp)A′

[Struct-Cong]
A ≡ A′ A′ �−→ A′′ A′′ ≡ A′′′

A �−→ A′′′

Consumption of completion messages

[Compl-Parent] h{go k} ‖ hi: n[P | wait.Q]− �−→ hi: n[P | Q]k

[Compl-Coin] h{OKin k} ‖ hi: n[P | wait.Q]− �−→ hi+1: n[P | Q]k

[Compl-Migr] h{migrate k} ‖ hi+1: n[P | wait.Q]− �−→ h �i+1 k ‖ k{register0 (P | Q)}
[Compl-MigrGC] h{migrate k} ‖ h0: n[P | wait.Q]− �−→ k{register1 (P | Q)}
[Compl-Reg] h{registers R} ‖ hi+s: n[P | wait.Q]k �−→ hi: n[P | Q | R]k

In the rules above, we have adopted the following notations:

P
k−−→

h:n
P ′ � M � P

k−−→
h:n

P ′ �0 M

h{req} � h{req/[]}
E{M} � e1{M} ‖ . . . ‖ ei{M}

#E � i

}
when E = [e1; . . . ; ei]

Definition 8 (Communication relation, transitive closure) We denote by �−→c the reduction re-
lation obtained by using only the transmission and inference rules. We denote by �=⇒ (resp. �=⇒c ) the
reflexive, transitive closure of �−→ (resp. �−→c ).
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2.3 Comments on the Reduction Rules

2.3.1 About the shape of the rules:

rules for emission of request messages and for local reductions have the shape P
k−−→

h:n
P ′ �i M , to

denote the fact that process P , running in ambient n at location h, may liberate message M and evolve
into process P ′, k being the parent location of h. Integer i decorating the � records the increment
that has to be brought to h’s counter (cf. rule Proc-Agent, presented below). When n or h or k are
unimportant, we replace them with ‘-’. We do the same in the rules for consumption of completion
messages, when the parent location of a located ambient is not important.

In rule Local-Com, P{x\M} denotes process P in which x is substituted with M .

2.3.2 Six kinds of rules

govern the behaviour of a GcPan net, according to the way SA transitions are implemented in our
model.

• Before being able to start interacting, a process might have to allocate new resources for the creation
of new names and for the spawning of new ambients: this is handled by the rules for creation.

• The translation of a prefixed SA process starts with emitting a request for interaction, which is
expressed by the corresponding four rules for emission of request messages.

• Request messages are transmitted through forwarders and reach their destination location via the
rules for transmission of request messages.

• Local reductions describe the steps that correspond to SA transitions. Such reductions do the
matching between a capability and the corresponding co-capability, and generate completion mes-
sages, whose role is to inform the interacting agents that the transition has been fired.

Notation ≫ is introduced similarly to �, in order to handle the Out movement, that is achieved
using rule Proc-Agent’. The subscript k′ denotes the source location of the created forwarder
(we have to adopt a special treatment for this case because of the creation of the forwarder outside
the ‘active location’).

• Some rather standard inference rules are used to transform a local reduction into a transition of
the whole GcPan net.

The premises about unguarded ambients insure that all sub-ambients of an ambient are activated
as soon as possible (rule New-Locamb), before any local reduction takes place — here we exploit
the fact that recursions are guarded, otherwise one could need to create an infinite number of
ambients.

• The rules for consumption of completion messages describe how interacting agents resume compu-
tation when they are informed that a movement has occurred.

2.3.3 Counting:

the notion of well-formed net, that will be defined in the next section, expresses the laws that are
satisfied by counters. Intuitively, to understand the counting for an agent located at h, in a given
GcPan configuration, we have to take into account:

• the number of non waiting ambient locations that are immediate children of h (of the form
ki: n[P ]h);

• the number of child forwarders (k �i h);

• the number of request messages emitted to h (h{req/E});
• the number of completion or relocation messages whose effect will be to increment the number of

immediate children of h (k{go h}, k{go�h}, . . . ).
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This is how the principles that govern our accounting are preserved along execution:

In: In an In move, the parent ambient loses a child, and so it seems that its counter should be decremen-
ted. This is not so: in our setting, when we use rule Local-In, the two interacting child locations
(h and k) are in wait state, and the parent (h′) does no longer take them into account (ambients
in wait state are pending, and have no parent location). Therefore, the parent actually has to
increment its counter: the role of the completion message k{OKin h′} is to bring k back under h′.

Similarly, h, that will receive h′ as a new child (message h′{go h} and rule Compl-Parent), also
increments its counter, upon reception of message OKin (rule Compl-Coin).

Out: As previously, the intuition is that the parent (h′) loses a child (h), and has to decrement its
counter, but since this child is in wait state, there is nothing to do. The freshly created forwarder
allows us to keep the grandparent’s counter unaffected: the forwarder hides both parent and child
(and so the value of its counter is set to two).

Open: The opening location (h′) increments its counter to take into account the creation of the forwarder
(rule Compl-Migr, that lets h, the opened location, react to a migrate completion message).

In the case where the counter of h is null, h has no child: there is no need for such a forwarder, and
we avoid creating it (rule Compl-MigrGC). We must be careful, though, to let h′ know that it has
to undo the increment of its counter, which is achieved using the flag s decorating the register
message (rule Compl-Reg).

Also note that sub-ambients belonging to local processes are only taken into account once they become
a located ambient (rule New-Locamb, that accordingly increments the counter of the parent location).

2.3.4 Forwarders behaviour

is defined by the rules for transmission of request messages. We illustrate these by the following reduc-
tions, that show the behaviour of a message carrying request R traversing three forwarders h1, h2 and h3

to reach its real target :

h1{R/[]} ‖ h1 �3 h2 ‖ h2 �1 h3 ‖ h3 �4 k ‖ k2: n[P ]
�−→ h1 �2 ‖ h2{R/[h1]} ‖ h2 �1 h3 ‖ h3 �4 k ‖ k2: n[P ] [Fw-Send]
�−→ h1 �2 ‖ h3{R/[h1]} ‖ h3 �4 k ‖ k2: n[P ] [Fw-SendGC]
�−→ h1 �2 ‖ h3 �3 ‖ k{R/[h3::h1]} ‖ k2: n[P ] [Fw-Send]
�−→ h1 �2 ‖ h3 �3 ‖ h3{go�k} ‖ h1{go�k} ‖ k3: n[P | {R}] [Loc-Rcv]
�−→ h1 �2 ‖ h1{go�k} ‖ h3 �3 k ‖ k3: n[P | {R}] [Fw-Reloc]
�−→ h1 �2 k ‖ h3 �3 k ‖ k3: n[P | {R}] [Fw-Reloc]

First, the message gets transmitted by forwarder h1: h1 decrements its counter, adds its name to the list
decorating the message before transmission to h2, and blocks. In the second step of transmission, since
h2’s counter is equal to one, h2 gets garbage collected (rule Fw-SendGC), and the message is passed
to h3, which transmits it to k (along the lines of the first step). Then the target location k receives the
message, and reacts by broadcasting a go�k relocation message to each agent that has been registered
in the list decorating the message. k’s counter is incremented by the size of this list minus one: all
forwarders except the uppermost one will become new direct children of the parent location (note that
in the case of an empty chain of forwarders, we decrement the counter because the direct child is in wait
state, and hence pending). Finally, the blocked forwarders (h1 and h3) react to the relocation messages
by moving to their new location, and resume computation.

3 Correctness of the Machine

In this section, we derive a bisimulation result relating well-formed Pan and GcPan nets. Intuitively,
a net is well-formed if it corresponds to the evolution of the translation of a Safe Ambient process into
the Pan (resp. GcPan) machine. Well-formedness of Pan nets is defined in [11], we present below
the corresponding notion for the GcPan (Definition 13), and show that it is preserved by reductions
(Theorem 18).
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The correspondence we can make between two configurations of the Pan and the GcPan respectively
is rather coarse, because the machines route messages and manage forwarders differently. We could have
hoped to be able to establish that the GcPan always performs less reduction steps than the Pan.
However, this is not the case, since in some situations the GcPan is ‘slower’, due to the reductions
that rearrange forwarders. Accordingly, we can only establish weak bisimilarity, and the candidate
bisimulation relation we define (Definition 24) does not take forwarders into account at all.

Remark 9 (On the bisimulation up to expansion proof method) To do the bisimulation proof,
we rely on a few lemmas that basically say that both machines can route the same messages in the same
way. Rather remarkably, we cannot use more powerful techniques, like up-to techniques, to abstract over
this routing phase, in our setting.

In [20], the authors establish the following lemma, that allows them to factorise the reasoning about
forwarders when proving the adequacy of the Pan w.r.t. SA:

(νh)(h � k ‖ A)  A{k\h} .

 stands for expansion, a behavioural preorder that guarantees that, intuitively, if P  Q, P exhibits the
same behaviour as Q modulo some extra internal computation.

Unfortunately, we lack the corresponding expansion result in our setting. This is due to race situations
that are introduced by the presence of blocked forwarders (see Appendix A for a detailed explanation).

3.1 Terminology

In our proof, we need to reason using some notions that are related to the logical structure of nets, such
as the destination of a message or the parent of a location. We have been mentioning these notions in a
rather informal way until now. The following definitions make these (as well as some other points related
to the description of a state of the GcPan) more precise.

A wait prefix in the local process of a located ambient indicates that this ambient is waiting for a
completion message. However, these prefixes may actually indicate two different kinds of situation, that
we call a wait state and a frozen state. These two cases are treated somehow differently in our proof.
Below, a phrase like “there is a message M” is used to mean that in the state of the GcPan we are
considering, a message M can be found at top-level.

Definition 10 (Blocked ambients expecting a completion message)

• A located ambient hi: n[P ] is in frozen state if P ≡ (νp)(wait.Q|R) for some Q, R and (νp), and
there is a completion message of the form k{migrate h} or h{registers P} (the wait prefix comes
in this case from application of the rule Local-Open). Intuitively, an ambient is is frozen state
while it is in the process of opening an immediate sub-ambient.

• A located ambient hi: n[P ] is in wait state if P ≡ (νp)(wait.Q|R) for some Q, R and (νp), and
there is no completion message of the form k{migrate h} or h{registers P} (the wait prefix
comes from the rules Req-�).

Definition 11 (Naming and relating locations) • The name of a located ambient hi: n[P ]k is
n, its home location is h, the parent location of h (denoted by pl(h)) is k if the located ambient is
not in wait state, and is undefined otherwise.

• The home location of a forwarder h �i k is h, its parent location is k.

• The home location of a blocked forwarder h�i is h, its parent location is

– k if there is a completion message h{go� k}
– undefined otherwise

• The target location of a message h{M} is h, its source location is the location decorating the
message (register completions have no source location).
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• Given a net A, we can extract from A a relation over locations by saying that two locations are
related if they are respectively the home and parent location of the same agent in A. We call this
the dependency relation of A. When the graph of this relation is a forest, we define a partial order
over locations: h < k iff k is an ancestor of h according to the dependency relation.

• The parent ambient location (resp. target ambient location) of a location h (resp. a message h{M})
is the least (w.r.t. <) ambient location k such that h < k. h is a child ambient location of k if h
is the home of a located ambient and h < k (without restriction on k).

Remark 12 (Handling of restrictions) There are two usages of name restriction in the Pan (and
the GcPan): the original SA name restriction, found in SA processes, and restriction on location names,
allowing each site to create fresh location names.

Restrictions on location names are introduced using rule New-Locamb, and can always be brought
at the top-level using structural congruence, so that we can ignore them in the proof. On the contrary,
restrictions belonging to the SA process we want to simulate cannot escape a located ambient without
using reduction rule New-Res (see Remark 5). However, once such restrictions are brought outside
their defining location, they behave like restrictions on location names and can also be brought at top-
level.

In the following, we will implicitly pull up all restrictions located outside of located ambients, and
omit them in our proofs.

3.2 Well-Formedness

The following definition states the properties that a GcPan net should satisfy in order to correspond
to a configuration that makes sense from the point of view of the execution of a single threaded Safe
Ambient process.

Definition 13 (Well-formedness) A GcPan net A is well-formed if root and rootparent are the
only free locations of A, and the following properties hold:

Blocked forwarders

1. For each blocked forwarder h�i,

• either ∃! k{M/E} such that h belongs to E,

• or ∃! h{go� k}.
2. For each request h{R/E} and location e belonging to E, the agent located at e is a blocked forwarder.

Dependency relation between locations

3. The graph of the dependency relation defined by A forms a forest, whose roots are

• rootparent;

• the ambient locations in wait state (their parent locations are undefined);

• the blocked forwarder locations h such that pl(h) is undefined (the blocking request has not yet
reached an ambient location).

4. For each location h, there is at most one agent located at h.

5. There is a special located ambient, called root, located at root, with name rootname, and with
parent rootparent. The name rootname and the location rootparent cannot appear anywhere
else.

The location root cannot be:

(a) the source of a request message,

(b) the target of a completion message that is not a register message.

Messages
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6. The source of every request message is a located ambient in wait state.

7. The target of every completion message is a located ambient in wait state, except for register
messages, whose targets are frozen ambients.

8. For each ambient location h in wait state, there is exactly one request message whose source is h
or completion message whose target is h.

9. The source of every migrate message is a located ambient in frozen state.

Single-Threadedness

10. The process of every located ambient is single threaded.

11. The wait prefix can only appear as the only unguarded prefix of a local process of a located ambient.

Counters

12. Let µ be the function from localities to integers defined by:

µ(h) = #{ ki: n[P ]h / P is not in a wait state } (1)
+ #{ k �i h } (2)
+ #{ k{go�h} } (3)
+ #{ h{req/E} } (4)
+ #{ k{go h} } (5)
+ #{ k{OKin h} } (6)
− #{ h{OKin k} } (7)
+ #{ h{register1 P} } (8)
+ #{ k{migrate h} } (9)

where #{p} is the number of sub-terms of A matching the pattern p.

Then for each agent whose counter is equal to i (hi: n[P ]k, h �i k or h�i), i = µ(h)

As can be seen, several kinds of properties have to be checked for a GcPan net to be well-formed.
These are basically the same as for the corresponding definition in [11], plus some conditions on counters
in localities, forwarders and messages, that insure a form of ‘well-countedness’. As a matter of fact, some
of the well-formedness properties that were given in [11] hold as a consequence of the latter requirements
about counters, and are thus omitted in the GcPan version.

Remark 14 (Trees vs forests of locations) In the GcPan, when an agent sends a request message,
it commits to relocate itself on the location that will be transmitted along the completion message. This is
mandatory because the link it keeps to its parent location is no longer safe, since this location may contain
a forwarder bound to be garbage collected. Indeed, we would otherwise observe the following (erroneous)
transition:

hi: n[wait.P ]k ‖ k{M} ‖ k �1 k′ ‖ A
Fw-SendGC�−→ hi: n[wait.P ]k ‖ k′{M} ‖ A .

The forwarder located at k gets garbage collected while h keeps a link to this location.
This leads us to consider the logical structure of a GcPan net as a forest rather than as a tree (in

the Pan, this problem does not arise since forwarders are persistent): a blocked agent is considered as
disconnected from the main tree until it relocates itself.

Lemma 15 If A is a well-formed net and A ≡ A′ then A′ is well-formed.

Proof: Straightforward. ♦
The fact that well-formedness is closed w.r.t. ≡ is not surprising. The important property is that

well-formedness is preserved by reduction. In order to prove this, we need the two following lemmas.

Lemma 16 Let A ≡ h �1 k ‖ h{req/E} ‖ B be a well-formed net, then h can only appear in B as the
parent location of a ambient location in wait state.
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Proof: From property 7, there is no completion message matching the negative (negative in the sens
that it involves a subtraction) pattern 12.7. From property 12, µ(h) = 1 so that there can only be one
occurrence of the other patterns, and this occurrence is h{req/E}. Properties 2, 7 and 4 allow us to
exclude all other potential occurrences of h. ♦

Lemma 17 Let A ≡ h0: n[P |wait.Q]k′ ‖ h{migrate k} ‖ B be a well-formed net, then h can only
appear in B as the parent location of an ambient location in wait state.

Proof: From property 8, there is no completion message matching the negative pattern 12.7. From
property 12, µ(h) = 0 so that there is no occurrence of the other patterns. property 8 prevents the
existence of other potential occurrences of h (completion messages of target h). ♦

Theorem 18 If A is a well-formed net and A �−→ A′ then A′ is well-formed.

Proof:
We proceed by case analysis on the rule used to derive A �−→ A′ (up to the inference rules). Each

time, we just mention the properties that are affected by the reduction.

• Local-Com
hi: n[〈M〉 | (x).P | Q]k �−→ hi: n[P{M/x} | Q]k

The subject reduction property for ST types [14] ensures that property 10 holds.

• Local-In

h′i: n[{in n, h} | {in n, k} | Q]k′ �−→ h′i+1: n[Q]k′ ‖ h{go k} ‖ k{OKin h′}
Property 7 (resp. 5b) comes from property 6 (resp. 5a) for A. The two local request messages that
are consumed ensured property 8, the two emitted completion messages ensure that this property
is preserved. We have to check the counters of ambient localities h′ and k (k contains an ambient
from property 6):

– k: the new occurrence of 12.5 (h{go k}) is compensated by a new occurrence of 12.7 (k{OKin h′}),
– h′: the new occurrence of 12.6 (k{OKin h′}) is handled by the increment brought via the

reduction rule.

• Local-Out

h′i: n[{out n, h} | out n.P | Q]k �−→ (νk′)(h′i: n[P | Q]k′ ‖ k′ �2 k ‖ h{go k′})
The full dependency tree is modified but still respects properties 3 and 4. Property 7 (resp. 5b)
comes from property 6 (resp. 5a) for A. Like in the previous case, property 8 is kept. We have to
check the counters of k and k′:

– k: from property 11, since the ambient located at h′ contains an unguarded prefix (out n.P ),
this location cannot be in wait state, so that 12.1 is used for location k. In A′, it is replaced
by a child forwarder located at k′ which matches 12.2.

– k′: there are only two children to count: the relocation completion message (12.5) and the
relocated non-wait ambient h′ (12.1).

• Local-Open

h′i: n[open n.P | {open n, h} | Q]k �−→ h′i+1: n[wait.P | Q]k ‖ h{migrate h′}
Property 7 (resp. 5b) comes from property 6 (resp. 5a) for A. The ambient at location h′ enters
in frozen state, ensuring property 9. As in the previous cases, property 8 is preserved. We have to
check the counters of k and h′

– k: although a wait prefix is added to the ambient child h′, the latter enters frozen state (i.e.,
not wait state), the counter of k thus remains unchanged.
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– h′: the migrate completion, matching 12.9, is handled by the incrementation done with the
rule.

• Fw-Send
h �i+1 k ‖ h{req/E} �−→ h �i ‖ k{req/h::E}

Properties 1 and 2 hold for the newly blocked forwarder and the transmitted request. In the
dependency relation, the sub-tree beyond h gets disconnected and becomes a new root in the
forest; since h is a blocked forwarder with pl(h) undefined, 3 holds. We have to check the counters
of locations h, k and the transmitted request

– h: the lost request matching 12.4 is taken into account by the rule.

– k: the lost forwarder child matching 12.2 is matched by the transmitted request (12.3).

• Fw-SendGC
h �1 k ‖ h{req/E} �−→ k{req/E}

Properties 1 and 2 hold because the request remains unchanged. From 16, h is a leaf in the
dependency relation of A′, and it is safe to remove it: property 3 is preserved. The counter of k is
unaffected: the forwarder child matching 12.2 becomes a request matching 12.4.

• Fw-Reloc
h �i ‖ h{go� k} �−→ h �i k

Property 2 holds for A′ from the uniqueness in Property 1. pl(h) = k in both A and A′, so that the
dependency relation does not change. The go� message counted as 12.3 for k becomes a forwarder
taken into account in 12.2.

• Loc-Rcv
hi+1: n[P ]k ‖ h{req/E} �−→ hi+#E : n[P | {req}]k ‖ E{go� h}

The consumed request blocked the forwarders at locations found in E, the messages e{go� k}
ensures that property 1 still holds for these blocked forwarders, which were roots of the dependency
relation and thus are moved under the location h. We check that this new forest satisfies property 3.
For property 12, there are exactly j new occurrences of 12.3 (go� messages), and one occurrence
of 12.4 less (consumed request).

• Req-�
hi: n[M.P | Q]k �−→ hi: n[wait.P | Q]k ‖ k{M, h}

The ambient located at h enters in wait state, and the location h becomes a new root of the
dependency relation, which remains a valid forest. h cannot be root, so that property 5a holds.
Property 6 holds since h has just entered in wait state. Properties 7 and 6 ensure that there were
no completion having h as a target nor request having h as source, so that the emitted request
validate property 8. The lost child ambient location matching 12.1 for k becomes a new occurrence
of 12.4 (emitted request).

• Compl-Parent
h{go k} ‖ hi: n[P | wait.Q]− �−→ hi: n[P | Q]k

The location h, which was a root of the dependency relation, becomes a child of location k. For k,
this new occurrence of 12.1 is compensated by the consumption of the completion, which was an
occurrence of 12.5.

Note: the following holds for the three next rules.

From property 7, h is in wait state in A; from property 8, h can neither be the source of a
request message, or the target of a completion different from the consumed one; this ensures the
conservation of properties 6 and 7 although h leaves the wait state. For property 9, we use fact
that wait states and frozen states are exclusive, thus forbidding h to be the source of a migrate
message.
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• Compl-Coin
h{OKin k} ‖ hi: n[P | wait.Q]− �−→ hi+1: n[P | Q]k

The location h, which was a root of the dependency relation, becomes a child of location k. For
k, this new occurrence of 12.1 is compensated by the consumption of the completion, which was
an occurrence of 12.6. We need to increment the counter of h because the consumption of the
completion also removes an occurrence of 12.7 (which is negative) for h.

• Compl-Migr

h{migrate k} ‖ hi+1: n[P | wait.Q]− �−→ h �i+1 k ‖ k{register0 (P | Q)}
The location h, which was a root of the dependency relation, becomes a child of location k (as
a forwarder). For k, this new new occurrence of 12.1 is compensated by the consumption of the
completion, which was an occurrence of 12.9. As the ambient location h becomes a forwarder
location, its counter is decremented accordingly to the property 12. For property 9, we also have
to ensure that k remains in frozen state, this is the case because the migrate completion becomes
a register completion.

• Compl-MigrGC

h{migrate k} ‖ h0: n[P | wait.Q]− �−→ k{register1 (P | Q)}
From Lemma 17, h is a leaf in the dependency relation of A′, and it is safe to remove it. For k, the
occurrence of 12.9 (consumed completion) becomes an occurrence of 12.8. As previously, k remains
in frozen state.

• Compl-Reg
h{registers R} ‖ hi+s: n[P | wait.Q]k �−→ hi: n[P | Q | R]k

From property 9, h is in frozen state in A, so that the full dependency relation remains unchanged.
From property 8, h cannot be the source of a migrate completion; this ensure the conservation of
property 9 although h leaves the frozen state. For properties 6 and 7, like previously, we use fact
that wait states and frozen states are exclusive, thus forbidding h to be the source of a request
message or the target of a completion message. The counter of k does not change since h is not in
wait state, in A as well as A′. If s = 1, the counter of h is decremented so that the occurrence of
12.8 is taken into account.

• New-Locamb
hi: m[n[P ] | Q]h′ �−→ hi+1: m[Q]h′ ‖ (νk)(k0: n[P ]h)

The uniqueness of locations is kept since the name k is protected by the restriction (νk). The
dependency relation is valid: we just added a new child to the location h. The counter of h is
incremented for the new occurrence of 12.1; the counter of k is set to zero: k is fresh and µ(k) = 0.

♦
From now on, we assume that all nets we consider are well-formed. This is in particular the case for

the translation of a SA processes.

Lemma 19 Let P be a single-threaded SA process, then �P �gc is well-formed.

Proof: Straightforward. ♦

3.3 Establishing Weak Bisimilarity

We define a relation between Pan and GcPan nets, which we prove to be a weak barbed bisimulation.
We then show that, given a SA process, its two encodings in Pan and GcPan are related by this relation.

Since forwarder trees have very different behaviours in the two machines, we are compelled to abstract
over them. Well-formedness allows us to guess, for each message in a net, what its true destination is
(in the current state of the net). This will be the basis of the definition of our candidate bisimulation
relation. To make this precise, we rely on the following definitions.
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Definition 20 (Real location) • Let A be a Pan net, and h a location of A, we denote by h̃ the
real location of h, defined by:

– h̃ = h if the agent located at h is h: n[P ]k

– h̃ = k̃ if the agent located at h is h � k

• Let B be a GcPan net, and h a location of B, we similarly define h̃, the real location of h, as
follows:

– h̃ = h if the agent located at h is h: n[P ]k

– h̃ = k̃ if either

∗ the agent located at h is h � k, or
∗ the agent located at h is h�i and there is a request message k{req/E} such that h ∈ E,

or a relocation message h{go� k}.

Note that the well-formedness of B gives sense to the second definition above. We now introduce
the ambient dependency relation defined by a net, not to be confused with the dependency relation
(Definition 11).

Definition 21 (Ambient dependency relation) For both abstract machines, given a net C, we call
ambient dependency relation of C the relation defined on ambient locations of C by h ≺C k iff:

• either the ambient located at h̃ is in wait state, in which case k is the target (resp. source) of the
request (resp. completion) message given by clause 8 of Definition 131.

• or the ambient located at h̃ is not in wait state, so that we have a subterm of the form h̃: n[P ]k′ :
we set k = k̃′.

Informally, ≺C captures the tree formed by ambient locations.

Definition 22 (Message sets) • For each ambient location of a Pan net A, we define:

trA(h) = {req / A ≡ A0 ‖ h′{req} with h̃′ = h}
cA(h) = {OKin k / A ≡ A0 ‖ h{OKin} with h ≺A k}

∪ {migrate k / A ≡ A0 ‖ h{migrate} with h ≺A k}
∪ {register Q / A ≡ A0 ‖ h{register Q} }
∪ {go k̃ / A ≡ A0 ‖ h{go k} }

• For each ambient location of a GcPan net B, we define:

trB(h) = {req / B ≡ B0 ‖ h′{req/E} with h̃′ = h}
cB(h) = {OKin k̃ / B ≡ B0 ‖ h{OKin k} }

∪ {migrate k̃ / B ≡ B0 ‖ h{migrate k} }
∪ {register Q / B ≡ B0 ‖ h{registers Q} }
∪ {go k̃ / B ≡ B0 ‖ h{go k} }

• For each ambient location h: n[P ]k of a net C (Pan or GcPan), we define:

arC(h) = {req / P ≡ P0 | {req}}
pC(h) = P from which all request messages have been removed
rC(h) = arC(h) ∪ trC(h)

1The notion of wait state and property 8 in Definition 8 can be defined for Pan nets like we did for GcPan.
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Intuitively, trC(h) is the set of requests that will eventually reach h, arC(h) is the set of requests that
have already reached h, and cC(h) is the set of completions whose target is h. When C is a Pan net, we
need to decorate the completions so that we can relate them with completions in the GcPan. Since we
abstract over the structure of forwarder chains, we also replace each location with its real location.

In Definition 22, we indeed introduce sets of messages: while, technically, a net is a multi-set rather
than a set, these two notions coincide in this case. The reason is that, because of single-threadedness,
a given location cannot send two requests, so that all sent requests are different. Similarly, clause 8 in
the definition of well-formedness guarantees that there is at most one completion with a given target
location (#cC(h) ≤ 1).

In the following, we will sometimes write n[P | M ], where M = {M1, . . . , Mk} is a set of messages,
in order to denote the process n[P | {M1} | . . . | {Mk}].
Definition 23 (Weak barbed bisimulation) A relation R between Pan and GcPan nets is a weak
barbed bisimulation if A R B implies:

• A ↓n implies B �=⇒↓n, and the symmetrical condition on B.

• whenever A �−→ A′, there is B′ s.t. B �=⇒ B′, and symmetrically.

Weak barbed bisimilarity, written ≈, is the greatest weak barbed bisimulation.

Definition 24 (Bisimulation candidate) Let R be the relation between Pan and GcPan nets defined
by A R B iff:

1. A is well-formed (Definition 5.1 in [11]);

2. B is well-formed (Definition 13);

3. ≺A = ≺B;

4. for each ambient location h,

(a) rA(h) = rB(h);

(b) cA(h) = cB(h);

(c) pA(h) = pB(h).

Note that the last point makes sense since the third one implies that A and B have the same ambient
locations.

We now prove that R is a weak barbed bisimulation. We need several lemmas for this: the first two
lemmas show that a net remains in the same R -class when performing communications-only reductions.
The other lemmas allow us to ‘pull up’ request messages when needed: since two R -related nets do
not necessarily have the same messages in the same locations, we need to be able, when one of the nets
uses one of the Local rules, to bring the corresponding message to the corresponding location and to
perform the same local reduction.

Lemma 25 (Pan communications) Suppose A R B and A �−→ A′, using the Pan reduction rules
Consume-Req or Fw-Msg. Then A′ R B.

Proof: Since A is well-formed, from Lemma 5.5 of [11], A′ is well-formed. Obviously, ≺A=≺′
A, cA(h) =

cA′(h) and pA(h) = pA′(h) for all location h. We then check that rA(h) = rA′(h). ♦

Lemma 26 (GcPan communications) Suppose A R B and B �−→c B′, then A R B′.

Proof: Theorem 18 ensures that B′ is well-formed. As previously, the sets rA(h), cA(h) and the processes
pA(h) are preserved by these reductions. The ambient dependency relation also remains the same: for
rule Fw-SendGC, Lemma 16 ensures that we can safely remove the forwarder. ♦

Lemma 27 (Pan requests) Suppose A R B and B ≡ hi: n[P | {M}]k ‖ B0. Then there is a net A′

such that
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1. A �=⇒ A′;

2. A′ ≡ h: n[pA(h) | arA(h) | {M}]k′ ‖ A0;

3. A′ R B.

Proof: If M ∈ arA(h), we take A′ = A.
Otherwise, from property 4a, M ∈ trA(h), that is,

A ≡ hj{M} ‖ hj � hj−1 ‖ . . . ‖ h1 � h ‖ h: n[Q]k′ ‖ A0

We show by induction on j,

A �=⇒ A′ = hj � hj−1 ‖ . . . ‖ h1 � h ‖ h: n[Q|{M}]k′ ‖ A0

only using rules Consume-Req and Fw-Msg. From Lemma 25, A′ R B holds, and A R B gives
Q ≡ pA(h) | arA(h). ♦

In order to establish a similar result on the GcPan side, we need the following lemma, which explains
the behaviour of forwarders in the GcPan. As depicted on Figure 8, when we need to route a message
{M} in the GcPan, we are in general compelled to ‘bring up’ other messages as well ({N} on the
figure, which correspond to Ma in the statement of the lemma below). Such messages correspond to the
forwarders that have been blocked above {M} in the chain that leads to the destination location. We
have to unblock these forwarders, which means bringing the messages in Ma to their destination. This
involves a reconfiguration of the chains of forwarders (note that this does not happen on the Pan side
(Lemma 27), since forwarders are never blocking).

Figure 8: GcPan forwarders behaviour

Lemma 28 (Transmission of messages in the GcPan) Let B ≡ h{M/E} ‖ ki: n[P ] ‖ B0 be a
well-formed net such that k = h̃. Then there is a net B′ and a set Ma of request messages such that:

• B �=⇒c B′;

• B′ ≡ E{go� k} ‖ ki′ : n[P | {M} | Ma)] ‖ B1;

• Ma ⊂ trB(k).

Proof: The condition k = h̃ ensures that B0 contains a chain of forwarders from h to k, we proceed by
induction on the length of this chain, and by case analysis on the agent located at h:

• hi: n[P ]: the length is zero, and h = k. We use rule Loc-Rcv and take Ma = ∅:
B �−→c E{go� k} ‖ ki+#E−1: n[P | {M}] ‖ B0

• h �1 h′, using the rule Fw-SendGC, we bring the message up so that we can apply the induction
hypothesis (IH below):

B �−→c h′{M/E} ‖ H ′ ‖ ki: n[P ] ‖ B1 [Fw-SendGC]
�=⇒c E{go� k′} ‖ ki′ : n[P | {M} | Ma)] ‖ B2 (IH)
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• h �u+1 h′, using rule Fw-Send, we bring the message up so that we can apply the induction
hypothesis, and conclude using rule Fw-Reloc:

B �−→c h �u−1 ‖ h′{M/h::E} ‖ H ′ ‖ ki: n[P ] ‖ B1 [Fw-Send]
�=⇒c h �u−1 ‖ h{go� k′} ‖ E{go� k′} ‖ ki′ : n[P | {M} | Ma] ‖ B2 (IH)
�−→c h �u k′ ‖ E{go� k′} ‖ ki′ : n[P | {M} | Ma] ‖ B2 [Fw-Reloc]

• h�u, from property 1 of well-formedness, B0 contains:

– either a relocation message h{go�k′}. From the definition of h̃, k = h̃ = k̃′, and we are back
to one of the two last cases using rule Fw-Reloc:

B ≡ h{M/E} ‖ h �u ‖ h{go� k′} ‖ ki: n[P ] ‖ B1

�−→c h{M/E} ‖ h �u k′ ‖ ki: n[P ] ‖ B1 [Fw-Reloc]
�=⇒c E{go� k} ‖ ki′ : n[P | {M} | Ma] ‖ B2 (previous cases)

– or a request message k′{N/h::E′} (modulo the index of h in E). As previously k = k̃′, so that
we can apply the induction hypothesis with the message {N}, and get back to the previous
case:

B ≡ h{M/E} ‖ h �u ‖ k′{N/h::E′} ‖ ki: n[P ] ‖ B1

�=⇒c h{M/E} ‖ h �u ‖ h{go� k} ‖ E′{go� k′} ‖ ki0 : n[P | {N} | Na] ‖ B2 (IH)
�=⇒c E{go� k} ‖ ki′ : n[P | {M} | {N} | Na] ‖ B3 (previous)

We check that N ∈ trB(k) and take Ma = {N} ∪ Na.

♦

Lemma 29 (GcPan requests) Suppose A R B and A ≡ h: n[P |{M}]k ‖ A0. Then there is a net B′

and a set of request messages such that:

1. B �=⇒ B′;

2. B′ ≡ hi: n[pB(h) | arB(h) | {M} | Ma]k′ ‖ B0;

3. Ma ⊂ trB(h);

4. A R B′.

Proof: If M ∈ arB(h), we take B′ = B.
Otherwise, from property 4a, M ∈ trB(h), that is:

B ≡ h′{M/E} ‖ hi: n[Q]k′ ‖ B0 .

Lemma 28 gives B′ such that B �=⇒c B′ and

B′ ≡ hi′ : n[Q | {M} | Ma]k′ ‖ B1, with Ma ⊂ trB(h) .

Then Lemma 26 ensures that A R B′, and we check that Q ≡ pB(h) | arB(h). ♦

Theorem 30 R is a weak barbed bisimulation.

Proof: Suppose A R B.

• Lemma 27 (resp. 29) ensures that whenever A ↓n (resp. B ↓n), then B �=⇒↓n (resp. A �=⇒↓n).

• Suppose A
λ�−→ A′ (we use this notation to indicate that the derivation of A �−→ A′ is obtained

by applying rule named λ), we show that B �=⇒ B′ with A′ R B′:

– λ ∈ {Local-Com,New-Locamb,New-Res,Req-�,Compl-Reg}:
we check easily that B

λ�−→ B′ with A′ R B′.
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– λ ∈ {Fw-Msg,Consume-Req}: Lemma 25 ensures that A′ R B, so that we can take B′ = B.

– λ ∈ {Local-In,Local-Open}: we consider the first case, the second one being treated
similarly. From Lemma 29, B �=⇒ B0 such that A R B0 and the requests {in n, h} and
{in n, k} have reached the ambient located at h′. Therefore B0

Local-In�−→ B′, and we check
that A′ R B′.

– λ = Local-Out:

A ≡ A1 ‖ h′: n[{out n, h} | out n.P | Q]k �−→ A1 ‖ h′: n[P | Q]k ‖ h{go k} ≡ A′

Like previously, we use Lemma 29 to ensure that the request {out n, h} has reached the
ambient at h′. Then we obtain B′ using rule Local-Out:

B �=⇒c B0 ≡ B1 ‖ h′: n[{out n, h} | out n.P | Q′]k′

�−→ B1 ‖ ((νk′′))(h′: n[P | Q′]k′′ ‖ h{go k′′} ‖ k′′ �1 k′) ≡ B′

A R B gives k̃ = k̃′ and by definition k̃′′ = k̃′, therefore we have k̃′′ = k̃ so that we can check
that ≺A′=≺B′ and then A′ R B′.

– λ = Compl-Parent:

A ≡ A1 ‖ h: n[P | wait.Q]k ‖ h{go k′} �−→ A1 ‖ h: n[P | Q]k′ ≡ A′

B ≡ B1 ‖ hi: n[P ′ | wait.Q]− ‖ h{go k′′} Compl-Parent�−→ B1 ‖ hi: n[P ′ | Q]k′′ ≡ B′

The hypothesis k̃′ = k̃′′ given by A R B allows us to check that A′ R B′.

– λ = Compl-Coin:

A ≡ A1 ‖ h: n[P | wait.Q]k ‖ h{OKin} �−→ A1 ‖ h: n[P | Q]k ≡ A′

B ≡ B1 ‖ hi: n[P ′ | wait.Q]− ‖ h{OKin k′} Compl-Parent�−→ B1 ‖ hi+1: n[P ′ | Q]k′ ≡ B′

As previously, A R B gives k̃ = k̃′ and allows us to conclude. We can remark that since k
does not appear in the OKin completion of the Pan, we had to introduce a way to recover
this information in Definition 22. For this reason, a definition that would just erase extra
decorations of GcPan completions would not be sufficient.

– λ = Compl-Migr:

A ≡ A1 ‖ h: n[P | wait.Q]k ‖ h{migrate} �−→ A1 ‖ h � k ‖ k{register P |Q} ≡ A′

Depending on the counter of the ambient located at h in B, we use either the rule Compl-
Migr or Compl-MigrGC:

∗ B ≡ B1 ‖ hi+1: n[P | wait.Q]− ‖ h{migrate k′} �−→ B1 ‖ h�i+1k′ ‖ k′{register0 P |Q}
∗ B ≡ B1 ‖ h0: n[P | wait.Q]− ‖ h{migrate k′} �−→ B1 ‖ k′{register1 P | Q}

As previously, k̃ = k̃′. In the latter case, in order to prove ≺A′=≺B′ , we use Lemma 17
to ensure that there cannot be any real location under h in B and thus neither in A since
≺A=≺B.

• Now suppose B
λ�−→ B′, we show that A �=⇒ A′ with A′ R B′. The proof is quite similar to the

symmetric case:

– λ ∈ {Local-Com,New-Locamb,New-Res,Req-�,Compl-Reg}:
we check easily that A

λ�−→ A′ with A′ R B′.

– �−→c : Lemma 26 ensures that A R B′, so that we can take A′ = A.

– λ ∈ {Local-�}: from Lemma 27, A �=⇒ A0 such that A0 R B and the matching request
messages have reached the ambient located at h′. Therefore A0

λ�−→ A′, and we check like
previously that A′ R B′.
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– λ ∈ {Compl-Parent,Compl-Coin,Compl-Migr}: as in the corresponding case above, we
only have to be careful in handling the decoration of the completion message.

– λ = Compl-MigrGC: using rule Compl-Migr, A �−→ A′, Lemma 17 ensures that there
cannot be any real location under h in B, so that the absence of forwarder in B′ does not
prevent relations ≺A′ and ≺B′ to coincide.

♦
We can now state our main result on the GcPan (we recall from Section 1 that we refer to [11] for

the typing of SA processes):

Corollary 31 (Adequacy) Let P be a well-typed SA process, then �P �gc ≈ P .

Proof: We check that �P � R �P �gc, so that from Theorem 30, �P � ≈ �P �gc, the result then comes from
the adequacy of the Pan [11]: �P � ≈ P . ♦

It can be remarked that this proof actually exploits three notions of weak bisimilarity, to relate
behaviours in SA, in the Pan and in the GcPan. These are defined along the lines of Definition 23,
based on a notion of observable and a notion of reduction in the corresponding calculus.

4 Immobile Ambients

Besides ST ambients, the other main type for SA processes [14] is that of immobile ambients (IM).
An immobile ambient is an ambient that can neither move (in our out other ambients), nor be opened
(open co-capability). Such an ambient is not necessarily single-threaded, e.g. the following is an IM
ambient: N � n[!in n | !out n | !open m]. We explain how to extend GcPan to handle immobile
ambients.

Using the GcPan as it is to execute IM ambients is not sound. Typically, an immobile ambient can
enter a wait state by emitting a in request and then simultaneously: (i) send other in requests, and (ii)
let ambients out (by exercising out co-capabilities). If the parent location of this ambient is a forwarder,
we run into non-legal configurations, since an unpredictable number of messages can be transmitted
‘upwards’.

Regarding (i), we remark that we can send in requests in a sequential way, and wait for a OKin
completion message between each emission. Similarly, we can let Out moves happen in a sequential
fashion (case (ii)). However, we cannot interleave smoothly these two behaviours: there is no reason
for an Out to be blocked until the arrival of an OKin message, in particular since the corresponding
in request could well remain unmatched forever. Our solution is to introduce persistent forwarders,
denoted �∞. As the notation suggests, a persistent forwarder has an infinite lifetime (we set ∞+1 = ∞
for rule Fw-Send in the case of persistent forwarders).

The reduction rules of Subsection 2.2 are adapted as described below (rules that are not mentioned
are kept unchanged).

[Local-Out] {out n, h} | out n.P
−−−−→

h′:−
P ≫k′ h{go k′} n is ST

[Local-Out’] {out n, h} | out n.P
k−−→

h′:n
P � h{go k} n is IM

[Compl-Coin] h{OKin k} ‖ hi: n[P |wait.Q]k′ �−→ hi+1: n[P | Q]k n is ST

[Compl-Coin’] h{OKin −} ‖ hi: n[P |wait.Q]k′ �−→ hi+1: n[P | Q]k′ n is IM

[Local-In] {in n, h} | {in n, k} −−−−→
h′:−

0 �1 h{go k} ‖ k{OKin h′} n is ST

[Local-In’] {in n, h} | {in n, k} −−−−→
h′:−

0 �0 h{go k} ‖ k{OKin h′} n is IM

[New-Locamb] hi: m[n[P ] | Q]h′ �−→ hi+1: m[Q]h′ ‖ (νk)(k0: n[P ]h) n is ST

[New-Locamb’] hi: m[n[P ] | Q]h′ �−→ hi+1: m[Q]h′ ‖ (νk, k′)(k0: n[P ]k′ ‖ k′ �∞ h) n is IM
k, k′ /∈ FL(Q)

[Proc-Agent]
P

k−−→
h:n

P ′ �s M
P ′ | Q has at most one wait prefix
Q does not have unguarded ambients

hi: n[P | Q]k �−→ hi+s: n[P ′ | Q]k ‖ M
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Every IM ambient is associated upon creation to a persistent forwarder (cf. rule New-Locamb’ —
we could have avoided introducing persistent forwarders by adopting a special notation for IM ambients,
but we preferred this approach for the sake of uniformity in the presentation). Ambients exiting an
IM ambient are located under the associated persistent forwarder (compare rule Local-Out’ with
Local-Out). Upon reception of a OKin completion message, an IM ambient does not relocate itself;
the associated persistent forwarder, however, relocates itself when necessary, just as any forwarder. This
explains the IM versions of rules Compl-Coin and Local-In: in the former rule, ambient n remains at
location k′, and in the latter, we generate a null increment (relation �0), because ambient n will not be
relocated. The additional premise in rule Proc-Agent ensures that in requests are sent sequentially.

Remark 32 (No counters for immobile ambients) An IM ambient is by definition persistent, i.e.,
it will never become a forwarder, and hence its counter is useless. As a first consequence, we can get rid
of counters for IM ambients: this is what we actually do in the implementation. (We do not present the
corresponding refined syntax and reduction rules for the sake of brevity.) A second consequence is that
we can spawn an IM ambient inside an IM ambient without creating the persistent forwarder associated
to the inner ambient: the side condition of rule New-Locamb can thus be relaxed to “n is ST or m is
IM”.

In order to establish the correctness of this machine, we need to extend the definition of well-
formedness as follows:

Definition 33 (Well-formedness extension)

1. Property 7 is extended with the following requirement: “The target of a migrate completion message
is a located, waiting, single threaded ambient.”

2. We impose that every IM ambient is located under a persistent forwarder, and contains at most
one wait prefix in its local process.

3. In property 12, we consider µ′(h) = µ(h) − #{ k{OKin h} / k IM } and require that i = µ′(h)
whenever i < ∞.

The first item above allows us to guarantee that only ST ambients get opened. The second item
ensures that immobile locations do not escape their persistent forwarder, and do not flood unnecessarily
their parent locations with in requests. Finally, we just ignore OKin messages whose target is IM, since
such an ambient will not relocate itself upon reception of this completion.

The proof of Theorem 30 can then be adapted to systems that also include IM ambients:

Theorem 34 For any well-typed (using ST and IM types) SA process P , �P � ≈ �P �gc.

5 An Implementation of the GcPan

5.1 Description of the Implementation

We now present an experimental implementation of the GcPan2 in OCaml [19]. In developing the
implementation, we have tried to keep the code as close as possible to its formal description, while
allowing ourselves a few optimisations (reported below).

5.1.1 Physical Distribution

In the Pan, the fact that each ambient is evaluated at its own location makes a completely distributed
execution of the ambient tree a priori possible. It is however likely that some ambients should reside on
the same site – computer, UNIX process – so that we are led to aggregate locations: each site is a multi-
threaded program, where each thread corresponds to a location. Communications between locations
are therefore implemented using shared memory when these locations reside on the same site, and with
network sockets otherwise.

2available for download at http://perso.ens-lyon.fr/damien.pous/gcpan/.
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5.1.2 GenComm: general primitives for first order channel communications

In order to abstract over these two kinds of communications, we wrote a library that handles in a
transparent way local and network communications. This is rather general-purpose piece of code, and
we comment below on the main ideas of this part of the development. This paragraph goes into some
rather low-level and OCaml-oriented explanations, and can be skipped by the non interested reader.

The library for communications is implemented in the module GenComm. Its interface is given on
Table 2.

module type CONV = sig
type +’c t
val conv: (’a -> ’b) -> ’a t -> ’b t

end

type host = string * int (* hostname, port number *)

type ’a receiver =
| Receive of (’a -> ’a receiver)
| Close

module Make(Msg: CONV)(Cmd: CONV): sig
type channel
type message = channel Msg.t
type command = channel Cmd.t

val send: channel -> message -> unit
val channel: message receiver -> Thread.t * channel

val send_command: host -> command -> unit
val master: (command -> unit) -> Thread.t

end

Table 2: (Simplified) GenComm interface

The functor Make allows one to define communication primitives for a given message type ’c Msg.t.
The type variable ’c may be used for channel values. For example, to define communication primitives
for the monadic (resp. polyadic) π-calculus, we would use the functor with type ’c Msg.t = ’c (resp.
’c list).

Function channel is used to create a new channel, given a message receiver : a message receiver is a
function that expects a message and either returns a new receiver, or closes the channel. The created
channel is returned along with the thread identifier associated to the receiver. Note that no function to
receive on a channel is provided: a channel is created on a site, with a given, unique listener, and the
corresponding input capability cannot be shared or migrate on the network. Implementing this would
probably involve some mechanism resembling the linear forwarders of [10].

Commands are used to effectively distribute the channels: the channel function creates only local
channels, so that we cannot escape the local site. The master function is used to associate an ex-
ternal listener for the local site. This is a thread that reacts on commands sent over the network with
send_command by invoking the given function. Typically, this can be used for instance by a site that
asks another site to create a fresh channel and to send it back on a given channel.

Internally, channels are represented using polymorphic variants:

type gchannel = [ ‘Gen of host*int ]
type channel = [ ‘Loc of Local.t*int | gchannel ]

where Local is the module defining shared memory channels (the integer is the index of the channel
within a local table).
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Before being sent on a network channel, a message has to be packaged in order to give meaning to the
local names that are transmitted in the message (if any). This conversion is performed by the following
function:

let gchannel_of_channel = function
| #gchannel as g -> g
| ‘Loc (_,id) -> ‘Gen ((localhost,port), id)

let message_conv = Msg.conv gchannel_of_channel

The type of gchannel_of_channel is channel->gchannel, gchannel being the type of ‘sendable chan-
nels’. Symmetrically, when the distant host receives such a message, we perform the inverse conversion,
and rely for this on sub-typing. Indeed, covariant types are associated to Msg and Cmd in the definition
of CONV (see Table 2).

Since the size of transmitted messages is not bound, we use TCP for network communications. In
order to reduce the number of connections, we cache them so that a site connects only once to an other
given site. An additional improvement would be to able to close these connections once they are no
longer used.

5.1.3 Optimisations w.r.t. the formal description

Using the previous primitives the code remains very close to the reductions rules of Section 2. We
implemented two independent optimisations to improve the management of forwarders, that depart from
the formal description.

• Relocation: in our rules, blocked forwarders are relocated by the broadcast of a go� message. This
may be very inefficient if the forwarders are located on a site that is different from the site of
the real parent (that performs the broadcast). In order to avoid such losses in efficiency, we give
a blocked forwarder the possibility to transmit the relocation message to the blocked forwarders
running on the same site (and that were already registered in the request message when it crossed
this forwarder). This way, messages will be broadcasted once for every distant site, at which place
a further transmission takes place.

This optimisation is described by the following reductions rules, where h �i E denotes a blocked
forwarder that has to relocate E (Fw-Send2 is applied when there is e ∈ E such that e and h are
on the same site):

[Fwd-Send1] h{req/j, E} ‖ h �i+1 k �−→ h �i [] ‖ k{req/j + 1, h::E}
[Fwd-Send2] h{req/j, E} ‖ h �i+1 k �−→ h �i [e] ‖ k{req/j + 1, E{h\e}}
[Fw-Reloc] h �i E ‖ h{go�k} �−→ h �i k ‖ E{go�k}
[Loc-Rcv] hi+1: n[P ]k ‖ h{req/j, E} �−→ hi+j : n[P | {req}]k ‖ E{go� h}

• Packaging of request messages: when a forwarder is in blocked state, it has to filter received
messages until it finds a go� message (to move to a new location). In doing this, incoming request
messages have to be enqueued in order to be transmitted upon forwarder relocation. Instead of
transmitting these messages sequentially, as described by the original reduction rules, we can pack
them, and send them all together:

[Fw-Reloc] h �i
S ‖ h{go�k} �−→ h �i

S k

[Fw-Pack] h{R/j, E} ‖ h �i
(j′,E′,R′) �−→ h �i

(j+j′,E@E′,R@R′)

[Fw-Send] h{R/j, E} ‖ h �i+1
(0,[],[]) k �−→ h �i

(0,[],[]) ‖ k{R/j + 1, h::E}
[Fw-SendPack] h �i+#R

(j,E,R) k �−→ h �i
(0,[],[]) ‖ k{R/j + 1, h::E}

These improvements can be switched off using appropriate commands.
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5.1.4 Non-determinism

In the implementation, non-determinism is left unspecified: while we impose no fairness constraint at all
in the communication of messages, a rather high amount of non-determinism is guaranteed by the fact
that the machine runs in a multi-threaded and distributed setting.

5.2 Experimental Observations

5.2.1 An example session

is shown on Table 3, where lines beginning with - are the answers of the top-level. A server is first
installed on the host A; the corresponding SA term is the following:

(νServer) ( Server[!in Server | !out Server | data[in user.open data.printsecret]]
| !open o.key[in user.open key. ( enter[open enter.in Server.open entered]

| leave[open leave.out Server.open left])]

then we connect two clients with the server, one on the same host:

user[in user.open key.open enter.entered[open entered.print entered.pause.
open leave.left[open left.print left]]]

| o[open o]

and one on from a second host B, that is willing to get access to the data:

user[in user.open key.open enter.entered[open entered.print entered.in user.open data.
open leave.left[open left.print left]]]

| o[open o]

The machine makes it possible to execute Safe Ambients in a distributed fashion, thanks to the
primitives for communication between the various concurrent runtimes. The user must enter well-typed
processes (names of immobile ambients begin with a capital letter): we have started studying type
inference, but we only have preliminary results for the moment. Some top-level commands (starting with
a #), as well as some additional capabilities in the syntax of Ambients, allow the user to:

• pause and resume computation (pause, #step);

• inspect the state of the system and to display statistics about the number of local/network messages
and of created/collected forwarders: (print, #tree, #stats);

• add a process to the ambient currently being executed (#add; additionally, writing n@H[P] delegates
the execution of ambient n to the site H, while #addto H n[P] lets n be executed locally, but under
the root ambient of the runtime at site H).

5.2.2 Comparison with the Pan.

One can easily adapt our code to obtain an implementation of the Pan: simply get rid of counters and
additional decorations. This allows us to draw comparisons between the two abstract machines.

Table 4 shows an example session illustrating the improvements of the GcPan over the Pan3. We
start by defining some simple terms (note that process named c depends on a process P). These definitions
are used to build two ambient trees having c ambients as internal nodes, the leafs consisting of A (resp.
b) nodes. We then release an ambient !open c to erase all internal nodes, which generates forwarders
(at each stage in the computation, a pause (resp. step) directive is used to suspend (resp. resume) the
execution of the SA terms). Each b ambient is programmed to enter and exit an ambient A, so that
request messages are transmitted along the forwarders, thus revealing the difference between the two
machines (which can be seen by looking at the way forwarders appear in the resulting trees).

3The details of the system answers in the session we show may vary in the future along possible updates of the
implementation. The overall behaviour, and the way SA processes are executed, shall however remain unchanged.
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(* on a host named A *)
(nu Server)( Server[ !in_Server | !out_Server

| data[in user.open_data.print secret]]
| !open o.key[in user.open_key.( enter[open_enter.in Server.open entered]

| leave[open_leave.out Server.open left])]);;
#add user[in_user.open key.

open enter.entered[open_entered.print entered.pause.
open leave.left[open_left.print left]]] | o[open_o];;

-- entered
#tree;;
-- Root[Server#0[data[]] | user[leave[]]]] (* suffix #0 added to preserve uniqueness *)
#step;;
-- left
#tree;;
-- Root[Server#0[data[]] | user[]]

(* on a host named B *)
#addto A user[in_user.open key.

open enter.entered[open_entered.print entered.in_user.open data.
open leave.left[open_left.print left]]];;

#addto A o[open_o];;
-- entered
-- secret (* this is printed on B since the process ’print secret’ migrated *)
-- left

Table 3: An example session: the firewall

The statistics that are collected show the gain in terms of efficiency brought by the GcPan. 4+0+4-4
reads as follows: 4 forwarders have been created by an Open, 0 by an Out, 4 persistent forwarders
have been introduced along the creation of immobile ambients, and 4 forwarders have been garbaged
collected. We can observe that we obtain less forwarders in the GcPan. As a consequence, less messages
are communicated in the run of the system, and that forwarder chains are much shorter in the GcPan.
It has to be stressed that for the sake of clarity, we give an example with few processes and ambient
interactions — the results scale to larger systems, with similar proportions between the two machines.

In the firewall example however, since all opened ambients are empty, there are no additional messages
brought by the corresponding forwarders. In such a case, the GcPan reduces the number of created
forwarders, but not the number of messages sent over the network.

Indeed, in terms of messages, the loss introduced by the acknowledgement with the grandparent for
Out moves has to be compensated by the contraction of frequently used, long, forwarder chains. It is
not yet clear whether non-artificial examples tend to generate and use such long chains or not. However,
typical distributed systems, such as e.g. servers, are specified not to terminate, which means that even
chains consisting of a few forwarders may lead to dramatic inefficiencies, that our setting allows us to
avoid.

6 Conclusions

6.1 Related Work

The comparison with the PAN [11] has been discussed in detail in sections 1 (design) and 3 (proof).
Cardelli [3, 4] has produced the first implementation, called Ambit, of an ambient-like language; it is

a single-machine implementation of the untyped Ambient calculus, written in Java. The algorithms are
based on locks: all the ambients involved in a movement (three ambients for an In or Out movement,
two for an Open) have to be locked for the movement to take place.

In [9], a JoCaml implementation of an abstract machine for Mobile Ambients, named AtJ, is presented.
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(* PAN session *)

let a() = A[pause i.(!in_A | !out_A)];;
let b() = b[pause i.in A.pause o.out A];;
let c(’P) = c[open_c | P];;

c(c(c(a()|a()|a())|c(a()))) | c(c(c(b()|b()|b())|c(b())));; #tree;;
-- R@@t[c[c[c[A[]] | c[A[] | A[] | A[]]]] | c[c[c[b[]] | c[b[] | b[] | b[]]]]]
#add !open c;; #tree;;
-- R@@t[<[<[<[A[]] | <[A[] | A[] | A[]]]] | <[<[<[b[]] | <[b[] | b[] | b[]]]]]
#step i;; #tree;;
-- R@@t[<[<[<[A[b[]]] | <[A[b[]] | A[b[]] | A[b[]]]]] | <[<[<[] | <[]]]]
#step o;; #tree;;
-- R@@t[<[<[<[A[] | b[]] | <[b[] | b[] | b[] | A[] | A[] | A[]]]]

| <[<[<[] | <[]]]]

#stats;;
-- forwarders : 8
-- messages : 100
-- IN/OUT/OPEN : 4/4/8
-- average forwarder chains length : 1.50

(* GCPAN session *)

let a() = A[pause i.(!in_A | !out_A)];;
let b() = b[pause i.in A.pause o.out A];;
let c(’P) = c[open_c | P];;

c(c(c(a()|a()|a())|c(a()))) | c(c(c(b()|b()|b())|c(b())));; #tree;;
-- R@@t[c[c[c[<[A[]]] | c[<[A[]] | <[A[]] | <[A[]]]]]

| c[c[c[b[]] | c[b[] | b[] | b[]]]]]
#add !open c;; #tree;;
-- R@@t[<[<[A[]]] | <[<[A[]] | <[A[]] | <[A[]]] | <[b[]] | <[b[] | b[] | b[]]]
#step i;; #tree;;
-- R@@t[<[A[b[] | b[] | b[]]] | <[A[]] | <[A[b[]]] | <[A[]]]
#step o;; #tree;;
-- R@@t[<[b[] | b[] | A[] | b[]] | <[A[]] | <[b[] | A[]] | <[A[]]]

#stats;;
-- forwarders : 4 + 4 - 4 = 4
-- messages : 78
-- IN/OUT/OPEN : 4/4/8
-- average forwarder lifetime : 0.5
-- average forwarder chains length : 1.09

Table 4: Pan vs. GcPan
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In Mobile Ambients, there are no co-capabilities, movements are triggered using only capabilities, and
grave interferences arise. These differences enable considerable simplifications in abstract machines for
SA (Pan, GcPan) and in their correctness proof — see [11] for a detailed comparison. Other differences
are related to the distinction between logical and physical movements: in AtJ physical movements are
triggered by the execution of in and out capabilities, whereas in Pan and GcPan only open induces
physical movement.

[17] presents a distributed abstract machine for the Channel Ambients calculus, a variant of Boxed
Ambients [2]. In Channel Ambients the open primitive – one of the most challenging primitives for the
implementation of Ambient calculi – does not exist (open is dropped in favour of a form of inter-ambient
communication). Although in the implementation [17] actual movement of code arises as a consequence
of movement of ambients, the phenomenon is not reflected in the definition of the Channel Ambient
calculus. Therefore, the main problems we have been focusing on do not appear in that setting.

In the Distributed Join calculus [7], migrating join definitions are replaced in the source space with a
forwarder, to route local messages to the definition at its new location. This phenomenon is reminiscent
of the execution of Open reductions in our machine.

The framework we have presented relies on the absence of grave interferences to execute processes.
In our case, this is guaranteed by SA type system for ST and IM ambients. We believe that our machine
could be adapted to handle other proposals for Ambient-based calculi, as long as grave interferences are
ruled out. For instance, this should be possible for Controlled Ambients [22], a model in which a three-
way synchronisation involving an additional co-capability is used to trigger In and Out operations. On
the contrary, for some other SA-like models, getting rid of grave interferences seems more problematic.
This is the case in particular for SAP [15] – where the parent ambient (b) is not involved in an Out
move – or the Push and Pull Ambient Calculus [18] – where all moves are objective.

6.2 Future work

Reasoning about code mobility. Code mobility arises as a consequence of an Open operation in our
setting. We believe that the way we analyse mobility goes beyond Ambient-like calculi. Indeed, to
implement this kind of mobility in real systems, one needs to be able to: (i) passivate the code and
resume computation after migration, and (ii) preserve the coherence of the execution environment at
the source location. In the GcPan, (i) is made possible by the single-threadedness property, and (ii)
is achieved via forwarders. Commonly used techniques in distributed programming, such as forwarders
and forwarder chains contractions, are rarely supported by formal studies. In the present work, we have
given a formal account and a proof for some of these techniques, as they appear in GcPan. We started
our study with Ambient-based calculi because they are concise formalisms with a well-studied theory.
We plan to extend our analysis to other implementations of distributed systems and other aspects of
such implementations.
Types. We have preliminary results about a type-inference procedure to check that a given ambient is
typable with either an ST type or an IM type. We would like to study whether an enriched type system
would allow us to improve further on the management of forwarders in the machine.
Correctness result. It would be interesting to see whether it is possible to have a more refined statement
of the relationship between Pan and GcPan. Such statement should formally express the improvement
in efficiency of GcPan. In process calculi results of this kind are usually given by means of the expansion
preorder (as opposed to, say, bisimilarity). As already discussed, in our case we cannot use expansion
because the union-find algorithm requires some initial additional administrative work. A more relaxed
form of expansion would be needed.
Correctness proof. Despite our efforts, we have not been able to further simplify the correctness proof
for the machine. Although being structured, our proof is lengthy, which has to be the case, in some
sense, because we reason about a complex system that we describe at a fine-grained level. We believe
that several simplifications and further modularity could be introduced in the proof if we had the more
relaxed expansion preorder discussed above. This would seem important also in order to apply our
approach to more sophisticated implementations of distributed systems.
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A A non-expansion result

We present a non-expansion result, that shows why the technique of weak bisimulation up to expansion
cannot be used in the proof of Section 3. We omit counters when writing GcPan nets for the sake of
readability.

Lemma 35 In the GcPan, there exists a net A such that:

• h � k ‖ k : n[P ]k′ ‖ A and k : n[P ]k′ ‖ A{k/h} are well-formed nets, and

• h � k ‖ k : n[P ]k′ ‖ A︸ ︷︷ ︸
T

 k : n[P ]k′ ‖ A{k/h}︸ ︷︷ ︸
U

does not hold.

Proof: Let {
P = open n
A = k′ : m[open n.Q]l ‖ l : o[] ‖ B

Suppose T  U . By performing the Open move on both sides, we deduce

h � k ‖ k � l ‖ l : o[Q] ‖ B︸ ︷︷ ︸
T ′

 k � l ‖ l : o[Q] ‖ B{k/h}︸ ︷︷ ︸
U ′

.

Then, let {
Q = out o.out o
B = h{out o, a} ‖ h{out o, b} ‖ k{out o, c} ‖ C

T ′ ≡ h{a} ‖ h{b} ‖ h � k ‖ k{c} ‖ k � l ‖ l : o[out o.out o] ‖ C
U ′ ≡ k{a} ‖ k{b} ‖ k{c} ‖ k � l ‖ l : o[out o.out o] ‖ C{k/h}

(where x{y} stands for x{out o, y})
Suppose T ′ �=⇒ T ′′, U ′ �=⇒ U ′′ and T ′′  U ′′. We can make the following three observations:

1. since the agents located at a, b and c may have completely different behaviours, T ′′ and U ′′ must
have done exactly the same Out moves.

2. if the process of the agent located at l in T ′′ contains the message {x} then, also the process of l
in U ′′: otherwise, T ′′ can do the Out move x in one step (rule Local-Out), while U ′′ cannot.

3. if there is a message l{x} in T ′′, then either it is also in U ′′ or the process of l in U ′′ contains the
message {x}: otherwise T ′′ can consume the message using rule Loc-Rcv and reach the previous
state, while U ′′ needs several steps in order to do so.

Now we show that we cannot play the expansion game from T ′  U ′.

• Using rule Fw-Send,

T ′ �−→ h{b} ‖ h � ‖ k{a/[h]} ‖ k{c} ‖ k � l ‖ l : o[out o.out o]︸ ︷︷ ︸
T1

U ′ cannot move: if it brings a message up (k{a} for instance):

U ′ �−→ k{b} ‖ k{c} ‖ k � ‖ l{a/[k, h]} ‖ l : o[out o.out o]︸ ︷︷ ︸
U ′′

,

it blocks its forwarder, and T1 can choose to bring up another message (k{a} or k{c}), so that U ′′

will not be able to satisfy remark 3 in one step.

Thus we need T1  U ′.
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• Using rule Fw-Send,

U ′ �−→ k{a} ‖ k{c} ‖ k � ‖ l{b/[k]} ‖ l : o[out o.out o]︸ ︷︷ ︸
U1

T1 cannot move: if k{a} or k{c} goes up, we contradict remark 3. Thus T1  U1.

• Using rule Loc-Rcv,

U1 �−→ k{a} ‖ k{c} ‖ k � ‖ k{go� l} ‖ l : o[{b}|out o.out o]︸ ︷︷ ︸
U2

As previously, T1 cannot move and T1  U2.

• Using rule Local-Out, U2 can then emit the request corresponding to the b Out move:

U2 �−→ k{a} ‖ k{c} ‖ k � ‖ k{go� l} ‖ l : o[out o] ‖ OUTb︸ ︷︷ ︸
U3

(where OUTb contains the handling of the b Out request)

From remark 1, T1 has to do the same Out request:

T1 �−→ h{b} ‖ h � ‖ k{c} ‖ k � ‖ l{a/[k, h]} ‖ l : o[out o.out o]
�−→ h{b} ‖ h � ‖ k{c} ‖ k � ‖ l : o[{a}|out o.out o] ‖ k{go�l} ‖ h{go�l}
�=⇒ h{b} ‖ h � l ‖ k{c} ‖ k � l ‖ l : o[{a}|out o.out o]
�=⇒ h � ‖ k{c} ‖ k � ‖ l : o[{a}|{b}|out o.out o] ‖ k{go�l} ‖ h{go�l}
�=⇒ h � ‖ k{c} ‖ k � ‖ l : o[{a}|out o] ‖ OUTb︸ ︷︷ ︸

T2

‖ k{go�l} ‖ h{go�l}

But in order to do it we had to bring the message h{a} into l, and this contradicts remark 2:
T2  U3 does not hold.

♦
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