Explicit pure type systems, subject reduction and preservation of strong normalisation

Romain Kervac

To cite this version:

Romain Kervac. Explicit pure type systems, subject reduction and preservation of strong normalisation. [Research Report] Laboratoire de l’informatique du parallélisme. 2006, 2+69p. hal-02102423

HAL Id: hal-02102423
https://hal-lara.archives-ouvertes.fr/hal-02102423
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Explicit Pure Type Systems,
Subject Reduction
and Preservation of Strong Normalisation

Romain Kervarc Oct 2006

Research Report N° 2006-35
Explicit Pure Type Systems,
Subject Reduction
and Preservation of Strong Normalisation

Romain Kervarc

Oct 2006

Abstract
Pure type systems are an elegant formalism allowing to specify in a very easy way a large number of type systems. The possibility of their extension to calculi with explicit substitution was the object of numerous studies, which ran into various problems. In particular, the intuitive systems obtained by the mere addition of a cut rule to type substitutions have a major flaw: they do not satisfy subject reduction. In this report, we introduce pure type systems based upon the explicit substitution calculus with names λx, and we show that our systems satisfy among others subject reduction, and that they preserve the strong normalisation of their implicit counterparts.

Keywords: λ-calculus, explicit substitution, intuitionnistic logic, pure type systems, higher order types, calculus of constructions, λ-cube, subject reduction, strong normalisation.

Résumé
Les systèmes de types purs sont un formalisme élégant permettant de représenter de nombreux systèmes de types. La possible extension de ces systèmes à des calculs à substitutions explicites a fait l'objet de diverses études, qui se heurtent à différents problèmes. En particulier, les systèmes intuitifs obtenus par la simple adjonction d'une règle de coupure pour typer les substitutions présentent le défaut majeur de ne pas satisfaire la réduction du sujet. Dans ce rapport, nous exposons des systèmes de types purs basés sur le calcul de substitutions explicites à noms λx, et nous montrons que nos systèmes satisfont entre autres propriétés la réduction du sujet, et qu'ils préservent la normalisation forte de leur équivalent implicite.

Mots-clés: λ-calcul, substitution explicite, logique intuitionniste, systèmes de types purs, types d'ordre supérieur, calcul des constructions, λ-cube, réduction du sujet, normalisation forte.
Contents

Introduction 1

I. Systèmes avec substitution explicite 6
 1. Historique 6
 2. Syntaxe et réduction 7
 3. Typage 19

II. Particularités remarquables 29
 1. La figure d’inférence d’expansion 29
 2. Le prédicat « pseudo-sorte » 32
 3. Correction des types 35

III. Propriétés 36
 1. Lemmes de dérivation 36
 2. Réduction du sujet 40
 3. Conservation de la normalisation forte 58

Conclusion 66

Bibliographie 68
Introduction

S. Berardi et J. Terlouw ont, indépendamment l’un de l’autre, fourni dans leurs travaux en 1989 des méthodes générales permettant d’engendrer de manière systématique des systèmes de types à la Church pour le λ-calcul. Ces méthodes ont abouti aux systèmes de types purs, qui sont un formalisme simple et élégant permettant de décrire de nombreux systèmes de types, parmi lesquels en particulier ceux dits du λ-cube, cette décomposition hiérarchique du calcul des constructions que l’on vient de présenter. Comme on l’a mentionné, cette décomposition a été introduite par H. Barendregt, lequel a donné ultérieurement dans [2] une présentation formelle et systématique des systèmes de types purs, ainsi que de leurs principales propriétés.

Syntaxe et sémantique

De manière formelle, les systèmes de types purs sont définis comme suit :

Définition 0.1 : système de types pur ; sorte, axiome, règle
Par système de types pur, on entend un triplet $\mathcal{I} = (S, A, R)$ vérifiant que $A \subseteq S^2$ et $R \subseteq S^3$. Les éléments de S, A et R sont respectivement appelés sortes, axiomes et règles du système de types purs \mathcal{I}.

Naturellement, à cette définition formelle, qui constitue en quelque sorte une spécification du système de types, vient s’ajouter un calcul sous-jacent, basé sur le λ-calcul typé à la Church et défini comme suit :

Définition 0.2 : \mathcal{I}-expressions
Soient $\mathcal{I} = (S, A, R)$ un système de types purs, et U un ensemble infini de variables. On définit alors l’ensemble $E(\mathcal{I})$ des \mathcal{I}-expressions par la grammaire algébrique suivante :

$$E ::= \sigma \quad \text{ (sorte)}$$

<table>
<thead>
<tr>
<th>x \quad (variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE \quad (application)</td>
</tr>
<tr>
<td>$\lambda x:EE$ \quad (abstraction)</td>
</tr>
<tr>
<td>$\Pi x:EE$ \quad (quantification)</td>
</tr>
</tbody>
</table>

où les symboles σ et x décrivent respectivement les ensembles des sortes et des variables ($\sigma \in S; x \in U$).

Sur ces termes, on définit de façon usuelle les notions de variables libres et liées :

Définition 0.3 : variables libres/liées pour les systèmes de types purs implicites
Soit \mathcal{I} un système de types pur. Soit M une \mathcal{I}-expression. On définit l’ensemble $\text{fv}(M)$ des variables libres de M inductivement comme suit :

- $\text{fv}(\sigma) = \emptyset$;
- $\text{fv}(x) = \{x\}$;
- $\text{fv}(\Pi x:L.M) = (\text{fv}(M) \setminus \{x\}) \cup \text{fv}(L)$;
- $\text{fv}(\lambda x:L.M) = (\text{fv}(M) \setminus \{x\}) \cup \text{fv}(L)$;
- $\text{fv}(MN) = \text{fv}(M) \cup \text{fv}(N)$.
De façon analogue, on définit l'ensemble \(bv(M)\) des *variables liées* de \(M\) comme suit :

- \(bv(\alpha) = \emptyset\);
- \(bv(x) = \emptyset\);
- \(bv(\Pi x:L.M) = \{x\} \cup bv(L) \cup bv(M)\);
- \(bv(\lambda x:L.M) = \{x\} \cup bv(L) \cup bv(M)\);
- \(bv(M N) = bv(M) \cup bv(N)\).

On définit également la classique \(\alpha\)-conversion :

Définition 0.4 : \(\alpha\)-conversion

Soit \(\mathcal{I}\) un système de types purs. On appelle \(\alpha\)-conversion la relation \(\equiv_\alpha\) définie sur \(\mathcal{E}(\mathcal{I})\) par :

- si \(M = x \in \mathcal{U}, M \equiv_\alpha N\) si \(N = x\);
- si \(M = \sigma \in \mathcal{S}, M \equiv_\alpha N\) si \(N = \sigma\);
- si \(M = \lambda x:A.P, M \equiv_\alpha N\) si \(N = \lambda y:B.R\), avec \(A \equiv_\alpha B\) et \(P[x:=z] \equiv_\alpha R[y:=z]\) pour tout \(z\) sauf un nombre fini ;
- si \(M = \Pi x:A.P, M \equiv_\alpha N\) si \(N = \lambda y:B.R\), avec \(A \equiv_\alpha B\) et \(P[x:=z] \equiv_\alpha R[y:=z]\) pour tout \(z\) sauf un nombre fini ;
- si \(M = PQ, M \equiv_\alpha N\) si \(N = RS\) avec \(P \equiv_\alpha R\) et \(Q \equiv_\alpha S\).

Il est aisé de vérifier que \(\equiv_\alpha\) est une relation de congruence sur les \(\mathcal{I}\)-expressions.

L'\(\alpha\)-conversion étant une congruence, on peut considérer les expressions à \(\alpha\)-conversion près. On raisonne alors non plus sur les expressions, mais sur leurs classes d'équivalence modulo \(\alpha\)-conversion, que l'on appelle les *termes* du calcul :

Définition 0.5 : \(\lambda\mathcal{I}\)-calcul

On considère l'ensemble quotient \(\Lambda \mathcal{I} = \mathcal{E}(\mathcal{I})/\equiv_\alpha\), dont les éléments sont appelés *termes du \(\lambda\mathcal{I}\)-calcul*. L'\(\alpha\)-conversion \(\equiv_\alpha\) étant une congruence, les opérations de \(\mathcal{E}(\mathcal{I})\) (i.e. l'abstraction, l'application, la quantification) s'étendent canoniquement aux termes de \(\Lambda \mathcal{I}\).

Dans la suite, on adoptera pour le choix des représentants des termes du calcul la *convention de Barendregt*, qui stipule qu'une variable liée – dont on peut toujours librement changer le nom par \(\alpha\)-conversion – doit avoir un nom distinct de toute autre variable. (En particulier, cela interdit de faire apparaître une variable à la fois libre et liée dans un terme, et oblige de donner à deux variables liées distinctes des noms distincts.)

On dote ensuite le calcul sous-jacent à un système de type pur ainsi défini d'une *sémantique opérationnelle* par l'adjonction de la relation de \(\beta\)-réduction du \(\lambda\)-calcul typé à la Church :

Définition 0.6 : \(\beta\)-réduction, \(\beta\)-conversion

Soit \(\mathcal{I}\) un système de types purs. La \(\beta\)-réduction \(\rightarrow_{\beta}\) est la relation de réduction sur les \(\mathcal{I}\)-expressions induite par la règle :

\[
(\beta) \quad (\lambda x:A.B) C \rightarrow B[x:=C]
\]
où \([x := C]\) est une substitution implicite – i.e. \(B[x := C]\) désigne l'expression \(B\) où chaque occurrence libre de \(x\) est remplacée par une sous-expression \(C\).
La \(\beta\)-conversion \(\equiv_\beta\) est la clôture réflexive, symétrique et transitive de \(\to_\beta\).

Les notions \(\textit{supra}\) constituent l'aspect calculatoire des systèmes de types purs. Sur cela vient se greffer un aspect logique, par le biais de jugements de typage, qui peuvent être interprétés via la correspondance de Curry-Howard comme des assertions logiques.

Le typage dans les systèmes de types purs s'effectue par le moyen suivant :

\[
\Gamma \vdash A : \sigma \\
\Gamma, x : A \vdash B : \tau \\
\Gamma \vdash \Pi x : A \cdot B : \tau
\]

\((\sigma, \tau) \in \mathcal{A} \quad \text{(axiome)}\)

\[
\Gamma \vdash A : \sigma \\
x \notin \text{dom}(\Gamma)
\]

\(\Gamma \vdash \Pi \cdot x : A : B \quad \Gamma \vdash C : \sigma \\
\Gamma \vdash x : A \vdash x : A
\]

\((\Pi \cdot - \text{introduction})\)

\[
\Gamma \vdash (\Pi \cdot x : A \cdot B) : \sigma \\
\Gamma, x : A \vdash M : B
\]

\(\Gamma \vdash \lambda x : A . M : (\Pi x : A \cdot B) \quad \text{(\(\Pi\) - introduction)}\)

\[
\Gamma \vdash M : (\Pi x : A \cdot B) \\
\Gamma \vdash N : A
\]

\(\Gamma \vdash MN : B[x := N] \quad \text{(\(\Pi\) - élimination)}\)

\[
\Gamma \vdash M : A \\
\Gamma \vdash B : \sigma \\
A \equiv_\beta B
\]

\(\Gamma \vdash M : B \quad \text{(conversion)}\)

Table 1: Figures d'inférence de type valides pour les systèmes de types purs (implicites)

Définition 0.7: assertion, contexte, jugement (valide) de typage

Soit \(\Xi\) un système de types purs.

On appelle \(\text{assertion de typage}\) un couple de \(\Xi\)-expressions noté \(M : N\). Dans un tel couple, le premier élément est appelé \(\text{ sujet}\) de l'assertion et le second, \(\text{prédicat}\) de l'assertion.

On appelle \(\text{contexte de typage}\) une suite finie\(^1\) d'assertions de types dont les sujets sont des variables distinctes. L'ensemble de ces variables est appelé \(\text{domaine}\) du contexte, et leur suite ordonnée, \(\text{son support}\). Le contexte vide est noté \([]\), et la concaténation de contextes de domaines disjoints est notée par une virgule.

On appelle \(\text{jugement de typage}\) une expression de la forme \(\Gamma \vdash \Xi M : N\), où \(\Gamma\) est un contexte de typage et \(M : N\) une assertion de typage. Un jugement est dit \(\text{valide}\) s'il dérive de l'application des figures\(^2\) d'inférence présentées dans la table 1 supra. L'indice \(\Xi\) peut être omis s'il n'y a pas d'ambiguïté.

\(^1\) et non un ensemble : le fait que termes et types n'ont pas des catégories syntaxiques distinctes engendre des dépendances entre variables, ce qui impose que les contextes de typage soient ordonnés

\(^2\) S'inspirant de la dénomination de Gentzen \(\textit{Schlußfigur},\) on parle de figures plutôt que de règles, ce dernier terme étant réservé aux règles d'un système de types pur, i.e. aux éléments de \(\mathcal{R}\) dans le système \(\Xi = (\mathcal{S}, \mathcal{A}, \mathcal{R})\).
Définition 0.8 : contexte bien formé
Un contexte $\Gamma = [x_1 : A_1, \ldots , x_n : A_n]$ est dit bien formé si pour tout k de $\lbrack 1, n \rbrack$, il existe une sorte σ_k telle que $[x_1 : A_1, \ldots , x_{k-1} : A_{k-1}] \vdash A_k : \sigma_k$.

Propriétés
On va maintenant rappeler diverses propriétés générales des systèmes de types purs, desquelles on ne donnera pas de démonstrations, car celles-ci peuvent être trouvées dans [2], auquel pourra se référer le lecteur désireux de les consulter.

Lemme 0.1 : Initialisation pour les systèmes de types purs implicites
Soient Γ un contexte bien formé et $\Xi = (S, A, R)$ un système de types pur.

(i) Si $(\sigma : \tau) \in A$, alors $\Gamma \vdash \sigma : \tau$.

(ii) Si $(u : V) \in \Gamma$, alors $\Gamma \vdash u : V$.

Lemme 0.2 : Engendrement pour les systèmes de types purs implicites
Soient Ξ un contexte et M, T deux Ξ-termes tels que $\Xi \vdash M : T$. Alors :

(i) si $M = \sigma \in S$ alors
 $\exists \tau \in S (T \equiv_{\beta} \tau \land (\sigma : \tau) \in A)$;

(ii) si $M = x \in U$ alors
 $\exists \tau \in S \exists U \in \Lambda \Xi (\Xi \vdash U : \tau \land (x : U) \in \Xi \land T \equiv_{\beta} U)$;

(iii) si $M = \Pi x : A. B$ alors
 $\exists (\rho, \sigma, \tau) \in R (\Xi \vdash A : \rho \land \Xi, x : A \vdash \sigma : T \equiv_{\beta} \tau)$;

(iv) si $M = \Lambda x : A. B$ alors
 $\exists \tau \in S \exists C \in \Lambda \Xi (\Xi \vdash \Pi (\Pi x : A. C) : \tau \land \Xi, x : A \vdash C : T \equiv_{\beta} \Pi (\Pi x : A) C)$;

(v) si $M = A \land B$ alors
 $\exists C, D \in \Lambda \Xi (\Xi \vdash A : (\Pi x : C. D) \land \Xi \vdash B : C \land T \equiv_{\beta} D(x := B))$.

Lemme 0.3 : Substitution pour les systèmes de types purs implicites
Soit Ξ un système de types purs. Soient $\Gamma, x : A, \Delta \vdash_{\Xi} M : B$ un jugement de typage valide et N un Ξ-terme tels que $\Gamma \vdash_{\Xi} N : A$ soit un jugement de typage valide. Alors le jugement de typage $\Gamma, \Delta[x := N] \vdash_{\Xi} M[x := N] : B[x := N]$ est valide.

Théorème 0.4 : Correction pour les systèmes de types purs implicites
Soit Ξ un système de types purs. Soient Γ un contexte de typage et A, B deux Ξ-termes tels que le jugement de typage $\Gamma \vdash_{\Xi} A : B$ soit valide. Alors B est une sorte ou il existe une sorte σ telle que $\Gamma \vdash_{\Xi} B : \sigma$ soit valide.

Théorème 0.5 : Réduction du sujet pour les systèmes de types purs implicites
Soit Ξ un système de types purs. Soient Γ un contexte de typage et A, A', B trois Ξ-termes tels que le jugement de typage $\Gamma \vdash_{\Xi} A : B$ soit valide et $A \equiv_{\beta} A'$. Alors le jugement de typage $\Gamma \vdash_{\Xi} A' : B$ est valide.
Construction du λ-cube en systèmes de types purs

Dans ce formalisme, le λ-cube peut se construire de façon systématique et élégante. Pour ce faire, on considère une classe particulière de systèmes de types purs, dits élémentaires :

Définition 0.9 : système de types pur élémentaire (complet)

Étant donné un ensemble non vide de sortes S, on appelle règle élémentaire tout triplet de la forme (α, τ, τ), ce que l'on dénote en abrégé par $[\alpha, \tau]$. L'ensemble des règles élémentaires formées avec les éléments de S se note R_S^e.

Un système de types pur $\mathcal{E} = (S, \mathcal{A}, \mathcal{R})$ est dit élémentaire si $\mathcal{R} \subseteq R_S^e$ et élémentaire complet si $\mathcal{R} = R_S^e$.

Le système de types purs correspondant au λ-calcul simplement typé est le système élémentaire suivant : $\lambda \rightarrow = ([\ast, \Box], [\ast : \Box], [[\ast, \ast]])$.

Les systèmes de types du λ-cube sont alors définis simplement comme les systèmes élémentaires prolongeant $\lambda \rightarrow$, i.e. les systèmes qui ont mêmes sortes et axiome que $\lambda \rightarrow$ et dont les règles sont élémentaires et contiennent $[\ast, \ast]$.

Suivant que l'on ajoute l'une des trois autres règles élémentaires, on parcourt alors une arête dans le cube : vers le haut, on ajoute $[\Box, \ast]$; vers la droite, $[\ast, \Box]$ et vers le fond, $[\Box, \Box]$.

De plus, on remarque que le sommet du λ-cube, le calcul des constructions, correspond au système élémentaire complet prolongeant $\lambda \rightarrow$, dont la spécification formelle est $\lambda C = ([\ast, \Box], [\ast : \Box], R^e_{[\ast, \Box]})$.

![Figure 1: Le λ-cube de Barendregt](image)

On voit ici à quel point le formalisme des systèmes de types purs est adapté à la construction du λ-cube, en particulier lorsque l'on s'intéresse d'un peu plus près à la spécification des systèmes du λ-cube.

Les systèmes comportent deux sortes, \ast et \Box, qui caractérisent respectivement les types d'expressions à valeur de termes et les types d'expressions à valeur de type, ce que confirme l'axiome $\ast : \Box$, qui dit simplement qu'"ast, sorte typant les types d'expression à valeur de termes, est elle-même subséquemment un type d'expressions à valeurs de types, donc typable par \Box.

Outre les résultats présentés précédemment, qui étaient satisfaits en toute généralité pour tout système de types pur. On va maintenant donner des résultats plus particuliers, qui seraient faux en général, mais sont vrais dans le cas particulier des systèmes du λ-cube.
Définition 0.10 : normalisation forte
Un système de types pur Σ est dit fortement normalisant s’il vérifie la propriété suivante : soient Γ un contexte de typage et A, B deux Σ-termes tels que le jugement de typage Γ ⊢ A : B soit valide. Alors A et B n’admettent pas de chaîne infinie de β-réduction.

On peut remarquer que, du fait du théorème de correction des types, cette définition est équivalente à une définition où l’on exige simplement la normalisation forte de sujet du jugement, celle du prédicat provenant du fait qu’il est une sorte (donc un terme β-irréductibles), soit lui-même le sujet d’un jugement de correction.

Théorème 0.6 : Normalisation forte dans les s.t.p. implicites du λ-cube
Les systèmes de types purs du λ-cube (λ →, λω, λ2, λP, λω, λP2, λPω, λPω) sont fortement normalisants.

I. Systèmes avec substitution explicite

1. Historique

Ces systèmes sont basés sur la syntaxe du λx-calcul, que l’on rappelle ici :

\[
M, M' ::= \begin{array}{ll}
 x & \text{(variable)} \\
 \lambda x. M & \text{(abstraction)} \\
 MM' & \text{(application)} \\
 M(x := M') & \text{(substitution)} \\
\end{array}
\]

Les figures de typages données par R. Bloo sont présentées dans la table 2 *infra*.

\[
\begin{array}{l}
 (\sigma, \tau) \in \mathcal{A} \quad \text{(axiome)} \\
 \Gamma \vdash M : \rho \\
 \Gamma, x : A \vdash B : \sigma \\
 (\rho, \sigma, \tau) \in \mathcal{R} \\
 \Gamma \vdash \Pi x : A. B : \tau \\
 \hline
 \Gamma \vdash A : \sigma \\
 \Gamma, x : A \vdash x : A \\
 \hline
 \Gamma, x : C \vdash x \notin \text{dom}(\Gamma) \\
 x \notin \text{dom}(\Gamma) \\
 \Gamma \vdash C : \sigma \\
 \Gamma, x : A \vdash x : A \\
 \hline
 \Gamma, x : C \vdash A : B \\
 \Gamma \vdash \Pi x : A. B : \sigma \\
 \Gamma, x : A \vdash M : B \\
 \hline
 \Gamma \vdash \lambda x : A. M : \Pi x : A. B \\
 \hline
 \Gamma \vdash M : (\Pi x : A. B) \\
 \Gamma \vdash N : A \\
 \hline
 \Gamma \vdash MN : B[x := N] \\
 \hline
 \Gamma, x : A \vdash M : B \\
 \Gamma \vdash N : A \\
 \hline
 \Gamma \vdash M(x := N) : B[x := N] \\
 \hline
 \Gamma \vdash M : A \\
 \Gamma \vdash B : \sigma \\
 \sigma \equiv_{\beta} B \\
 \hline
 \Gamma \vdash M : B \\
\end{array}
\]

Table 2: Figures d’inférence de type valides pour les systèmes de types purs explicites de R. Bloo

On peut noter en particulier que ce système traite de façon différente les substitutions survenant en sujet ou en prédicat dans les assertions de typage : elles sont explicites en partie gauche et implicites en partie droite, ce qui peut sembler contestable.

2. Syntaxe et réduction

La définition formelle basique des systèmes de types purs reste inchangée : par système de types pur explicite, on entend toujours un triplet \((S, \mathcal{A}, \mathcal{R})\) de sortes, axiomes et règles, qui constitue en fait la spécification du système, à laquelle vont s’ajouter un calcul sous-jacent et un système d’inférence de types, qui, eux, seront distincts de ceux des systèmes de types purs pour calculs à substitutions implicites.

Le fait que cette définition reste inchangée permettra par la suite d’établir une correspondance canonique entre un système de types purs explicite d’une part et, d’autre part, le
système correspondant – i.e. ayant la même spécification formelle – dans les systèmes usuels (implicites).

Définition 1.11 : $\lambda\exists$-expressions
Soient $\Sigma = (S, A, R)$ un système de types purs, et \mathcal{U} un ensemble infini de variables.
On définit alors l’ensemble $\exists\Sigma$ des \exists-expressions par la grammaire algébrique suivante :

$$
\begin{align*}
E & ::= \sigma \quad \text{(sorte)} \\
 & | \ x \quad \text{(variable)} \\
 & | \ y_x \quad \text{(variable insubstituable)} \\
 & | \ E \ E \quad \text{(application)} \\
 & | \ \lambda x : E \quad \text{(abstraction)} \\
 & | \ \Pi x : E \ E \quad \text{(quantification)} \\
 & | \ E (x := E) \quad \text{(substitution)} \\
\end{align*}
$$

où σ et x décrivent respectivement les ensembles des sortes et des variables (i.e. : $\sigma \in S$; $x \in \mathcal{U}$). Étant donné un terme M, on désigne par $ov(M)$ l’ensemble des variables occurrant dans M.

Les éléments de la forme y_x sont appelés « variables insubstituables », mais, d’un point de vue de réécriture, il s’agit de constantes. Leur introduction est nécessaire pour pouvoir considérer le calcul de réduction associé comme un système de réécriture. Ce point sera abordé plus loin.

Traditionnellement, l’on établit la distinction entre variables libres et liées d’une expression, comme on l’a vu dans le cas du λ-calcul ou des systèmes de types purs à substitutions implicites. Il est possible également de définir ici ces deux espèces de variables, de manière analogue au cas implicite, sachant que M(x:=N) a les mêmes variables libres et liées que l’expression $\Pi x : N \ M$ (i.e. x est liée dans M mais pas dans N) :

Définition 1.12 : variables libres/liées dans les systèmes de types purs explicites
Soit Σ un système de types purs. Soit M une \exists-expression.
On définit l’ensemble $f\exists(M)$ des variables libres de M inductivement comme suit :

- $f\exists(\sigma) = \emptyset$;
- $f\exists(x) = \{x\}$;
- $f\exists(y_x) = \emptyset$;
- $f\exists(\Pi x : L \ M) = (f\exists(M) \setminus \{x\}) \cup f\exists(L)$;
- $f\exists(\lambda x : L \ M) = (f\exists(M) \setminus \{x\}) \cup f\exists(L)$;
- $f\exists(N \ M) = f\exists(M \cup f\exists(N)$;
- $f\exists(M(x := L)) = (f\exists(M) \setminus \{x\}) \cup f\exists(L)$.

De même, on définit l’ensemble $b\exists(M)$ des variables liées de M comme suit :

- $b\exists(\sigma) = \emptyset$;
- $b\exists(x) = \emptyset$;
\[bv(\gamma_a) = \emptyset; \]
\[bv(\Pi x:L.M) = bv(M) \cup bv(L) \cup \{x\}; \]
\[bv(\lambda x:L.M) = bv(M) \cup bv(L) \cup \{x\}; \]
\[bv(MN) = uv(M) \cup uv(N); \]
\[bv(M(x:=L)) = bv(M) \cup bv(L) \cup \{x\}. \]

On remarque que les deux ensembles \(fv(M) \) et \(bv(M) \) recouvrent \(av(M) \).

Toutefois, cette distinction, fondamentale dans le cas implicite, n’est pas totalement adaptée dans le cas de substitutions explicites, et une autre définition, distinguant variables accessible et inaccessibles, semble plus appropriée.

La notion de variable accessible a été introduite par Lengrand et al. dans [18] sous le nom d’available variables (mot à mot, variables disponibles). Elle est définie comme suit :

Définition 1.13 : variables accessibles/inaccessibles

Soit \(\mathcal{T} \) un système de types purs. Soit \(M \) une \(\mathcal{T} \)-expression.

On définit l’ensemble \(av(M) \) des variables accessible de \(M \) inductivement ainsi :

\[av(\sigma) = \emptyset; \]
\[av(x) = \{x\}; \]
\[av(\gamma_a) = \emptyset; \]
\[av(\Pi x:L.M) = (av(M) \setminus \{x\}) \cup av(L); \]
\[av(\lambda x:L.M) = (av(M) \setminus \{x\}) \cup av(L); \]
\[av(MN) = av(M) \cup av(N); \]
\[av(M(x:=N)) = \begin{cases}
(\text{av}(M) \setminus \{x\}) \cup \text{av}(N) & \text{si } x \in \text{av}(M) \\
\text{av}(M) & \text{si } x \notin \text{av}(M).
\end{cases} \]

De même, on définit l’ensemble \(uv(M) \) des variables inaccessible de \(M \) ainsi :

\[uv(\sigma) = \emptyset; \]
\[uv(x) = \emptyset; \]
\[uv(\gamma_a) = \emptyset; \]
\[uv(\Pi x:L.M) = uv(M) \cup uv(L) \cup \{x\}; \]
\[uv(\lambda x:L.M) = uv(M) \cup uv(L) \cup \{x\}; \]
\[uv(MN) = uv(M) \cup uv(N); \]
\[uv(M(x:=N)) = \begin{cases}
uv(M) \cup uv(N) \cup \{x\} & \text{si } x \in uv(M) \\
uv(M) \cup uv(N) \cup \{x\} & \text{si } x \notin uv(M).
\end{cases} \]

On remarque que les deux ensembles \(av(M) \) et \(uv(M) \) recouvrent \(av(M) \).
Ces notions seront commentées après la définition des notions de réduction.

Définition 1.14 : α-conversion

On définit sur l'ensemble des expressions $\mathcal{E}_x(\mathcal{I})$ la relation \equiv_{α} dite α-conversion inductivement comme suit :

- si $M = \sigma \in \mathcal{S}$, $M \equiv_{\alpha} N$ si $N = \sigma$;
- si $M = x \in \mathcal{U}$, $M \equiv_{\alpha} N$ si $N = x$;
- si $M = \gamma x : A.P$, $M \equiv_{\alpha} N$ si $N = \lambda y : B.R$ avec $A \equiv_{\alpha} B$ et $P[x := z] \equiv_{\alpha} R[y := z]$ pour tout z excepté un nombre fini ;
- si $M = \Pi x : A.P$, $M \equiv_{\alpha} N$ si $N = \Pi y : B.R$ avec $A \equiv_{\alpha} B$ et $P[x := z] \equiv_{\alpha} R[y := z]$ pour tout z excepté un nombre fini ;
- si $M = PQ$, $M \equiv_{\alpha} N$ si $N = RS$ avec $P \equiv_{\alpha} R$ et $Q \equiv_{\alpha} S$;
- si $M = P(x := Q)$, $M \equiv_{\alpha} N$ si $N = R(y := S)$, avec $Q \equiv_{\alpha} S$ et $P[x := z] \equiv_{\alpha} R[y := z]$ pour tout z excepté un nombre fini.

Définition 1.15 : λ \mathcal{I}_x-termes

Il est clair que la relation \equiv_{α} est une congruence sur les \mathcal{I}-expressions, si bien que l'on peut définir l'ensemble quotient $\mathcal{T}_x(\mathcal{I}) = \mathcal{E}_x(\mathcal{I})/\equiv_{\alpha}$, auquel s'étendent canoniquement les opération de $\mathcal{E}_x(\mathcal{I})$.

Les éléments de $\mathcal{T}_x(\mathcal{I}) = \mathcal{E}_x(\mathcal{I})/\equiv_{\alpha}$ sont appelés les termes du λ \mathcal{I}_x-calcul.

Dans la suite, les termes étant, sauf mention expresse du contraire, considérés à l’α-conversion près, l’on adoptera de nouveau la convention de Barendregt : deux variables liées distinctes ont des noms distincts, et une variable ne peut apparaître à la fois accessible et liée.

On peut maintenant définir sur ces termes une notion de réduction. De même que les systèmes de types purs dans le cas implicite reprenaient la sémantique opérationnelle du λ-calcul, la notion de réduction utilisée se base sur celle de λx.

Définition 1.16 : notion de réduction et de conversion x, βx

Soient les règles de réduction suivantes :

- (B) \((\lambda x : A.B) C \xrightarrow{\text{B}} B(x := C)\)
- (quant) \((\Pi y : A.B)(x := C) \xrightarrow{x} \Pi y : A(x := C).B(x := C)\)
- (abs) \((\lambda y : A.B)(x := C) \xrightarrow{\lambda y} \lambda y : A(x := C).B(x := C)\)
- (app) \((A B)(x := C) \xrightarrow{\alpha} A(x := C)B(x := C)\)
- (subst) \(x(x := N) \xrightarrow{\text{subst}} N\)
- (gc) \(M(x := N) \xrightarrow{\text{gc}} M[x := \gamma] \quad \text{si} \ x \notin \text{av}(M)\)
- (comp) \(A(x := X)(y := Y) \xrightarrow{\text{comp}} A(y := Y)(x := X(y := Y))\)

À partir de ces règles, on définit diverses notions de réduction :
• la \mathbf{x}-réduction, notée $\xrightarrow{\mathbf{x}}$, est définie comme la clôture contextuelle de $\xrightarrow{\mathbf{x}}$;

• la $\beta\mathbf{x}$-réduction, notée $\xrightarrow{\beta\mathbf{x}}$, est définie comme la clôture contextuelle de l’union de $\xrightarrow{\mathbf{x}}$ et de $\xrightarrow{\beta}$;

ainsi que les relations d’équivalence associées :

• la \mathbf{x}-conversion, notée $\equiv_{\mathbf{x}}$, est définie comme la clôture réflexive, symétrique et transitive de $\xrightarrow{\mathbf{x}}$;

• la $\beta\mathbf{x}$-conversion, notée $\equiv_{\beta\mathbf{x}}$, est définie comme la clôture réflexive, symétrique et transitive de $\xrightarrow{\beta\mathbf{x}}$.

Remarque :
On peut faire divers commentaires à ces définitions :

(i) Il peut sembler paradoxal, dans un système à substitutions explicites, de voir apparaître une substitution implicite dans la règle (gc). Toutefois, il s’agit en fait ici d’un renommage de variable destiné à « tuer » la variable \mathbf{x}. Ce procédé sera commenté prochainement.

(ii) Il convient également d’observer que la règle (comp) ne saurait être ajoutée à la \mathbf{x}-réduction, car elle induit visiblement une notion de réduction non normalisante. Toutefois, on peut se passer de cette règle dans la mesure où ses deux membres sont \mathbf{x}-joignables, comme on le verra plus tard (lemme de composition infra).

Par ailleurs, on définit en outre sur les termes une notion de propagation comme suit :

Définition 1.17 : propagation
On définit tout d’abord une notion de recul, notée \rightsquigarrow, au moyen des figures suivantes :

\[
\begin{align*}
M(\mu:=V)(x:=N) & \rightsquigarrow M(x:=N)(\mu:=V(x:=N)) & \quad & \text{(composition)} \\
x \notin \text{av}(V) & \quad & \\
M(\mu:=V)(x:=N) & \rightsquigarrow M(x:=N)(\mu:=V[x:=\gamma]) & \quad & \text{(intervention)} \\
M(\mu:=V)(x:=N) & \rightsquigarrow M(x:=N)(\mu:=W) & M(x:=N) & \rightsquigarrow P & \quad & \text{(séquence)}
\end{align*}
\]

On définit ensuite comme suit la relation de propagation, notée $\xrightarrow{\mathbf{x}}$, au moyen des figures suivantes :

\[
\begin{align*}
M(x:=N) & \xrightarrow{\gamma} M(x:=\gamma) & \quad & \text{(gc)} \\
x \notin \text{av}(V) & \quad & \\
M(x:=N) & \xrightarrow{} \chi M(x:=\gamma) & \quad & \text{(recul)} \\
M(x:=N) & \rightsquigarrow (\Pi x:U_1.U_2)(x:=N)(u_1:=W_1)\cdots(u_k:=W_k) & \quad & \text{(T-retard)} \\
M(x:=N) & \xrightarrow{} \chi (\Pi x:U_1.U_2)(x:=N)(u_1:=W_1)\cdots(u_k:=W_k) & \quad & \text{(T-retard)} \\
M(x:=N) & \rightsquigarrow (\lambda x:U_1.U_2)(x:=N)(u_1:=W_1)\cdots(u_k:=W_k) & \quad & \text{(\lambda-retard)} \\
M(x:=N) & \xrightarrow{} \chi (U_1(x:=N).U_2(x:=N))(u_1:=W_1)\cdots(u_k:=W_k) & \quad & \text{(\lambda-retard)} \\
M(x:=N) & \rightsquigarrow (U_1 U_2)(x:=N)(u_1:=W_1)\cdots(u_k:=W_k) & \quad & \text{(\lambda-retard)} \\
M(x:=N) & \xrightarrow{} \chi (U_1(x:=N) U_2(x:=N))(u_1:=W_1)\cdots(u_k:=W_k) & \quad & \text{(\lambda-retard)} \\
\end{align*}
\]
On peut noter que cette relation n’est pas une congruence, mais une forme de réduction de tête. Elle aura un rôle important dans le système de typage. On peut décrire en mots l’effet de cette relation de réduction comme suit : on propage la substitution de tête, soit en l’étant alors qu’elle peut être éliminée par un (gc), soit en la poussant aussi loin que l’on veut par composition en s’arrêtant toutefois au premier opérateur qui ne soit pas une substitution et sans permettre la propagation dans l’opérande d’une substitution.

Propriétés des x-réduction et βx-réduction

On a évoqué plus haut un lemme énonçant que la x-conversion conserve les variables accessibles. Le voici :

Lemme 1.7 : Conservation des variables accessibles

Soient U et V deux termes. Si $U \equiv_x V$, alors $av(U) = av(V)$.

Démonstration.

Il suffit de montrer que si $U \rightarrow_x V$, alors $av(U) = av(V)$, ce que l’on fait par cas :

a. (quant) : $(\Pi y:A.B)(x:=C) \rightarrow_\rightarrow \Pi y:A(x:=C).B(x:=C)$

$$av((\Pi y:A.B)(x:=C)) = (av(A) \cup (av(B) \setminus \{y\})) \cup (av(C) \setminus \{x\})$$

$$= (av(A) \cup (av(C) \setminus \{x\})) \cup ((av(B) \setminus \{y\}) \cup (av(C) \setminus \{x\}))$$

$$= av(\Pi y:A(x:=C).B(x:=C)).$$

b. (abs) : $(\lambda y:A.B)(x:=C) \rightarrow_\rightarrow \lambda y:A(x:=C).B(x:=C)$

$$av((\lambda y:A.B)(x:=C)) = (av(A) \cup (av(B) \setminus \{y\})) \cup (av(C) \setminus \{x\})$$

$$= (av(A) \cup (av(C) \setminus \{x\})) \cup ((av(B) \setminus \{y\}) \cup (av(C) \setminus \{x\}))$$

$$= av(\lambda y:A(x:=C).B(x:=C)).$$

c. (app) : $(A.B)(x:=C) \rightarrow_\rightarrow A(x:=C) B(x:=C)$

$$av((A.B)(x:=C)) = (av(A) \cup av(B)) \cup (av(C) \setminus \{x\})$$

$$= (av(A) \cup (av(C) \setminus \{x\})) \cup (av(B) \cup (av(C) \setminus \{x\}))$$

$$= av(A(x:=C)B(x:=C)).$$

d. (subst) : $x(x:=N) \rightarrow_\rightarrow N$

Par définition des variables accessibles, $av(x(x:=N)) = av(N)$.

e. (gc) : $M(x:=N) \rightarrow_\rightarrow M[x:=\gamma_x]$ si $x \notin av(M)$

Par définition des variables accessibles, d’une part $av(M(x:=N)) = av(M)$ et d’autre part

En outre, $av(M[x:=\gamma_x]) = av(M) \setminus \{x\} = av(M) car x \notin av(M)$. Et donc $av(M(x:=N)) = av(M[x:=\gamma_x]).$

f. (var) : ceci est une instance particulière de (gc).

Dans tous les cas, on obtient bien que \rightarrow_\rightarrow conserve les variables accessibles. Il suffit ensuite de passer à la congruence pour étendre cette propriété à \rightarrow_x (en effet, il est aisé de montrer que si $av(M) = av(N)$, alors pour tout $C[x]$, $av(C[M]) = av(C[N])$, puis à la clôture réflexive, symétrique et transitive pour l’étendre à \equiv_x.

Q.E.D.

Par ailleurs, comme il est dit supra, la x-réduction vérifie la propriété suivante :

Proposition 1.8 : Normalisation forte de la x-réduction

La x-réduction est fortement normalisante.
Démonstration.
Il s'agit de démontrer l'énoncé suivant :

soit M un $\lambda\Sigma$-terme ; M n'admet pas de suite infinie de x-réduction,

ce qui se fait facilement de la façon suivante.
Soit M un terme, on appelle profondeur potentielle de M, notée $p(M)$, l'entier calculé ainsi :

- si $M = x$ ou γ_x ou σ, alors $p(M) = 0$;
- si $M = \Pi x : A.B$ ou $\lambda x : A.B$ ou AB, alors $p(M) = 1 + \max(p(A), p(B))$;
- si $M = A(x := B)$, alors $p(M) = p(A) + p(B)$.

On remarque que la x-réduction n'augmente pas la profondeur potentielle.
À chaque terme M, on associe le mot w_M de taille $p(M)$ dont la i-ième lettre est le nombre de substitutions explicites se trouvant à la profondeur i. Par « se trouver à une certaine profondeur », on entend ici que :

- la substitution $\langle x := X \rangle$ est à la profondeur 0 dans le terme $A(x := X)$;

- si la substitution $\langle x := X \rangle$ est à la profondeur p dans A ou dans B, alors elle est à la profondeur $p + 1$ dans $\Pi x : A.B, \lambda x : A.B, A(x := B)$.

Cette notion de profondeur est correctement définie sur les termes, car il appert que la profondeur d'une substitution donnée est la même dans tous les membres d'une même classe d'équivalence pour l'α-conversion.

On définit sur les mots l'ordre lexicographique \prec. Les mots associés aux termes issus d'un terme M donné étant de taille bornée par $p(M)$, cet ordre est fortement normalisant. En outre, on voit que si $M \Rightarrow M'$, alors les mots associés satisfont $w_M > w_{M'}$. Tout ceci implique donc la normalisation forte de la x-réduction.

Q.E.D.

De cette propriété découle, comme on l'a dit, une forme d'équivalence entre les systèmes avec ou sans (ge), qui sera abordée lorsque l'on définira la notion de typage.

Par ailleurs, on peut également montrer la confluence de la x-réduction :

Lemme 1.9 : Confluence de la x-réduction

La x-réduction est confluente.

Démonstration.
Comme la x-réduction est fortement normalisante, il suffit de montrer que toutes ses paires critiques sont joignables pour montrer sa confluence. On considère donc les paires critiques du système, qui sont nécessairement formées au moyen d'une règle de (gc), et sont donc au nombre de trois :

1°) $(\Pi y : U.V)[x := \gamma_x], \Pi y : U(x := W), V(x := W)$, issue de $(\Pi y : U.V)(x := W)$.

Par la convention de Barendregt, $y \neq x$, et donc, comme $x \notin \text{av}(\Pi y : U.V)$, $x \notin \text{av}(U)$ et $x \notin \text{av}(V)$.

Si bien que $\Pi y : U(x := W).V(x := W) \Rightarrow \Pi y : U[x := \gamma_x].V[x := \gamma_x]$, et ce second membre se récrit $\Pi y : U.V[x := \gamma_x]$, donc la paire critique est joignable.

2°) $(\lambda y : U.V)[x := \gamma_x], \lambda y : U(x := W), V(x := W)$, issue de $(\lambda y : U.V)(x := W)$.

Par la convention de Barendregt, $y \neq x$, et donc, comme $x \notin \text{av}(\lambda y : U.V)$, $x \notin \text{av}(U)$ et $x \notin \text{av}(V)$.

Si bien que $\Pi y : U(x := W).V(x := W) \Rightarrow \Pi y : U[x := \gamma_x].V[x := \gamma_x]$, et ce second membre se récrit $\Pi y : U.V[x := \gamma_x]$, donc la paire critique est joignable.
3) $(U \cup V)[x := \gamma_x], U(x := W) V(x := W),$ issue de $(U \cup V)(x := W).

Comme $x \notin \omega(U \cup V), x \notin \omega(U)$ et $x \notin \omega(V).$ Si bien que $U(x := W) V(x := W) \xrightarrow{\omega \mathrm{U}} U[x := \gamma_x] V[x := \gamma_x]$, et ce second membre se récrit $(U \cup V)[x := \gamma_x]$, donc la paire critique est joignable.

Toutes les paires critiques sont donc joignables. \hfill Q.E.D.

La convergence de la x-réduction, résultant des deux lemmes supra, permet en outre de montrer le résultat suivant :

Lemme 1.10 : Composition

Soient A, B, C trois termes et x, y deux variables telles que $x \notin \omega(B) \cup \omega(C) \cup \{y\}$. Alors $A(x := B)\langle y := C \rangle \xrightarrow{x} B\langle y := C \rangle$ et $A(y := C)\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} A\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} B\langle y := C \rangle$.

(Demonstration.

Quitte à effectuer une x-normalisation, qui n’influence pas sur la x-convertibilité car la x-réduction est confluente, on peut supposer que A est une forme x-normale.

On procède par induction sur $A.$

Si A est une variable, plusieurs cas se présentent :

- $A = x.$ Alors $A(x := B)\langle y := C \rangle \xrightarrow{x} B\langle y := C \rangle$ et $A(y := C)\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} A\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} B\langle y := C \rangle$.

- $A = y.$ Dans ce cas, d’une part $A(x := B)\langle y := C \rangle \xrightarrow{x} C$ et d’autre part, comme $x \notin \omega(C)$, $A(y := C)\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} C\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} C$.

- $A = z \neq x, y.$ Dans ce cas, les deux termes se réduisent à z.

Si $A = QR,$ alors on a d’autre part $A(x := B)\langle y := C \rangle \xrightarrow{x} Q(x := B)\langle y := C \rangle R(x := B)\langle y := C \rangle$, et d’autre part $A(y := C)\langle x := B\langle y := C \rangle \rangle \xrightarrow{x} Q(y := C)\langle x := B\langle y := C \rangle \rangle R(y := C)\langle x := B\langle y := C \rangle \rangle$. On conclut alors aisément par hypothèse d’induction.

Si $A = \Pi x \omega Q. R$ ou $A = \lambda x \omega Q. R,$ on procède comme pour le cas précédent. \hfill Q.E.D.

Après la x-réduction, on peut s’intéresser à la βx-réduction. Tout d’abord, celle-ci ne fait pas apparaître de variables accessibles :

Lemme 1.11 : Inclusion des variables accessibles

Soient U et V deux termes. Si $U \xrightarrow{\beta x} V,$ alors $\omega U \supseteq \omega V$.

Démonstration.

Vu le lemme 1.7, il suffit de montrer que si $U \rightarrow \mathcal{B} V,$ alors $\omega U \supseteq \omega V$.

On considère donc $(\lambda y : A. M) N \rightarrow B M(x := N)$.

On a d’une part $\omega((\lambda y : A. M) N) = \omega(A) \cup \omega(M) \setminus \{x\} \cup \omega(N)$ et d’autre part :

- si $x \in \omega(M), \omega(M(x := N)) = \omega(M) \setminus \{x\} \cup \omega(N) \subseteq \omega((\lambda y : A. M) N)$;

- si $x \notin \omega(M), \omega(M(x := N)) = \omega(M) = \omega(M) \setminus \{x\} \subseteq \omega((\lambda y : A. M) N)$.

Dans tous les cas, on obtient bien que $\rightarrow \mathcal{B}$ n’augmente pas les variables accessibles. En outre, on a montré avec le lemme 1.7 que $\xrightarrow{\beta x}$ conserve les variables accessibles, donc a fortiori ne les augmente pas. Il suffit ensuite de passer à la congruence pour étendre cette propriété à $\xrightarrow{\beta x}$ (en effet, il est aisé de
montrer que si \(av(M) \supseteq av(N) \), alors pour tout \(C[_] \), \(av(C[M]) \supseteq av(C[N]) \) puis à la clôture réflexive et transitive pour l’étendre à \(\frac{_}{\beta_x} \).

\[\text{Q.E.D.} \]

On peut maintenant montrer la confluence de la \(\beta x \)-réduction :

Lemme 1.12 : Confluence de la \(\beta x \)-réduction

La \(\beta x \)-réduction est convergente.

Démonstration.

La démonstration, inspirée de la démonstration de Takahashi (cf. [25]), se fait de manière analogue à celle de la confluence de la \(\beta \)-réduction dans le \(\lambda \)-calcul à substitutions implicites. On définit la \(\rho \)-réduction \(\longrightarrow \) comme la plus petite relation contenant \(\frac{_}{\beta x} \) et vérifiant :

1. Si \(M \overset{\rho}{\longrightarrow} M' \) et \(N \overset{\beta_x}{\longrightarrow} N' \), alors \((\lambda x:A.M)N \overset{\rho}{\longrightarrow} M'(x:=N') \).
2. Si \(M = C[T_1, \ldots, T_k] \) et \(T_i \overset{\rho}{\longrightarrow} T'_i \), alors \(M \overset{\rho}{\longrightarrow} C[T'_1, \ldots, T'_k] \).

On va tout d’abord montrer que \(\frac{_}{\rho} \subseteq \frac{_}{\beta_x} \).

- Si \(U \overset{\beta_x}{\longrightarrow} U' \), alors soit il s’agit d’un pas de \(x \)-réduction (qui est contenue dans \(\frac{_}{\rho} \)), soit il s’agit d’une étape (B), et l’on a \(U = C[(\lambda x:A.M)N] \) et \(U' = C[M(x:=N)] \). Dans ce dernier sous-cas, comme \(\longrightarrow \) contient l’égalité (car elle contient \(\equiv_x \), qui est réflexive), on peut appliquer (1), ce qui donne \(U \overset{\rho}{\longrightarrow} U' \). Donc \(\frac{_}{\beta_x} \subseteq \frac{_}{\rho} \), et donc on a fortiori \(\frac{_}{\rho} \subseteq \frac{_}{\beta_x} \).

- Si \(U \overset{\rho}{\longrightarrow} U' \), on montre par induction structurelle sur \(U \) que \(U \overset{\beta_x}{\longrightarrow} U' \). En effet, soit \(U \overset{\rho}{\longrightarrow} U' \) résulte d’un pas de \(x \)-réduction (qui est contenue dans \(\frac{_}{\beta_x} \) ; soit \(U = C[(\lambda x:A.M)N] \) et \(U' = C[M(x:=N') \] avec \(nmM \overset{\rho}{\longrightarrow} M' \) et \(N \overset{\beta_x}{\longrightarrow} N' \), et, par hypothèse d’induction, \(M \overset{\rho}{\longrightarrow} M' \) et \(N \overset{\beta_x}{\longrightarrow} N' \), d’où \(U = C[(\lambda x:A.M)N] \overset{\beta_x}{\longrightarrow} C[M(x:=N')] = U' \). Il suffit maintenant de montrer que \(\longrightarrow \) a la propriété du losange. Soient donc \(M, M_1, M_2 \) tels que \(M \overset{\rho}{\longrightarrow} M_1 \) et \(M \overset{\rho}{\longrightarrow} M_2 \), on va montrer par induction structurelle sur \(M \) qu’il existe \(M' \) tel que \(M_1 \overset{\rho}{\longrightarrow} M' \) et \(M_2 \overset{\rho}{\longrightarrow} M' \).

a. \(M = x \). Alors \(M_1 = M_2 = x \), et l’on pose \(M' = x \).

b. \(M = \Pi x:A.B \). Alors \(M_1 = M_1 \overset{\rho}{\longrightarrow} A \) et \(M_2 = M_2 \overset{\rho}{\longrightarrow} A \).

 On a \(A \overset{\beta_x}{\longrightarrow} A \) et \(B \overset{\beta_x}{\longrightarrow} B \), et, par hypothèse d’induction, l’on obtient \(A' \) et \(B' \) tels que \(A \overset{\rho}{\longrightarrow} A' \) et \(B \overset{\rho}{\longrightarrow} B' \). L’on pose alors \(M' = \Pi x:A'.B' \), et l’on vérifie bien que \(M_1 \overset{\rho}{\longrightarrow} M' \overset{\rho}{\longrightarrow} M_2 \) par (2).

c. \(M = \lambda x:A.B \). Ce cas est analogue au précédent.

d. \(M = A.B \). Il a y trois possibilités.

1°) A n’est pas une abstraction, ou bien le réde de tête n’est réduit dans aucune des deux contractions. Ce sous-cas est analogue aux deux cas précédents.

2°) A = \(\lambda x:U \), et le réde de tête est réduit dans les deux contractions. Dans ce cas, \(M_1 = V_1(x:=B_1) \) et \(M_2 = V_2(x:=B_2) \). L’on a \(V_1 \overset{\rho}{\longrightarrow} V \overset{\rho}{\longrightarrow} V_2 \) et \(B_1 \overset{\rho}{\longrightarrow} B \overset{\rho}{\longrightarrow} B_2 \). L’on pose \(M' = V'(x:=B') \) et l’on vérifie bien que \(M_1 \overset{\rho}{\longrightarrow} M' \overset{\rho}{\longrightarrow} M_2 \) par (2).
3°) A = λx:U,V, et le réex de tête est réduit dans une seule des deux contractions, par exemple la première. Dans ce cas, M₁ = V₁(⟨x:=B₁⟩) et M₂ = (λx:U₂,V₂)B₂. L’on a V₁ ≢ V → V₂ et B₁ ≢ B → B₂, et, par hypothèse d’induction, l’on obtient V’ et B’ tels que V₁ ≢ V’ → V₂ et B₁ ≢ B’ → B₂. L’on pose alors M’ = V’(⟨x:=B’⟩).

On a bien M₁ = V₁(⟨x:=B₁⟩) → M’ par (2). En outre, toujours pour cette raison, M₂ = (λx:U₂,V₂)B₂ → (λx:U₂,V’₂)B’, d’où, avec (1), (λx:U₂,V’)B’ → V’(⟨x:=B’⟩) = M’, si bien que M₂ → M’.

c. M = A(⟨x:=B⟩). Il a y trois possibilités.

1°) La substitution de tête n’est pas un réex, ou bien ce réex de tête n’est réduit dans aucune des deux contractions. Ce sous-cas est analogue aux cas b, c et d-1°.

2°) Le réex de tête est réduit dans les deux contractions, et l’on conclut par confluence de la x-réduction.

3°) Le réex de tête n’est réduit que dans une seule des deux contractions, par exemple la première. On discrimine dans ce cas suivant l’axiome de réduction employé dans la contraction du réex de tête. Dans toute la discussion suivante, un ‘ indique que le terme a été obtenu par \(\ra \).

α. (quant) : A = Πy:U,V, M₁ = Πy:U(⟨x:=B⟩).V(⟨x:=B⟩).

On a M₂ = Πy:U, V(⟨x:=B⟩). On pose alors M’ = Πy:U(⟨x:=B⟩).V(⟨x:=B⟩).

β. (abs) : A = λy:U,V, M₁ = λy:U(⟨x:=B⟩).V(⟨x:=B⟩).

Ce sous-cas est analogue au précédent.

γ. (app) : A = UV, M₁ = U(⟨x:=B⟩).V(⟨x:=B⟩).

Il faut encore distinguer deux possibilités :

• si UV n’est pas un réex, ou s’il n’est pas réduit dans la seconde contraction, le cas est analogue aux deux sous-cas précédents ;

• si U = λz:X,Y, M₁ = U(⟨x:=B⟩).V(⟨x:=B⟩) et M₂ = Y(⟨z:=V⟩(⟨x:=B⟩).

M₁ = (λz:X,Y)(⟨x:=B⟩).V(⟨x:=B⟩) →(x:=B) (λz:X(⟨x:=B⟩).Y(⟨x:=B⟩))V(⟨x:=B⟩)

Or, d’après le lemme de composition 1.10, les deux termes Y(⟨x:=B⟩)(⟨z:=V⟩(⟨x:=B⟩)) et M₂ = Y(⟨z:=V⟩(⟨x:=B⟩)) sont x-convertis. En outre, la x-réduction est convergente (cf. les lemmes 1.8 et 1.9). Donc M₁ et M₂ sont x-joignables, donc a fortiori x-joignables, et l’on peut prendre pour M’ leur forme x-normale commune.

δ. (subst) : A = x, M₁ = B. Comme x est x-irréductible, nécessairement M₂ = x(⟨x:=B⟩) avec B → B’. On pose alors M’ = B’.

ζ. (var) : ceci est une instance particulière de (gc).

Dans chaque sous-cas, M’ convient pour fermer le diagramme.

On a donc trouvé une relation ayant la propriété du losange dont la clôture réflexive et transitive coïncide avec celle de la ⦃x⦄-réduction, ce qui implique la confluence de cette dernière. Q.E.D.

En outre, il est clair qu’au contraire de la x-réduction, la ⦃x⦄-réduction n’est pas normalisante, même faiblement. Un contre-exemple possible est Ω = ωω où l’on a ω = (λuφ uu)
avec p une variable. On peut vérifier que si $M \equiv_{\beta x} \Omega$ et $M \xrightarrow{\beta x} M'$, alors $M' \equiv_{\beta x} \Omega$, ce qui, avec le fait que $M \equiv_{\beta x} \Omega$ implique que $M \xrightarrow{\beta x} \Omega$, montre que Ω n'admet aucune réduction finie, et donc que la βx-réduction n'est pas faiblement normalisante, ni, a fortiori, fortement.

Variables libres ou accessibles, et γ-constantes

L'on va ici expliquer pourquoi l'on prend en considération la notion de variable accessible plutôt que libre, et montrer les problèmes qui en découlent, que l'on résout par l'introduction des γ-constantes.

Tout d'abord, on constate que, pour un terme sans substitution explicite, ni γ-constantes, la notion de variable accessible (respectivement inaccessible) correspond exactement à celle de variable libre (respectivement liée), ce qui explique que cette nouvelle distinction ne soit jamais apparue dans le cadre du λ-calcul à substitutions implicites. Par ailleurs, il est évident que, quoique différenciées dans le cas général des termes à substitutions explicites, ces notions sont néanmoins reliées. Ainsi, une variable accessible est-elle nécessairement libre, et, par complémentarité, une variable liée, inaccessible.

Faut-il donc croire que la notion de variable accessible ou inaccessible soit la distinction la plus pertinente, et que la notion de variable libre ou liée n'est qu'un héritage du cas implicite où ces deux notions sont confondues ? Cela n'est pas évident, car deux arguments s'opposent.

D'une part, la notion de variable accessible semble en effet plus pertinente que celle de variable libre dans de nombreux cas : en particulier, d’un point de vue calculatoire ou d’un point de vue de typage, il semble qu’une variable libre non accessible ne présente pas d’intérêt, car une substitution sur cette variable appliquée au terme ne pourra qu’être éliminée sans être jamais effectivement réalisée : dans le terme $M(x:=N)$, si x n’est pas accessible dans M, N ne pourra pas apparaître dans la forme x-normale du terme. En outre, cet argument est conforté par un lemme énonçant que des termes x-convertibles (i.e. représentant le même terme pur – i.e. sans substitutions explicites ; cette notion sera définie infra) ont les mêmes variables accessibles – tandis que la x-conversion peut faire disparaître des variables libres non accessibles.

D’autre part, la notion de variable inaccessible ne semble pas pouvoir complètement supplanter la notion de variable liée. En effet, si l’on ne voulait considérer que des variables inaccessibles, cela signifierait, mutatis mutandis, qu’il faudrait que l’a-conversion identifiât deux expressions où l’on aurait changé une variable inaccessible. Et donc, selon ce principe, il faudrait que, de même que l’on identifie $x(x:=M)$ et $y(y:=M)$, ce qui semble pertinent (les variables ici sont inaccessibles et liées), il faudrait identifier $u(x:=x(y:=M))$ et $u(x:=y(y:=M))$, ce qui ne semble pas pertinent, car cette conversion de nom changerait le comportement opérationnel du terme (ce qui provient du fait que ces variables sont inaccessible mais libres). C’est pourquoi l’on choisit, pour la définition de l’a-conversion, la notion de variable liée plutôt que de variable inaccessible.

Il semble donc qu’il convienne de répartir les variables en trois espèces : les variables accessibles, les variables liées, et les autres variables, qui sont inaccessibles mais libres, et qui pourraient porter le nom de variables dissimulées. Ces dernières variables posent toutefois un problème pour identifier le calcul à un système de réécriture.

En effet, si l’on considère la règle (gc) « traditionnelle », i.e. sans γ-constante, et où l’on remplace la notion de variable libre par celle de variable accessible, i.e. la règle telle qu’elle
est introduite dans [18] :
\[M(x:=N) \rightarrow_{(g)} M \quad \text{si} \ x \notin \text{av}(M), \]
on peut voir que cette règle permet, dans certains cas, la libération de variables liées :
\[u(\langle x:=w \rangle \langle w:=y \rangle) \rightarrow_{(g)} u(\langle x:=w \rangle) \]
Ici, la variable \(w \) est libérée. Cela pose naturellement problème, car cela empêche d’identifier le système ainsi formé (la variante de \(\lambda x \) présenté dans [18]) d’être identifié à un système de réécriture. En outre, cela rend la substitution implicite non compositionnelle, car l’on a d’une part :
\[u(\langle x:=w \rangle \langle w:=y \rangle) \rightarrow u(\langle x:=w \rangle) \]
tandis que
\[(u(\langle x:=w \rangle \langle w:=y \rangle))[w:=t] \rightarrow (u(\langle x:=w \rangle))[w:=t] = u(\langle x:=t \rangle), \]
ce qui est naturellement une source de problèmes.
Toutefois, l’on observe qu’une telle variable se trouve nécessairement en position inaccessible, et, bien mieux, qu’elle ne pourra pas être substituée car pour qu’une substitution s’y applique (et puisse être effectuée au moyen d’une composition), il faudrait que cette substitution capturât la variable libérée, ce qui est interdit du fait de la convention de Barendregt. C’est ainsi que vient l’idée de dire que ces variables apparentemment libérées restent en fait sous contrôle, et, pour matérieliser ce contrôle, on les considère comme des variables liées, ou comme des constantes, et on les représente par une construction \(\gamma_x \) (qui peut être implantée de différentes manières, mais que l’on peut se contenter de considérer comme une constante). Ainsi, l’on obtient que la variable, au lieu d’être libérée comme dans la version naïve de (gc), est rendue insubstituable.
Tout ceci permet ensuite de raisonner sur les termes à substitutions explicites avec la notion de variable accessible, comme on raisonnait sur les termes à substitutions implicites avec celle de variable libre. Pour augmenter la transparence de cette nouvelle construction, on introduit la notation \(\overline{x} \), qui désigne \(x \) ou \(\gamma_x \).
On montrera d’ailleurs infra un lemme indiquant la possibilité dans une certaine mesure d’interchanger variable substituable et variable insubstituable, ce qui justifie en quelque sorte ce raccourci de langage.

On peut vérifier que la solution ainsi apportée pallie le problème de libération de variables – et permet donc bien d’identifier le calcul à un système de réécriture d’ordre supérieur – en montrant le lemme suivant :

Lemme 1.13 : Non-libération de variables
Si \(U \rightarrow^*_{(g)} V \), alors \(\text{fo}(U) \supseteq \text{fo}(V) \).

Démonstration.
Il suffit de montrer que si \(U \rightarrow^*_{(g)} V \) ou \(U \rightarrow^*_{(g)} V \), alors \(\text{fo}(U) \supseteq \text{fo}(V) \), ce que l’on fait par cas :

a. (B) : \((\lambda y : A . M) N \rightarrow_{(g)} M (y := N) \),
\[\text{fo}((\lambda y : A . M) N) = \text{fo}(A) \cup \text{fo}(M) \setminus \{ y \} \cup \text{fo}(N) \supseteq \text{fo}(M) \setminus \{ y \} \cup \text{fo}(N) = \text{fo}(M (y := N)) ; \]
b. (quant) : \((\Pi y : A.B)(x := C) \xrightarrow{\text{\(f_0\)}} \Pi y : A(x := C), B(x := C)\)
\[
f_0((\Pi y : A.B)(x := C)) = (f_0(A) \cup (f_0(B) \setminus \{y\})) \setminus \{x\} \cup f_0(C)
\]
\[
= (f_0(A), [x] \cup f_0(C)) \cup (f_0(B), [y], [x] \cup f_0(C))
\]
\[
= (f_0(A), [x] \cup f_0(C)) \cup (f_0(B), [x] \cup f_0(C)) \setminus \{y\}
\]
\[
f_0(\Pi y : A(x := C), B(x := C)).
\]

c. (abs) : \((\lambda y : A.B)(x := C) \xrightarrow{\text{\(f_0\)}} \lambda y : A(x := C), B(x := C)\)
\[
f_0((\lambda y : A.B)(x := C)) = (f_0(A) \cup (f_0(B) \setminus \{y\})) \setminus \{x\} \cup f_0(C)
\]
\[
= (f_0(A), [x] \cup f_0(C)) \cup (f_0(B), [y], [x] \cup f_0(C))
\]
\[
= (f_0(A), [x] \cup f_0(C)) \cup (f_0(B), [x] \cup f_0(C)) \setminus \{y\}
\]
\[
f_0(\lambda y : A(x := C), B(x := C)).
\]

d. (app) : \((A B)(x := C) \xrightarrow{\text{\(f_0\)}} A(x := C) B(x := C)\)
\[
f_0((A B)(x := C)) = (f_0(A) \cup (f_0(B) \setminus \{y\})) \setminus \{x\} \cup f_0(C)
\]
\[
= (f_0(A), [x] \cup f_0(C)) \cup (f_0(B), [y], [x] \cup f_0(C))
\]
\[
= (f_0(A), [x] \cup f_0(C)) \cup (f_0(B), [x] \cup f_0(C)) \setminus \{y\}
\]
\[
f_0(A(x := C) B(x := C)).
\]

e. (subst) : \(x(x := N) \xrightarrow{\text{\(f_0\)}} N\)
\[
f_0(x(x := N)) = ([x] \setminus \{x\}) \cup f_0(N) = f_0(N).
\]

f. (gc) : \(M(x := N) \xrightarrow{\text{\(f_0\)}} M[x := \gamma, x] \quad \text{si} \ x \notin \text{av}(M)\)
\[
f_0(M(x := N)) = (f_0(M) \setminus [x]) \cup (f_0(N) \supseteq f_0(M)) \setminus [x] = f_0(M[x := \gamma, x]).
\]

g. (var) : \(y(x := N) \xrightarrow{\text{\(f_0\)}} y \quad \text{si} \ y \neq x\)
\[
f_0(y(x := N)) = [y] \cup f_0(N) \supseteq [y] = f_0(y).
\]

Par (1), on indique qu'il s'agit d'une application de la convention de Barendregt. Dans tous les cas, on obtient bien que \(\xrightarrow{\text{\(f_0\)}}\) et \(\xrightarrow{\text{\(\text{\(f_0\)}}\)}\) ne libèrent pas de variables. Il suffit ensuite de passer à la congruence pour étendre cette propriété à \(\xrightarrow{\text{\(f_0\)}}\) (en effet, il est aisé de montrer que si \(f_0(M) \supseteq f_0(N)\), alors pour tout \(C[x]\), \(f_0(C[M]) \supseteq f_0(C[N])\), puis à la clôture réflécive et transitive pour l'étendre à \(\xrightarrow{\text{\(f_0\)}}\) Q.E.D.

Il est intéressant de remarquer ici que les variables accessibles sont déjà introduites par R. Bloo dans [4] sous le nom de « substitutable free variables » (mot à mot, variables libres substituables), et évoquées dans [8], bien que cette notion ne soit ensuite pas exploitée et que les auteurs s'en tiennent à la notion de variable libre. Leur dénomination, toutefois, est spécialement intéressante lorsque l'on considère la discussion qui précède, où l'on indique précisément que les variables n'entrant pas dans cette catégorie sont, précisément, non substituables.

3. Typage

On va ici introduire diverses modifications à la notion de typage dans les systèmes de types purs afin de les adapter au cas des substitutions explicites. La pertinence de ces modifications sera discutée dans la suite.

Définition 1.18: typage dans les systèmes de types purs explicites

Une assertion de typage est un couple noté \(M : N\), dont le sujet \(M\) appartient à \(\Lambda \mathcal{X}\) et le prédicat \(N\), à \(\Lambda \mathcal{X} = \Lambda \mathcal{X} \cup \{f\}\). L'élément additionnel \(f\), appelé pseudo-sortie, est un prédicat spécial
introduit dans le cadre explicite pour des raisons que l’on expliquera plus tard.
Un contexte de typage Γ est une suite finie d’assertions de typage dont les prédicats sont des
termes de Λx (f éclus, donc – on reviendra plus tard sur ce point important) et dont les
sujets sont des variables ou des γ-constant. Son domaine, dénoté dom(Γ) est l’ensemble
des sujets des assertions de typage dont le contexte est constitué ; son support en est la suite
ordonnée, i.e. l’image du contexte par la première projection canonique. Le contexte vide se
note ⟨⟩, la concaténation de contextes est notée par une virgule, et l’on suppose lorsque l’on
emploie cette notation que les deux contextes ainsi concaténés ont des domaines disjoints.
Un jugement de typage est, comme précédemment, une expression de la forme Γ ⊢ xM : N,
où M et N sont respectivement appelés sujet et prédicat du jugement. Le jugement est dit
 valide s’il est obtenu par dérivation à partir des figures d’inference énoncées dans la table 3
ci-dessous. L’indice x sera omis dans les cas où il n’y a pas d’ambiguïté.

\[
\frac{(\sigma, \tau) \in \overline{\mathcal{A}}}{{\sigma : \tau}} \quad \text{(axiome)}
\]

\[
\frac{\Gamma \vdash A : \rho \quad \Gamma, x : A \vdash B : \sigma \quad (\rho, \sigma, \tau) \in \mathcal{R}}{\Gamma \vdash \Pi x : A . B : \tau} \quad \text{(règle)}
\]

\[
\frac{\Gamma \vdash A : \sigma \quad x \notin \text{dom}(\Gamma)}{\Gamma ; x : A \vdash x : A} \quad \text{(hypothèse)}
\]

\[
\frac{\Gamma \vdash A : B \quad \Gamma \vdash C : \sigma \quad x \notin \text{dom}(\Gamma)}{\Gamma ; x : A \vdash x : B} \quad \text{(affaiblissement)}
\]

\[
\frac{\Gamma \vdash (\Pi x : A . B) : \tau \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : A . M) : (\Pi x : A . B)} \quad \text{(introduction de } \Pi \text{)}
\]

\[
\frac{\Gamma \vdash M : (\Pi x : A . B) \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B(x := N)} \quad \text{(élimination de } \Pi \text{)}
\]

\[
\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash N : A}{\Gamma \vdash M(x := N) : B(x := N)} \quad \text{(coupure)}
\]

\[
\frac{\Gamma \vdash M : B \quad \Delta \vdash N : A \quad P(x := N) \rightarrow_{x} M}{\Gamma \vdash P(x := N) : B} \quad \text{(expansion)}
\]

\[
\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : \sigma \quad A \equiv_{\beta} B}{\Gamma \vdash M : B} \quad \text{(conversion)}
\]

Table 3: Figures d’inference valides pour les systèmes de types purs explicites

Il sera nécessaire par la suite de manipuler des contextes. On adopte donc à cet effet la
notation suivante :

Notation :
Si Γ = (\Xi : A)_{i < n} alors :

\text{étant non un ensemble, comme dans les systèmes de types purs implicites}
(i) $\Gamma, \overline{x}_{n+1} : A_{n+1}$ dénote $(\overline{x}_i : A_i)_{1 \leq i \leq n+1}$;

(ii) $\Gamma \setminus \overline{y}$ dénote $(\overline{x}_i : A_i)_{1 \leq i \leq n}$, où $I = \{i \in [1, n] / \overline{x}_i \not\in \overline{y}\}$.

Par ailleurs, on a vu qu’un nouveau prédicat, \int, avait été adjoint. La fonction de ce prédicat sera évoquée longuement par la suite, mais pour pouvoir le manipuler dès à présent et présenter les nouvelles figures de typage, on introduit dès maintenant les notations suivantes :

Notation :

\overline{S} est la réunion disjointe $S \cup \{\int\}$ et \overline{A} est la réunion disjointe $\mathcal{A} \cup \{\overline{\sigma}, \int / \overline{\sigma} \in \overline{S}\}$.

Cette simple notation donne déjà une idée de l’utilité de \int: si l’on songe que les deux ensembles ci-dessus sont destinés à se substituer à ceux qu’ils complètent, on voit que le prédicat \int se comporte comme une sorte et fournit au système de typage un moyen d’identifier une sorte. Cette idée intuitive est relativement juste ; elle sera développée par la suite.

En fait, \int est plutôt un mécanisme d’identification qu’un vrai type, si bien qu’il n’ôte pas son sens à la distinction que l’on peut faire entre sortes typables ou non :

Définition 1.19 : sortes typables/terminales

Soit $\mathcal{I} = (\mathcal{S}, \mathcal{A}, \mathcal{R})$ un système de type pur explicite. Une sorte $\overline{\sigma}$ est dite *terminale* si $\{\overline{\sigma}\} \times \mathcal{S} \cap \mathcal{A} = \emptyset$ (ou encore si $\{\overline{\sigma}\} \times \mathcal{S} \cap \overline{\mathcal{A}} = \{\overline{\sigma}, \int\}$). Dans le cas contraire (*i.e.* si elle apparaît comme sujet dans un axiome dont le prédicat n’est pas \int), elle est dite *typable*.

Outre les petites modifications provoquées par l’adjonction de \int et des γ-constantes (qui sont traitées comme des variables, à l’exception du fait qu’il est impossible de faire des coupures ou des abstractions sur elles), on remarque que les systèmes de types purs explicites présentent essentiellement deux nouvelles figures d’inférence par rapport à leurs équivalents implicites : la coupure et l’expansion.

La figure d’inférence (coupure) est celle classiquement introduite pour typer les termes munis d’une substitution explicite. Elle s’interprète en logique intuitionniste comme une coupure – d’où son nom. En effet, si l’on oublie les sujets, on lit essentiellement une coupure :

$$\frac{\Gamma, A \vdash B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

Cette figure d’inférence correspond à celle nommée (substitution) par R. Bloo dans [5], hormis que les substitutions explicites apparaissent non seulement dans le sujet du jugement mais également dans son prédicat, ce qui n’était pas le cas chez R. Bloo, qui évoquait certaines difficultés liées aux sortes terminales imposant d’utiliser des substitutions implicites dans les prédicats. Ces difficultés sont ici traitées grâce à un mécanisme nécessitant (et justifiant) l’adjonction de \int, et seront présentées plus en détail dans la partie consacrée précisément à ce mécanisme. Cette extension à la partie prédicative de l’usage des substitutions explicites est également visible dans la figure d’élaboration du quantificateur Π. La figure d’inférence de (coupure) est également l’équivalent, avec des noms explicites, de celle appelée (CloΠ_1) par C. Muñoz dans [21]. Une comparaison entre ces diverses figures sera effectuée ci-après.
La seconde figure d’inférence ajoutée par rapport au cas implicite est la figure d’(expansion), qui a un usage double. D’une part, elle est une généralisation partielle de la figure d’inférence de largage – intitulée *drop* en anglais – introduite dans [18]. Cette dernière figure fut originellement introduite pour permettre à l’équivalent pour le calcul λx des types à intersection de caractériser la normalisation forte, comme le fait ce système dans le cas implicite. En effet, en ne prenant pas en compte certains termes appliquant des substitutions explicites sur des variables inaccessibles, le système employant uniquement la coupure pour typer les termes ayant au sommet une substitution ne permettait pas le typering de certains de ces termes toutefois fortement normalisants. Ainsi, cette figure de largage augmente la puissance du système en lui permettant de typer plus de termes.

D’autre part, la figure d’(expansion) généralise plusieurs figures permettant de « remonter » des substitutions explicites.

Une discussion plus précise des fonctions de cette figure d’inférence sera effectuée ultérieurement dans un paragraphe consacré à l’étude d’(expansion), où l’on donnera un exemple d’utilisation de cette figure.

Dans toute la suite, on s’efforcera de respecter les conventions d’écriture suivantes : les lettres latines minuscules désignent des variables ; les lettres latines majuscules, des termes ; les lettres grecques minuscules, des sortes (ou, lorsqu’elles sont surmontées d’une barre, une sorte ou le prédicat pseudo-sorte) ; les lettres grecques majuscules, des contextes de typering.

En outre, lorsqu’on donnera des arbres d’inférence, les noms des figures employées pourront être abrégées comme suit : (axiome) – (A) ; (règle) – (R) ; (hypothèse) – (hyp) ; (affaiblissement) – (W) ; (introduction de Π) – (Π-I) ; (élimination de Π) – (Π-E) ; (coupure) – (c) ; (expansion) – (x) ; (conversion) – (≡) ;

Afin de permettre certaines démonstrations par induction, on aura besoin de considérer une notion de complexité d’une dérivation, que l’on va définir.

Tout d’abord, on introduit la notation suivante :

Notation :

La racine d’un arbre de dérivation sera étiquetée $[k]$ pour indiquer que sa complexité est d’au plus k.

La complexité se détermine ensuite inductivement grâce à la table 4 *infra*, où $\Xi \vdash X : Y (\langle k \rangle)$ indique que le jugement $\Xi \vdash X : Y$ se dérive avec une complexité de k.

Pour les axiomes, on adopte la convention suivante :

Convention :

$\vdash \sigma : \tau (\langle \ell \rangle)$ et $\vdash \overline{\sigma} : \int (\langle \ell \rangle)$. On remarque en outre que si $\Gamma \vdash A : B \langle 0 \rangle$, alors $\Gamma = [\]$, $A \in \overline{S}$ et $B = \int$ (ce résultat se montre par induction directe).

Par ailleurs, on voit bien que la complexité n’augmente pas nécessairement strictement entre les prémisses et la conclusion d’une même figure, c’est pourquoi il sera également nécessaire, pour certaines démonstrations par induction, de considérer l’ordre suivant sur les dérivations :

Notation :

Si $\Gamma_1 \vdash X_1 : Y_1 [k_1]$ et $\Gamma_2 \vdash X_2 : Y_2 [k_2]$ sont des jugements de type valides, on note $\Gamma_1 \vdash X_1 : Y_1 [k_1] < \Gamma_2 \vdash X_2 : Y_2 [k_2]$ si $k_1 < k_2$ ou si $k_1 = k_2$ et $\Gamma_1 \vdash X_1 : Y_1 [k_1]$ est un sous-arbre de $\Gamma_2 \vdash X_2 : Y_2 [k_2]$.
\[(\overline{\sigma}, \overline{\tau}) \in \overline{A} \]

\[\vdash \overline{\sigma} : \overline{\tau} \quad (\text{axiome}) \]

\[\Gamma \vdash A : \rho \quad (i) \quad \Gamma, x : A \vdash B : \sigma \quad (i, j) \]

\[\Gamma, \overline{\tau} : \Gamma \vdash \Pi x : A, B : \tau \quad (i + j) \]

\[\Gamma, x : A \vdash \sigma \quad (i) \]

\[\overline{\tau} \notin \text{dom}(\Gamma) \]

\[\Gamma, \overline{\tau} : \Gamma \vdash A, x : A, \overline{\tau} : A \quad (\text{hypothèse}) \]

\[\Gamma \vdash A : B \quad (i) \quad \Gamma \vdash C : \sigma \quad (i, j) \quad \overline{\tau} \notin \text{dom}(\Gamma) \]

\[\Gamma, \overline{\tau} : \Gamma \vdash C, A : B \quad (i + j) \]

\[\Gamma \vdash (\Pi x : A, B) : \tau \quad (i) \quad \Gamma, x : A \vdash M : B \quad (i, j) \]

\[\Gamma \vdash (\lambda x : A, M) : (\Pi x : A, B) \quad (i + \max(i, j)) \quad \text{(introduction de } \Gamma) \]

\[\Gamma \vdash M : (\Pi x : A, B) \quad (i) \quad \Gamma \vdash N : A \quad (i, j) \]

\[\Gamma \vdash M \cdot N : B(x := N) \quad (i + j + 2) \quad \text{(élimination de } \Gamma) \]

\[\Gamma, x : A \vdash M : B \quad (i) \quad \Gamma \vdash N : A \quad (i, j) \]

\[\Gamma \vdash M \cdot N : B(x := N) \quad (i + j + 1) \quad \text{(coupure)} \]

\[\Gamma \vdash M : B \quad (i) \quad \Delta \vdash N : A \quad (i, j) \quad \Gamma \vdash P(x := N) \rightarrow \chi \quad M \]

\[\Gamma \vdash \Gamma \vdash P(x := N) : B \quad (\max(i, j)) \quad \text{(expansion)} \]

\[\Gamma \vdash M : A \quad (i) \quad \Gamma \vdash B : \sigma \quad (i, j) \quad A \equiv_{\beta x} B \]

\[\Gamma \vdash M : B \quad (\max(i, j + 1)) \quad \text{(conversion)} \]

Table 4: Complexité des dérivation

Il est visible que cet ordre, que l'on nommera *ordre de complexité*, est bien fondé et se prête donc au raisonnement par induction.

On peut noter que les prémises d'un jugement lui sont toujours inférieures pour cet ordre, ce qui permet, dans le cadre d'un raisonnement par induction, de leur appliquer l'hypothèse d'induction.

Cet ordre sera l'ordre sous-jacent aux raisonnements par induction pour lesquels on indiquera que l'on raisonne par induction sur la complexité des dérivation.

On va maintenant donner quelques définitions et lemmes fondamentaux sur le typage, concernant respectivement les dépendances de variables et les contextes de typage.

Dépendance de variables Les dépendances entre variables revêtent une importance particulière requérant une attention spéciale. En effet, le fait que les variables assignées dans le contexte puissent intervenir dans les prédicats suivants (ce qui d'ailleurs impose l'ordonnancement des contextes) impose certaines contraintes pour la vérification de la correction des types employés.

Les dépendances en question sont décrites par le lemme suivant:
Lemme 1.14 : Dépendances dans les systèmes de types purs explicites
Soit $\Xi = u_1 : V_1, \ldots, u_n : V_n$ un contexte de typage et X, Y deux termes tels que le jugement $\Xi \vdash X : Y$ soit valide. Alors :

(i) $\alpha\nu(X) \cup \alpha\nu(Y) \subseteq \text{dom}(\Xi)$;

(ii) $\forall i \in \llbracket 1, n \rrbracket \ (\alpha\nu(V_i) \subseteq \{u_j / 1 \leq j < i\})$.

Démonstration.
L'on procède par induction structurelle sur l'arbre de dérivation du jugement $\Xi \vdash X : Y$ en discriminant selon la dernière figure d'inférence employée :

a. (axiome) : $\frac{(\tau, \tau) \in A}{\Gamma \vdash \sigma : \tau}$

(i) Ce point est trivial car $\alpha\nu(X) \cup \alpha\nu(Y) = \emptyset = \text{dom}(\Xi)$.

(ii) Ce point est également trivial car Ξ est vide.

b. (règle) : $\frac{\Gamma \vdash A : \rho \quad \Gamma, x : A \vdash B : \sigma \quad (\rho, \sigma, \tau) \in R}{\Gamma \vdash \Pi x : A : B : \tau}$

(i) $\alpha\nu(X) \cup \alpha\nu(Y) = \alpha\nu(\Pi x : A : B) \cup \alpha\nu(\tau) = \alpha\nu(A) \cup (\alpha\nu(B) \setminus \{x\})$. Or l'application de l'hypothèse d'induction (i) aux deux prémises donne respectivement que $\alpha\nu(A) \subseteq \text{dom}(\Gamma)$ et $\alpha\nu(B) \subseteq \text{dom}(\Gamma) \cup \{x\}$, ce qui implique $\alpha\nu(B) \setminus \{x\} \subseteq \text{dom}(\Gamma)$. Et donc $\alpha\nu(A) \cup (\alpha\nu(B) \setminus \{x\}) \subseteq \text{dom}(\Gamma)$.

(ii) Ce point résulte directement de l'application de l'hypothèse d'induction (ii) à la prémisse $\Gamma \vdash A : \rho$.

c. (hypothèse) : $\frac{\Gamma \vdash A : \sigma \quad \overline{x} \notin \text{dom}(\Gamma)}{\Gamma, \overline{x} : A \vdash \overline{x} : A}$

(i) L'application de l'hypothèse d'induction (i) donne $\alpha\nu(A) \subseteq \text{dom}(\Gamma)$, et donc $\alpha\nu(A) \cup \alpha\nu(x) = \alpha\nu(A) \cup \{x\} \subseteq \text{dom}(\Gamma) \cup \{x\} = \text{dom}(\Gamma, x : A)$.

(ii) soit u_i une variable de $\Xi = \Gamma, x : A$. Il y a deux possibilités.

1°) $u_i \in \text{dom}(\Gamma)$, auquel cas la propriété découle directement de l'application de l'hypothèse d'induction (ii) à la prémisse $\Gamma \vdash A : \sigma$.

2°) $u_i = x$, auquel cas $V_i = A$; or par l'hypothèse d'induction (i) appliquée à $\Gamma \vdash A : \sigma$, l'on obtient que $\alpha\nu(A) \subseteq \text{dom}(\Gamma) = \{u_j / 1 \leq j < i\}$.

d. (affaiblissement) : $\frac{\Gamma \vdash A : B \quad \Gamma \vdash C : \sigma \quad \overline{x} \notin \text{dom}(\Gamma)}{\Gamma, \overline{x} : C \vdash \overline{x} : A : B}$

(i) L'application de l'hypothèse d'induction (i) à la prémisse $\Gamma \vdash A : B$ donne $\alpha\nu(A) \cup \alpha\nu(B) \subseteq \text{dom}(\Gamma)$, ce qui implique le résultat désiré car $\text{dom}(\Xi) = \text{dom}(\Gamma, x : C) \supseteq \text{dom}(\Gamma)$.
(ii) Le raisonnement est analogue à celui du cas précédent.

e. (introduction de Π) :

$$
\frac{\Gamma \vdash (\Pi x; A; B) : \tau \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : A; M) : (\Pi x; A; B)}
$$

(i) $\alpha(\lambda x; A; M) \cup \alpha(\Pi x; A; B) = \alpha(A) \cup ((\alpha(B) \cup \alpha(M)) \setminus \{x\})$. Si l'on applique à la prémisse $\Gamma, x : A \vdash M : B$ l'hypothèse d'induction, d'une part i. donne $\alpha(B) \cup \alpha(M) \subseteq \text{dom}(\Gamma) \cup \{x\}$ d'où $(\alpha(B) \cup \alpha(M)) \setminus \{x\} \subseteq \text{dom}(\Gamma)$ et d'autre part ii. donne en particulier $\alpha(A) \subseteq \text{dom}(\Gamma)$. De tout ceci, l'on tire bien que $\alpha(\lambda x; A; M) \cup \alpha(\Pi x; A; B) \subseteq \text{dom}(\Gamma)$.

(ii) Ce point résulte directement de l'application de l'hypothèse d'induction (ii) à la prémisse $\Gamma \vdash \Pi x; A; B : \tau$.

f. (élimination de Π) :

$$
\frac{\Gamma \vdash M : (\Pi x; A; B) \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B(x \equiv N)}
$$

(i) $\alpha(MN) \cup \alpha(B(x \equiv N)) = \alpha(M) \cup \alpha(N) \cup (\alpha(B) \setminus \{x\})$. Si l'on applique l'hypothèse d'induction (i) aux deux prémises, on obtient respectivement que $\alpha(M) \cup \alpha(A) \cup (\alpha(B) \setminus \{x\}) \subseteq \text{dom}(\Gamma)$ et $\alpha(N) \cup \alpha(A) \subseteq \text{dom}(\Gamma)$. De tout ceci, l'on déduit que $\alpha(M) \cup \alpha(N) \cup (\alpha(B) \setminus \{x\}) \subseteq \text{dom}(\Gamma)$.

(ii) Ce point résulte directement de l'application de l'hypothèse d'induction (ii) à une quelconque des deux prémises.

g. (coupure) :

$$
\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash N : A}{\Gamma \vdash M(x \equiv N) : B(x \equiv N)}
$$

(i) $\alpha(M(x \equiv N)) \cup \alpha(B(x \equiv N)) \subseteq \alpha(N) \cup ((\alpha(M) \cup \alpha(B)) \setminus \{x\})$. Si l'on applique l'hypothèse d'induction (i) aux deux prémises, on obtient respectivement que $\alpha(M) \cup \alpha(B) \subseteq \text{dom}(\Gamma) \cup \{x\}$ et $\alpha(N) \cup \alpha(A) \subseteq \text{dom}(\Gamma)$. De tout ceci, l'on déduit que $\alpha(N) \cup ((\alpha(M) \cup \alpha(B)) \setminus \{x\}) \subseteq \text{dom}(\Gamma)$.

(ii) Ce point résulte directement de l'application de l'hypothèse d'induction (ii) à une quelconque des deux prémises.

h. (expansion) :

$$
\frac{\Gamma \vdash M : B \quad \Delta \vdash N : A \quad P(x \equiv N) \rightarrow \chi M}{\Gamma \vdash P(x \equiv N) : B}
$$

Ce point résulte directement de l'application de l'hypothèse d'induction à la prémisse $\Gamma \vdash M : B$ (en effet, d'après le lemme 1.7, les sujets de la prémisse et de la conclusion, étant x-joignables, ont les mêmes variables accessibles).

i. (conversion) :

$$
\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : \sigma \quad A \equiv_{\beta x} B}{\Gamma \vdash M : B}
$$

(i) En appliquant l'hypothèse d'induction (i) aux deux prémises, l'on obtient respectivement que $\alpha(M) \subseteq \text{dom}(\Gamma)$ et que $\alpha(B) \subseteq \text{dom}(\Gamma)$, ce qui démontre ce point.
(ii) Ce point résulte directement de l’application de l’hypothèse d’induction (ii) à la prémisse
\[\Gamma \vdash M : A. \] Q.E.D.

Par ailleurs, comme on le disait supra, il est possible, dans une certaine mesure, d’interchanger une variable substituable et une variable insubstituable :

Lemme 1.15 : Insubstitution de variable
Les assertions suivantes sont satisfaites :

1. si \(\exists \vdash X : Y [\alpha] \) et \(u \not\in \text{dom} \Gamma \), alors \(\exists[u:=\gamma_u] \vdash X[u:=\gamma_u] : Y[u:=\gamma_u][\alpha] \);

2. si \(\Theta, u : V, \sum \vdash X : Y [\alpha] \), alors \(\Theta, \gamma_u : V, \sum[u:=\gamma_u] \vdash X[u:=\gamma_u] : Y[u:=\gamma_u][\alpha] \).

et, réciproquement :

(iii) si \(\exists \vdash X : Y [\alpha] \) et \(\gamma_u \not\in \text{dom} \Gamma \), alors \(\exists[u:=\gamma_u] \vdash X[\gamma_u:=u] : Y[\gamma_u:=u][\alpha] \);

(iv) si \(\Theta, \gamma_u : V, \sum \vdash X : Y [\alpha] \), alors \(\Theta, u : V, \sum[\gamma_u:=u] \vdash X[\gamma_u:=u] : Y[\gamma_u:=u][\alpha] \).

Démonstration.
L’on procède par induction structurelle sur l’arbre de dérivation du jugement de typage, en discriminant selon la dernière figure employée. Pour chaque cas, on ne traite que les points (i) et (ii), sachant que (iii) et (iv) en sont les exacts analogues.

a. (axiome) : \((\bar{\sigma}, \bar{\tau}) \in A \)
\[\vdash \bar{\sigma} : \bar{\tau}[\alpha][\beta] \]
Ce cas est trivial pour les deux points.

b. (règle) : \(\Gamma \vdash A : \rho[\alpha] \quad \Gamma, x : A \vdash B : \sigma[\beta] \) \(\rho, \sigma, \tau \in R \)
\[\Gamma \vdash \Pi x : A.B : \tau[\alpha][\beta][i+j+1] \]
En vertu de la convention de Barendregt, on peut supposer que \(u \neq x \).

(i) Par hypothèse d’induction (i) appliquée aux prémises, \(\Gamma[u:=\gamma_u] \vdash A[u:=\gamma_u] : \rho[u:=\gamma_u][\alpha] \) et \(\Gamma[u:=\gamma_u], x : A[u:=\gamma_u] + B[u:=\gamma_u] : \sigma[u:=\gamma_u][\beta] \) si bien que par une figure de (règle), on obtient \(\Gamma[u:=\gamma_u] + (\Pi x : A.B)[u:=\gamma_u] \vdash \tau[u:=\gamma_u][i+j+1] \) par une figure de (règle).

(ii) Par hypothèse d’induction (ii), d’une part \(\Theta, \gamma_u : V, \sum[u:=\gamma_u] \vdash A[u:=\gamma_u] : \rho[u:=\gamma_u][\alpha] \) et d’autre part \(\Theta, \gamma_u : V, \sum[u:=\gamma_u], x : A[u:=\gamma_u] + B[u:=\gamma_u] : \sigma[u:=\gamma_u][\beta] \) si bien que l’on obtient \(\Theta, \gamma_u : V, \sum[u:=\gamma_u] + (\Pi x : A.B)[u:=\gamma_u] : \tau[u:=\gamma_u][i+j+1] \) par une figure de (règle).

c. (hypothèse) : \(\Gamma \vdash A : \sigma[\alpha] \quad x \not\in \text{dom} (\Gamma) \)
\[\Gamma, x : A \vdash x : A[\beta][\gamma] \]

(i) Par hypothèse d’induction (i), \(\Gamma[u:=\gamma_u] \vdash A[u:=\gamma_u] : \sigma[u:=\gamma_u][\alpha] \) et donc \(\Gamma[u:=\gamma_u], x : A[u:=\gamma_u] + x[u:=\gamma_u] : A[u:=\gamma_u][\alpha] \) par une figure d’hypothèse.

(ii) Deux cas se présentent :
Si \(u \neq x \), la conclusion se réécrit \(\Gamma, \gamma_u : A \vdash \gamma_u : A[\alpha] \), ce qui est évident.
Sinon, \(\Theta, \gamma_u : V, \sum[u:=\gamma_u] \vdash A[u:=\gamma_u] \vdash \sigma[u:=\gamma_u][\alpha] \) par hypothèse d’induction (ii), et donc, par une figure d’hypothèse, on obtient alors que \(\Theta, \gamma_u : V, \sum[u:=\gamma_u], x : A[u:=\gamma_u] + x[u:=\gamma_u] : A[u:=\gamma_u][\alpha] \).
d. (affaiblissement) :
\[\Gamma \vdash A \colon B \ 0 \quad \Gamma \vdash C \colon \sigma \ \ |
\quad x \notin \text{dom}(\Gamma) \\
\quad \Gamma, \ x : C \vdash A : B \ [\max(i, j + 1)] \\
\text{Ce cas est analogue au précédent.}
\]

e. (introduction de } \Pi \text{) :
\[\Gamma \vdash (\Pi x : A. B) : \tau \ |
\quad \Gamma, \ x : A \vdash M : B \ |
\quad \Gamma \vdash (\lambda x : A. M) : (\Pi x : A. B) \ [1 + \max(i, j)] \\
\text{Ce cas est analogue au cas } b.
\]

f. (élimination de } \Pi \text{) :
\[\Gamma \vdash M : (\Pi x : A. B) \ |
\quad \Gamma \vdash N : A \ |
\quad \Gamma \vdash MN : B \langle x := N \rangle \ [1 + \max(i, j)] \\
\text{Ce cas est analogue au cas } b.
\]

g. (couper) :
\[\Gamma, x : A \vdash M : B \ |
\quad \Gamma \vdash N : A \ |
\quad \Gamma \vdash M \langle x := N \rangle : B \langle x := N \rangle \ [1 + \max(i, j)] \\
\text{Ce cas est analogue au cas } b.
\]

h. (expansion) :
\[\Gamma \vdash M : B \ |
\quad \Delta \vdash N : A \ |
\quad P \langle x := N \rangle \rightarrow_{\beta} M \\
\quad \Gamma \vdash P \langle x := N \rangle : B \ [1 + \max(i, j)] \\
\text{En vertu de la convention de Barendregt, on peut supposer que } u \neq x, \text{ et le renommage d'une variable (libre) autre que } x \text{ n'influence pas sur le fait que } P \langle x := N \rangle \rightarrow_{\beta} M, \text{ donc ce cas est analogue au cas } b.
\]

i. (conversion) :
\[\Gamma \vdash M : A \ |
\quad \Gamma \vdash B : a \ |
\quad A \equiv_{\beta x} B \\
\quad \Gamma \vdash M : B \ [\max(i, j + 1)]
\]

(i) Par hypothèse d'induction, \(\Gamma[u := \gamma_u] \vdash M[u := \gamma_u] : A[u := \gamma_u] \ |
\quad \text{d'une part et d'autre part} \\
\quad \Gamma[u := \gamma_u] \vdash B[u := \gamma_u] : \sigma[u := \gamma_u] \ |
\quad \text{et l'on obtient alors, par une figure de (conversion),} \\
\quad \Gamma[u := \gamma_u] \vdash M[u := \gamma_u] : B[u := \gamma_u] \ [\max(i, j + 1)].
\]

(ii) Par hypothèse d'induction, \(\Theta, \gamma'_u : V, \Sigma[u := \gamma_u] \vdash M[u := \gamma_u] : A[u := \gamma_u] \ |
\quad \text{d'une part et} \\
\quad \Theta, \gamma'_u : V, \Sigma[u := \gamma_u] \vdash B[u := \gamma_u] : \sigma[u := \gamma_u] \ |
\quad \text{d'autre part; et l'on obtient alors, par une figure de (conversion).} \Theta, \gamma'_u : V, \Sigma[u := \gamma_u] \vdash M[u := \gamma_u] : B[u := \gamma_u] \ [\max(i, j + 1)]. \quad \text{Q.E.D.}

Contextes de typage Certaines manipulations des contextes de typages sont nécessaires à la démonstration de divers résultats, ce pourquoi on introduit les notions suivantes.

On pose tout d’abord la définition suivante, qui permet de parler des différentes formes d’inclusion possibles entre contextes de typage :

Définition 1.20 : relations entre contextes
Soient \(\Gamma = (\epsilon_i)_{i \in \mathbb{N}} \) et \(\Delta = (f_j)_{j \in \mathbb{N}} \) deux contextes de typage :

- On dit que \(\Gamma \) est une restriction de \(\Delta \), et \(\Delta \) une extension de \(\Gamma \), ce que l’on note \(\Gamma \subseteq \Delta \), si \(\Gamma \) est une sous-suite de \(\Delta \), i.e. il existe une application strictement croissante \(\varphi : \{1, m\} \rightarrow \{1, n\} \) telle que pour tout \(i \) de \(\{1, m\} \), \(e_i = f_{\varphi(i)} \);

- On dit que \(\Gamma \) est un préfixe de \(\Delta \), et \(\Delta \) une prolongation de \(\Gamma \), ce que l’on note \(\Gamma \subseteq \Delta \), si \(m \leq n \) et pour tout \(i \) de \(\{1, m\} \), \(e_i = f_i \).
Enfin, du fait des rapports de dépendance existant entre les différentes variables d’un contexte, il est nécessaire de définir le critère suivant :

Définition 1.21 : contexte bien formé

Soit $\Gamma = (\overline{x}_1 : A_1, \ldots, \overline{x}_n : A_n)$ un contexte de typage.

Γ est dit bien formé, ce que l’on note $\Gamma \vdash \emptyset$, si pour tout i de $[1, n]$, il existe σ_i dans S tel que :

$$(\overline{x}_1 : A_1, \ldots, \overline{x}_{i-1} : A_{i-1}) \vdash A_i : \sigma_i.$$

Par ailleurs, on note $\Gamma \vdash \emptyset$ si $k = \sum_{i=1}^{n} k_i$ avec k_i tel que, pour tout i de $[1, n]$, il existe σ_i dans S tel que :

$$(\overline{x}_1 : A_1, \ldots, \overline{x}_{i-1} : A_{i-1}) \vdash A_i : \sigma_i [k_i].$$

On adopte naturellement pour le contexte vide la convention que $(\emptyset) \vdash \emptyset$.

Par exemple, soient σ et τ deux sortes telles que σ soit typable, τ soit terminale et (σ, σ, σ) soit une règle (e.g., dans le λ-cube, $\sigma = *$ et $\tau = \Box$).

Les contextes suivants sont alors bien formés :

- le contexte vide (\emptyset) ;

- $(a : \sigma, b : \sigma, x : a)$;

- $(a : \sigma, b : \sigma, x : a, y : b, z : a)$;

- $(a : \sigma, b : \sigma, x : a, f : \Pi y a \sigma)$;

- tandis que $(a : \tau, \ldots)$ n’est pas bien formé.

Par ailleurs, le contexte $(a : \sigma, h : \Pi u a \sigma)$ sera bien formé si, et seulement s’il existe un axiome de la forme $\sigma : \xi$ et une règle de la forme (σ, ξ, ν). Pour rester dans l’exemple des systèmes du λ-cube, ce serait le cas dans le calcul des constructions mais pas dans les types simples.

Remarque :

Tout préfixe d’un contexte de typage bien formé est bien formé.

Notation :

Si Γ est un contexte bien formé et $\Delta = (\overline{x}_1 : A_1, \ldots, \overline{x}_n : A_n)$ est un contexte quelconque, on notera $(\Gamma \Delta) \vdash \emptyset$ pour indiquer que pour tout i de $[1, n]$, il existe σ_i dans S tel que :

$$(\Gamma, \overline{x}_1 : A_1, \ldots, \overline{x}_{i-1} : A_{i-1}) \vdash A_i : \sigma_i [k_i].$$

On vérifie bien que, si $\Gamma \vdash \emptyset$ et $(\Gamma \Delta) \vdash \emptyset$, alors $\Gamma, \Delta \vdash \emptyset$.

On peut s’assurer que tous les contextes intervenant dans la dérivation d’un jugement valide sont bien formés, comme l’énonce la propriété suivante :

Proposition 1.16 : Bonne formation

Soit Ξ un contexte de typage tel qu’il existe deux termes X, Y tels que le jugement $\Xi \vdash X : Y$ soit valide. Alors Ξ est bien formé.

En outre, si k est un entier naturel tel que $\Xi \vdash X : Y [k]$, alors $\Xi \vdash \emptyset$.

Démonstration.

L’on va démontrer que $\Xi \vdash X : Y [k]$ implique $\Xi \vdash \emptyset$ en procédant par induction structurelle sur l’arbre de dérivation du jugement $\Xi \vdash X : Y$ en discriminant selon la dernière figure d’inférence employée.

- a. (axiome) : le contexte étant vide, sa bonne formation est trivialement satisfaite. En outre, on vérifie bien la condition sur les complexités.

- b. (hypothèse) : $\frac{\Gamma \vdash A : \sigma \ [1]}{\frac{\Gamma, x : A, \overline{x} : A [2]}{\Gamma, x : \overline{x} : A [2]}}$

Par hypothèse d’induction, $\Gamma \vdash \emptyset$. En outre, la dernière vérification est donnée par la prémisse
\(\Gamma \vdash A : \sigma \mid i \). On obtient donc par défnition de la bonne formation que \(\Gamma, \overline{x} : A \vdash [i+1], \) ce qui est précisément la conclusion à laquelle on souhaite aboutir (car \(k = 2i \)).

c. \(\text{affaiblissement) : } \frac{\Gamma \vdash A : B \mid i}{\Gamma, x : C \vdash A : B \mid [i+1]} \)

Par hypothèse d'induction, \(\Gamma \vdash i \). En outre, la dernière vérification est donnée par la seconde prémisse \(\Gamma \vdash C : \sigma \mid [i] \). On obtient donc par défnition de la bonne formation que \(\Gamma, \overline{x} : C \vdash [i+1] \) ce qui est précisément la conclusion à laquelle on souhaite aboutir (car \(k = i + j \)).

d. toutes les autres figures sont de la forme :

\[
\begin{array}{c}
\vdash U : V \mid [i] \\
\vdash X : Y \mid [k]
\end{array}
\]

avec \(i \leq k \), et il suffit d'appliquer l'hypothèse d'induction à la prémisse ici isolée pour conclure que \(\Xi \vdash [i] \), donc à fortiori \(\Xi \vdash [k] \).

On vérifie donc bien dans tous les cas la bonne formation du contexte avec la condition requise pour la complexité de cette vérification. \(\text{Q.E.D.} \)

Par ailleurs, pour manipuler par la suite les contextes, on aura usage de la notation suivante :

\text{Notation :}

Soient \(\Gamma = (\overline{x}_i : A_i)_{i \in \mathbb{N}} \) et \(\Delta = (\overline{x}_j : B_j)_{j \in \mathbb{N}} \) deux contextes de même support.

\(i \) Soit \(\Gamma \rightarrow_{R} \Delta \) une relation de réduction sur \(\Lambda \overline{x} \). On écrit \(\Gamma \rightarrow_{R} \Delta \) si pour tout contexte polyadique \(C[I, C[A_1, \ldots, A_n]] \rightarrow_{R} C[B_1, \ldots, B_n] \).

\(ii \) Soit \(\equiv_{R} \) une relation d'équivalence \(\Lambda \overline{x} \). On écrit \(\Gamma \equiv_{R} \Delta \) si pour tout \(i \) de \([1, n] \), \(A_i \equiv_{R} B_i \). On peut noter que la relation obtenue de cette façon est une relation d'équivalence sur l'ensemble des contextes de même support.

Il convient de prendre garde à ces manipulations, car elles ne préservent pas nécessairement la bonne formation des contextes. Par exemple, on démontrera que la \(\text{\textit{\textbf{f}\textit{x}}-\textit{\textbf{r}}\textit{éd\textit{\textbf{u}}\textit{d\textit{\textbf{n}}}}} \) ne préservent pas la bonne formation du contexte, mais pas la \(\text{\textit{\textbf{f}\textit{x}}-\textit{\textbf{e}}\textit{xp\textit{ansion}} : \textit{\textbf{e}}\textit{ff\textit{e}}\textit{ct} \), \(z : * \) est bien formé, et \((\lambda x : * . *) y \rightarrow_{R}^{B+}, \) mais \(z : (\lambda x : * . *) y \) n'est pas bien formé (cf. lemme 1.14).

\text{Remarque :}

Pour la \(\text{\textit{\textbf{f}\textit{x}}-\textit{\textbf{r}}\textit{éd\textit{\textbf{u}}\textit{d\textit{\textbf{n}}}}} \), la défnition \(i \) équivaut à dire qu'il existe \(i \) de \([1, n] \) tel que \(A_i \rightarrow_{R} B_i \) et pour tout \(j \) de \([1, n] \setminus \{i\} \), \(A_j = B_j \).

II. \textbf{Particularités remarquables}

1. \textbf{La figure d'inférence d'expansion}

L'introduction de cette figure d'inférence :

\[
\begin{array}{c}
\Gamma \vdash M : B \quad \Delta \vdash N : A \quad P(x := N) \rightarrow_{A} M \\
\end{array}
\]

répond à différents problèmes liés aux substitutions explicites.
D'une part, et c'est là la principale motivation à cette introduction, elle permet de résoudre le problème d'interversion d'hypothèses exposé infra. On suppose que l'on a ici typé le terme \((\lambda x: A.B) (y := C)\) dans un contexte \(\Gamma\) de façon naturelle en partant d'un typage de \(B\) dans un contexte \(\Gamma, y : D, x : A\) au moyen de l'application successive d'une coupure et d'une introduction de \(\Pi\). Si l'on souhaite ensuite, dans une optique de réduction du sujet par exemple, typer dans ce même contexte le même terme où la substitution a été propagée \(\lambda x: A(y := C).B(y := C)\), il est alors nécessaire d'intervenir l'ordre dans lequel les deux hypothèses \(y : D\) et \(x : A\) sont éliminées : il faut tout d'abord effectuer la coupure, ce qui correspond à l'hypothèse \(y\), puis effectuer une \(\lambda\)-abstraction, ce qui correspond à l'hypothèse \(x\). Mais le problème dans les systèmes de types purs est que les contextes sont des listes ordonnées, et non de simples ensembles, ce qui est justifié par la possibilité que dans \(A\) occurre librement \(y\), ce qui implique d'avoir préalablement à la déclaration de \(A\) comme type pour \(x\) une déclaration de type portant sur \(y\) afin de s'assurer de la correction des types et de la bonne formation du contexte, indispensable à la validité des dérivation. Il n'est donc ici pas possible d'intervenir tout bonnement l'ordre de ces deux hypothèses à l'intérieur du contexte, comme on le ferait dans d'autres systèmes de types.

Dans le cas des substitutions implicites, ce problème est résolu à l'aide d'un lemme de substitution, lequel établit que si \(\Gamma, y : D, \Delta \vdash M : N\) et \(\Gamma \vdash C : D\), alors \(\Gamma, [\Delta[y := C] \vdash M[y := C] : N[y := C]\). Ce procédé permet donc d'utiliser prématurément une hypothèse vouée à servir de pivot à une coupure, en répercutant sur les hypothèses ultérieures et sur le jugement en cours les effets de la coupure en question sous la forme d'une substitution. On résout ainsi le problème d'interversion.

Cependant, lorsqu'il on se replace dans le cadre des substitutions explicites, on se heurte à l'impossibilité de transposer directement ce lemme : en effet, si, dans l'énoncé supra, \(M\) est par exemple une abstraction \(\lambda x: P.Q\), le terme auquel on souhaite aboutir pour transposer la conclusion du lemme, \((\lambda x: P.Q)(y := C)\), et le terme produit par le raisonnement inductif, \(\lambda x: P(y := C).Q(y := C)\), ne sont pas, comme leurs pendans l'étaient dans le cas des substitutions implicites, syntaxiquement égaux, mais simplement convertibles mutuellement en un pas de \(\alpha\)-réduction.

Afin que la réduction du sujet soit satisfaite dans les systèmes de types purs explicites, il faut permettre d'une manière ou d'une autre l'égalité de traitement de ces termes, en prévoyant un procédé permettant de faire « remonter » les substitutions - car le traitement inductif des jugements au moyen d'un lemme similaire au lemme de substitution ne pourra que les faire « descendre » dans le terme. La figure d'expansion résout ce problème.

D'autre part, on se rend compte qu'en étendant la figure d'inférence présentée supra au dernier axiome de propagation, i.e. \(\text{var}\) ou \(\text{gc}\) suivant ce que l'on considère, cette figure inclut la notion de largage, introduite dans [18] dans le cadre d'une extension au calcul à substitutions explicites \(\lambda x\) du système \(D\) des types à intersection :

\[
\frac{\Gamma \vdash M : B \quad \Delta \vdash N : A \quad x \notin \text{av}(M)}{\Gamma \vdash M(x:=N) : B} \quad \text{(largage)}.
\]

Cette figure d'inférence permet de typer plus de termes, ce qui explique son introduction dans le cadre du système \(D\).

On constate par ailleurs que la relation de propagation ici présentée est légèrement plus forte que la propagation suggérée par les considérations exposées supra. Cette extension,
motivée à l’origine par des considérations techniques, s’avère avoir du sens, comme on le verra un peu plus loin en abordant cette figure du point de vue de la synthèse de type.

Comme on le disait supra en évoquant le problème de l’intervention des hypothèses, un cas typique posant ce problème est celui de la réduction du sujet. En effet, l’on verra ultérieurement que la figure d’inférence d’expansion confère au système la propriété de réduction du sujet, laquelle propriété n’est pas automatique dans le cas des systèmes à substitutions explicites. En particulier, dans les systèmes introduits par R. Bloo dans [5], cette propriété n’est pas vérifiée, et l’on peut trouver dans [5, 6] le contre-exemple suivant :

\[(\lambda x.a.(\lambda z.a.z)x)(a:=b) \xrightarrow{\beta} \lambda x.b.(\lambda z.a.z)x)(a:=b). \]

La figure d’inférence résout ce problème. On donne ici en guise d’exemple la dérivation dans \(\lambda \rightarrow \) :

\[
\begin{align*}
& b : \ast \ast, x : b, z a(a:=b), a : \ast + z a(a:=b) \\
& \vdots \\
& b : \ast \ast, x : b, z a(a:=b) ; z(a:=b) a(a:=b) \Gamma z b b \\
& \vdots \\
& b : \ast, x : b ; b(a:=b) \Gamma z b b \\
& \vdots \\
& b : \ast, x : b ; (\lambda z.a.z)(a:=b) \Gamma x a:=b \\
& \vdots \\
& b : \ast, x : b ; (\lambda z.a.z)(a:=b) \Gamma x a:=b \\
& \vdots \\
& b : \ast \ast, x : b, z a(a:=b) \\
& \vdots \\
& b : \ast \ast, x : b, z a(a:=b) \\
& \vdots \\
& b : \ast, x : b, (\lambda z.a.z)x)(a:=b) \\
& \vdots \\
& b : \ast, x : b, (\lambda z.a.z)x)(a:=b) \\
\end{align*}
\]

Dér. 1 – Typage dans \(\lambda \rightarrow \mathbf{x} \) de \((\lambda x.b.(\lambda z.a.z)x)(a:=b) \)

On voit donc que le problème de R. Bloo est ici résolu.

Dans [21], C. Muñoz présente une manière de conserver la réduction du sujet pour des types dépendants dans un calcul à indice de De Bruijn \(\lambda \rho \), qui est une variante de \(\lambda \alpha \). Ceci est obtenu grâce à une modification de la notion de réduction, qui serait, dans un calcul à noms, exprimée comme suit :

\[
\begin{align*}
(\lambda y.A.B)(x:=C) & \rightarrow \lambda y.A(x:=C).B(y:A, x:=C) \\
(\Pi y.A.B)(x:=C) & \rightarrow \Pi y.A(x:=C).B(y:A, x:=C).
\end{align*}
\]

Dans la substitution \(\langle y : A, x:=C \rangle \), on remarque la présence de \(y:A \), qui est ce que l’on nomme un rappel de type (type reminder). Sans entrer dans les détails, cette précaution permet de considérer dans \(B(y : A, x:=C) \) que \(y \) est de type \(A \) et non \(A(x:=C) \), comme on le voit dans les figures d’inférence de type, dont on donne ici une version dans un calcul à noms :

\[
\begin{align*}
& \frac{\Gamma, x : U + y : V[x:=X] \quad \Gamma \vdash X : U}{\Gamma \vdash \lambda y.V[x:=X]} \quad \text{(Cons)} \\
& \frac{\Gamma, x : U} {\Gamma \vdash U(y:V) + y : V} \\
& \frac{\Gamma, x : U} {\Gamma \vdash A(y:V, x:=X) : B[x:=X]} \quad \text{(Clos)}.
\end{align*}
\]
Cette construction permet également de résoudre le problème de la réduction du sujet, mais elle pose néanmoins certains problèmes, en particulier liés à la figure (Clos), que C. Muñoz mentionne dans la conclusion de [21]. Ces problèmes sont résolus par la figure d’(expansion).

Une autre approche pour obtenir des systèmes de types purs explicites avec réduction du sujet est donnée à la fin de [5], s’inspirant largement de l’article [7] de R. Bloo, F. Kamareddine et R. Nederpelt, où ceux-ci introduisent une notion de systèmes de types purs avec définitions. Une définition est une substitution placée dans le contexte de typage. Cette approche présente le désavantage de compliquer les notions liées aux contextes et les règles les manipulant. En outre, comme on l’a déjà signalé, le fait que les définitions soient placées dans les contextes fait qu’elles ne sont pas vraiment des substitutions explicites, car elles ne font pas partie de la syntaxe du calcul.

Par ailleurs, on pourrait objecter que la figure d’inférence d’expansion n’est pas satisfaite du point de vue de l’inférence de type, car elle effectue une forme d’expansion du sujet. Mais en fait, c’est tout le contraire, car si l’on se place du point de vue de la synthèse de type, les figures d’inférence doivent être lues de bas en haut et non de haut en bas. Et si l’on considère ce sens de lecture, on peut lire la figure d’expansion comme suit : si l’on veut typer un terme quelconque commençant par au moins une substitution explicite, on peut pousser d’un cran l’une des substitutions situées en surface du terme, et si l’on trouve un type pour le terme obtenu, et que l’opérande de la substitution poussée était bien typable, alors on peut donner au terme initial le type du terme obtenu en poussant la substitution.

On retrouve ici l’idée somme tout naturelle et intuitive de voir les substitutions explicites comme des substitutions « paressueuses », qui restent en place dans le terme et ne sont propagées que lorsque cela s’avère nécessaire. C’est ce mécanisme qui permet de récupérer la réduction du sujet perdue dans les systèmes de Bloo.

Comme on le voit illustré dans cet exemple, il semble que ce mécanisme puisse présenter un intérêt certain dans le cadre de la synthèse de type. En particulier, il traite la question délicate de la composition de la substitution. On voit en fait d’où vient la nécessité d’avoir deux figures pour traiter les termes commençant par une substitution explicite : lorsque l’on se trouve face à un terme commençant par une substitution, deux cas se présentent : soit on peut la traiter tout de suite au moyen d’une coupure, soit il faut retarder cette substitution au moyen d’une expansion. On peut voir cela dans l’exemple donné plus haut. Si l’on essaie de typer le contre-exemple de Bloo dans ses systèmes, on voit que l’on arrive à un blocage après avoir fait une coupure, alors qu’en revenant en arrière pour remplacer cette coupure par une expansion, le typage peut aboutir.

On pourrait également éprouver quelque crainte à la vue du fait que l’on permette par la figure d’(expansion) d’effectuer des compositions de substitutions, car on pourrait ainsi construire des arbres infinis. Mais en fait, il serait parfaitement inutile de l’appliquer deux fois à une même paire de substitution, car on reviendrait alors à la même position relative des variables substituées en ayant simplement compliqué les termes. Il faut donc admettre que cette figure d’(expansion) peut, de même que la conversion ou l’affaiblissement, être répétée inutilement un grand nombre de fois, et se remettre à la clairvoyance de l’utilisateur – ou, le cas échéant, de la procédure de typage – pour que cela ne soit pas le cas.
2. Le prédicat « pseudo-sorte »

La nécessaire adjonction du pseudo-type \(\int \) provient du fait que dans les systèmes explicites introduits supra, les substitutions explicites sont appliquées non seulement aux expressions intervenant comme sujet mais également comme prédicat d’un jugement de typage – au contraire, par exemple, des systèmes introduits par R. Bloom, lesquels, comme on peut le voir e.g. dans [5] appliquent, comme on l’a dit précédemment, des substitutions implicites aux dernières.

Ce choix – délibéré, et motivé par les diverses considérations sur les mérites comparés des substitutions explicites et implicites mentionnées supra – implique la possibilité de voir survenir d’autres types, et en particulier des types de la forme \(\sigma(\chi_1:=N_1)\ldots(\chi_k:=N_k) \). On reconnaît ici, sous des substitutions que l’on a précédemment qualifiées de vaines (car elles portent sur des variables inexistantes), une sorte, et il s’avère naturellement nécessaire de pouvoir identifier d’une façon ou d’une autre tous les termes composés d’une sorte « cachée » sous ses substitutions vaines et la sorte en question.

Il semble alors tout naturel de vouloir utiliser pour cette identification la figure d’inférence de conversion de types, déjà existante dans les systèmes de types purs usuels, qui s’écrit comme suit :

\[
\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : \sigma \quad A \equiv_{fs} B}{\Gamma \vdash M : B} \text{ (conversion)}
\]

En effet, on peut vouloir appliquer cette figure au cas où les deux termes A et B représentent (i.e. sont équivalents à) une même sorte.

Toutefois, on se heurte à la vérification de correction imposée par la prémisses \(\Gamma \vdash B : \sigma \). Le rôle, dans les systèmes de types purs usuels, de cette prémisse est d’assurer que seuls des termes représentant effectivement des types, que l’on appelle types corrects, surviennent comme prédicat d’un jugement.

Dans les systèmes de types purs usuels (implicites), on entend habituellement par type correct un terme typable par une sorte, ou encore une sorte elle-même. Les sortes n’étant (toujours dans le cadre de substitutions implicites) \(\beta \)-équivalentes qu’à elles-mêmes, il n’est pas nécessaire de prévoir dans la figure d’inférence de conversion le cas où B est une sorte, car dans ce cas son application est inutile ; c’est pourquoi l’on se contente de la prémisse assurant que B est typable pour une sorte.

Toutefois, le problème particulier soulevé supra montre bien que, dans le cas de substitutions explicites, ce problème d’identification de termes mutuellement convertibles s’étend aux sortes. Comme on l’a vu, il semble naturel de réaliser cette identification comme un cas particulier de l’application de la conversion, puisque celle-ci permet déjà d’effectuer dans un autre cadre une opération analogue. Mais pour permettre ceci, il appert nécessaire d’étendre la prémisse \(\Gamma \vdash B : \sigma \). La question qui se pose ensuite est de savoir comment la rendre à la fois assez large pour résoudre le problème ci-dessus, et assez stricte pour préserver la correction.

La première extension qu’il semble naturel de considérer au vu de la discussion précédente est la prémisse \(\Gamma \vdash B : \sigma \lor (B \in S) \). Cependant, cette prémisse n’est pas satisfaisante car elle produit une figure de conversion dirigée. En effet, elle permet certes de passer d’un jugement de la forme \(\Gamma \vdash A : \sigma(\chi_1:=N_1)\ldots(\chi_k:=N_k) \) à un jugement de la forme \(\Gamma \vdash A : \sigma \), elle ne permet pas le passage dans l’autre sens, ce qui n’est pas satisfaisant car, contrairement à ce que l’on pourrait croire, l’édit sens peut être nécessaire, car l’on peut être amené à faire apparaître des substitutions vaines (e.g. pour former un type produit dans une optique de
réduction du sujet), et non toujours à les faire disparaître.

On peut alors envisager une extension plus large en disant que si B n’est pas typable par une sorte, alors il doit effectivement être une sorte, mais non être au sens de la trop stricte égalité syntaxique, mais être au sens de la plus souple βx-conversion, ce que traduit \((Γ ⊢ B : σ) \lor (B \equiv_x τ)\). Toutefois, il est aisé de se rendre compte que cette prémisse ne convient pas car elle est trop large. En effet, elle permet l’apparition non contrôlée de termes, car aucune condition n’est imposée sur les opérandes des substitutions vaines dont elle permet l’apparition. Et cette remarque reste un obstacle dans le cas où l’on se contenterait d’une simple x-conversion en adoptant la variante \((Γ ⊢ B : σ) \lor (B \equiv_x τ)\). En effet, dans les deux cas, l’on peut effectuer à partir d’un quelconque jugement valide de sorte \(Γ ⊢ M : σ\) la construction suivante :

\[
\frac{Γ \vdash M : σ}{Γ \vdash \lambda x : (\cdots) . σ \langle x := \Omega \rangle \equiv_{βx} σ} \quad \text{(conversion)}
\]

et faire ainsi survenir arbitrairement dans les jugements de sortes (qui sont nombreux, car nécessaires à chaque introduction de type) un terme divergeant. La nouvelle prémisse considérée ne peut donc convenir.

Les petits exemples que l’on vient de voir montrent bien qu’il est nécessaire de permettre une forme de x-conversion afin de pouvoir non seulement retrancher des substitutions vaines, mais aussi d’en ajouter, pourvu que l’opérande de la substitution soit contrôlé – et par contrôlé, il est naturel dans ce contexte d’entendre typable. On ramène ainsi le problème à la question suivante : comment exprimer que B est une sorte à laquelle a été appliquée une succession de substitutions d’opérandes typables ?

La caractérisation syntaxique des termes susmentionnés n’étant pas évidente, on peut avoir l’idée d’introduire un mécanisme de vérification sous forme d’un jugement indiquant que B a la forme requise, ce pour quoi l’on introduit le symbole \(\int\), qui, de même qu’une sorte caractérise intuitivement une classe de types (comme * et \(\Box\) dans le \(\lambda\)-cube caractérisent les types de termes et les types de types), caractérera d’une certaine façon les types sortes, indépendamment de la hiérarchie de celles-ci. Ainsi, par un jugement de la forme \(Γ ⊢ B : \int\), on voudra indiquer que B est un représentant possible d’une sorte quelconque. Afin de dériver ces jugements, on peut, à partir d’un axiome de la forme \(σ : \int\), appliquer successivement coupures, affaiblements et expansions pour ajouter les substitutions adéquates. On remarque en particulier que la notion de largage suivante (provenant de [18]) :

\[
Γ ⊢ A : B \quad Δ ⊢ C : D \quad x \notin \operatorname{aw}(A)
\]

\[
Γ ⊢ A(x := C) : B
\]

qui est capturée par la figure d’inférence d’expansion permet en pratique de dériver les vérifications requises pour les termes considérés.

En outre, la notion de pseudo-sorte trouve une justification supplémentaire du fait qu’elle possède une signification en terme de correction des types, qui sera abordée au paragraphe suivant.

Par ailleurs, il est nécessaire ici de préciser que, bien que pour des raisons de commodité l’on manipule cette pseudo-sorte comme une sorte, en particulier à l’aide des figures d’inférence d’axiome et d’expansion, il ne s’agit pas d’une sorte, et il n’est pas envisageable de l’ajouter à l’ensemble des sortes, car il est notable que les systèmes comportant la sorte de toute les sortes sont en général incohérents. Cet écueil est ici évité car ce prédicat \(\int\) ne peut
pas intervenir dans l’ensemble des règles, et ne peut pas non plus apparaître comme prédicat d’une assertion de typage élément d’un contexte (on voit en effet que les figures d’inférence (hypothèse) et (affaiblissement), seules à agrandir le contexte, vérifient que le type introduit est typable par une vraie sorte – ce que n’est pas la pseudo-sorte. En fait, on peut même garantir que l’usage de \int n’échappe pas au cadre qu’on lui a fixé par la proposition suivante :

Proposition 2.17 : Usage de pseudo-sorte

Soient Γ un contexte et M, B deux termes tels que $\Gamma \vdash M : B$. Alors :

(i) $\text{si } B \equiv_{px} \int$, alors il existe $\overrightarrow{\sigma} \in \mathcal{S}, x_1, \ldots, x_k \in \mathcal{U}, N_1, \ldots, N_k \in \Lambda \exists x \text{ des termes typables tels que } M = \overrightarrow{\sigma}(x_1 := N_1) \cdots (x_k := N_k)$.

(ii) $\text{si } M \equiv_{px} \int$, alors $B \equiv_{px} \int$.

Démonstration.

Cette démonstration utilise des résultats qui seront présentés dans les prochains paragraphes, on reviendra donc dessus dans la partie 3 de ce chapitre.

3. Correction des types

Ces jugements de prédicat \int sont tous destinés à assurer que le terme qui leur sert de sujet est une sorte déguisée, ce qui est un rôle bien distinct de celui des autres jugements. Pour pouvoir les distinguer, on introduit la définition suivante, leur donnant un nom :

Définition 2.22 : jugement de sorte

On dit qu’un jugement $\Gamma \vdash M : B$ est un *jugement de sorte* si $B \equiv_{px} \int$.

Ce type de jugement est indispensable, car on ne saurait se passer de sortes terminales, mais, dans le cas implicite, celles-ci ne sont pas traitées car, pour ainsi dire, il ne peut rien leur arriver tant leur usage est limité – elles ne peuvent apparaître que comme type dans une vérification de la forme $\Gamma \vdash A : \tau$ précédant l’introduction de A dans un contexte dans une figure d’hypothèse ou d’affaiblissement, l’introduction d’un type produit dans le cas où A en est un, ou la conversion d’un type équivalent à A en A, et elles ne peuvent pas servir de prédicat dans un contexte de typage. Ce dernier point reste d’ailleurs vrai dans le cas explicite ; simplement, le système contient un mécanisme supplémentaire pour traiter ces sortes, mais la différence demeure entre une sorte typable uniquement par \int (qui sera terminale), et une sorte typable également par une autre sorte. Les deux correspondent à deux notion de correction des types, mais avec une nuance, semblable à celle entre être une sorte et être typable par une sorte dans le système implicite. On pourrait d’ailleurs envisager, à la lumière de ceci, de se restreindre aux axiomes de la forme (σ, τ) et (ρ, \int) où ρ est une sorte terminale. Toutefois, il est plus simple de conserver tous les axiomes de prédicat \int, et c’est ce que l’on fera.

Le résultat suivant, le théorème de correction des types, est indispensable dans les systèmes où, comme c’est le cas pour les systèmes de types purs, on n’établit pas de distinction syntaxique entre termes et types. Ce théorème suppose une caractérisation des termes ayant un comportement de type (ici, la typabilité par une sorte ou pseudo-sorte – ce point a déjà été discuté au paragraphe précédent), et établit que tout terme apparaissant comme prédicat dans une dérivation est correct en ce sens.
Théorème 2.18 : Correction des types dans les systèmes de types purs explicites
Soit $\Gamma \vdash A : B \downarrow$ un jugement de typage valide. Alors : $\exists \vec{\sigma} \in \overrightarrow{S}, \Gamma \vdash B : \vec{\sigma} \downarrow$, avec $k' < k$ si $B \not\in \downarrow$ et $k' \leq k$ sinon.

Démonstration.
Ce lemme requiert le lemme d’engendrement qui sera démontré au paragraphe suivant, et sera démontré à sa suite.

III. Propriétés

Dans ce paragraphe, on étudie des propriétés générales des systèmes de types purs explicites définis ci-dessus. En particulier, on démontre qu’ils vérifient une notion de correction des types – à propos de cette notion, on pourra se reporter à la section relative au prédicat pseudo-sorte – et la réduction du sujet. Auparavant, on établit quelques lemmes utiles pour reconstituer l’arbre de dérivation d’un jugement valide.

1. Lemmes de dérivation

Maintenant viennent les lemmes de dérivation.

Tout d’abord vient un résultat d’affaiblissement faible, énonçant que l’on peut rajouter des hypothèses en fin de contexte :

Lemme 3.19 : Affaiblissement faible (ou prolongation)
Soient k un entier, Γ un contexte et A, B deux termes tels que $\Gamma \vdash A : B \downarrow$ soit un jugement valide. Soient i un entier et Δ un contexte tel que $\{\Gamma\} \Delta \vdash \downarrow$. Alors $\Gamma, \Delta \vdash A : B \downarrow_{[k+i]}$.

Démonstration.
On démontre ce lemme par induction sur la longueur de Δ :

1°) Si $\Delta = \downarrow$, la propriété est triviale.

2°) Si $\Delta = \vec{x} : X, \Sigma, \alpha$ ou α, par définition de la complexité pour les contextes bien formés, $\{\Gamma\} \Delta \vdash \downarrow_{[m+\alpha]}$, avec $\Gamma \vdash X : \rho \downarrow_{[\alpha]}$ et $\{\Gamma, \vec{x} : X\} \Sigma \vdash \downarrow_{[\alpha]}$. On applique alors une figure d’affaiblissement :

\[
\begin{array}{c}
\Gamma \vdash A : B \downarrow_{[\alpha]} \\
\Gamma, \vec{x} : X \vdash A : B \downarrow_{[k+i+\alpha]} \\
\end{array}
\]

(affaiblissement)

On a alors $\Gamma, \vec{x} : X \vdash A : B \downarrow_{[k+i+\alpha]}$ et $\{\Gamma, \vec{x} : X\} \Sigma \vdash \downarrow_{[\alpha]}$, et comme la longueur de Σ est inférieure de 1 à celle de Δ, on peut appliquer l’hypothèse d’induction, ce qui donne $\Gamma, \vec{x} : X, \Sigma \vdash A : B$, ce qui se récrit $\Gamma, \Delta \vdash A : B \downarrow_{[k+i+\alpha]}$, qui est la conclusion souhaitée. Q.E.D.

Le lemme suivant permet d’initialiser un arbre de dérivation :

Lemme 3.20 : Initialisation pour les systèmes de types purs explicites
Soit Γ un contexte tel que $\Gamma \vdash \downarrow$. Alors :

(i) si $(\vec{\sigma} : \vec{\tau}) \in \overrightarrow{A}$, alors $\Gamma \vdash \vec{\sigma} : \vec{\tau} \downarrow_{[\delta]}$, avec $\delta = 1$ si $\vec{\tau} \not\in \downarrow$, et 0 sinon ;

(ii) si $\Gamma = \emptyset, \vec{x} : A, \Sigma$, alors $\Gamma \vdash \vec{x} : A$.

Démonstration.
Avec le lemme précédent, il est aisé de montrer les deux points du lemme d'initialisation. En effet :

(i) par hypothèse \((\overline{\sigma} : \overline{\tau}) \in \overline{\mathcal{A}}\), si bien que l'on peut appliquer la figure d'inférence d'axiome, ce qui donne :

\[
(\overline{\sigma} : \overline{\tau}) \in \overline{\mathcal{A}} \\
\vdash \overline{\sigma} : \overline{\tau} \; \text{[axiome]}
\]

où \(\delta\) vaut 1 si \(\overline{\tau} \neq \overline{\tau}\), et 0 sinon ;

(ii) par définition de la bonne formation, l'on a \(\Theta \vdash A : \rho\), et l'on peut alors appliquer la figure d'inférence d'(hypothèse) :

\[
\Theta \vdash A : \rho \\
\Theta, \overline{\alpha} : A \vdash \overline{\alpha} : A \; \text{[hypothèse]}
\]

Dans les deux cas, l'on obtient l'assertion de typage désirée avec un préfixe de \(\Gamma\) et une complexité tels qu'il suffit d'appliquer le lemme de prolongation (3.19) pour conclure. Q.E.D.

Le lemme suivant, dit d'engendrement, est fondamental, car il est particulièrement utile lorsque l'on souhaite raisonner sur la structure d'un terme typable : en effet, il permet de reconstituer étape par étape la dérivation et le prédicat d'un jugement de typage en fonction de la structure de son sujet.

Lemme 3.21 : Engendrement pour les systèmes de types purs explicites

Soient \(k\) un entier naturel, \(\Xi\) un contexte, \(M\) et \(T\) deux termes de \(\Lambda \Xi\) tels que \(\Xi \vdash M : T\;[k]\). Alors :

(i) si \(M = \overline{\sigma} \in \overline{S}\) alors \(\exists \overline{\tau} \in \overline{S}\)

\[(T \equiv [k] \; \overline{\tau} \land (\overline{\sigma} : \overline{\tau}) \in \overline{\mathcal{A}})\]

(ii) si \(M = \overline{\tau}\) alors \(\exists \tau \in S \; \exists U \in \Lambda \Xi\)

\[(\Xi \vdash U : \tau \; [k-1] \land (\overline{\tau} : U) \in \Xi \land T \equiv [k] \; U)\]

(iii) si \(M = \Pi x : A.B\) alors \(\exists (\rho, \sigma, \tau) \in \mathcal{R}\)

\[(\Xi \vdash A : \rho \; [k] \land \Xi, x : A \vdash B : \sigma \; [k] \land T \equiv [k] \; \tau)\]

(iv) si \(M = \lambda x : A.B\) alors \(\exists \tau \in S \; \exists C \in \Lambda \Xi\)

\[(\Xi \vdash C : (\Pi x : A.C) \; \tau \; [k] \land \Xi, x : A \vdash B : C \; [k] \land T \equiv [k] \; \Pi x : A.C)\]

(v) si \(M = A\;[k] B\) alors \(\exists C, D \in \Lambda \Xi\)

\[(\Xi \vdash A : (\Pi x : C.D) \; [k] \land \Xi \vdash B : C \; [k] \land T \equiv [k] \; D(x := B))\]

(vi) si \(M = A\;[k] B\) alors \(\exists C, D \in \Lambda \Xi\)

\[(\Xi, x : C \vdash A : D \; [k] \land \Xi \vdash B : C \; [k] \land T \equiv [k] \; D(x := B))\]

Démonstration.
Lorsque l'on considère les formes des sujets des différentes figures d'inférence, on voit que la dernière figure appliquée dans le typage de \(\Xi \vdash M : T\) ne peut être que (affaiblissement), (conversion), ou la figure adaptée à la forme de \(M\) — dans l'ordre, de (i) à (v) : (axiome), (hypothèse), (règle), (introduction de \(\Pi\)), (diminution de \(\Pi\)) ; et pour (vi) : (couverture) ou (expansion), selon les cas. En outre, comme (affaiblissement) et (conversion) ne changent pas le sujet, et qu'il faut bien que le celui-ci ait été introduit à un moment quelconque, nécessairement la figure que l'on qualifiait d'adaptée a dû être employée à un moment.
Plus formellement, l'on va tout d'abord montrer par induction sur la dérivation de $\Sigma \vdash M : \Gamma [\alpha]$ que la propriété souhaitée est vérifiée. L'on discriminate selon la dernière figure appliquée. Seules trois figures ont pu être appliquées : la figure adaptée, celle d'affaiblissement ou celle de conversion.

1°) Si c'est la figure adaptée, les prémises de la figure sont les conclusions auxquelles on veut aboutir, et la propriété est donc trivialement satisfaite.

2°) (affaiblissement) :

\[
\frac{\Gamma \vdash A : B [i] \quad \Gamma \vdash C [j] : \sigma \quad \overline{x} \notin \text{dom}(\Gamma)}{\Gamma, \overline{x} : C \vdash A : B [i+j]}
\]

Dans ce cas, on applique l'hypothèse d'induction à la prémise $\Gamma \vdash A : B [i]$, ce qui donne la propriété voulue mais avec Γ qui est préfixe de $\Sigma = \Gamma, x : C$. On obtient donc des jugements de la forme $\Gamma \vdash U : V [i-p]$, et l'on peut ensuite effectuer un affaiblissement :

\[
\frac{\Gamma \vdash U : V [i-p] \quad \Gamma \vdash C [j] : \sigma \quad \overline{x} \notin \text{dom}(\Gamma)}{\Gamma, \overline{x} : C \vdash U : V [i-p+j]}
\]

(affaiblissement)

celui qui donne le résultat voulu.

3°) (conversion) :

\[
\frac{\Gamma \vdash M : A [i] \quad \Gamma \vdash B : \overline{\sigma} [m]}{\Gamma \vdash M : B [\text{max}(n, m+1)]}
\]

Dans ce cas, l'application de l'hypothèse d'induction à prémisse $\Gamma \vdash M : A [i]$ satisfait la propriété pour une complexité $n - p$ et un type \overline{x}-équivalent à Γ, donc a fortiori pour $k - p$ et Γ (car $k = \text{max}(n, m + 1)$).

Dans tous les cas, on obtient le résultat voulu avec la complexité souhaitée. Q.E.D.

Dans toute la suite, on omettra les barres indiquant qu’une variable peut être insubstituable en l’absence d’ambiguïté.

On peut donc maintenant démontrer le théorème de correction des types, dont on rappelle l’énoncé :

Théorème : correction des types dans les systèmes de types purs explicites

Soit $\Gamma \vdash A : B [\alpha]$ un jugement de typage valide. Alors : $\exists \overline{\sigma} \in \overline{S}, \Gamma \vdash B : \overline{\sigma} [\alpha]$. avec $k' < k$ si $B \neq \int$ et $k' < k$ sinon.

Démonstration.

L’on procède par récurrence sur la complexité de la dérivation du jugement $\Gamma \vdash A : B$, en discriminant selon la dernière figure employée :

a. (axiome) :

\[
\frac{}{(\overline{\sigma}, \overline{\tau}) \in \overline{A} \quad \overline{\sigma}, \overline{\tau} : \overline{\tau} [\alpha]}
\]

Ce cas est trivial, car $\overline{\tau} : \int [\alpha]$. De plus, si $\overline{\tau} \neq \int$, $k = 1$, sinon $k = 0$, et la condition sur les complexités est donc satisfaite.

b. (règle) :

\[
\frac{\Gamma \vdash A : \rho [i] \quad \Gamma, x : A \vdash \sigma [j]}{\Gamma \vdash \Pi x : A.B : \tau [i + \text{max}(i, j)]}
\]

Ce cas est trivial, car $\overline{\tau} : \int [\alpha]$.

c. (hypothèse) :

\[
\frac{\Gamma \vdash A : \sigma [i] \quad \overline{x} \notin \text{dom}(\Gamma)}{\Gamma, x : A \vdash \overline{x} : A [2i]}
\]

Ce cas est évident : la prémisse est exactement ce que l’on veut montrer et $2i > i$ (car $i \neq 0$ car $\sigma \neq \int$).
d. (affaiblissement) :
\[\Gamma \vdash A : B [\Gamma] \quad \Gamma \vdash C : \sigma [\Gamma] \quad x \notin \text{dom}(\Gamma) \]
\[\Gamma, x : C \vdash A : B [\Gamma, x] \]

Par hypothèse d'induction appliquée à la première prémisse, \(\Gamma \vdash B \vdash \top [\Gamma] \) et l'on peut appliquer une figure d'affaiblissement :
\[\Gamma \vdash B : \top [\Gamma] \quad \Gamma \vdash C : \sigma [\Gamma] \quad x \notin \text{dom}(\Gamma) \]
\[\Gamma, x : C \vdash B : \top [\Gamma, x] \]

qui donne la conclusion voulue avec les inégalités souhaitées pour la complexité.

e. (introduction de \(\Pi \)) :
\[\Gamma \vdash (\Pi x : A. B) : \tau [\Gamma] \quad \Gamma, x : A \vdash M : B [\Gamma] \]
\[\Gamma \vdash (\lambda x : A. M) : (\Pi x : A. B) [\Gamma + \max(i, j)] \]

Ce cas est évident : la première prémisse est exactement ce que l'on veut montrer, et \(i < 1 + \max(i, j) \), ce qui donne la bonne condition pour les complexités.

f. (élimination de \(\Pi \)) :
\[\Gamma \vdash M : (\Pi x : A. B) [\Gamma] \]
\[\Gamma \vdash N : A [\Gamma] \]

Par hypothèse d'induction, \(\Gamma \vdash (\Pi x : A. B) : \tau [\Gamma] \), donc, par le lemme d'engendrement (3.21), il existe \(\sigma \) telle que \(\Gamma, x : A \vdash B : \sigma [\Gamma] \).

En outre, \(\Gamma \) est contexte d'un jugement de complexité \(i \), donc, par le lemme de bonne formation (1.16), on obtient que \(\Gamma \vdash \top [\Gamma] \), et donc, par le lemme d'initialisation (3.20) \(i \), on obtient que \(\Gamma \vdash \sigma : \top [\Gamma] \).

On peut alors conclure :
\[\Gamma, x : A \vdash B : \sigma [\Gamma] \quad \Gamma \vdash N : A [\Gamma] \]
\[\Gamma \vdash B(x := N) : \sigma \langle x := N \rangle [\Gamma + j + 1] \] (4)
\[\Gamma \vdash \sigma : \top [\Gamma] \]
\[\Gamma \vdash B(x := N) : \sigma [\Gamma + j + 1] \] (5)

D'où :
\[\Gamma \vdash B(x := N) : \sigma [\Gamma + j] \]

\[\Gamma, x : A \vdash M : B [\Gamma] \quad \Gamma \vdash N : A [\Gamma] \]

Deux cas se présentent :

1°) Si \(B \neq \top \), par hypothèse d'induction appliquée à la première prémisse, \(\Gamma, x : A \vdash B : \sigma [\Gamma - i] \).

En outre, par le lemme de bonne formation (1.16), on obtient que \(\Gamma, x : A \vdash [\Gamma - i] \), donc, a fortiori, \(\Gamma \vdash [\Gamma - i] \), et donc, par le lemme d'initialisation (3.20) \(i \), on obtient que \(\Gamma \vdash \sigma : \top [\Gamma - i] \).

On conclut alors comme suit :
\[\Gamma, x : A \vdash B : \sigma [\Gamma - i] \quad \Gamma \vdash N : A [\Gamma] \]
\[\Gamma, x : A \vdash B(x := N) : \sigma \langle x := N \rangle [\Gamma + j + 1] \] (4)
\[\Gamma \vdash \sigma : \top [\Gamma] \]
\[\Gamma \vdash B(x := N) : \sigma [\Gamma + j] \]

2°) Si \(B = \top \), par le lemme de bonne formation (1.16), \(\Gamma \vdash \top [\Gamma] \) et donc \(\Gamma \vdash \top [\Gamma] \), i.e. \(\Gamma \vdash \top [\Gamma] \), et l'on conclut alors comme suit :
\[\Gamma \vdash B : \top [\Gamma] \quad \Gamma \vdash N : A [\Gamma] \]
\[\Gamma \vdash B(x := N) : \top [\Gamma] \] (x)
2. Réduction du sujet

Ce paragraphe contient un résultat fondamental, dont on entend habituellement pouvoir disposer dans un système de type pour pouvoir le considérer « approprié ».

Il indique que le comportement calculatoire d’un terme n’a pas d’influence sur son type, et comme on l’a indiqué au paragraphe 2.1, il s’en faut de beaucoup que l’établissement de cette propriété dans le cadre des substitutions explicites soit évident.

Il est nécessaire tout d’abord d’établir certains lemmes, en particulier permettant de produire des expansions contrôlées de substitutions.

Lemme 3.22 : Substitution implicite

Soient Θ et Ξ deux contextes, u une variable et P, Q, R, S quatre termes tels que $\Theta, u : S, \Xi \vdash P : Q$ et $\Theta \vdash R : S$. Alors $\Theta, \Xi[u := R] \vdash P[u := R] : Q[u := R]$.

Démonstration.

a. (axiome) : $(\sigma, \tau) \in \bar{A}$

Le contexte étant vide, ce point est trivial.

b. (règle) : $\Gamma \vdash A : \rho [\rho] \quad \Gamma, x : A \vdash B : \sigma [\sigma] \quad (\rho, \sigma, \tau) \in R$

Par hypothèse d’induction, on obtient que $\Theta, \Xi[u := Z] \vdash A[u := Z] : \rho[u := Z]$ d’une part et que $\Theta, \Xi[u := Z]$, $x : A[u := Z] \vdash B[u := Z] : \sigma[u := Z]$ d’autre part. On construit alors l’arbre d’inférence suivant :

$$\Theta, \Xi[u := Z] \vdash A[u := Z] : \rho$$

$$\Theta, \Xi[u := Z], x : A[u := Z] \vdash B[u := Z] : \sigma$$

$$\Theta, \Xi[u := Z] \vdash \Pi x : A[u := Z] B[u := Z] : \tau$$

(\text{R})

qui permet de conclure que $\Theta, \Xi[u := Z] \vdash (\Pi x : A.B)[u := Z] : \tau[u := Z]$.

c. (hypothèse) : $\Gamma \vdash A : \sigma [\sigma] \quad x \notin \text{dom}(\Gamma)$

Il y a deux cas :

1°) soit $u \neq x$, auquel cas par hypothèse d’induction appliquée à la prémisse, on obtient que $\Theta, \Xi[u := Z] \vdash A[u := Z] : \sigma[u := Z]$, et l’on conclut comme suit :

$$\Theta, \Xi[u := Z] \vdash A[u := Z] : \sigma$$

$$\Theta, \Xi[u := Z], x : A[u := Z] \vdash x : A[u := Z]$$

(hyp)
En effet, si \(u \neq x \) donc le jugement situé en conclusion de cet arbre se récrit \(\Theta, \Xi[u:=Z], x : A[u:=Z] \land x[u:=Z] : A[u:=Z] \).

\(2^o \) soit \(u = x \), auquel cas l'hypothèse \(\Theta + Z : W \) se récrit \(\Theta + Z : A \), et comme d'une part \(Z = x[u:=Z] \), et d'autre part par le lemme de dépendances de variables on sait que \(x = u \notin \text{a}(A) \), ce qui implique que \(A[u:=Z] = A \), l'on reconnaît ce que l'on voulait montrer.

d. **(affaiblissemment)**:

\[
\Gamma \vdash A : B \quad |\quad \Gamma \vdash C : \sigma \quad |\quad x \notin \text{dom}(\Gamma)
\]

Il y a deux cas:

\(1^o \) soit \(u \neq x \), auquel cas, par hypothèse d'induction appliquée aux deux prénisses, on obtient \(\Theta, \Xi[u:=Z] \vdash A[u:=Z] : B[u:=Z] \) et \(\Theta, \Xi[u:=Z] + C[u:=Z] : \sigma[u:=Z] \) et l'on conclut comme suit :

\[
\Theta, \Xi[u:=Z] \vdash A[u:=Z] : B[u:=Z] \quad \Theta, \Xi[u:=Z] + C[u:=Z] : \sigma[u:=Z]
\]

\(\Theta, \Xi[u:=Z], x : C[u:=Z] \vdash A[u:=Z] : B[u:=Z] \quad \text{(W)} \)

\(2^o \) soit \(u = x \), auquel cas, d'après le lemme de dépendances de variables, \(u \) ne peut pas avoir d'occurrence accessible dans \(A \) ou \(B \) (sans quoi il apparaîtrait dans \(\text{dom}(\Gamma) \), et l'hypothèse d'induction donne directement le résultat souhaité, à savoir \(\Gamma \vdash A : B \) (i.e. \(\Theta \vdash A[u:=Z] : B[u:=Z] \)).

e. **(introduction de \(\Pi \))**:

\[
\Gamma \vdash (\Pi x : A.B) : \tau \quad |\quad \Gamma, x : A + M : B \vdash |\quad \Gamma \vdash (\Pi x : A.M) : (\Pi x : A.B) [1+\max(\tau,\emptyset)]
\]

Le lemme d'engendrement (3.21) appliqué à \(\Gamma \vdash (\Pi x : A.B) : \tau \) donne qu'il existe une règle \((\rho, \sigma, \tau) \in \mathcal{R} \) telle que \(\Gamma \vdash A : \rho \vdash |\quad \Gamma, x : A + B : \sigma \vdash |\quad \Gamma \vdash \rho \vdash \sigma \vdash |\quad \Theta, \Xi[u:=Z], x : A[u:=Z] + B[u:=Z] : \sigma[u:=Z] \). Par une simple figure de règle, on en déduit la validité du jugement \(\Theta, \Xi[u:=Z] \vdash (\Pi x : A[u:=Z].B[u:=Z]) : \tau \), assertion que l'on désignera par (I).

Ensuite, par hypothèse d'induction appliquée à \(\Gamma, x : A + M : B \), l'on obtient le jugement \(\Theta, \Xi[u:=Z], x : A[u:=Z] + M[u:=Z] : B[u:=Z] \). On construit alors l'arbre suivant :

\[
\Theta, \Xi[u:=Z], x : A[u:=Z] + M[u:=Z] : B[u:=Z] \quad (1)
\]

\(\Theta, \Xi[u:=Z] + (\lambda x : A[u:=Z].M[u:=Z]) : (\Pi x : A[u:=Z].B[u:=Z]) \quad (\Pi-\text{I}) \)

dans la conclusion duquel on reconnaît ce que l'on voulait démontrer.

f. **(élimination de \(\Pi \))**:

\[
\Gamma \vdash M : (\Pi x : A.B) \quad |\quad \Gamma \vdash N : A \vdash |\quad \Gamma \vdash MN : B(x:=N) \quad [1+\max(\emptyset,\emptyset)]
\]

Il va de soi, par la convention de Barendregt, que \(u \neq x \).

\[
\]

\(\Theta, \Xi[u:=Z] + M[u:=Z]N[u:=Z] : B(u:=Z)(x:=N[u:=Z]) \quad (\Pi-\text{E}) \)
dans la conclusion duquel on reconnaît $\Theta, \Xi[u:=Z] + (MN)[u:=Z] : (B(x:=N))[u:=Z]$, qui est l'énoncé que l'on voulait démontrer.

g. (coupe)
$\Gamma, x : A + M : B \vdash \Gamma + N : A \vdash \Gamma + \frac{M(x:=N) : B(x:=N)}{[1+\text{max}(i,j)]} \Xi[u:=Z] \quad \Theta, \Xi[u:=Z] + M[u:=Z] : B[u:=Z]$

$\Theta, \Xi[u:=Z] \quad \Theta, \Xi[u:=Z] + M[u:=Z] : B[u:=Z] \quad \Theta, \Xi[u:=Z] + M[u:=Z] \langle x := N[u:=Z] \rangle : B[u:=Z] \langle x := N[u:=Z] \rangle$

(4)

dont la conclusion se récrit $\Theta, \Xi[u:=Z] + (M(x:=N))[u:=Z] : (B(x:=N))[u:=Z]$, qui est ce que l'on voulait démontrer.

h. (expansion)
$\Gamma + M : B \vdash \Delta + N : A \vdash P(x:=N) \rightarrow_\lambda M$

Par hypothèse d'induction appliquée aux prémises, $\Theta, \Xi[u:=Z] + M[u:=Z] : B[u:=Z]$ d'une part, et d'autre part $\Delta' + N[u:=Z] : A[u:=Z]$ ($\Delta' = \Delta$ si u n’apparaît pas dans Δ, sinon c’est le contexte résultant de l’application de l’hypothèse d’induction). On peut alors conclure par une figure d’expansion (avec $\Sigma = \Theta, \Xi[u:=Z]$) :

$\Sigma + P[u:=Z] (x := N[u:=Z]) : B[u:=Z]$

dont la conclusion se récrit $\Theta, \Xi[u:=Z] + (P(x:=N))[u:=Z] : B[u:=Z]$, qui est ce que l'on voulait démontrer.

i. (conversion)
$\Gamma + M : A \vdash \Gamma + B : \exists \quad A \equiv_{\beta x} B$

Par hypothèse d'induction appliquée aux deux prémises, on obtient d’une part le judgement $\Theta, \Xi[u:=Z] + M[u:=Z] : A[u:=Z]$ et d’autre part le jugement $\Theta, \Xi[u:=Z] + B[u:=Z] : \exists u[Z]$, i.e. $\Theta, \Xi[u:=Z] + B[u:=Z] : \exists$. De plus, comme $A \equiv_{\beta x} B$, on a bien $A[u:=Z] \equiv_{\beta x} B[u:=Z]$, et l'on peut conclure par une conversion :

$\Theta, \Xi[u:=Z] + M[u:=Z] : A[u:=Z] \quad \Theta, \Xi[u:=Z] + B[u:=Z] : \exists u[Z]$

(5)

Q.E.D.

Lemme 3.23 : (Gc)-expansion
Soient $\Gamma + \mathcal{C}[M[y:=y]] : B$ et $\Delta + N : A$ deux jugements de typage valides, où y est une variable non accessible dans M. On a alors $\Gamma + \mathcal{C}[M(y:=N)] : B$.

On va en fait démontrer une propriété équivalente par induction à l’aide d’une hypothèse d’induction légèrement plus forte. Pour ce faire, on introduit une notion de réduction, la (gc)-expansion parallèle indiquée, notée $\rightarrow_{\text{gc}}^{\beta y/N}$, où N est un terme, comme suit :

- $\rightarrow_{\text{gc}}^{\beta y/N}$ contient l’égalité ;
• si \(x \notin ax(M) \), alors \(M[x:=y] \models_\mathcal{M} M(x:=N) \);

• si \(A \models_\mathcal{M} A_1 \) et \(B \models_\mathcal{M} B_1 \), alors \(\Pi x:A.B \models_\mathcal{M} \Pi x:A_1.B_1 \), \(\lambda x:A.B \models_\mathcal{M} \lambda x:A_1.B_1 \),

\[A \models_\mathcal{M} A_1 \text{ et } A(x:=B) \models_\mathcal{M} A_1(x:=B). \]

On peut maintenant énoncer la propriété que l’on souhaite montrer.

On suppose que \(\Xi \vdash X : Y \) et \(\Theta \vdash Z : W \). Alors le fait que \(\Xi_1 \) et \(X_1 \) soient tels que \(\Xi \models_\mathcal{M} \Xi_1 \) et \(X_1 \models_\mathcal{M} X_1 \) implique que \(\Xi_1 \vdash X_1 : Y \).

Il est clair que le lemme de (gc)-expansion supra est un corollaire de cette propriété.

Démonstration.

On procède par induction sur la dérivation de \(\Xi \vdash X : Y \), avec l’ordre de complexité, en discriminant selon la dernière figure employée.

a. (axiome) : \((\varnothing, \varnothing) \in \mathcal{A} \)

Ce cas est trivial.

b. (règle) : \(\Gamma \vdash A : \rho [\varnothing] \quad \Gamma, x : A : \sigma [\varnothing] \quad (\rho, \sigma, \tau) \in \mathcal{R} \)

Deux cas se présentent :

1°) \(X_1 = \Pi x:A_1.B_1 \). Alors, par hypothèse d’induction appliquée aux prémises, \(\Gamma_1 \vdash A_1 : \rho \)

d’une part et \(\Gamma_1, x : A_1 : \sigma \), d’autre part et l’on peut conclure directement par une figure de règle.

2°) \(X_1 = (\Pi x:A.B)[y] = y \langle y:=Z \rangle \). Alors, par hypothèse d’induction appliquée aux prémises,

\(\Gamma_1 \vdash A[y] = y \langle y:=Z \rangle : \rho \), ce que l’on note (1) et \(\Gamma_1, x : A \langle y:=Z \rangle : \pi \) \(B[y] = y \langle y:=Z \rangle : \sigma \),

de même que l’on note (2). En outre, \(\Xi \vdash Z : W \), ce que l’on note (3). L’on peut alors effectuer la dérivation suivante :

\(\frac{\Gamma_1 \vdash \Pi x:A[y] = y \langle y:=Z \rangle : \rho \quad \Gamma_1 \vdash B[y] = y \langle y:=Z \rangle : \sigma }{\Gamma_1 \vdash (\Pi x:A.B)[y] = y \langle y:=Z \rangle : \tau } \) (8)

(c) (hypothèse) : \(\Gamma \vdash A : \sigma [\varnothing] \quad x \notin dom(\Gamma) \)

Nécessairement, \(X_1 = x(z:=Z) \) ou \(X_1 = x \). On a alors \(\Xi_1 = \Gamma_1, x : A_1 \). Par hypothèse d’induction appliquée aux prémises, d’une part \(\Gamma_1 \vdash A_1 : \sigma \), que l’on note (1), et d’autre part \(\Gamma_1 \vdash A : \sigma \), que l’on note (2). On construit alors l’arbre suivant :

\(\frac{\Gamma_1, x : A_1 \vdash x : A_1}{\Gamma_1, x : A \vdash x : A_1 : \text{hyp} } \) (2)

Si \(X_1 = x \), on peut conclure. Sinon, \(X_1 = x(y:=Z) \), dans ce cas, et l’on conclut alors par une figure d’expansion avec une propagation de type (gc).
d. (affaiblissement) :
\[
\Gamma \vdash A : [i] \quad \Gamma \vdash C : [j] \quad x \not\in \text{dom}(\Gamma)
\]
\[
\Gamma, x : C + A : [i+j]
\]
L'on a alors \(\Sigma_1 = \Gamma_1, x : C_1, \) et, par hypothèse d'induction appliquée aux prémises, \(\Gamma_1 \vdash A_1 : B_1 \) et \(\Gamma_1 \vdash C_1 : \sigma, \) et l'on effectue alors la dérivation suivante :
\[
\frac{\Gamma_1 \vdash A_1 : B_1 \quad \Gamma_1 \vdash C_1 : \sigma}{\Gamma_1, x : C_1 + A_1 : B_1} \quad \text{(W) }
\]
qui permet de conclure.

e. (introduction de \(\Pi \)) :
\[
\Gamma \vdash (\Pi x : A B) : [i] \quad \Gamma, x : A + M : B [j]
\]
Deux cas se présentent :

1°) \(X_1 = \lambda x : A_1 M_1. \) Alors, par hypothèse d'induction appliquée aux prémises, l'on a d'une part \(\Gamma_1 \vdash \Pi x : A B : \tau, \) ce que l'on note (1), et d'autre part \(\Gamma_1 \vdash \Pi x : A_1 B : \tau, \) ce que l'on note (2), et \(\Gamma_1, x : A_1 + M_1 : B, \) ce que l'on note (3). On peut alors effectuer la dérivation suivante :
\[
\frac{\Gamma_1 + \lambda x : A_1 M_1 : \Pi x : A B \text{ (1)}}{\Gamma_1 + \lambda x : A_1 M_1 : \Pi x : A B} \quad \text{(=)}
\]

2°) \(X_1 = (\lambda x : A B)[y'_y := y](y' := Z). \) Alors, par hypothèse d'induction appliquée aux prémises, l'on a d'une part \(\Gamma_1 \vdash \Pi x : A B : \tau, \) ce que l'on note (1), et d'autre part les deux jugements \(\Gamma_1 \vdash \Pi x : A[y'_y := y](y' := Z), B : \tau \) et \(\Gamma_1, x : A[y'_y := y](y' := Z) + M[y'_y := y](y' := Z) : B, \) ce que l'on note respectivement (2) et (3). En outre, \(\Delta \vdash Z : W, \) ce que l'on note (4). On peut alors effectuer la dérivation suivante :
\[
\frac{\Gamma_1 + \lambda x : A B[y'_y := y](y' := Z), M[y'_y := y](y' := Z) : \Pi x : A B \text{ (1)}}{\Gamma_1 + \lambda x : A B[y'_y := y](y' := Z), M[y'_y := y](y' := Z) : \Pi x : A B} \quad \text{(=)}
\]
qui permet de conclure.

f. (élimination de \(\Pi \)) :
\[
\Gamma \vdash M : [i] \quad \Gamma \vdash N : A [j]
\]
Deux cas se présentent :

1°) \(X_1 = M_1 N_1. \) Alors, par hypothèse d'induction appliquée aux prémises, \(\Gamma_1 \vdash M_1 : \Pi x : A B, \) ce que l'on note (1), et \(\Gamma_1 \vdash N_1 : A, \) ce que l'on note (2). En outre, par le théorème de correction des types, \(\Gamma \vdash B(x := N) : \sigma \text{ [max(i,j)]}, \) d'où, par hypothèse d'induction, \(\Gamma_1 \vdash B(x := N) : \sigma, \) ce que l'on note (3). On conclut alors comme suit :
\[
\frac{\Gamma_1 + M_1 N_1 : B(x := N) \text{ (1)}}{\Gamma_1 + M_1 N_1 : B(x := N)} \quad \text{(=)}
\]

2°) \(X_1 = (MN)(y := Z). \) Alors, par hypothèse d'induction appliquée aux deux prémises, l'on obtient d'une part que \(\Gamma_1 \vdash M[y'_y := y](y' := Z) : \Pi x : A B, \) ce que l'on note (1), et d'autre part que \(\Gamma_1 \vdash N[y'_y := y](y' := Z) : A, \) ce que l'on note (2). En outre, par le théorème de
correction des types, ε \vdash B(x:=N): τ \uplus [max(i,j)], d'où, par hypothèse d'induction, l'on tire
que \(\Gamma_1 \vdash B(x:=N): \sigma \uplus \) que l'on note (3). Par ailleurs, \(\Delta \vdash Z: W \) ce que l'on note (4). L'on peut alors effectuer la dérivation suivante :

\[
\begin{align*}
\Gamma_1 \vdash & M[y:=y][y:=y](y:=Z) : B(x:=N[y:=y][y:=Z]) \quad (1) \\
\Gamma_1 \vdash & M[y:=y][y:=y](y:=Z) : B(x:=N) \quad (2) \\
\Gamma_1 \vdash & N[y:=y][y:=y](y:=Z) : B(x:=N) \quad (3) \quad (\varepsilon)
\end{align*}
\]

qui permet de conclure.

g. (coupure) : \(\vdash \Gamma, x : A + M : B \uplus \Gamma \vdash N : A \uplus [j] \)

Deux cas se présentent :

1°) \(X_1 = M_1(x:=N_1) \). Alors, par hypothèse d'induction appliquée aux prémises, \(\Gamma_1, x : A + M_1 : B \), ce que l'on note (1), et \(\Gamma_1 \vdash N_1 : A \), ce que l'on note (2). En outre, par le théorème de correction des types, \(\Gamma \vdash B(x:=N) : \tau \uplus [max(i,j)] \), d'où, par hypothèse d'induction, l'on tire que \(\Gamma_1 \vdash B(x:=N) : \sigma \uplus \), ce que l'on note (3). On conclut alors comme suit :

\[
\begin{align*}
\Gamma_1 \vdash & M_1(x:=N_1) : B(x:=N_1) \quad (1) \\
\Gamma_1 \vdash & M_1(x:=N_1) : B(x:=N) \quad (2) \\
\Gamma_1 \vdash & N_1[y:=y](y:=Z) : B(x:=N) \quad (3) \quad (\varepsilon)
\end{align*}
\]

2°) \(X_1 = M(x:=N)[y:=y](y:=Z) \). Alors, par hypothèse d'induction appliquée aux deux prémises, l'on obtient que \(\Gamma_1, x : A + M[y:=y](y:=Z) : B \), ce que l'on note (1), et que \(\Gamma_1 \vdash N[y:=y](y:=Z) : A \), ce que l'on note (2). En outre, par le théorème de correction des types, \(\Gamma \vdash B(x:=N) : \tau \uplus [max(i,j)] \), d'où, par hypothèse d'induction, l'on tire que \(\Gamma_1 \vdash B(x:=N) : \sigma \uplus \), ce que l'on note (3). Par ailleurs, \(\Delta \vdash Z : W \) ce que l'on note (4). L'on peut alors effectuer la dérivation suivante :

\[
\begin{align*}
\Gamma_1 \vdash & M[y:=y](y:=Z)(x:=N[y:=y](y:=Z)) : B(x:=N[y:=y](y:=Z)) \quad (1) \\
\Gamma_1 \vdash & M[y:=y](y:=Z)(x:=N[y:=y](y:=Z)) : B(x:=N) \quad (2) \\
\Gamma_1 \vdash & N[y:=y](y:=Z)(x:=N[y:=y](y:=Z)) : B(x:=N) \quad (3) \quad (\varepsilon)
\end{align*}
\]

qui permet de conclure.

h. (expansion) : \(\vdash \Gamma + M : B \uplus \Delta \vdash N : A \uplus [j] \quad P(x:=N) \to M \)

Deux cas se présentent :

1°) \(X_1 = P_1(x:=N_1) \) On peut montrer que si \(P(x:=N) \to M \), alors il existe \(M_1 \) tel que \(P_1(x:=N_1) \to M_1 \) et \(M_1 \) (\(\varepsilon_0 \) ou \(\varepsilon_1 \)), attendu que l'on peut supposer par la convention de Barendregt que \(x \notin \text{av}(Z) \). On a alors par hypothèse d'induction appliquée aux prémises que \(\Gamma_1 \vdash M_1 : B \), ce que l'on note (1), et \(\Gamma_1 \vdash N_1 : A \), ce que l'on note (2). On conclut alors comme suit :

\[
\begin{align*}
\Gamma_1 \vdash & P_1(x:=N_1) \to M_1 \quad (1) \\
\Gamma_1 \vdash & M_1 \quad (2) \\
\Gamma_1 \vdash & P_1(x:=N_1) \to M_1 \quad (3)
\end{align*}
\]
2°) \(X_1 = P(x=N)(y=Z) \). Alors, par hypothèse d’induction, l’on a \(\Gamma_1 \vdash M : B \), ce que l’on note (1), et \(\Gamma_1 \vdash N : A \), ce que l’on note (2). En outre, \(\Delta_1 \vdash Z : W \), ce que l’on note (3), et l’on peut ensuite conclure par la dérivation suivante :

\[
\frac{\Gamma_1 \vdash P(x=N) : B}{\Gamma_1 \vdash P(x=N)(y=Z) : B} \quad (\text{x})
\]

\[
\frac{\Gamma_1 \vdash M : A \quad \Gamma_1 \vdash B : \sigma \quad A \equiv_{Bx} B}{\Gamma_1 \vdash M : B \quad \Gamma_1 \vdash x = M \vdash : \sigma \quad A \equiv_{Bx} B}{\Gamma_1 \vdash M \vdash : B} \quad (\equiv)
\]

\[
\frac{\Gamma_1 \vdash M_1 : A \quad \Gamma_1 \vdash B : \bar{\sigma} \quad A \equiv_{Bx} B}{\Gamma_1 \vdash M_1 \vdash : B} \quad (\equiv)
\]

\[
\frac{\Gamma_1 \vdash M : B \quad [\max(i, j+1)]}{\Gamma_1 \vdash M : B \quad [\max(i, j+1)]}
\]

Par hypothèse d’induction, \(\Gamma_1 + M_1 : A \) et \(\Gamma_1 + B : \sigma \). On peut alors directement conclure :

\[
\frac{\Gamma_1 \vdash M_1 : A \quad \Gamma_1 \vdash B : \sigma \quad A \equiv_{Bx} B}{\Gamma_1 \vdash M_1 \vdash : B} \quad (\equiv)
\]

Q.E.D.

Lemme 3.24 : Substitution explicite

Soient \(\Theta \) et \(\Xi \) deux contextes, \(u \) une variable et \(W, X, Y, Z \) quatre termes tels que \(\Theta, u : W, \Xi + X : Y \) et \(\Theta + Z : W \). Alors \(\Theta, \Xi(u:=Z) + X(u:=Z) : Y(u:=Z) \).

Dans une optique d’allégement des arbres d’inférence, on introduit les abréviations suivantes : dans tout ce qui suit, le symbole \(\nabla \) représente la vérification \(\Theta + Z : W \) (par exemple dans les expansions), et le symbole \(\nabla \) représente une vérification de la forme \(\Delta + \xi : \int \), où \(\xi \) est une sorte – cette vérification, conséquence immédiate du lemme d’initialisation (3.20), survient en général comme prémisse d’une conversion.

Démonstration.

a. (axiome) : \(\langle \nabla, \nabla \rangle \in \mathcal{A} \)

Le contexte étant vide, ce point est trivial.

b. (règle) : \(\Gamma \vdash A : \rho \quad \Gamma, x : A \vdash B : \sigma \quad (\rho, \sigma, \tau) \in \mathcal{R} \)

Par hypothèse d’induction appliquée aux prémises, on a \(\Theta, \Xi(u:=Z) + A(u:=Z) : \rho(u:=Z) \), que l’on notera (1), d’une part, et \(\Theta, \Xi(u:=Z) + x : A(u:=Z) + B(u:=Z) : \sigma(u:=Z), \) que l’on notera (2), d’autre part. En outre, \(\Gamma + [\xi] \) donc \(\Gamma + [\xi] \) donc, par le lemme d’initialisation (3.20), \(\Gamma + [\xi] \) donc \(\int [\xi] \), et l’on peut donc appliquer l’hypothèse d’induction, qui donne \(\Theta, \Xi(u:=Z) + \tau(u:=Z) : \int [\xi] \), et que l’on notera (3). On construit alors l’arbre d’inférence suivant :

\[
\frac{\Theta, \Xi(u:=Z) + A(u:=Z) : \rho \quad (\equiv) \quad \Theta, \Xi(u:=Z), \: x : A(u:=Z) + B(u:=Z) : \sigma}{\Theta, \Xi(u:=Z) + \Pi x : A(u:=Z), B(u:=Z) : \tau} \quad (\text{x})
\]

\[
\frac{\Theta, \Xi(u:=Z) + \Pi x : A(u:=Z), B(u:=Z) : \tau}{\Theta, \Xi(u:=Z) + (\Pi x : A)(u:=Z) : \tau} \quad (\text{x})
\]

\[
\frac{\Theta, \Xi(u:=Z) + (\Pi x : A)(u:=Z) : \tau}{\Theta, \Xi(u:=Z) + (\Pi x : A)(u:=Z) : \tau} \quad (\text{x})
\]

qui permet de conclure.
c. (hYPOTHÈSE) :
\[
\frac{\Gamma \vdash A : \sigma \ [i] \ x \notin \text{dom}(\Gamma)}{\Gamma, x : A, x : A \ [i + 1]}
\]
Il y a deux cas :

1° soit \(u \neq x \), auquel cas par hypothèse d’induction appliquée à la prémisse, on obtient que
\[
\Theta, \Xi(u := Z) \vdash A(u := Z) : \sigma(u := Z),
\]
et l’on conclut comme suit :

\[
\Theta, \Xi(u := Z) \vdash A(u := Z) : \sigma(u := Z) \quad \vdash
\]
\[
\Theta, \Xi(u := Z) \vdash A(u := Z) : \sigma
\]
\[
\Theta, \Xi(u := Z), x : A(u := Z) \vdash x : A(u := Z)
\]
\[
\Theta, \Xi(u := Z), x : A(u := Z) \vdash x : A(u := Z)
\]
\[
\Theta, \Xi(u := Z), x : A(u := Z) \vdash x : A(u := Z)
\]
\[
\Theta, \Xi(u := Z), x : A(u := Z) \vdash x := Z : A(x := Z)
\]

2° soit \(u = x \), auquel cas \(\Theta = \Gamma \), et l’hypothèse \(\Theta \vdash Z : W \) se récrit \(\Gamma \vdash Z : A \), on
conclut alors directement par l’application d’une coupure :

\[
\frac{\Gamma, x : A \vdash x : A \quad \Gamma \vdash Z : A}{\Gamma \vdash x := Z : A(x := Z)} \quad \text{(t)}
\]

d. (affaiblissement) :
\[
\frac{\Gamma \vdash A : B \ [i] \ \Gamma \vdash C : \sigma \ [j] \ x \notin \text{dom}(\Gamma)}{\Gamma, x : C \vdash A : B \ [\text{max}(i,j+1)]}
\]
Il y a deux cas :

1° soit \(u \neq x \), auquel cas par hypothèse d’induction appliquée aux deux prémises, on a
\(\Theta, \Xi(u := Z) \vdash A(u := Z) : B(u := Z) \) et \(\Theta, \Xi(u := Z) \vdash C(u := Z) : \sigma(u := Z) \), et l’on conclut comme suit :

\[
\Theta, \Xi(u := Z) \vdash C(u := Z) : \sigma(u := Z) \quad \vdash
\]
\[
\Theta, \Xi(u := Z) \vdash C(u := Z) : \sigma
\]
\[
\Theta, \Xi(u := Z), x : C(u := Z) \vdash x : A(u := Z)
\]
\[
\Theta, \Xi(u := Z), x : C(u := Z) \vdash x : A(u := Z)
\]
\[
\Theta, \Xi(u := Z), x : C(u := Z) \vdash x := Z : B(x := Z)
\]

2° soit \(u = x \), auquel cas l’hypothèse \(\Theta \vdash Z : W \) se récrit \(\Gamma \vdash Z : C \), et l’on conclut directement
par l’application d’une coupure :

\[
\frac{\Gamma, x : C \vdash A : B \quad \Gamma \vdash Z : C}{\Gamma \vdash A(x := Z) : B(x := Z)} \quad \text{(t)}
\]

e. (introduction de \(\Pi \)) :
\[
\frac{\Gamma \vdash (\Pi x : A, B) : \tau \ [i] \ \Gamma, x : A \vdash M : B \ [j]}{\Gamma \vdash (\lambda x : A, M) : (\Pi x : A, B) \ [i + \text{max}(i,j)]}
\]
En appliquant à la prémisse \(\Gamma \vdash (\Pi x : A, B) : \tau \ [i] \) le lemme d’engendrement (3.21), on obtient
qu’il existe une règle \((\rho, \sigma, \tau) \in \mathcal{R} \) telle que \(\Gamma \vdash A : \rho \ [i] \) et que \(\Gamma, x : A \vdash B : \sigma \ [j] \).

On peut appliquer l’hypothèse d’induction à ces deux assertions, qui donne d’une part que
\(\Theta, \Xi(u := Z) \vdash A(u := Z) : \rho(u := Z) \) et d’autre part que \(\Theta, \Xi(u := Z), x : A(u := Z) \vdash B(u := Z) : \sigma(u := Z) \). On en déduit par la même inférence que dans le cas b.i. (antépénultième conclusion de l’arbre) que \(\Theta, \Xi(u := Z) \vdash (\Pi x : A(u := Z), B(u := Z)) : \tau \), assertion que l’on désignera par (1).

En outre, on peut appliquer à la prémisse \(\Gamma \vdash \Pi x : A, B : \tau \) l’hypothèse d’induction, ce qui donne
\(\Theta, \Xi(u := Z) \vdash (\Pi x : A, B)(u := Z) : \tau(u := Z) \), et, par une figure de conversion, on obtient
que \(\Theta, \Xi(u := Z) \vdash (\Pi x : A, B)(u := Z) : \tau \), assertion que l’on désignera par (2).

Ces deux points étant établis, on applique l’hypothèse d’induction à \(\Gamma, x : A \vdash M : B \), ce qui donne \(\Theta, \Xi(u := Z), x : A(u := Z) \vdash M(u := Z) : B(u := Z) \). On construit ensuite l’arbre suivant :
\[\Theta, \Xi(\mu := Z), x : A(\mu := Z) + M(\mu := Z) : B(\mu := Z) \quad (1) \]
\[\Theta, \Xi(\mu := Z) + (\lambda x : A(\mu := Z)M(\mu := Z)) : (\Pi x : A(\mu := Z)B(\mu := Z)) \quad (\Pi \lambda) \]
\[\Theta, \Xi(\mu := Z) + (\lambda x : A(\mu := Z)B(\mu := Z)) : (\Pi x : A(\mu := Z)B(\mu := Z)) \quad (\lambda \Pi) \]

qui permet de conclure.

f. (élimination de \(\Pi \)) : \[\Gamma \vdash M : (\Pi x : A)B \quad [\|] \quad \Gamma \vdash N : A \quad [\|] \]
\[\Gamma \vdash MN : B(x := N) \quad [\max(i,j)] \]

Par hypothèse d'induction, l'on obtient d'une part \(\Theta, \Xi(\mu := Z) + M(\mu := Z) : (\Pi x : A)B(\mu := Z) \) et d'autre part \(\Theta, \Xi(\mu := Z) + N(\mu := Z) : A(\mu := Z). \) Par ailleurs, le théorème de correction des types (2.18) appliqué à la première prémisse donne que \(\Gamma \vdash (\Pi x : A)B : \tau \quad [\rightarrow \leftarrow] \), si bien que par le lemme d'engendrement, il existe une règle \((\rho, \sigma, \tau) \in \mathcal{R} \) telle que \(\Gamma \vdash A : \rho \quad [\rightarrow \leftarrow] \) et \(\Gamma, x : A \vdash B : \sigma \quad [\rightarrow \leftarrow] \). On peut appliquer à ces deux assertions l'hypothèse d'induction, ce qui donne que d'une part : \(\Theta, \Xi(\mu := Z) + A(\mu := Z) : \rho(\mu := Z) \) et d'autre part que : \(\Theta, \Xi(\mu := Z), x : A(\mu := Z) + B(\mu := Z) : \sigma(\mu := Z) \). On a alors :

\[\Theta, \Xi(\mu := Z) + A(\mu := Z) : \rho(\mu := Z) \quad \vdash \quad \Theta, \Xi(\mu := Z), x : A(\mu := Z) + B(\mu := Z) : \sigma(\mu := Z) \quad \vdash \quad \Theta, \Xi(\mu := Z) + (\Pi x : A(\mu := Z)B(\mu := Z)) : \tau \quad (\sigma) \]

dont on désigne la conclusion par (1). On a alors :

\[\Theta, \Xi(\mu := Z) + M(\mu := Z) : (\Pi x : A)B(\mu := Z) \quad (1) \]
\[\Theta, \Xi(\mu := Z) + M(\mu := Z) : (\Pi x : A(\mu := Z)B(\mu := Z)) \quad (\Xi) \]
\[\Theta, \Xi(\mu := Z) + N(\mu := Z) : A(\mu := Z) \quad (\Xi) \]
\[\Theta, \Xi(\mu := Z) + M(\mu := Z)N(\mu := Z) : B(\mu := Z)x := N(\mu := Z) \quad (\Pi \Xi) \]

Par ailleurs, \(B(\mu := Z) (x := N(\mu := Z)) \equiv_{\mu x} B(x := N) (\mu := Z) \) comme on le sait d'après le lemme de composition (1.10). Il suffit donc de montrer que le type \(B(x := N)(\mu := Z) \) est correct dans le contexte \(\Theta, \Xi(\mu := Z) \), et l'on pourra conclure par une conversion. Or d'après le théorème de correction des types (2.18) appliqué à \(\Gamma \vdash MN : B(x := N) \quad [\max(i,j)] \), on obtient \(\Gamma \vdash B(x := N) : \overline{T} \quad [\max(i,j)] \), à laquelle on peut appliquer l'hypothèse d'induction, ce qui donne \(\Theta, \Xi(\mu := Z) + B(x := N)(\mu := Z) : \overline{T}(\mu := Z) \). D'où l'on tire :

\[\Theta, \Xi(\mu := Z) + B(x := N)(\mu := Z) : \overline{T}(\mu := Z) \quad \vdash \quad \Theta, \Xi(\mu := Z) + B(x := N)(\mu := Z) : \overline{T} \quad (\overline{T}) \]

et l'on peut alors conclure.

g. (coupure) : \[\Gamma, x : A + M : B \quad [\|] \quad \Gamma \vdash N : A \quad [\|] \]
\[\Gamma \vdash M(x := N) : B(x := N) \quad [\max(i,j)] \]

Par hypothèse d'induction, l'on obtient \(\Theta, \Xi(\mu := Z), x : A(\mu := Z) + M(\mu := Z) : B(\mu := Z) \) d'une part, ce que l'on note (1), et \(\Theta, \Xi(\mu := Z) + N(\mu := Z) : A(\mu := Z), \) d'autre part, ce que l'on note (2).

En appliquant au jugement \(\Gamma \vdash M(x := N) : B(x := N) \quad [\max(i,j)] \) le théorème de correction des types (2.18), on obtient \(\Gamma \vdash B(x := N) : \overline{T} \quad [\max(i,j)] \), auquel on peut appliquer l'hypothèse
d’induction, d’où \(\Theta, \Xi(u:Z) + B(x:N)(u:Z) : \Sigma(u:Z) \). On effectue alors la simple conversion suivante :

\[
\Theta, \Xi(u:Z) + B(x:N)(u:Z) : \Sigma(u:Z) \quad \ \ (\dagger)
\]

\[
\Theta, \Xi(u:Z) + B(x:N)(u:Z) : \Sigma(u:Z) \quad \ \ (\dagger)
\]

dont on note la conclusion (3).
Avec tous ces éléments, on peut construire la dérivation suivante :

\[
\begin{align}
\Gamma & \vdash M : B [\Gamma] & \Delta + N : A [\Gamma] & \quad P(x:N) \rightarrow \chi M \\
\end{align}
\]

\[
\begin{align}
\Gamma & \vdash P(x:N) : B [\Gamma + \max(i,j)] \\
\end{align}
\]

On distingue deux cas :

1°) La propagation est un (gc), i.e. \(M = P[x: \gamma_x] \). Dans ce cas, par hypothèse d’induction, \(\Theta, \Xi(u:Z) + P[x: \gamma_x](u:Z) : B(x:N)(u:Z) \), et on a alors, par le lemme de (gc)-expansion 3.23, \(\Theta, \Xi(u:Z) + P(x:N)(u:Z) : B(x:Z) \).

2°) Sinon, par hypothèse d’induction, \(\Theta, \Xi(u:Z) + M(u:Z) : B(u:Z) \), et, comme par la convention de Barendregt, on peut supposer que \(x \notin fr(Z) \) le lemme de (gc)-expansion (3.23) donne \(\Theta, \Xi(u:Z) + M(u:Z)(x:N) : B(u:Z) \). On vérifie bien que \(P(u:Z)(x:N) \rightarrow \chi M(u:Z) \), d’où, par une figure d’expansion, \(\Theta, \Xi(u:Z) + P(u:Z)(x:N) : B(u:Z) \). En outre, par la convention de Barendregt, \(u \notin fr(N) \), si bien que par le lemme de (gc)-expansion (3.23), \(\Theta, \Xi(u:Z) + P(u:Z)(x:N)(u:Z) : B(u:Z) \). On peut alors obtenir alors que \(\Theta, \Xi(u:Z) + P(x:N)(u:Z) : B(u:Z) \) par une figure d’expansion (étant donné que \(Z \) est typable), et c’est bien là le jugement auquel on voulait aboutir.

i. (conversion) :

\[
\begin{align}
\Gamma & \vdash M : A [\Gamma] & \Gamma & \vdash B : \Sigma [\Gamma] & A \equiv_b B \\
\end{align}
\]

Par hypothèse d’induction appliquée aux deux prémisses, on obtient d’une part le jugement \(\Theta, \Xi(u:Z) + M(u:Z) : A(u:Z) \) et d’autre part le jugement \(\Theta, \Xi(u:Z) + B(u:Z) : \Sigma(u:Z) \), d’où par une figure de conversion l’on tire \(\Theta, \Xi(u:Z) + B(u:Z) : \Sigma \). Comme \(A \equiv_b B \), on a bien \(A(u:Z) \equiv_b B(u:Z) \), et l’on peut conclure par une conversion :

\[
\begin{align}
\Theta, \Xi(u:Z) + M(u:Z) : A(u:Z) & \quad \Theta, \Xi(u:Z) + B(u:Z) : \Sigma(u:Z) \\
\end{align}
\]

\[
\begin{align}
\Theta, \Xi(u:Z) + M(u:Z) : A(u:Z) \quad \Theta, \Xi(u:Z) + B(u:Z) : \Sigma(u:Z) \\
\end{align}
\]

\[
\begin{align}
\Theta, \Xi(u:Z) + M(u:Z) : B(u:Z) \\
\end{align}
\]

\[
\begin{align}
\Theta, \Xi(u:Z) + M(u:Z) : B(u:Z) \\
\end{align}
\]

\[
\begin{align}
\Theta, \Xi(u:Z) + M(u:Z) : B(u:Z) \\
\end{align}
\]

Q.E.D.

Théorème 3.25 : Réduction du sujet pour \(\beta_b \)

Soient \(\Gamma \) un contexte et \(A, B \) deux termes tels que \(\Gamma + A : B \). Soient \(\Gamma' \) et \(A' \) tels que \(\Gamma \rightarrow^{\beta_b} \Gamma' \) et \(A \rightarrow^{\beta_b} A' \) Alors \(\Gamma' + A' : B \).

L’on va montrer ce théorème en deux temps, en se restreignant tout d’abord à la x-réduction, comme dans le lemme suivant :

Lemme 3.26 : Réduction du sujet pour \(x \)

Soient \(\Gamma \) un contexte et \(A, B \) deux termes tels que \(\Gamma + A : B \). Soient \(\Gamma' \) et \(A' \) tels que \(\Gamma \rightarrow^{\lambda} \Gamma' \) et \(A \rightarrow^{\lambda} A' \) Alors \(\Gamma' + A' : B \).
Pour montrer ce lemme, on va employer une notion de réduction parallèle dont la clôture réflexive-transitive coïncide avec celle de la $\rightarrow x$-réduction. Voici la définition de la réduction parallèle, notée $\rightarrow x//$:

- $\rightarrow x//$ est réflexive ;
- $\rightarrow x//$ contient la $\rightarrow x$-réduction ;
- Si $A \rightarrow x//_{x//} A_1$ et $B \rightarrow x//_{x//} B_1$, alors $\Pi x : A B \rightarrow x//_{x//} \Pi x : A_1 B_1$, $\lambda x : A B \rightarrow x//_{x//} \lambda x : A_1 B_1$, $A B \rightarrow x//_{x//} A_1 A_1$ et $A(x := B) \rightarrow x//_{x//} A_1(x := B_1)$.

On va montrer la propriété souhaitée pour cette relation, et il est clair que le lemme 3.26 supra est un corollaire de la propriété que l’on aura montrée.

On peut se demander pourquoi l’on utilise ici une notion de réduction parallèle, ce qui n’est pas classique dans les démonstrations de réduction du sujet. Cela est en fait dû à la figure d’expansion : en effet, celle-ci permet, dans certains cas, de « mettre en commun » des sous-termes, comme dans l’exemple suivant :

$$
\frac{\Gamma \vdash U(x := W) V(x := W) : Y \quad \Delta \vdash Y : T}{\Gamma \vdash (U V)(x := W) : Y}
$$

Dans ce cas, si la réduction a lieu dans le sous-terme W (i.e. est de la forme $(U V)(x := W) \rightarrow_{x//} (U V)(x := W')$), il est nécessaire de faire plusieurs réductions dans la prémise pour parvenir à $U(x := W') V(x := W')$ qui permet de réappliquer la figure pour conclure, et l’hypothèse d’une réduction simple ne permet donc pas de passer à l’induction.

Dans une optique d’allégement des arbres d’inférence, on introduit les abréviations suivantes : dans tout ce qui suit, le symbole ∇ représente la vérification $\Theta \vdash Z : W$ (par exemple dans les expansions), et le symbole \triangledown représente une vérification de la forme $\Delta \vdash \xi : \triangledown$, où ξ est une sorte – cette vérification, conséquence immédiate du lemme d’initialisation (3.20), survient en général comme prémise d’une conversion.

Muni de tout cela, l’on peut maintenant présenter une démonstration de la propriété suivante :

soient Σ, X, Y tels que $\Sigma \vdash X : Y$; soient Σ' et X' tels que $\Sigma \rightarrow_{x//} \Sigma'$ et $X \rightarrow_{x//} X'$. Alors $\Sigma' \vdash X' : Y$.

Démonstration.

L’on procède par induction sur les couples (k, n), où n est le nombre de figures d’inférence survenant dans l’arbre de dérivation du jugement $\Sigma \vdash X : Y$ [8], avec l’ordre lexicographique, en discriminant selon la dernière figure employée.

a. (axiome) :
$$
\frac{}{\sigma : \triangledown \in \mathcal{A}}
$$

La propriété est triviale, car les sortes sont x-irréductibles, et le contexte est vide.

b. (règle) :
$$
\frac{\Gamma \vdash A : \rho [i] \quad \sigma [j] \quad \Gamma, x : A \vdash B : \tau [j] \quad (\rho, \sigma, \tau) \in \mathcal{R}}{\Gamma \vdash \Pi x : A . B : \tau [i + \max(i, j)]}
$$

On a ici $\Sigma' = \Gamma'$, et $X' = \Pi x : A . B'$. Par hypothèse d’induction appliquée aux deux prémises,
on obtient que \(\Gamma' + A' : \rho \) et \(\Gamma', x : A' + B' : \sigma \) (en effet, \(\Gamma, x : A \xrightarrow{\tau} \Gamma', x : A' \)), ce qui permet d’appliquer la figure de règle :

\[
\frac{\Gamma' + A' : \rho \quad \Gamma', x : A' + B' : \sigma}{\Gamma' + \Pi x : A'.B' : \tau}
\]

(règle)

qui permet de conclure.

c. (hypothèse) :

\[
\frac{\Gamma \vdash A : [i] \quad x \notin \text{dom}(\Gamma)}{\Gamma, x : A \vdash x : A [i+1]}
\]

Nécessairement, \(x \) étant \(\beta x \)-irréductible, \(X' = x \). En outre, on a \(\Sigma' = \Gamma', x : A' \) avec \(A \xrightarrow{\tau} A' \).
Pardes hypothèses d'induction appliquées de deux façons, on obtient d’une part \(\Gamma' + A' : \sigma \) et d’autre part \(\Gamma' + A : \sigma \). Il suffit alors de construire l’arbre d’inférence suivant :

\[
\frac{\Gamma' + A' : \sigma}{\Gamma' + x : A'} \quad \frac{\Gamma' + A : \sigma}{\Gamma' + x : A} \quad \frac{A \equiv_{\beta x} A'}{(=)}
\]

pour conclure.

d. (affaiblissement) :

\[
\frac{\Gamma \vdash A : [i] \quad \Gamma \vdash C : [j] \quad x \notin \text{dom}(\Gamma)}{\Gamma, x : C \vdash A : [\max(i,j+1)]}
\]

On a \(\Sigma' = \Gamma', x : C' \) et \(X' = A' \). Par hypothèse d'induction appliquée aux deux prémisses, on obtient que \(\Gamma' + A' : B \) et \(\Gamma' + C' : \sigma \), et l'on conclut par une figure d'affaiblissement :

\[
\frac{\Gamma' + A' : B \quad \Gamma' + C' : \sigma}{\Gamma' + x : C' + A' : B}
\]

(\(W \))

e. (introduction de \(\Pi \)) :

\[
\frac{\Gamma \vdash (\Pi x : A.B) : \tau [i] \quad \Gamma, x : A \vdash M : B [j]}{\Gamma \vdash (\lambda x : A.M) : (\Pi x : A.B) [\max(i,j+1)]}
\]

On a \(\Sigma' = \Gamma' \) et \(X' = \lambda x : A'.M' \). Par hypothèse d'induction appliquée aux deux prémisses, on obtient d’une part que \(\Gamma' \vdash (\Pi x : A'.B) : \tau \) et d’autre part que \(\Gamma', x : A' \vdash M' : B \). En outre, en appliquant différemment l’hypothèse d’induction à la première prémisses, on obtient également que \(\Gamma' \vdash (\Pi x : A.B) : \tau \), et l’on conclut comme suit :

\[
\frac{\Gamma' \vdash (\Pi x : A'.B) : \tau \quad \Gamma' \vdash x : A' + M' : B}{\Gamma' \vdash (\lambda x : A'.M') : (\Pi x : A'.B)} \quad \frac{\Gamma' \vdash (\lambda x : A.M') : (\Pi x : A.B) \quad \Gamma' \vdash (\Pi x : A.B) : \tau}{\Gamma' \vdash (\lambda x : A'.M') : (\Pi x : A.B)}
\]

(\(\Pi-\Pi \))

(=)

f. (élimination de \(\Pi \)) :

\[
\frac{\Gamma \vdash M : (\Pi x : A.B) [i] \quad \Gamma \vdash N : A [j]}{\Gamma \vdash MN : B(x:=N) [\max(i,j+1)]}
\]

On a \(\Sigma' = \Gamma' \) et \(X' = M'N' \). Par hypothèse d'induction appliquée aux deux prémisses, \(\Gamma' \vdash M' : \Pi x : A.B \) et \(\Gamma' \vdash N' : A \).
En outre, par le théorème de correction des types (2.18), il existe \(\overline{\sigma} \) telle que \(\Gamma \vdash B(x := N) : \overline{\sigma} \) [\(\max(i,j) \)] et l'on peut aussi appliquer l'hypothèse d'induction à cette assertion, ce qui donne \(\Gamma' \vdash B(x := N) : \overline{\sigma} \).
On peut ensuite conclure directement par une figure d'élimination de \(\Pi \) et une conversion :

\[
\frac{\Gamma' \vdash M' : \Pi x : A.B \quad \Gamma' \vdash N' : A}{\Gamma' \vdash M'N' : B(x := N')} \quad \frac{\Gamma' \vdash B(x := N) : \overline{\sigma}}{\Gamma' \vdash B(x := N) : \overline{\sigma}}
\]

(=)
8e (coupure) :
\[\Gamma, x : A \vdash M : B \]
\[\Gamma \vdash N : A \]
\[\Gamma \vdash M(x:=N) : B(x:=N) \] \[[1+\max(i,j)] \]

On a \(\Sigma' = \Gamma' \), mais plusieurs cas se présentent pour \(X' \).

1°) \(X' = M'(x:=N') \). Dans ce cas, par hypothèse d'induction, \(\Gamma', x : A \vdash M' : B \) et \(\Gamma' \vdash N' : A \). En outre, par le théorème de correction des types (2.18), on a que \(\Gamma \vdash B(x:=N) : \overline{\overline{\tau}} \), si bien que par hypothèse d'induction, \(\Gamma' \vdash B(x:=N) : \overline{\overline{\tau}} \). On conclut alors comme suit :
\[\begin{align*}
\Gamma', x : A \vdash M' : B \\
\Gamma' \vdash N' : A
\end{align*} \]
\[\frac{\Gamma' \vdash M'(x:=N') : B(x:=N')}{(i)} \]
\[\Gamma' \vdash B(x:=N) : \overline{\overline{\tau}} \] \[(\text{a}) \]

2°) \(\Gamma = \Pi y : P.R \) et \(X' = \Pi y P(x:=N'), R(x:=N') \).
Par le lemme d'engendrement (3.21) appliqué à la prémisse, \(\Gamma, x : A \vdash M : B \) \([1] \), l'on obtient \((\rho, \sigma, \tau) \in R \) telle que \(\Gamma, x : A \vdash P : \rho \) \([1] \), \(\Gamma, x : A, y : P \vdash R : \sigma \) \([i] \) et \(B \equiv_{\rho} \tau \). Par le lemme de substitution explicite, l'on obtient alors d'une part que \(\Gamma' \vdash P(x:=N') : \rho(x:=N) \) et d'autre part \(\Gamma', y : P(x:=N') \vdash R(x:=N') : \sigma(x:=N) \) et l'on peut ensuite effectuer la dérivation suivante :
\[\begin{align*}
\Gamma' \vdash P(x:=N') : \rho
\end{align*} \]
\[\frac{\Gamma', y : P(x:=N') \vdash R(x:=N') : \sigma(x:=N) \n}{\Gamma', y : P(x:=N') \vdash R(x:=N') : \sigma} \] \[(\text{e}) \]
\[\frac{\Gamma' \vdash P(x:=N'), R(x:=N') : \tau}{\Gamma' \vdash \Pi y P(x:=N'), R(x:=N') : \overline{\overline{\tau}}} \] \[(\text{a}) \]

3°) \(\Gamma = \lambda y P.Q \) et \(X' = \lambda y P(x:=N'), Q(x:=N') \).
Par le lemme d'engendrement (3.21) appliqué à la prémisse, \(\Gamma, x : A + M : B \) \([1] \), l'on obtient qu'il existe une sorte \(\tau \) et un terme \(R \) tels que \(\Gamma, x : A \vdash \Pi y P.R : \tau \) \([i] \), \(\Gamma, x : A, y : P \vdash Q : R \) \([i] \) et \(B \equiv_{\rho} \tau \). De même qu'au sous-cas précédent, on déduit du premier de ces jugements que \(\Gamma' \vdash \Pi y P(x:=N'), R(x:=N') : \tau \). Le second, par le lemme de substitution explicite, donne \(\Gamma', y : P(x:=N') \vdash Q(x:=N') : R(x:=N') \) (sachant que l'on a bien par hypothèse d'induction que \(\Gamma + N' : A \)). Enfin, de même qu'au sous-cas précédent, on montre que \(\Gamma' \vdash B(x:=N) : \overline{\overline{\tau}} \). On peut ensuite effectuer la dérivation suivante :
\[\begin{align*}
\Gamma' \vdash \Pi y P(x:=N'), Q(x:=N') : \tau
\end{align*} \]
\[\frac{\Gamma', y : P(x:=N') \vdash Q(x:=N') : R(x:=N')}{(\Pi / 4)} \]
\[\Gamma' \vdash \Pi y P(x:=N'), Q(x:=N') : \overline{\overline{\tau}} \] \[(\text{a}) \]

4°) \(\Gamma = Q.S \) et \(X' = Q(x:=N')S(x:=N') \).
Par le lemme d'engendrement (3.21) appliqué à la prémisse, \(\Gamma, x : A + M : B \) \([1] \), l'on obtient qu'il existe deux termes \(P \) et \(R \) tels que \(\Gamma, x : A + Q : \Pi x : P.R \) \([1] \) et \(\Gamma, x : A + S : \Pi x : P.R \) \([1] \).
P \[\alpha\] et B \equiv_{\alpha \beta} R(y: S)_. Par le lemme de substitution explicite appliqué aux jugements précédents, l'on obtient \(\Gamma' \vdash Q(x:=N') : (\Pi x: P.R)(x:=N') \) et \(\Gamma' + S(x:=N') : P(x:=N') \). En outre, de même que dans les deux sous-cas précédents, l'on peut dériver le jugement \(\Gamma' + \Pi x: P(x:=N').R(x:=N') : \tau \), que l'on note (1).

L'on peut ensuite effectuer la dérivation suivante :

\[
\begin{align*}
\Gamma' & + Q(x:=N') : (\Pi x: P.R)(x:=N') \quad (1) \\
\Gamma' & + Q(x:=N') : (\Pi x: P.R)(x:=N'), R(x:=N') : R(x:=N') \quad (\Pi - \ell) \\
\Gamma' & + Q(x:=N')S(x:=N') : R(x:=N')(y:=S(x:=N')) \\
\Gamma' & + B(x:=N) : \tau
\end{align*}
\]

En outre, de même que dans les deux sous-cas précédents, \(\Gamma' + B(x:=N) : \tau \) est dérivable.

Or \(B(x:=N) \equiv_{\beta \alpha} R(y:=S)(x:=N') \equiv_{\beta \alpha} R(x:=N')(y:=S(x:=N')) \) d'après le lemme de composition (1.10), et l'on peut donc ensuite effectuer la dérivation suivante :

\[
\begin{align*}
\Gamma' & + Q(x:=N')S(x:=N') : R(x:=N')(y:=S(x:=N')) \\
\Gamma' & + B(x:=N) : \tau
\end{align*}
\]

\(5^e \) M = x et X' = N.

De la prémisse \(\Gamma, x : A \vdash M : B \ [\alpha] \) on déduit, par le lemme d'engendrement (3.21), que \(A \equiv_{\beta \alpha} B \) et, par le théorème de correction des types, que \(\Gamma, x : A \vdash B : \tau [\alpha - \ell] \) (car \(i > 0 \) car le contexte n'est pas vide). On peut appliquer à ce jugement le lemme de substitution explicite, ce qui donne \(\Gamma' \vdash B(x:=N) : \tau(x:=N) \).

De plus, par hypothèse d'induction appliquée à la prémisse \(\Gamma + N : A \), l'on obtient que \(\Gamma' + N : A \).

On en déduit que \(A \equiv_{\beta \alpha} B(x:=N) \), comme par le lemme de dépendances de variables \(x \notin \alpha \alpha(A) \) on en déduit que \(A \equiv_{\beta \alpha} B(x:=N) \).

On peut effectuer la dérivation suivante :

\[
\begin{align*}
\Gamma' & + B(x:=N) : \tau(x:=N) \\
\Gamma' & + B(x:=N) : \tau \\
\Gamma' & + B(x:=N) : \tau(x:=N)
\end{align*}
\]

Pour parvenir à la conclusion souhaitée.

\(6^e \) x \(\notin \alpha \alpha(M) \) et X' = M[x:=\gamma_x].

Dans ce cas, par le lemme de substitution implicite appliqué à la prémisse \(\Gamma, x : A \vdash M : B \), l'on obtient \(\Gamma' + M[x:=N] : B[x:=N], \) ce qui, comme x \(\notin \alpha \alpha(M) \), se réécrir \(\Gamma' + M : B[x:=N], \) et, par le lemme 1.15 (i), on obtient alors \(\Gamma' + M[x:=\gamma_x] : B[x:=N] \). En outre, par le théorème de correction des types (2.18), \(\Gamma, x : A \vdash B : \tau \ [\alpha - \ell] \) (car \(i > 0 \) car le contexte n'est pas vide). On peut appliquer à ce jugement le lemme de substitution explicite, ce qui donne \(\Gamma' \vdash B(x:=N) : \tau(x:=N) \).

En observant que \(B[x:=N] \equiv_{\beta \alpha} B(x:=N), \) ce que l'on note (1), on peut alors effectuer la dérivation suivante :

\[
\begin{align*}
\Gamma' & + M[x:=\gamma_x] : B[x:=N] \\
\Gamma' + B(x:=N) : \tau(x:=N) \\
\Gamma' + B(x:=N) : \tau \\
\Gamma' + B(x:=N) : \tau(x:=N)
\end{align*}
\]

Pour parvenir à la conclusion souhaitée.
h. (expansion) : \[
\frac{\Gamma \vdash M : B \ [i] \ \Delta \vdash N : A \ [j] \ \mathcal{P}(\alpha : N) \rightarrow \chi \ M}{\Gamma \vdash \mathcal{P}(\alpha : N') : B \ [1 + \max(i,j)]}
\]

On a \(\Sigma' = \Gamma' \). Pour \(\chi ' \), deux cas se présentent :

1°) \(\chi ' = \mathcal{P}'(\alpha : N') \). Dans ce cas, il est clair d’après la définition de la propagation qu’il existe \(M' \) tel que \(\mathcal{P}'(\alpha : N') \rightarrow \chi \ M' \) et \(M \xrightarrow{\chi} M' \). On applique alors l’hypothèse d’induction aux prémisses pour obtenir respectivement \(\Gamma' \vdash M' : B \), que l’on note (1), et \(\Delta \vdash N' : A \), que l’on note (2), et l’on peut alors conclure :

\[
\frac{\Gamma \vdash \mathcal{P}'(\alpha : N') \rightarrow \chi \ M'}{\Gamma' \vdash \mathcal{P}'(\alpha : N') : B}
\]

(3)

2°) \(\mathcal{P} = f(U, V) \), \(f \) étant un constructeur parmi la \(\Pi \)-quantification, la \(\lambda \)-abstraction et l’application, et \(\chi ' = f(U(\alpha : N), V(\alpha : N)) \). En ce cas, nécessairement \(M = \chi ' \), et la première prémisses est ce que l’on veut montrer.

3°) \(\alpha \notin \text{fv}(\mathcal{P}) \) et \(\chi ' = \mathcal{P}(\alpha : \gamma \chi \alpha) \). Alors il est clair par la convention de Barendregt et d’après la définition de la propagation que \(M \xrightarrow{\chi} \mathcal{P}(\alpha : \gamma \chi \alpha) \) et l’hypothèse d’induction appliquée à la première prémisses donne directement le résultat.

4°) \(\chi = \chi ' \) et \(\chi ' = N' \). Ce cas est impossible car on ne peut appliquer de propagation à \(\chi (\alpha : N) \).

i. (conversion) : \[
\frac{\Gamma \vdash M : A \ [i] \ \Gamma \vdash B : \overline{\sigma} \ [i] \ A \equiv_{\beta} B}{\Gamma \vdash M : B \ [\max(i,j+1)]}
\]

Par hypothèse d’induction appliquée aux deux prémisses, \(\Gamma' \vdash M' : A \) et \(\Gamma' \vdash B : \overline{\sigma} \), et il suffit d’une simple conversion :

\[
\frac{\Gamma' \vdash M' : A \ \ \Gamma' \vdash B : \overline{\sigma} \ A \equiv_{\beta} B}{\Gamma' \vdash M' : B}
\]

pour conclure.

Q.E.D.

Reste maintenant à montrer le théorème de réduction du sujet (3.25).

Pour ce faire, on va à nouveau employer une notion de réduction parallèle dont la clôture réflexive-transitive coïncidera cette fois-ci avec celle de la réduction induite par l’axiome (B). Voici la définition de cette relation, que l’on notera \(\rightarrow_{\text{B/\eta}} \) :

- \(\rightarrow_{\text{B/\eta}} \) est réflexive ;
- \(\rightarrow_{\text{B/\eta}} \) contient l’axiome (B) ;
- si \(A \rightarrow_{\text{B/\eta}} A_1 \) et \(B \rightarrow_{\text{B/\eta}} B_1 \), alors \(\Pi \alpha : A, B \rightarrow_{\text{B/\eta}} \Pi \alpha : A_1, B_1 \), \(\lambda \alpha : A, B \rightarrow_{\text{B/\eta}} \lambda \alpha : A_1, B_1 \), \(A B \rightarrow_{\text{B/\eta}} A_1 B_1 \) et \(A(\alpha : B) \rightarrow_{\text{B/\eta}} A_1(\alpha : B_1) \).

Dans une optique d’allégement des arbres d’inférence, on introduit les abréviations suivantes : dans tout ce qui suit, le symbole \(\nabla \) représente la vérification \(\Theta \vdash Z : W \) (par exemple dans les expansions), et le symbole \(\check{\nabla} \) représente une vérification de la forme \(\Delta \vdash \xi : \int \), où \(\xi \) est une sorte – cette vérification, conséquence immédiate du lemme d’initialisation (3.20), survient en général comme prémisses d’une conversion.
Muni de tout cela, l'on peut maintenant présenter une démonstration de la propriété suivante :

Lemme 3.27 :
Soient Σ, X, Y tels que $\Sigma \vdash X : Y$; soient Σ' et X' tels que $\Sigma', X' \vdash Y$. Alors $\Sigma \vdash X : Y$.

Il est clair que le théorème de réduction du sujet sera un corollaire du lemme 3.26 et de l'énoncé supra.

Démonstration.
L'on procède par induction sur les couples (k, n), où n est le nombre de figures d'inférence survenant dans l'arbre de dérivation du jugement $\Sigma \vdash X : Y$, avec l'ordre lexicographique, en discriminant selon la dernière figure employée.

a. (axiome) : \[\frac{(\pi, \tau) \in \mathcal{A}}{\Gamma \vdash \sigma : \tau [0/1]} \]

La propriété est triviale, car les sortes sont irréductibles, et le contexte est vide.

b. (règle) : \[\frac{\Gamma \vdash A : \rho [i] \quad \Gamma, x : A \vdash B : \sigma [j] \quad (\rho, \sigma, \tau) \in \mathcal{R}}{\Gamma + \Pi x : A.B : \tau [i + \max(i, j)]} \]

On a ici $\Sigma' = \Gamma'$, et $X' = \Pi x : A'.B'$. Par hypothèse d'induction appliquée aux deux prémises, on obtient que $\Gamma' \vdash A' : \rho$ et $\Gamma', x : A' + B' : \sigma$ (en effet, $\Gamma, x : A \vdash \Gamma', x : A'$), ce qui permet d'appliquer la figure de règle :

\[\frac{\Gamma' + A' : \rho \quad \Gamma', x : A' + B' : \sigma \quad (\rho, \sigma, \tau) \in \mathcal{R}}{\Gamma' + \Pi x : A'.B' : \tau} \]

(\text{règle})

qui permet de conclure.

c. (hypothèse) : \[\frac{\Gamma + A : \sigma [i]}{\Gamma, x : A \vdash x : A [i+1]} \]

Nécessairement, x étant irréductible, $X' = x$. En outre, on a $\Sigma' = \Gamma', x : A'$ avec $A \vdash A'$. Par hypothèse d'induction appliquée de deux façons, on obtient d'une part $\Gamma' + A' : \sigma$ et d'autre part $\Gamma' + A : \sigma$. Il suffit alors de construire l'arbre d'inférence suivant :

\[\frac{\Gamma' + A' : \sigma \quad \Gamma' + A : \sigma}{\Gamma' + x : A'} \]

(hyp)

\[\Gamma' + x : A' \]

(=)

\[\Gamma + A : B [i] \quad \Gamma + C : \sigma [j] \quad x \notin \text{dom}(\Gamma) \]

\[\frac{\Gamma, x : C + A : B [i + j + 1]}{\Gamma, x : C + A : B} \]

(affaiblissement)

On a $\Sigma' = \Gamma', x : C'$ et $X' = A'$. Par hypothèse d'induction appliquée aux deux prémises, on obtient que $\Gamma' + A' : B$ et $\Gamma' + C' : \sigma$, et l'on conclut par une figure d'affaiblissement :

\[\frac{\Gamma' + A' : B \quad \Gamma' + C' : \sigma}{\Gamma', x : C' + A' : B} \]

(W)
e. (introduction de Π) :
\[\Gamma \vdash (\Pi x:A.B) : \tau [\delta] \quad \Gamma, x : A \vdash M : B [\delta] \]
\[\Gamma \vdash (\lambda x:A.M) : (\Pi x:A.B) [1 + \max(i, j)] \]

On a $\Sigma' = \Gamma'$ et $X' = \lambda x:A'.M'$. Par hypothèse d’induction appliquée aux deux prémisses, on obtient d’une part que $\Gamma' \vdash (\Pi x:A'.B) : \tau$ et d’autre part que $\Gamma', x : A' \vdash M' : B$. En outre, en appliquant différemment l’hypothèse d’induction à la première prémisses, on obtient également que $\Gamma' \vdash (\Pi x:A.B) : \tau$, et on conclut comme suit :

\[\Gamma' \vdash (\Pi x:A'.B) : \tau \quad \Gamma', x : A' \vdash M' : B \]
\[\Gamma' \vdash (\lambda x:A'.M') : (\Pi x:A'.B) \]
\[\Gamma' \vdash (\Pi x:A.B) : \tau \quad \Gamma' \vdash (\lambda x:A.M) : (\Pi x:A.B) \quad (\Pi \Gamma) \]

f. (élimination de Π) :

\[\Gamma \vdash M : (\Pi x:A.B) [\delta] \quad \Gamma \vdash N : A [\delta] \]
\[\Gamma \vdash \Pi M.N : B\langle x := N \rangle [1 + \max(i, j)] \]

On a $\Sigma' = \Gamma'$. Concernant X', deux cas se présentent :

1°) $X' = M'N'$, auquel cas par hypothèse d’induction appliquée aux deux prémisses, $\Gamma' \vdash M' : $
\Pi x:A.B et $\Gamma' \vdash N' : A$.

En outre, par le théorème de correction des types (2.18), il existe $\overline{\tau}$ telle que $\Gamma \vdash B\langle x := N \rangle : \overline{\tau} [\max(i, j)]$, et l’on peut aussi appliquer l’hypothèse d’induction à cette assertion, ce qui donne $\Gamma' \vdash B\langle x := N \rangle : \overline{\tau}$.

On peut ensuite conclure directement par une figure d’élimination de Π et une conversion :

\[\Gamma' \vdash M' : \Pi x:A.B \quad \Gamma' \vdash N' : A \]
\[\Gamma' \vdash M'N' : B\langle x := N' \rangle \quad (\Pi \Gamma) \]
\[\Gamma' \vdash B\langle x := N \rangle : \overline{\tau} \quad (\Pi \overline{\tau}) \]

2°) $M = \lambda x:R.Q$ et $X' = Q\langle x := N \rangle$. Dans ce cas, par le lemme d’engendrement (3.21) appliqué à la première prémisses, on obtient P et τ tels que $\Gamma, x : R \vdash Q : P [\delta], \quad \Gamma \vdash \Pi x:R.P : \tau [\delta]$ et $\Pi x:R.P \equiv_{\beta x} \Pi x:A.B$. En appliquant l’hypothèse d’induction à la première de ces assertions, ainsi qu’à la prémisses $\Gamma \vdash N : A$, l’on obtient respectivement $\Gamma', x : R \vdash Q : P$ et $\Gamma' \vdash N : A$.

Par ailleurs, le lemme d’engendrement (3.21) appliqué la seconde de ces assertions indique entre autres qu’il existe une sorte ρ telle que $\Gamma \vdash R : \rho [\delta]$, et l’on peut alors appliquer l’hypothèse d’induction à cette assertion, ce qui donne $\Gamma' \vdash R : \rho$.

En outre, par le théorème de correction des types (2.18) on a $\Gamma \vdash B\langle x := N \rangle : \tau [\max(i, j)]$, et l’on peut appliquer l’hypothèse d’induction à cette assertion, ce qui donne $\Gamma' \vdash B\langle x := N \rangle : \tau$.

Sachant que nécessairement $B\langle x := N \rangle \equiv_{\beta x} P\langle x := N \rangle$ et $R \equiv_{\beta x} A$, on peut ensuite conclure comme suit :

\[\Gamma', x : R \vdash Q : P \quad \Gamma' \vdash N : A \quad \Gamma' \vdash R : \rho \quad (\text{eq}) \]
\[\Gamma' \vdash Q\langle x := N \rangle : P\langle x := N \rangle \quad (\text{eq}) \]
\[\Gamma' \vdash B\langle x := N \rangle : \tau \quad (\text{eq}) \]

g. (coupure) :

\[\Gamma, x : A \vdash M : B [\delta] \quad \Gamma \vdash N : A [\delta] \]
\[\Gamma \vdash M\langle x := N \rangle : B\langle x := N \rangle [1 + \max(i, j)] \]

On a $\Sigma' = \Gamma'$, et $X' = M'\langle x := N' \rangle$. Dans ce cas, par hypothèse d’induction, $\Gamma', x : A \vdash M' : B$ et $\Gamma' \vdash N' : A$. En outre, par le théorème de correction des types (2.18), on a que $\Gamma \vdash B\langle x := N \rangle : $
\(\overline{\sigma} [\max(i, j)] \), si bien que par hypothèse d'induction, \(\Gamma' \vdash B \langle x := N \rangle : \overline{\sigma} \). On conclut alors comme suit :

\[
\begin{align*}
\Gamma', x : A + M' : B & \quad \Gamma' \vdash N' : A \\
\Gamma' + M'(x := N') : B(x := N') & \quad \Gamma' + B(x := N) : \overline{\sigma} \\
\hline
\Gamma' + M'(x := N') : B(x := N) & \quad \text{(1)}
\end{align*}
\]

h. (expansion) : \(\Gamma \vdash M : B \mid \Delta \vdash N : A \mid P(x := N) \rightarrow_{\chi} M \)

On a \(\Sigma' = \Gamma' \), et \(X' = P' \langle x := N' \rangle \). Il est alors clair d'après la définition de la propagation qu'il existe \(M' \) tel que \(P'(x := N') \rightarrow_{\chi} M' \) et \(M \Rightarrow M' \). On applique alors l'hypothèse d'induction aux prémises pour obtenir respectivement \(\Gamma'^{\tau} \vdash M' : A \), que l'on note (1), et \(\Delta \vdash N' : A \), que l'on note (2), et l'on peut alors conclure :

\[
\begin{align*}
\Gamma'^{\tau} + P'(x := N') : B & \quad \text{(1)} \\
\Gamma' + P'(x := N') : B & \quad \text{(x)}
\end{align*}
\]

i. (conversion) : \(\Gamma \vdash M : A \mid \Delta \vdash \overline{\sigma} \mid A \equiv_{\beta x} B \)

Par hypothèse d'induction appliquée aux deux prémises, \(\Gamma' \vdash M' : A \) et \(\Gamma' \vdash B : \overline{\sigma} \), et il suffit d'une simple conversion :

\[
\begin{align*}
\Gamma' \vdash M' : A & \quad \Gamma' \vdash B : \overline{\sigma} \\
\Gamma' + B : A & \equiv_{\beta x} B \\
\hline
\Gamma' \vdash B : A & \quad \text{(x)}
\end{align*}
\]

pour conclure.

Q.E.D.

Remarque :
La propriété duale, l'expansion du sujet, n'est pas satisfaite.

Par ailleurs, on peut maintenant montrer la proposition 2.17 énoncée plus haut, dont on rappelle le contenu :

Proposition :
Soient \(\Gamma \) un contexte et \(M, B \) deux termes tels que \(\Gamma \vdash M : B \). Alors :

(i) si \(M \equiv_{\beta x} \int \), alors \(B \equiv_{\beta x} \int \).

(ii) si \(B \equiv_{\beta x} \int \), alors il existe \(\overline{\sigma} \in \overline{\Sigma} \) et \(x_1, \ldots, x_k \in \mathcal{U} \) tels que \(M = \overline{\sigma}(x_1 := N_1) \cdots (x_k := N_k) \).

Démonstration.

(i) si \(M \equiv_{\beta x} \int \), alors \(M \xrightarrow{\wedge} \int \), et donc, par le théorème de réduction du sujet, \(\Gamma \vdash \int : B \). De ceci découle, par le lemme d’engendrement, que \(B \equiv \overline{\sigma} \) avec \((\int, \overline{\sigma}) \in \mathcal{A} \) et \(\overline{\sigma} \) ne peut être que \(\int \).

Q.E.D.

(ii) On procède par induction sur la dérivation de \(\Gamma \vdash M : B \), en discriminant selon la dernière figure appliquée :

\[
\begin{align*}
\end{align*}
\]
3. Conservation de la normalisation forte

On a déjà mentionné plus haut qu’il existe une correspondance canonique de un à un entre systèmes de types purs explicites et systèmes de types purs implicites : en effet, ces deux espèces de systèmes étant définies formellement uniquement par leur triplet de sortes, axiomes et règles, on peut les apprêter en fonction de cela.

Cette partie montre qu’entre les deux systèmes ainsi définis existe une similitude importante : en effet, on va montrer qu’un système de types purs explicite est fortement normalisant si, et seulement si, son correspondant implicite l’est. Lorsque l’on passe d’un système explicite à un système implicite, on injecte aussi bien les variables que les \(\gamma \)-constantes dans les variables. Réciproquement, on considère toutes les variables comme \textit{a priori} substituables.

Relation entre \(\beta x \)-réduction et \(\beta \)-réduction

Pour ce faire, le premier point important consiste en l’établissement d’une relation entre la \(\beta x \)-réduction de \(\Lambda x \) d’une part, et la \(\beta \)-réduction de \(\Lambda \) d’autre part. Mais du fait même que la première de ces deux réductions soit l’explicitation de la seconde du point de vue de la substitution, il appert qu’à un pas de \(\beta \)-réduction peuvent correspondre un grand nombre de \(\beta x \)-réductions.

Toutefois, comme la \(x \)-réduction est fortement normalisante, on peut penser que cette augmentation du nombre de pas de calcul n’influe pas sur la normalisation forte, et vient alors naturellement l’idée qu’il est nécessaire de distinguer certains pas particuliers de \(\beta x \)-réduction, ceux qui correspondent à une « vraie » \(\beta \)-réduction.

Contrairement à l’idée naïve que l’on pourrait avoir, il ne suffit pas d’isoler les étapes correspondant à une B-réduction. En effet, du fait que les substitutions explicites permettent de conserver dans un terme un sous terme qui sera ensuite éliminé car la variable correspondante n’est pas accessible, il peut y avoir des B-réductions ne correspondant à rien sur les formes \(x \)-normales associées. Par exemple, si on considère la réduction :

\[
x(y=(\lambda z.2)M) \xrightarrow{B} x(y=M),
\]

on remarque que, bien qu’il s’agisse d’un pas de B-réduction, les deux membres de réduction ont la même forme \(x \)-normale \(x \).
On voit toutefois ici que la notion de variable accessible semble à nouveau pertinente – plus que celle de variable libre – pour aider à repérer les sous-termines « inutiles ». Ainsi, on adopte la définition suivante :

Définition 3.23: *pas (non) strict, réduction infinie propre*

Soit R une notion de réduction sur les termes. On dit que le pas de R-réduction $M \xrightarrow{R} M'$ est un *R-pas strict*, ce que l’on note $M \overset{R}{\rightarrow} M'$, s’il peut être dérivé des règles suivantes :

- si $M \overset{R}{\rightarrow} M'$, alors $M \xrightarrow{\mathcal{R}} M'$;
- si $U \overset{R}{\rightarrow} U'$, alors $\lambda x : U . V \overset{R}{\rightarrow} \lambda x : U' . V$, $UV \overset{R}{\rightarrow} U'V$, $\Pi x : U . V \overset{R}{\rightarrow} \Pi x : U' . V$;
- si $V \overset{R}{\rightarrow} V'$, alors $\lambda x : U . V \overset{R}{\rightarrow} \lambda x : U' . V$, $UV \overset{R}{\rightarrow} U'V$, $\Pi x : U . V \overset{R}{\rightarrow} \Pi x : U' . V$;
- si $M \overset{R}{\rightarrow} M'$, alors $M(x := N) \overset{R}{\rightarrow} M'(x := N)$;
- si $N \overset{R}{\rightarrow} N'$ et $x \in \mathcal{av}(M)$, alors $M(x := N) \overset{R}{\rightarrow} M(x := N')$.

Sinon, on dit que c’est un pas non strict, ce que l’on note $M \not\overset{R}{\rightarrow} M'$. On définit ainsi à partir de B et X les notions de *B-pas strict*, *X-pas strict* et *BX-pas strict*. On parlera de pas strict en sous-entendant la notion de réduction concernée pour les B-pas stricts et les X-pas stricts. Une suite infinie de β-réduction est dite propre si elle contient une infinité de pas stricts.

On peut noter que les pas non stricts se produisent à des endroits particuliers au sein du terme. Ces endroits sont caractérisés par la définition suivante :

Définition 3.24: *Substitution vaine*

Soit M un terme. On dit que M présente la substitution $\langle x := N \rangle$, ce que l’on note $M \circ \langle x := N \rangle$, si l’un des cas suivants est satisfait :

- $M = P(\langle x := N \rangle)$;
- $M = \Pi x : A . B \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = \lambda x : A . B \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = AB \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = \Pi x : A . B \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = AB \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = A(\langle x := B \rangle \land (A \circ \langle x := N \rangle \lor (x \in \mathcal{av}(B) \land B \circ \langle x := N \rangle))$;
- $M = A(\langle x := B \rangle \land (A \circ \langle x := N \rangle \lor (x \in \mathcal{av}(B) \land B \circ \langle x := N \rangle))$.

On étend la notation de contexte habituelle à la notation suivante :

- $M = P(\langle x := N \rangle) \land x \notin \mathcal{av}(P)$;
- $M = \Pi x : A . B \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = \lambda x : A . B \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = AB \land (A \circ \langle x := N \rangle \lor B \circ \langle x := N \rangle)$;
- $M = A(\langle x := B \rangle \land (A \circ \langle x := N \rangle \lor (x \in \mathcal{av}(B) \land B \circ \langle x := N \rangle))$;
- $M = A(\langle x := B \rangle \land (A \circ \langle x := N \rangle \lor (x \in \mathcal{av}(B) \land B \circ \langle x := N \rangle))$.

\[C(x:=N)] désigne un terme présentant la substitution \(x:=N\).
\[C\!\!\!\!\!\![\langle x:=N\rangle]\] désigne un terme présentant la substitution vaine \(x:=N\).
\[C[x:=N]]\] désigne un terme présentant la substitution non vaine \(x:=N\).

Les pas stricts et non stricts sont dans une certaine mesure indépendants les uns des autres, comme on le voit dans ce lemme :

Lemme 3.28 : Interversion de pas non stricts et stricts
Si \(M \xrightarrow{\beta x} M'\) alors \(M \xrightarrow{\beta x} \circ \beta x^n M'\) avec \(n \in \{0, 1, 2\}\).

Démonstration.
On a \(M = C[N(x:=U)] \xrightarrow{\beta x} M = C[N(x:=V)] \xrightarrow{\beta x} M'\) avec \(U \rightarrow V\) et \(x \notin \text{av}(N)\). Différents cas se présentent pour \(M'\) :

1°) \(M' = C[N(x:=V)]\). Dans ce cas :
\(M \xrightarrow{\beta x} C[N(x:=U)] \xrightarrow{\beta x} C[N(x:=V)].\)

2°) \(M' = C[N'(x:=V)]\). Dans ce cas :
\(M \xrightarrow{\beta x} C[N'(x:=U)] \xrightarrow{\beta x} C[N'(x:=V)].\)

3°) \(M' = C[N]\). Dans ce cas :
\(M \xrightarrow{\beta x} C[N].\)

4°) \(N = \Pi y : A.B\) et \(M' = C[\Pi y : A(x:=V).B(x:=V)].\) Dans ce cas :
\(M \xrightarrow{\beta x} C[\Pi y : A(x:=U).B(x:=V)] \xrightarrow{\beta x} \circ \beta x^n C[\Pi y : A(x:=V).B(x:=V)].\)

5°) \(N = \lambda y : A.B\) et \(M' = C[\lambda y : A(x:=U).B(x:=U)].\) Dans ce cas :
\(M \xrightarrow{\beta x} C[\lambda y : A(x:=U).B(x:=U)] \xrightarrow{\beta x} \circ \beta x^n C[\lambda y : A(x:=V).B(x:=V)].\)

6°) \(N = AB\) et \(M' = C[A(x:=V)B(x:=V)].\) Dans ce cas :
\(M \xrightarrow{\beta x} C[A(x:=U)B(x:=U)] \xrightarrow{\beta x} \circ \beta x^n C[A(x:=V)B(x:=V)].\)

Dans tous les cas, on a bien inversé les deux espèces de pas et l'on a au plus deux pas non stricts.

Q.E.D.

Par ailleurs, on introduit la notation suivante :

Notation :
On note \(M \xrightarrow{\beta x^n} M'\) si la réduction \(M \xrightarrow{\beta x^n} M'\) comprend au moins \(n\) pas stricts.

Jugements de sorte

Un deuxième point important pour le passage entre systèmes de types purs implicites et explicites est le traitement des jugements dont le prédicat est \(\int_f\), qui n’existe pas dans le cas implicite – ce point a déjà été abordé à propos de correction des types.

Comme on l’a déjà plusieurs fois mentionné, le prédicat pseudo-sorte résout le problème de l’équivalence entre une sorte dissimulée sous des substitutions explicites et la même sorte seule. Ce problème n’existe pas dans le cas implicite, comme on peut le voir ici :

Proposition 3.29 : Types convertibles à une sorte terminale
Soit \(\exists\) un système de types purs implicite. Soient \(\Gamma\) un contexte de typage, \(A, B\) deux termes et \(\xi\) une sorte terminale tels que \(\Gamma \vdash_\exists A : B \equiv_\beta \xi\). Alors \(B = \xi\).
Démonstration.
L'on procède par induction sur la dérivation du jugement $\Gamma \vdash A : B$ en discriminant selon la dernière figure employée.

a. (axiome) : $(\sigma, \tau) \in \mathcal{A}$
 Ce cas est évident.

b. (règle) : $\frac{\Gamma \vdash A : \rho \quad \Gamma, x : A \vdash B : \sigma \quad (\rho, \sigma, \tau) \in \mathcal{R}}{\Gamma \vdash \Pi x : A.B : \tau}$
 Ce cas est évident.

c. (hypothèse) : $\frac{\Gamma \vdash A : \sigma \quad x \notin \text{dom}(\Gamma)}{\Gamma, x : A \vdash x : A}$
 Ce cas est trival car si $A \equiv \xi$, alors, comme ξ est β-irréductible, on a $A \not\rightarrow_{\beta} \xi$, et donc, par le théorème de réduction du sujet 0.5, $\Gamma \vdash \xi : \sigma$, et par engendrement $(\xi, \sigma) \in \mathcal{A}$, ce qui contredit le fait que ξ soit terminale.

d. (affaiblement) : $\frac{\Gamma \vdash A : B \quad \Gamma \vdash C : \sigma \quad x \notin \text{dom}(\Gamma)}{\Gamma, x : C \vdash A : B}$
 Ce cas est évident par hypothèse d'induction.

e. (Π - introduction) : $\frac{\Gamma \vdash (\Pi x : A.B) : \sigma \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x : A.M : (\Pi x : A.B)}$
 Ce cas est trivial car $\Pi x : A.B$ ne peut être β-convertible à une sorte.

f. (Π - élimination) : $\frac{\Gamma \vdash M : (\Pi x : A.B) \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B[x:=N]}$
 Dans ce cas, par le théorème de correction des types 0.4, comme $(\Pi x : A.B)$ n'est pas une sorte, $\Gamma \vdash (\Pi x : A.B) : \tau$. On applique alors le lemme d'engendrement pour obtenir qu'il existe une sorte σ telle que $\Gamma, x : A \vdash B : \sigma$. On a alors, par le lemme de substitution 0.3, que $\Gamma \vdash B[x:=N] : \sigma$. On conclut alors comme dans le cas c. que si $B[x:=N] \equiv_{\beta} \xi$, alors $(\xi, \sigma) \in \mathcal{A}$, et donc ξ n'est pas terminale, et la propriété est triviale.

g. (conversion) : $\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : \overline{\sigma} \quad A \equiv_{\beta} B}{\Gamma \vdash M : B}$
 Ce cas est évident par hypothèse d'induction.

Q.E.D.

La x-normalisation

Un troisième aspect important pour le passage entre systèmes de types purs implicites et explicites est la traduction des termes des seconds en termes des premiers. Cette traduction se fait au moyen de la x-normalisation, à laquelle on s'intéresse ici d'un peu plus près :

Notation :

Pour tout terme M, on note $x(M)$ sa forme x-normale.
Ceci est bien défini, car la x-réduction est fortement normalisante, comme on l'a démontré dans la proposition 1.8. On peut également noter que si $M \neq \overline{\int}$, alors $x(M)$ est aussi une expression des systèmes de types purs implicites.
Proposition 3.30 : Forme \(\text{x-normale}\)

La forme \(\text{x-normale}\) d’un terme peut être construite par induction sur ce terme comme suit :

- \(\text{x}(\sigma) = \sigma\);
- \(\text{x}(x) = x\);
- \(\text{x}(\Pi x : L.M) = \Pi x \text{x}(L).\text{x}(M)\);
- \(\text{x}(\lambda x : L.M) = \lambda x : \text{x}(L).\text{x}(M)\);
- \(\text{x}(MN) = (\text{x}(M))(\text{x}(N))\);
- \(\text{x}(M(\text{x}:=N)) = \langle\text{x}(M)[\text{x}:=\text{x}(N)]\rangle\).

Démonstration.

Cette propriété se démontre par une induction évidente sur le terme.

Q.E.D.

Par ailleurs, il est important de comparer les variables d’un terme et de sa traduction. C’est ce que fait le lemme suivant :

Lemme 3.31 : Occurrence des variables accessibles dans la forme normale

Soient \(M\) un terme et \(x\) une variable.

Alors \(x \in \text{fo}(\text{x}(M))\) si, et seulement si, \(x \in \text{av}(M)\).

Démonstration.

Avec le lemme précédent, on peut montrer par une induction structurelle évidente sur le terme \(M\) que la relation \(\text{av}(M) = \text{fo}(\text{x}(M))\) est satisfaite.

Q.E.D.

Ce lemme montre à nouveau la pertinence de la notion de variable accessible dans le cas des substitutions explicites, pertinence que l’on avait déjà soulignée dans les paragraphes précédents.

Correspondances entre systèmes implicites et explicites

Toutes les notions mises en place permettent de montrer le lemme suivant, qui assure que la traduction de systèmes explicites à systèmes implicites est stricte si l’on se restreint aux B-pas stricts :

Lemme 3.32 : Transposition stricte de réduction

Pour tous termes \(X\) et \(X'\) distincts de \(\int\), si \(X \xrightarrow{B} X'\), alors \(\text{x}(X) \xrightarrow{\beta} \text{x}(X')\) (dans le système implicite).

Démonstration.

L’on procède par induction sur la contraction \(X \xrightarrow{B} X'\) :

- \(X = (\lambda x : A.M)N \xrightarrow{B} M(\text{x}:=N) = X'\).
 Dans ce cas, \(\text{x}(X) = (\lambda x : (A).\text{x}(M)).\text{x}(N) \xrightarrow{\beta} \text{x}(M)[\text{x}:=\text{x}(N)] = \text{x}(X')\).

- \(X = \Pi x : U.V \xrightarrow{B} \Pi x : U'.V = X'\) avec \(U \xrightarrow{B} U'\).
 Dans ce cas, par hypothèse d’induction, \(\text{x}(U) \xrightarrow{\beta} \text{x}(U')\), donc, par définition de la \(\beta\)-réduction, \(\text{x}(X) = \Pi x \text{x}(U).\text{x}(V) \xrightarrow{\beta} \Pi x \text{x}(U').\text{x}(V) = \text{x}(X')\).

- \(X = \lambda x : U.V \xrightarrow{B} \lambda x : U'.V = X'\), \(X = UV \xrightarrow{B} U'V = X'\) avec \(U \xrightarrow{B} U'\). Ce cas se traite de manière analogue au précédent.

• X = M(x:=N) → B → M'(x:=N) = X' avec M → B → M'.
Dans ce cas, par hypothèse d'induction, x(M) → B → x(M'), si bien que x(X) = x(M)[x:=x(N)]

• X = M(x:=N) → B → M'(x:=N') = X' avec N → B → N' et x ∈ α(M).
Alors, par le lemme 3.31, x ∈ fα(x(M)), donc le sous-term x(N) admet au moins une occurrence dans x(M)[x:=x(N)]. Or, par hypothèse d'induction, x(N) → B → x(N), et donc X = x(M)[x:=x(N)] → B → x(M)[x:=x(N')] = X'.

Q.E.D.

Tout ceci s'assemble pour permettre la démonstration du lemme fondamental suivant, le lemme de traduction :

Lemme 3.33 : Traduction entre systèmes implicites et explicites

Soient Σ un système de types purs implicite, et Ξ son système explicite associé. Alors :

(i) Soit Ξ ⊢ Ξ Y : Z un jugement valide qui ne soit pas un jugement de sorte. Alors x(Ξ) ⊢ Ξ x(Y) : x(Z) est un jugement valide (où x(Ξ) est le contexte Ξ où x(·) est appliquée à chaque prédicat).

(ii) Soit Ξ ⊢ Ξ Y : Z un jugement de type valide. Alors Ξ ⊢ Ξ x Y : Z est un jugement de type valide.

Démonstration.

(i) Par induction sur la dérivation de Ξ ⊢ Y : Z.

a. (axiome) : \[(σ, τ) ∈ \mathcal{A}\]

\[\frac{}{Γ ⊢ σ : τ}\]

La propriété est triviale.

b. (règle) : \[Γ ⊢ A : ρ \quad Γ, x : A ⊢ B : σ \quad (ρ, σ, τ) ∈ \mathcal{R}\]

\[Γ ⊢ Πx:A.B : τ\]

Par hypothèse d'induction, x(Γ) ⊢ x(A) : ρ et x(Γ), x:x(A) ⊢ x(B) : σ (puisqu'ρ, σ ≠ βx \[\right]{}) . On applique alors une figure de (règle), ce qui donne x(Γ) ⊢ Πx:x(A).x(B) : τ, ce qui se récrit x(Γ) ⊢ x(Πx:A.B) : x(τ).

c. (hypothèse) : \[Γ ⊢ A : σ\]

\[Γ, x : A ⊢ x : A\]

Par hypothèse d'induction, x(Γ) ⊢ x(A) : σ (puisqu'σ ≠ βx \[\right]{}) et l'on peut conclure par une figure d'(hypothèse) que x(Γ), x : x(A) ⊢ x : x(A).

d. (affaiblissement) : \[Γ ⊢ A : B \quad Γ ⊢ C : σ \quad x ∉ dom(Γ)\]

\[Γ, x : C ⊢ A : B\]

Si B = βx \[\right]{}, la propriété est triviale. Sinon, par hypothèse d'induction, x(Γ) ⊢ x(A) : x(B) et x(Γ) ⊢ x(C) : σ, et il suffit d'appliquer une figure d'(affaiblissement) pour conclure que x(Γ), x : x(C) ⊢ x(A) : x(B)
e. (introduction de Π) :
\[\Gamma \vdash (\Pi x : A B) : \sigma \quad \Gamma, x : A \vdash M : B \quad x \not\in \text{dom}(\Gamma) \]

Par le lemme d’engendrement 3.21 appliqué à $\Gamma \vdash (\Pi x : A B) : \sigma$, il existe une sorte ρ telle que $\Gamma \vdash B : \rho$, et donc par la proposition 2.17 (i), $B \equiv_{\beta \lambda x} \int$. De plus, $\Pi x : A B \equiv_{\beta \lambda x} \int$. On peut donc par hypothèse d’induction obtenir d’une part $x(\Gamma) + x(\Pi x : A B) : x(\sigma)$, qui se récrit $x(\Gamma) + \Pi x x(A) \cdot x(B) : \sigma$, et d’autre part $x(\Gamma), x : x(A) + x(M) : x(B)$. On peut alors appliquer une figure d’introduction de Π, ce qui donne $x(\Gamma) + (\lambda x x(A) , x(M)) : (\Pi x : x(A) , x(B))$, qui se récrit $x(\Gamma) + x(\lambda x : A M) : x(\Pi x : A B)$.

f. (élimination de Π) :
\[\Gamma \vdash M : (\Pi x : A B) \quad \Gamma \vdash N : A \]

De même que B dans le cas précédent, $A \not\equiv_{\beta \lambda x} \int$; de plus, $\Pi x : A B \not\equiv_{\beta \lambda x} \int$. Donc par hypothèse d’induction, $x(\Gamma), x : x(A) + x(M) : x(B)$ et $x(\Gamma) + x(N) : x(A)$. Par le lemme de substitution 0.3, on a alors $x(\Gamma) + x(M)[x := x(N)] : x(B)[x := x(N)]$, dans lequel on reconnaît bien $x(\Gamma) + x(M)(x := N) : x(B)(x := N)$.

g. (couplure) :
\[\Gamma, x : A + M : B \quad \Gamma \vdash N : A \]

Par hypothèse d’induction, $x(\Gamma), x : x(A) + x(M) : x(B)$ and $x(\Gamma) + x(N) : x(A)$. Par le lemme de substitution 0.3, on a alors $x(\Gamma) + x(M)[x := x(N)] : x(B)[x := x(N)]$, dans lequel on reconnaît bien $x(\Gamma) + x(M)(x := N) : x(B)(x := N)$.

h. (expansion) :
\[\Gamma \vdash M : B \quad \Delta \vdash N : A \quad P(x := N) \longrightarrow_{\Pi} M \]

On vérifie aisément que $P(x := N) \longrightarrow_{\Pi} M$ implique $x(P(x := N)) = x(M)$, et la propriété est évidente par hypothèse d’induction.

i. (conversion) :
\[\Gamma \vdash M : A \quad \Gamma \vdash B : \exists \quad A \equiv_{\beta \lambda x} B \]

\[\Gamma \vdash M : B \]

B $\not\equiv_{\beta \lambda x} \int$, donc, comme A $\equiv_{\beta \lambda x}$ B, A $\not\equiv_{\beta \lambda x} \int$. Donc par hypothèse d’induction, $x(\Gamma) + x(M) : x(A)$. Deux cas se présentent alors :

1°) Soit il existe $\rho \not\equiv \int$ tel que $\Gamma \vdash B : \rho$. Il est aisé de montrer que si $\Gamma \vdash B : \int [\rho]$, et $\Gamma \vdash B : \rho$, alors $\Gamma \vdash B : \rho [\rho]$, et l’on peut donc appliquer l’hypothèse d’induction à $\Gamma + B : \rho [\rho]$, et conclure ensuite par une figure de (conversion).

2°) Soit $\exists = \int$ et il n’existe aucune sorte $\rho \in \mathcal{S}$ telle que $\Gamma \vdash B : \rho$. Alors, comme $\Gamma \vdash B : \int$, par la proposition 2.17 (ii), il existe une sorte τ telle que $B = \tau (x_1 := N_1) \cdots (x_k := N_k)$ avec tous les N_i typables. Comme $A \equiv_{\beta \lambda x} B$, $x(A) \equiv_{\beta \lambda} x(B) = \tau$. On suppose que τ est typable, i.e. qu’il existe une sorte $\nu \in \mathcal{S}$ telle que $(\tau, \nu) \in \mathcal{A}$. Alors, comme $B = \tau (x_1 := N_1) \cdots (x_k := N_k)$ avec tous les N_i typables, par le lemme d’initialisation 3.20 et k applications de la figure d’(expansion), $\Gamma \vdash B : \nu$, contradiction.

Donc τ est terminale, et donc par la proposition 3.29, comme $x(\Gamma) + x(M) : x(A)$ et $x(A) \equiv_{\beta \lambda} x(B) = \tau$, on a $x(A) = \tau = x(B)$, ce qui permet de conclure.

(ii) Exceptée la figure d’(élimination de Π), toutes les figures de \exists sont de toute évidence incluses dans leur équivalent dans $\exists x$. Pour la figure d’(élimination de Π), c’est également le cas après application d’une (conversion), laquelle est permise par le théorème de correction des types 0.4.

Q.E.D.
Extraction et normalisation forte

Ceci étant établi, l'on peut maintenant établir un lien entre la non-normalisation dans un système explicite et le système implicite associé.

Il est donc tout d'abord nécessaire de montrer que l'on peut extraire d'une $\beta\lambda$-réduction infinie une $\beta\lambda$-réduction propre infinie, car seules ces dernières produiront une réduction infinie dans le cas implicite.

Pour ce faire, on aura besoin du lemme suivant :

Lemme 3.34 : Construction de réduction propre

Les assertions suivantes sont satisfaites :

(i) Soit X un terme admettant une $\beta\lambda$-réduction infinie. Si cette réduction n'est pas propre, alors il existe un terme Y tel que $\frac{X}{\beta\lambda} \triangleright C[\langle y := Y \rangle]$ et Y admet une $\beta\lambda$-réduction infinie.

(ii) En outre, si aucun sous-terme propre de X n'admet de réduction infinie, on a nécessairement $\frac{X}{\beta\lambda} \triangleright^n C[\langle y := Y \rangle] \triangleright^n C[\langle y := Y' \rangle]$, et alors $\frac{X}{\beta\lambda} \triangleright^m C[\langle y := Y' \rangle]$ avec $m > n$.

Démonstration.

(i) Si la $\beta\lambda$-réduction infinie de X n'est pas propre, à partir d'un certain rang dans la réduction, il n'y a plus de B-pas stricts. On désigne par Z le réduit de X à partir duquel aucun pas n'est un pas strict. Z admet une réduction infinie pour $\frac{X}{\beta\lambda}$. On indique par un naturel i les pas de cette réduction ; pour tout i, $Z \triangleright (x_i := N_i)$ tel que le pas de réduction ait lieu dans $(x_i := N_i)$. Par le lemme des trios, Z étant fini, il existe Y tel que $Z \triangleright (y := Y)$ et, pour un nombre infini de i, $x_i = y$ et $N_i = Y$. Y admet donc une $\beta\lambda$-réduction infinie.

(ii) On choisit le terme Y au sens de la relation d'être un sous-terme propre, i.e. on impose qu'aucun sous-terme propre de Y ne satisfait la propriété d'admettre une $\beta\lambda$-réduction infinie. Y est enchâssé dans un certain nombre de substitutions vaines, la dernière étant $(y := Y)$. (i.e. : Z est de la forme $E_1[t := E_1[u_2 := \cdots E_k(t := Y) \cdots)]$) Aucune de ces substitutions ne peut être présente dans X, sans quoi on contredrait le fait qu'aucun sous-terme de X n'admet de réduction infinie. Donc, la $\beta\lambda$-réduction étant confluente, il est possible de faire les pas de réduction menant de Y à Y' avant la création de la substitution les amenant en position vaine. Les pas de réduction en question deviennent stricts (sans quoi on contredit la minimalité de Y, et l'on augmente ainsi le nombre de pas stricts avant d'arriver au même résultat $C[\langle y := Y' \rangle]$. Q.E.D.

Lemme 3.35 : Extraction

Soit M un terme typable admettant une $\beta\lambda$-réduction infinie. Alors il existe un terme typable admettant une $\beta\lambda$-réduction propre infinie.

Démonstration.

On procède par induction sur M. Si M possède un sous-terme admettant une $\beta\lambda$-réduction infinie, comme tout sous-terme d'un terme typable est typable, on conclut par induction. Sinon, on applique successivement le lemme 3.34 (ii). À chaque étape, on augmente le nombre de pas stricts (car on trouve toujours un descendant de Y finissant par subir une contraction de réflexe). On construit donc ainsi une $\beta\lambda$-réduction propre infinie.

Q.E.D.

Tous ces lemmes permettent de démontrer le théorème désiré énoncé ici :
Théorème 3.36 : Préservation

Soit \mathcal{I} un système de types purs implicite, et $\mathfrak{I}x$ le système explicite associé. Alors $\mathfrak{I}x$ est fortement normalisant si, et seulement si, \mathcal{I} l'est.

Démonstration.

On suppose que $\mathfrak{I}x$ est fortement normalisant. Soit x_0 un terme typable dans \mathcal{I} et admettant une chaîne de réduction infinie $x_0 \xrightarrow{\beta} x_1 \xrightarrow{\beta} \cdots \xrightarrow{\beta} x_n \xrightarrow{\beta} x_{n+1} \xrightarrow{\beta} \cdots$. D'après le lemme de traduction 3.33 (ii), il existe Ξ et Y tels que $\Xi + x x_0 : Y$, i.e. x_0 est typable dans $\mathfrak{I}x$. Or, comme un pas de β-réduction peut être simulé par la βx-réduction, on a $x_0 \xrightarrow{\beta x} x_1 \xrightarrow{\beta x} \cdots \xrightarrow{\beta x} x_n \xrightarrow{\beta x} x_{n+1} \xrightarrow{\beta x} \cdots$, ce qui contredit le fait que $\mathfrak{I}x$ est fortement normalisant. Et donc $\mathfrak{I}x$ est fortement normalisant, alors \mathcal{I} l'est aussi.

Réciproquement, l'on suppose que \mathcal{I} est fortement normalisant, mais pas $\mathfrak{I}x$. Soit $(M_i)_{i \in \mathbb{N}}$ une suite de βx-réduction infinie telle que M_0 soit $\mathfrak{I}x$-typable. Alors, par le lemme d'extraction 3.35, il existe un terme N_0 tel que N_0 soit \mathcal{I}-typable et admette une βx-réduction propre infinie. $(N_i)_{i \in \mathbb{N}}$. L'on considère la suite $(x(N_i))_{i \in \mathbb{N}}$. Cette suite de réduction est propre infinie, donc par le lemme de traduction 3.32, on peut en extraire une suite infinie de β-réductions commençant par $x(N_0)$. De plus, par le lemme de traduction 3.33 (i), $(x(N_i))_{i \in \mathbb{N}}$ est \mathcal{I}-typable. Cependant, ce terme admet une suite infinie de β-réductions, ce qui contredit la normalisation forte de \mathcal{I}. Donc si \mathcal{I} est fortement normalisant, alors $\mathfrak{I}x$ l'est aussi.

Donc $\mathfrak{I}x$ est fortement normalisant si, et seulement si, \mathcal{I} l'est. Q.E.D.

Avec ce théorème, sachant que les systèmes de types purs implicites du λ-cube sont fortement normalisants, on peut déduire le corollaire suivant :

Corollaire 3.37 : Normalisation forte pour le λ-cube explicite

Les systèmes de types purs explicites du λ-cube sont fortement normalisants.

Conclusion

L'on a étudié ici une extension des systèmes de types purs à un calcul à substitutions explicites, pour laquelle on a délibérément choisi d'adopter un calcul à noms (et non à indices de De Bruijn) à la syntaxe simple, à savoir λx (ou λx^\to). L'intérêt de cette extension est double. D'une part, sur le plan du calcul, la substitution devant être implantée d'une façon ou d'une autre, il est plus raisonnable de la présenter comme une opération de première classe interne au calcul que de lui conserver un statut de méta-opération. D'autre part, sur le plan de la logique, la substitution correspond à une coupure, qui manque aux systèmes de types purs traditionnels.

Au contraire des travaux effectués précédemment (on pourra en particulier se reporter aux travaux de R. Bloo [5, 7]), l'approche présentée ici a l'intérêt de conserver la propriété de réduction du sujet au moyen de l'introduction d'une nouvelle figure d'inférence d'expansion, ce qui résout la question que pose R. Bloo dans [5] de savoir s'il est possible de conserver cette propriété autrement qu'au moyen de l'introduction de définitions ou de structures similaires dans les contextes de typages – cf. [7], et également [23]. En outre, comme on l'a mentionné, cette figure d'expansion semble présenter un grand intérêt dans le cadre de la synthèse de type.

Enfin, les travaux ici présentés isolent un problème particulier qu'est le problème des sortes terminales. En effet, habituellement, il est nécessaire d'avoir dans un système de types purs des sortes terminales, i.e. non typables, afin de maintenir la cohérence du système.
Toutefois, comme on l’a déjà mentionné – cf. e.g. paragraphes II.2.2 et II.2.3 – autant, dans le cas implicite, ces sortes ne posent pas problème, car si un terme a un type équivalent à une telle sorte, il lui est égal – cf. proposition 3.29 –, autant, dans le cas explicite, le problème se pose avec une acuité particulière. On traite en fait dans les deux cas de deux façons différentes le même problème, à savoir qu’il est impossible d’introduire un type de toutes les sortes. Dans le cas implicite, on traite cela en constatant que ce n’est pas grave, car la proposition 3.29 assure que l’on aura pas besoin d’identifier les sortes en question comme des types corrects. Dans le cas explicite, on introduit une nouvelle sorte, qui sert à repérer les sortes, mais on en fait un prédicat particulier ne pouvant intervenir dans aucune règle du système et induisant une notion restreinte de correction ; un type typable par une sorte est correct pour une introduction dans un contexte ou pour une conversion, tandis qu’un type typable par ce nouveau prédicat particulier est correct uniquement pour une conversion. R. Bloo, dans [5], résolvait ce problème en maintenant quelque peu artificiellement la situation du cas implicite introduisant des substitutions explicites uniquement en sujet de jugement, et en laissant des substitutions implicites en prédicat – il mentionnait d’ailleurs les difficultés que pose l’introduction en prédicat de substitutions explicites. On a en fait dans tous ces cas la même distinction : les sortes terminales sont des types corrects pour un jugement mais ne peuvent pas être introduites comme types dans un contexte. Simplement, les substitutions explicites requièrent un mécanisme de reconnaissance plus élaboré.

Une piste intéressante restant à explorer est l’étude de la distinction à faire entre les deux notions de correction des types que l’on a discutées ici. Un autre axe semblant prometteur est le fait que, comme on l’a déjà fait remarquer, la règle d’expansion présente un intérêt particulier dans le cadre de la synthèse de type en répondant à des besoins spécifiques des calculs à substitutions explicites en la matière, et il serait donc intéressant de se pencher sur le problème de la synthèse de type dans ce cadre.
Bibliographie

