Systèmes de types purs et séquents classique.
Romain Kervac

To cite this version:
Romain Kervac. Systèmes de types purs et séquents classique.. [Rapport de recherche] LIP RR-2006-36, Laboratoire de l'informatique du parallélisme. 2006, 2+27p. hal-02102422

HAL Id: hal-02102422
https://hal-lara.archives-ouvertes.fr/hal-02102422
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pure Type Systems
and Classical Sequents

Romain Kervarc
Oct 2006

Research Report N° 2006-36
Pure Type Systems
and Classical Sequents

Romain Kervarc

Oct 2006

Abstract
The $\lambda\mu\nu$-calculus was designed by P.-L. Curien and H. Herbelin. One of its interest is that its terms can be interpreted as derivations in the classical sequent calculus. One of the its lacks is the fact that it has only simple types. Our purpose here is to extend the calculus to higher-order types, and especially those of the calculus of constructions, a calculus designed by T. Coquand and G. Huet in order to provide a very general typed language for proof assistants based on λ-calculus. In order to do this, we place ourselves in the framework of pure type systems, which are a very general formalism allowing to represent many interesting type systems, among which those of Barendregt's λ-cube which is a hierarchical presentation of the calculus of constructions. We show that our systems satisfy some fundamental properties, such as subject reduction, and strong normalisation on the λ-cube.

Keywords: λ-calculus, $\lambda\mu\nu$-calculus, classical logic, sequent calculus, pure type systems, higher order types, calculus of constructions, λ-cube, subject reduction, strong normalisation.

Résumé
Le $\lambda\mu\nu$-calcul a été introduit par P.-L. Curien et H. Herbelin. L'un de ses intérêts est que ses termes peuvent être interprétés comme des dérivations dans le calcul des séquents classiques. L'un de ses défauts est qu'il n'a que des types simples. Nous nous proposons ici d'étendre ce calcul à des types d'ordre supérieur, et particulièrement à ceux du calcul des constructions, un calcul introduit par T. Coquand et G. Huet pour fournir un langage typé très général pour les assistants à la démonstration basés sur le λ-calcul. Pour faire cela, nous nous plaçons dans le cadre des systèmes de types purs, qui sont un formalisme très général permettant de représenter de nombreux systèmes de types intéressants, parmi lesquels ceux du λ-cube de Barendregt, qui est une présentation hiérarchique du calcul des constructions. Nous montrons que nos systèmes satisfont des propriétés fondamentales comme la réduction du sujet et la normalisation forte sur le λ-cube.

Mots-clés: λ-calcul, $\lambda\mu\nu$-calcul, logique classique, calcul des séquents, systèmes de types purs, types d'ordre supérieur, calcul des constructions, λ-cube, réduction du sujet, normalisation forte.
Contents

Introduction 1

I. Le λµι-calcul
 1. Historique 6
 2. Syntaxe et réduction 6
 3. Séquents et typage 9

II. Systèmes de types purs pour le λµι-calcul 11
 1. Syntaxe et réduction 12
 2. Typage 17
 3. Correction des types 19

III. Propriétés remarquables 20
 1. Lemmes d’inférence de types 20
 2. Réduction du sujet 22
 3. Normalisation forte pour le λ-cube 23

Conclusion 25

Bibliographie 26
Introduction

S. Berardi et J. Terlouw ont, indépendamment l'un de l'autre, fourni dans leurs travaux en 1989 des méthodes générales permettant d'engendrer de manière systématique des systèmes de types à la Church pour le \(\lambda\)-calcul. Ces méthodes ont abouti aux *systèmes de types purs*, qui sont un formalisme simple et élégant permettant de décrire de nombreux systèmes de types, parmi lesquels en particulier ceux dits du \(\lambda\)-cube, cette décomposition hiérarchique du calcul des constructions que l'on vient de présenter. Comme on l'a mentionné, cette décomposition a été introduite par H. Barendregt, lequel a donné ultérieurement dans [2] une présentation formelle et systématique des systèmes de types purs, ainsi que de leurs principales propriétés.

Syntaxe et sémantique

De manière formelle, les systèmes de types purs sont définis comme suit :

Définition 0.1 : système de types pur ; sorte, axiome, règle

Par *système de types pur*, on entend un triplet \(\mathcal{I} = (S, \mathcal{A}, \mathcal{R})\) vérifiant que \(\mathcal{A} \subseteq S^2\) et \(\mathcal{R} \subseteq S^3\).

Les éléments de \(S, \mathcal{A}\) et \(\mathcal{R}\) sont respectivement appelés *sortes*, *axiomes* et *règles* du système de types purs \(\mathcal{I}\).

Naturellement, à cette définition formelle, qui constitue en quelque sorte une spécification du système de types, vient s'ajouter un calcul sous-jacent, basé sur le \(\lambda\)-calcul typé à la Church et défini comme suit :

Définition 0.2 : \(\mathcal{I}\)-expressions

Soient \(\mathcal{I} = (S, \mathcal{A}, \mathcal{R})\) un système de types purs, et \(\mathcal{U}\) un ensemble infini de variables.

On définit alors l'ensemble \(E(\mathcal{I})\) des \(\mathcal{I}\)-expressions par la grammaire algébrique suivante :

\[
E ::= \sigma \quad \text{(sorte)} \\
| \quad x \quad \text{(variable)} \\
| \quad E E \quad \text{(application)} \\
| \quad \lambda x: E. E \quad \text{(abstraction)} \\
| \quad \Pi x: E. E \quad \text{(quantification)}
\]

où les symboles \(\sigma\) et \(x\) décrivent respectivement les ensembles des sortes et des variables \((\sigma \in S; x \in \mathcal{U})\).

Sur ces termes, on définit de façon usuelle les notions de variables libres et liées :

Définition 0.3 : variables libres/liées pour les systèmes de types purs implicites

Soit \(\mathcal{I}\) un système de types pur. Soit \(M\) une \(\mathcal{I}\)-expression.

On définit l'ensemble \(fv(M)\) des *variables libres* de \(M\) inductivement comme suit :

- \(fv(\sigma) = \emptyset\);
- \(fv(x) = \{x\}\);
- \(fv(\Pi x: L. M) = (fv(M) \setminus \{x\}) \cup fv(L)\);
- \(fv(\lambda x: L. M) = (fv(M) \setminus \{x\}) \cup fv(L)\);
- \(fv(M N) = fv(M) \cup fv(N)\).
De façon analogue, on définit l’ensemble $bv(M)$ des variables liées de M comme suit :

- $bv(o) = \emptyset$;
- $bv(x) = \emptyset$;
- $bv(\Pi x : L . M) = \{x\} \cup bv(L) \cup bv(M)$;
- $bv(\lambda x : L . M) = \{x\} \cup bv(L) \cup bv(M)$;
- $bv(M N) = bv(M) \cup bv(N)$.

On définit également la classique α-conversion :

Définition 0.4 : α-conversion

Soit \mathcal{I} un système de types purs. On appelle α-conversion la relation \equiv_α définie sur $E(\mathcal{I})$ par :

- si $M = x \in \mathcal{U}$, $M \equiv_\alpha N$ si $N = x$;
- si $M = \sigma \in \mathcal{S}$, $M \equiv_\alpha N$ si $N = \sigma$;
- si $M = \lambda x : A . P$, $M \equiv_\alpha N$ si $N = \lambda y : B . R$, avec $A \equiv_\alpha B$ et $P[x:=z] \equiv_\alpha R[y:=z]$ pour tout z sauf un nombre fini ;
- si $M = \Pi x : A . P$, $M \equiv_\alpha N$ si $N = \lambda y : B . R$, avec $A \equiv_\alpha B$ et $P[x:=z] \equiv_\alpha R[y:=z]$ pour tout z sauf un nombre fini ;
- si $M = PQ$, $M \equiv_\alpha N$ si $N = RS$ avec $P \equiv_\alpha R$ et $Q \equiv_\alpha S$.

Il est aisé de vérifier que \equiv_α est une relation de congruence sur les \mathcal{I}-expressions.

L’α-conversion étant une congruence, on peut considérer les expressions à α-conversion près. On raisonne alors non plus sur les expressions, mais sur leurs classes d’équivalence modulo α-conversion, que l’on appelle les termes du calcul :

Définition 0.5 : $\lambda \mathcal{I}$-calcul

On considère l’ensemble quotient $\Lambda \mathcal{I} = E(\mathcal{I})/\equiv_\alpha$, dont les éléments sont appelés *termes du $\lambda \mathcal{I}$-calcul*. L’α-conversion \equiv_α étant une congruence, les opérations de $E(\mathcal{I})$ (*i.e.* l’abstraction, l’application, la quantification) s’étendent canoniquement aux termes de $\Lambda \mathcal{I}$.

Dans la suite, on adoptera pour le choix des représentants des termes du calcul la *convention de Barendregt*, qui stipule qu’une variable liée – dont on peut toujours librement changer le nom par α-conversion – doit avoir un nom distinct de toute autre variable. (En particulier, cela interdit de faire apparaître une variable à la fois libre et liée dans un terme, et oblige de donner à deux variables liées distinctes des noms distincts.)

On dote ensuite le calcul sous-jacent à un système de type pur ainsi défini d’une sémantique opérationnelle par l’adjonction de la relation de β-réduction du λ-calcul typé à la Church :

Définition 0.6 : β-réduction, β-conversion

Soit \mathcal{I} un système de types purs. La β-réduction \rightarrow_β est la relation de réduction sur les \mathcal{I}-expressions induite par la règle :

\[
(\beta) \quad (\lambda x : A . B) C \quad \rightarrow_\beta B[x:=C]
\]
où $[x:=C]$ est une substitution implicite – i.e. $B[x:=C]$ désigne l’expression B où chaque occurrence libre de x est remplacée par une sous-expression C. La β-conversion \equiv_β est la clôture réflexive, symétrique et transitive de \vdash_β.

Les notions supra constituent l’aspect calculatoire des systèmes de types purs. Sur cela vient se greffer un aspect logique, par le biais de jugements de typage, qui peuvent être interprétés via la correspondance de Curry-Howard comme des assertions logiques.

Le typage dans les systèmes de types purs s’effectue par le moyen suivant :

$$
\begin{align*}
(\sigma, \tau) & \in \mathcal{A} \\
\vdash \sigma : \tau & \quad \text{(axiome)} \\
\Gamma & \vdash A : \rho \\
\Gamma, x : A & \vdash B : \sigma \\
(\rho, \sigma, \tau) & \in \mathcal{R} \\
\Gamma & \vdash \Pi x : A. B : \tau \\
\Gamma & \vdash A : \sigma \\
x & \notin \operatorname{dom}(\Gamma) \\
\Gamma, x : A & \vdash x : A \\
\Gamma & \vdash A : B \\
\Gamma & \vdash C : \sigma \\
x & \notin \operatorname{dom}(\Gamma) \\
\Gamma, x : C & \vdash A : B \\
\Gamma & \vdash (\Pi x : A. B) : \sigma \\
\Gamma, x : A & \vdash M : B \\
\Gamma & \vdash \lambda x : A. M : (\Pi x : A. B) \\
\Gamma & \vdash M : (\Pi x : A. B) \\
\Gamma & \vdash N : A \\
\Gamma & \vdash MN : B[x := N] \\
(\Pi - \text{introduction}) \\
\Gamma & \vdash M : A \\
\Gamma & \vdash B : \sigma \\
A & \equiv_\beta B \\
\Gamma & \vdash M : B \\
(\text{conversion})
\end{align*}
$$

Table 1: Figures d’influence de type valides pour les systèmes de types purs (implicites)

Définition 0.7: assertion, contexte, jugement (valide) de typage

Soit Σ un système de types purs.
On appelle assertion de typage un couple de Σ-expressions noté $M : N$. Dans un tel couple, le premier élément est appelé sujet de l’assertion et le second, prédicat de l’assertion.
On appelle contexte de typage une suite finie1 d’assertions de types dont les sujets sont des variables distinctes. L’ensemble de ces variables est appelé le domaine du contexte, et leur suite ordonnée, son support. Le contexte vide est noté $[]$, et la concaténation de contextes de domaines disjoints est notée par une virgule.
On appelle jugement de typage une expression de la forme $\Gamma \vdash \Sigma M : N$, où Γ est un contexte de typage et $M : N$ une assertion de typage. Un jugement est dit valide s’il dérive de l’application des figures2 d’influence présentées dans la table 1 supra. L’indice Σ peut être omis s’il n’y a pas d’ambiguïté.

1et non un ensemble : le fait que termes et types ne soient pas des catégories syntaxiques distinctes engendre des dépendances entre variables, ce qui impose que les contextes de typage soient ordonnés

2S’inspirant de la dénomination de Gentzen Schulffigure, on parle de figures plutôt que de règles, ce dernier terme étant réservé aux règles d’un système de types pur, i.e. aux éléments de \mathcal{R} dans le système $\Sigma = (\mathcal{S}, \mathcal{A}, \mathcal{R})$.

Définition 0.8: contexte bien formé
Un contexte $\Gamma = [x_1 : A_1, \ldots, x_n : A_n]$ est dit bien formé si pour tout k de $[1, n]$, il existe une sorte σ_k telle que $[x_1 : A_1, \ldots, x_{k-1} : A_{k-1}] \vdash A_k : \sigma_k$.

Propriétés

On va maintenant rappeler diverses propriétés générales des systèmes de types purs, des- quelles on ne donnera pas de démonstrations, car celles-ci peuvent être trouvées dans [2], auquel pourra se référer le lecteur désireux de les consulter.

Lemme 0.1: Initialisation pour les systèmes de types purs implicites
Soient Γ un contexte bien formé et $\Sigma = (\mathcal{S}, \mathcal{A}, \mathcal{R})$ un système de types pur.

(i) Si $(\sigma : \tau) \in \mathcal{A}$, alors $\Gamma \vdash \sigma : \tau$.

(ii) Si $(u : V) \in \Gamma$, alors $\Gamma \vdash u : V$.

Lemme 0.2: Engendrement pour les systèmes de types purs implicites
Soient Ξ un contexte et M, T deux $\lambda \Xi$-termes tels que $\Xi \vdash M : T$. Alors:

(i) si $M = \sigma \in \mathcal{S}$ alors
 \[\exists \tau \in \mathcal{S} (\mathcal{T} \equiv_{\beta} \tau \land \sigma : \tau) \in \mathcal{A} \];

(ii) si $M = x \in \mathcal{U}$ alors
 \[\exists \tau \in \mathcal{S} \exists U \in \Lambda \Xi (\Xi \vdash U : \tau \land (x : U) \in \Xi \land T \equiv_{\beta} U) \];

(iii) si $M = \Pi x : A. B$ alors
 \[\exists (\rho, \sigma, \tau) \in \mathcal{R} (\Xi \vdash A : \rho \land \Xi, x : A : B : \sigma \land T \equiv_{\beta} \tau) \];

(iv) si $M = \lambda x : A. B$ alors
 \[\exists \tau \in \mathcal{S} \exists C \in \Lambda \Xi (\Xi \vdash (\Pi x : A.C) : \tau \land \Xi, x : A \vdash B : C \land T \equiv_{\beta} (\Pi x : A.C) \);.

(v) si $M = A B$ alors
 \[\exists C, D \in \Lambda \Xi (\Xi \vdash A : (\Pi x : C.D) \land \Xi \vdash B : C \land T \equiv_{\beta} D(x := B)) \].

Lemme 0.3: Substitution pour les systèmes de types purs implicites
Soit Ξ un système de types purs. Soient $\Gamma, x : A, \Delta \vdash \Xi M : B$ un jugement de typage valide et N un Ξ-terme tels que $\Gamma \vdash \Xi N : A$ soit un jugement de typage valide. Alors le jugement de typage $\Gamma, \Delta[x := N] \vdash \Xi M[x := N] : B[x := N]$ est valide.

Théorème 0.4: Correction pour les systèmes de types purs implicites
Soit Ξ un système de types purs. Soient Γ un contexte de typage et A, B deux Ξ-termes tels que le jugement de typage $\Gamma \vdash \Xi A : B$ soit valide. Alors B est une sorte ou il existe une sorte σ telle que $\Gamma \vdash \Xi B : \sigma$ soit valide.

Théorème 0.5: Réduction du sujet pour les systèmes de types purs implicites
Soit Ξ un système de types purs.
Soient Γ un contexte de typage et A, A', B trois Ξ-termes tels que le jugement de typage $\Gamma \vdash \Xi A : B$ soit valide et $A \overset{\beta}{\rightarrow} A'$.
Alors le jugement de typage $\Gamma \vdash \Xi A' : B$ est valide.
Construction du λ-cube en systèmes de types purs

Dans ce formalisme, le λ-cube peut se construire de façon systématique et élégante. Pour ce faire, on considère une classe particulière de systèmes de types purs, dits élémentaires :

Définition 0.9 : système de types pur élémentaire (complet)

Étant donné un ensemble non vide de sorts S, on appelle règle élémentaire tout triplet de la forme (σ, τ, τ), ce que l’on dénote en abrégé par $[\sigma, \tau]$. L'ensemble des règles élémentaires formées avec les éléments de S se note R^c_S.

Un système de types pur $\exists = (S, \mathcal{A}, \mathcal{R})$ est dit élémentaire si $\mathcal{R} \subseteq R^c_S$ et élémentaire complet si $\mathcal{R} = R^c_S$.

Le système de types purs correspondant au λ-calcul simplement typé est le système élémentaire suivant : $\lambda \rightarrow = (\{*, \Box\}, \{*, \Box\}, \{[, *, *]\})$.

Les systèmes de types du λ-cube sont alors définis simplement comme les systèmes élémentaires prolongeant $\lambda \rightarrow$, i.e. les systèmes qui ont mêmes sorts et axiome que $\lambda \rightarrow$ et dont les règles sont élémentaires et contiennent $[, *, *]$.

Suivant que l’on ajoute l’une des trois autres règles élémentaires, on parcourt alors une arête dans le cube : vers le haut, on ajoute $[\Box, *]$; vers la droite, $[*, \Box]$; et vers le fond, $[\Box, \Box]$.

De plus, on remarque que le sommet du λ-cube, le calcul des constructions, correspond au système élémentaire complet prolongeant $\lambda \rightarrow$, dont la spécification formelle est $\lambda C = (\{*, \Box\}, \{*, \Box\}, R^c_{\Box, \Box})$.

![Diagram of the λ-cube of Barendregt](image)

Figure 1: Le λ-cube de Barendregt

On voit ici à quel point le formalisme des systèmes de types purs est adapté à la construction du λ-cube, en particulier lorsque l’on s’intéresse d’un peu plus près à la spécification des systèmes du λ-cube.

Les systèmes comportent deux sorts, $*$ et \Box, qui caractérisent respectivement les types d’expressions à valeur de termes et les types d’expressions à valeur de type, ce que confirme l’axiome $* : \Box$, qui dit simplement qu’$*$, sorte typant les types d’expression à valeur de termes, est elle-même subséquemment un type d’expressions à valeurs de types, donc typable par \Box.

Outre les résultats présentés précédemment, qui étaient satisfaits en toute généralité pour tout système de types pur. On va maintenant donner des résultats plus particuliers, qui seraient faux en général, mais sont vrais dans le cas particulier des systèmes du λ-cube.
Définition 0.10 : *normalisation forte*

Un système de types pur Σ est dit fortement normalisant s'il vérifie la propriété suivante : soient Γ un contexte de typage et A, B deux Σ-termes tels que le jugement de typage $\Gamma \vdash A : B$ soit valide. Alors A et B n'admettent pas de chaîne infinie de β-réduction.

On peut remarquer que, du fait du théorème de correction des types, cette définition est équivalente à une définition où l'on exige simplement la normalisation forte de sujet du jugement, celle du prédicat provenant du fait qu'il est une sorte (donc un terme β-irréductibles), soit lui-même le sujet d'un jugement de correction.

Théorème 0.6 : Normalisation forte dans les s.t.p. implicites du λ-cube

Les systèmes de types purs du λ-cube ($\lambda \rightarrow$, $\lambda \omega$, $\lambda 2$, λP, $\lambda P2$, $\lambda P\omega$, $\lambda P\omega$) sont fortement normalisants.

I. Le $\bar{\lambda}\mu\bar{\mu}$-calcul

1. Historique

La problématique générale dans laquelle se place la correspondance de Curry-Howard-(De Bruijn), que l'on a déjà présentée au paragraphe 2.1 du chapitre I, a été à son origine développée dans le cadre de la logique intuitionniste. Toutefois, l'observation que certaines tautologies de la logique classique évoquent le typage de certains opérateurs de contrôle conduisit T. Griffin en 1990 dans [5] à entamer l'extension de cette correspondance à la logique classique. L'une des pistes les plus prometteuses dans cette optique fut le $\bar{\lambda}\mu$-calcul de M. Parigot (cf. en particulier [12]). Le système de types associé à ce calcul est basé sur un formalisme de déduction naturelle pour la logique classique.

Une approche alternative, qui est celle que l'on va appliquer ici, est celle du $\bar{\lambda}\mu\bar{\mu}$-calcul, introduit dans [3] en 2000 par P.-L. Curien et H. Herbelin, dont les termes représentent des dérivations dans un calcul de séquent, tandis que la réduction sur ces termes représentent l'élimination des coupures. L'un des avantages de cette approche par le calcul des séquents est sa symétrie intrinsèque, qui peut être mise en parallèle avec la symétrie inhérente de la logique, et spécialement de la logique classique.

Dans [3], le $\bar{\lambda}\mu\bar{\mu}$-calcul est introduit avec un système de types simples, et ses versions en appel par valeur et en appel par nom sont encodées en λ-calcul simplement typé via une traduction CPS – ce qui montre en particulier la forte normalisation de ce système de types.

Le $\bar{\lambda}\mu\bar{\mu}$-calcul a par ailleurs été enrichi en calcul à substitutions explicites. On pourra en particulier se reporter à l'article [13] d'E. Polonovski, où celui-ci étudie la forte normalisation d'un $\bar{\lambda}\mu$-calcul à substitutions explicites pour la réduction sans restriction. L'une des importantes difficultés posées par ce problème est que cette réduction n'est pas confluente, du fait d'une paire critique. La méthode exposée dans [13] fait usage d'une notion de « candidats de symétries », trouvant son origine dans l'article [1] de F. Barbanera et S. Berardi.

Par ailleurs, dans l'important article [4] de D. Dougherty, S. Ghilezan et P. Lescanne, on trouve une étude des propriétés computationnelles du $\bar{\lambda}\mu$-calcul non typé, et en particulier une caractérisation les termes fortement normalisants (en appel par valeur ou par nom) au moyen d'un système de types à intersection et union, sous forme d'un calcul de séquents analogue à celui des types simples définis dans [3].
2. Syntaxe et réduction

Les termes du $\lambda\mu\tilde{\mu}$-calcul sont définis comme suit :

Définition 1.11 : $\lambda\mu\tilde{\mu}$-calcul ; appelsants, appelés, capsules

Soient \mathcal{X} et \mathcal{V} deux ensembles infinis dénombrables de variables appelées respectivement variables d'appelant et variables d'appelé. On définit alors trois ensembles d'expressions au moyen de la grammaire algébrique suivante :

$$
R ::= x \quad \text{(variable d'appelant)} \\
| \lambda x.R \quad \text{(λ-abstraction)} \\
| \mu x.C \quad \text{(μ-abstraction)} \\
$$

$$
E ::= \alpha \quad \text{(variable d'appelé)} \\
| R \cdot E \quad \text{(empilement)} \\
| \tilde{\mu} x.C \quad \text{($\tilde{\mu}$-abstraction)} \\
$$

$$
C ::= (R \parallel E) \quad \text{(capsule)}
$$

où les trois principaux symboles décrivent chacun une espèce d'expression :

- R décrit les λ-appelants ;
- E décrit les $\tilde{\mu}$-appelés ;
- C décrit les $\tilde{\mu}$-capsules.

On observe qu'il existe deux espèces différentes de variables : les variables dites respectivement d'appelant, qui décrivent l'ensemble \mathcal{X}, et d'appelé, qui décrivent l'ensemble \mathcal{V}. On observera, dans toute cette partie, la convention suivante : les variables d'appelant sont dénotées par des lettres latines minuscules, tandis que les variables d'appelé sont dénotées par des lettres grecques minuscules.

On peut naturellement définir canoniquement les notions de variables libres et liées de la manière suivante :

Définition 1.12 : variables libres/liées pour $\lambda\mu\tilde{\mu}$

On définit les variables d'appelant (respectivement d'appelé) libres ou liées d'une expression comme appartenant à une partie de \mathcal{X} (respectivement \mathcal{V}) définie par induction sur l'expression.

Les ensembles des variables d'appelant libres, des variables d'appelant liées, des variables d'appelé libres, des variables d'appelé liées de M sont respectivement dénotées par $\text{fv}_\mathcal{X}(M)$, $\text{bv}_\mathcal{X}(M)$, $\text{fv}_\mathcal{V}(M)$, $\text{bv}_\mathcal{V}(M)$.

Les variables d'appelant libres sont définies comme suit :

- $fv_\mathcal{X}(x) = \{x\}$;
- $fv_\mathcal{X}(\lambda x.R) = fv_\mathcal{X}(R) \setminus \{x\}$;
- $fv_\mathcal{X}(\mu x.C) = fv_\mathcal{X}(C)$;
- $fv_\mathcal{X}(\alpha) = \emptyset$;
\[\begin{align*}
\bullet \; & \; f_{\nu_X}(R \cdot E) = f_{\nu_X}(R) \cup f_{\nu_X}(E) ; \\
\bullet \; & \; f_{\nu_X}(\bar{\mu}x.C) = f_{\nu_X}(C) \setminus \{x\} ;
\end{align*} \]

et les variables d’appelant liées comme suit :

\[\begin{align*}
\bullet \; & \; b_{\nu_X}(x) = \emptyset ; \\
\bullet \; & \; b_{\nu_X}(\lambda x. R) = b_{\nu_X}(R) \cup \{x\} ; \\
\bullet \; & \; b_{\nu_X}(\mu x. C) = b_{\nu_X}(C) ; \\
\bullet \; & \; b_{\nu_X}(\alpha) = \emptyset ; \\
\bullet \; & \; b_{\nu_X}(R \cdot E) = b_{\nu_X}(R) \cup b_{\nu_X}(E) ;
\end{align*} \]

Les variables d’appelant libres sont définies comme suit :

\[\begin{align*}
\bullet \; & \; f_{\nu_V}(x) = \emptyset ; \\
\bullet \; & \; f_{\nu_V}(\lambda x. R) = f_{\nu_V}(R) ; \\
\bullet \; & \; f_{\nu_V}(\mu x. C) = f_{\nu_V}(C) \setminus \{x\} ; \\
\bullet \; & \; f_{\nu_V}(\alpha) = \{x\} ; \\
\bullet \; & \; f_{\nu_V}(R \cdot E) = f_{\nu_V}(R) \cup f_{\nu_V}(E) ; \\
\bullet \; & \; f_{\nu_V}(\bar{\mu}x.C) = f_{\nu_V}(C) ; \\
\bullet \; & \; f_{\nu_V}(\bar{\mu}x.C) = f_{\nu_V}(C) ;
\end{align*} \]

et les variables d’appelé liées comme suit :

\[\begin{align*}
\bullet \; & \; b_{\nu_V}(x) = \emptyset ; \\
\bullet \; & \; b_{\nu_V}(\lambda x. R) = b_{\nu_V}(R) ; \\
\bullet \; & \; b_{\nu_V}(\mu x. C) = b_{\nu_V}(C) \cup \{x\} ; \\
\bullet \; & \; b_{\nu_V}(\alpha) = \emptyset ; \\
\bullet \; & \; b_{\nu_V}(R \cdot E) = b_{\nu_V}(R) \cup b_{\nu_V}(E) ;
\end{align*} \]

\[\begin{align*}
\bullet \; & \; b_{\nu_V}(\mu x. C) = b_{\nu_V}(C) ; \\
\bullet \; & \; b_{\nu_V}(\bar{\mu}x.C) = b_{\nu_V}(C) ; \\
\bullet \; & \; b_{\nu_V}(\bar{\mu}x.C) = b_{\nu_V}(C) .
\end{align*} \]
Naturellement, à cette notion de variable libre ou liée est associée une notion d’\(\alpha\)-conversion, qui se définit de façon usuelle. De nouveau, on peut considérer comme termes du calcul les éléments du quotient par l’\(\alpha\)-conversion, auxquels s’étendent canoniquement toutes les opérations de \(\lambda\mu\bar{\mu}\). On applique comme précédemment la convention de Barendregt pour le choix des représentants.

Parmi tous les termes exposés ci-dessus, les expressions essentielles de \(\lambda\mu\bar{\mu}\), \textit{i.e.} celles sur lesquelles se font les calculs, sont les capsules. Leur sémantique opérationnelle est donnée par la définition suivante :

Définition 1.13 : \textit{réduction pour} \(\lambda\mu\bar{\mu}\)

La réduction, notée \(\rightarrow\), est définie comme la clôture contextuelle de l’union des trois axiomes de réduction suivants :

\[
\begin{align*}
(\lambda) & \quad \langle \lambda x.M \parallel N \cdot E \rangle \rightarrow \langle M[N/x] \parallel E \rangle \\
(\mu) & \quad \langle \mu x.C \parallel E \rangle \rightarrow C[E/x] \\
(\bar{\mu}) & \quad \langle R \parallel \bar{x}.C \rangle \rightarrow C[R/x]
\end{align*}
\]

Ces trois règles correspondent aux trois différentes actions possibles au sein d’une capsule. Intuitivement, les deux éléments d’une capsule ont chacune leur fonction propre : l’appelant peut être vu comme un processus allant chercher des données dans l’appelé, que l’on peut voir comme une pile d’éléments – c’est là ce que l’on voit avec la règle (\(\lambda\)). Par ailleurs, chacun de l’appelant et de l’appelé peut demander à l’autre de prendre la place de l’une de ses variables d’espèce correspondante – c’est là la signification des règles (\(\mu\)) et (\(\bar{\mu}\)).

On constate que la notion de réduction ainsi obtenue n’est pas confluente. En effet, si l’on applique les deux dernières règles à la capsule \(\langle \mu \xi.C_1 \parallel \bar{x}.C_2 \rangle\), on obtient la paire critique \((C[\bar{x}.C_2/\xi], C[\mu \xi.C_1/x])\), qui n’est pas joignable, comme on peut le voir sur le simple contre-exemple suivant : on considère la capsule \(C = \langle \mu \xi.(a \parallel a) \parallel \bar{x}.(b \parallel b) \rangle\), où \(a, b\) (respectivement \(a, b\)) sont des variables d’appelant (respectivement d’appelés) distinctes. On observe d’une part que \(C \rightarrow (a \parallel a)\) et d’autre part que \(C \rightarrow (b \parallel b)\). Ces deux capsules étant de toute évidence irréductibles et distinctes, donc injoignables, il est impossible de clore le diagramme.

Pour traiter ce problème de confluence, on peut décider de donner à l’une des règles (\(\mu\)) ou (\(\bar{\mu}\)) la priorité sur l’autre, ce qui revient en fait à choisir une stratégie d’évaluation des capsules. Si l’on donne la priorité à (\(\mu\)), on obtient une stratégie d’appel par valeur (\textit{call by value}), tandis que si l’on donne la priorité à (\(\bar{\mu}\)), on obtient une stratégie d’appel par nom (\textit{call by name}).

3. Séquents et typage

Les jugements de type pour le \(\lambda\mu\bar{\mu}\)-calcul nécessitent une présentation particulière, car ils sont assez différents des jugements usuels. Il s’agit en fait de \textit{séquents à formules actives}, que l’on va définir ici de manière plus ou moins formelle.

Soient un ensemble \(\Phi\) de formules définies sur une signature donnée. On appelle \textit{séquent} un couple de parties de \(\Phi\) noté \(\Gamma \vdash \Delta\). Un séquent s’interprète comme suit : la conjonction des formules de \(\Gamma\) implique la disjonction des formules de \(\Delta\). Les séquents se dérivent au moyen...
d’axiomes, d’introductions gauches et droites pour chaque connecteur de la signature des formules, et de coupures. On donne ici comme exemple dans la table 2 les figures de dérivation du calcul des séquents sur les variables propositionnels et l’implication \rightarrow :

$$\Gamma, \alpha \vdash \alpha, \Delta \quad \text{(axiome)}$$

$$\Gamma \vdash \alpha, \Delta \quad \Gamma, \beta \vdash \Delta \quad \text{(\rightarrow-G)}$$

$$\Gamma \vdash \alpha \rightarrow \beta \vdash \Delta \quad \Gamma \vdash \alpha \rightarrow \beta, \Delta \quad \text{(\rightarrow-D)}$$

$$\Gamma, \alpha, \Delta \quad \Gamma, \alpha \vdash \Delta \quad \text{(coupure)}$$

Table 2: Calcul des séquents sur la signature $\{\rightarrow\}$

On remarque dans ces figures de dérivation qu’une formule est en général distinguée : la formule où a lieu l’introduction du connecteur. Si l’on considère maintenant le calcul des séquents dans une perspective de traitement automatique, il semble important de repérer cette formule, d’où l’idée d’introduire une notion de formule active, que l’on va définir ici.

Êtant donné l’ensemble Φ de formules, on construit l’ensemble $\tilde{\Phi} = \Phi \times \{0, 1\}$, dont les éléments sont de deux espèces : les formules inactives, de la forme $(\varphi, 0)$ et les formules actives, de la forme $(\varphi, 1)$. Plutôt que d’écrire ces couples, on adopte la convention d’écriture suivante :

Convention :
Les formules inactives sont écrites normalement, tandis que les formules actives sont indiquées par l’emploi d’un fond grisé.

On appelle *séquent à formule active* un séquent dont les formules appartiennent à $\tilde{\Phi}$, et dont au plus une est active. Il y en a donc de trois types : sans formule active, avec une formule active à gauche, avec une formule active à droite.

L’éventuelle formule active joue un rôle particulier dans la dérivation : dans toute figure d’introduction, la formule où le connecteur a été introduit est active et dérive d’une formule active dans les prémises. En outre, la coupure fait disparaître les formules actives, et de nouvelles figures apparaissent pour faire apparaître une formule active dans un séquent n’en ayant pas. Pour poursuivre l’exemple précédent, on donne dans la table 2 les figures de dérivation du calcul des séquents à formules actives sur les variables propositionnels et l’implication \rightarrow :

Les jugements de typage du $\tilde{\lambda}\mu\tilde{\mu}$-calcul sont en fait sous la forme de tels séquents à formule active.

Définition 1.14: assertion, contexte, jugement (valide) de typage dans $\tilde{\lambda}\mu\tilde{\mu}$

On appelle contexte de typage un ensemble d’assertions de typage non actives dont les sujets sont des variables distinctes de même nature. Si ces variables sont des variables d’appelant,
On parle de contexte gauche. Si ces sont des variables d'appelé, on parle de contexte droit. Le contexte vide est noté \emptyset, et la concaténation de contextes d’un même côté dont les supports sont disjoints est notée par une virgule.

On appelle jugement de typage une expression de l’une des trois formes suivante, Γ et Δ étant respectivement un contexte gauche de typage et un contexte droit de typage :

- $\Gamma; E : A \vdash \Delta$ où E est un appelé ;
- $\Gamma \vdash R : A ; \Delta$ où R est un appelant ;
- $\text{C : } (\Gamma \vdash \Delta)$ où C est une capsule.

Un jugement est dit valide s’il dérive de l’application des figures³ d’inférence présentées dans la table 4. L’indice \exists peut être omis s’il n’y a pas d’ambiguïté.

<table>
<thead>
<tr>
<th>$\Gamma, x : A \vdash \Delta$</th>
<th>$\Gamma, \alpha : A \vdash \Delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax-D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma, x : A \vdash R : B, \Delta$</th>
<th>$\Gamma \vdash R : A, \Delta, E : B \vdash \Delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax-G</td>
<td>ax-D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma \vdash R : A, \Delta, E : A \vdash \Delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>coupure</td>
</tr>
</tbody>
</table>

Table 4: Figures d’inférence de type valides pour les types simples pour $\lambda\mu\tilde{\nu}$

II. Systèmes de types purs pour le $\lambda\mu\tilde{\nu}$-calcul

Dans cette partie, l’on va présenter dans un premier paragraphe une syntaxe du $\lambda\mu\tilde{\nu}$-calcul étendue pour les systèmes de types purs, puis, dans un deuxième paragraphe, le typage

³ On conserve encore ici cette dénomination inspirée de G. Gentzen.
pour ce système, et enfin, dans un troisième paragraphe, on exposera une notion de bonne formation et de correction des types.

1. Syntaxe et réduction

On adopte ici la présentation du $\lambda \mu \nu$-calcul donnée dans [4], qui a été présentée dans la section précédente. Naturellement, il va être nécessaire d’étendre la syntaxe pour l’adapter aux nécessités des systèmes de types purs, qui imposent que termes et types ne soient pas syntaxiquement séparables.

La définition formelle des systèmes de types purs va, une nouvelle fois, rester inchangée : par système de types pur explicite, on entend toujours une spécification du système sous la forme d’un triplet (S, A, R) de sortes, axiomes et règles, indiquant l’expressivité du système de type en précisant les espèces permises de dépendances, indépendamment du calcul sous-jacent et du système d’inférence de types qui viendront s’adoindre à cette spécification.

Le calcul susmentionné est défini comme suit :

Définition 2.15 : I-appelants, I-appelés, I-capsules

Soit $\mathcal{I} = (S, A, R)$. Soient \mathcal{X} et \mathcal{V} deux ensembles infinis dénombrables de variables appelées respectivement variables d’appelant et variables d’appelé. On définit alors trois ensembles d’expressions au moyen de la grammaire algébrique suivante :

$$
\begin{align*}
R & ::= \\
 & \quad x \quad \text{(variable d’appelant)} \\
 & \quad \lambda x : R . R \quad \text{(\Lambda-abstraction)} \\
 & \quad \mu x : C \quad \text{(\mu-abstraction)} \\
 & \quad \sigma \quad \text{(sorte)} \\
 & \quad \Pi x : R \quad \text{(II-quantification)} \\
E & ::= \\
 & \alpha \quad \text{(variable d’appelé)} \\
 & \quad R \cdot E \quad \text{(emplacement)} \\
 & \quad \mu x : C \quad \text{(\mu-abstraction)} \\
C & ::= \\
 & \langle R \parallel E \rangle \quad \text{(capsule)} \\
\end{align*}
$$

où les trois principaux symboles décrivent chacun une espèce d’expression :

- R décrit les I-appelants ;
- E décrit les I-appelés ;
- C décrit les I-capsules.

On observe la même convention que précédemment pour les variables, à savoir que les variables d’appelant sont dénotées par des lettres latines minuscules, et les variables d’appelé, par des lettres grecques minuscules. Pour éviter la confusion entre ces dernières et les sortes, qui sont également dénotées par des lettres grecques minuscules, on utilisera de préférence les deux premiers tiers de l’alphabet pour les variables et le dernier tiers pour les sortes.

On remarque divers changements par rapport au $\lambda \mu \nu$-calcul usuel. D’une part, on est passé d’un calcul à la Curry à un calcul à la Church : les λ-abstractions sont maintenant
annotées. En outre, on remarque l'adjonction au calcul de deux constructions de type appelant : les sortes et la Π-quantification.

Le choix a été fait ici, de traiter comme des appelants les constructions de types. Il aurait également été possible d'envisager de les traiter comme appelés. Le choix a été fait ici de les considérer comme des appelants car, dans les systèmes de types purs, il n'y a pas de distinction entre les variables sur lesquelles on peut effectuer une λ-abstraction et celles sur lesquelles on peut effectuer une τ-quantification, ce que l'on a souhaiter préserver ici. Ce choix sera évoqué au paragraphe suivant, avec le typage.

On introduit de façon canonique la notion de variable libre et liée comme suit :

Définition 2.16 : variables libres/liées dans les systèmes de types purs pour λμτ

On définit les variables d’appelant (respectivement d’appelé) libres ou liées d’une expression comme appartenant à une partie de X (respectivement V) définie par induction sur l’expression.

Les ensembles des variables d’appelant libres, des variables d’appelant liées, des variables d’appelé libres, des variables d’appelé liées de M sont respectivement dénotées par $fv_X(M)$, $bv_X(M)$, $fv_Y(M)$, $bv_Y(M)$.

Les variables d’appelant libres sont définies comme suit :

- $fv_X(x) = \{x\}$;
- $fv_X(\lambda x:A.R) = fv_X(A) \cup (fv_X(R) \setminus \{x\})$;
- $fv_X(\mu x.C) = fv_X(C)$;
- $fv_X(\sigma) = \emptyset$;
- $fv_X(\Pi x:A.R) = fv_X(A) \cup (fv_X(R) \setminus \{x\})$;
- $fv_X(\alpha) = \emptyset$;
- $fv_X(R \bullet E) = fv_X(R) \cup fv_X(E)$;
- $fv_X(\mu x.C) = fv_X(C) \setminus \{x\}$;
- $fv_X((R \parallel E)) = fv_X(R) \cup fv_X(E)$;

et les variables d’appelant liées comme suit :

- $bv_X(x) = \emptyset$;
- $bv_X(\lambda x:A.R) = bv_X(A) \cup bv_X(R) \cup \{x\}$;
- $bv_X(\mu x.C) = bv_X(C)$;
- $bv_X(\sigma) = \emptyset$;
- $bv_X(\Pi x:A.R) = bv_X(A) \cup bv_X(R) \cup \{x\}$;
- $bv_X(\alpha) = \emptyset$;
- $bv_X(R \bullet E) = bv_X(R) \cup bv_X(E)$;
• \(bv_X (\bar{x}.C) = bv_X (C) \cup \{x\} \);

• \(bv_X ((R \parallel E)) = bv_X (R) \cup bv_X (E). \)

Les variables d’appelant libres sont définies comme suit :

• \(\forall v_v (x) = \emptyset ; \)

• \(\forall v_v (\lambda x: A. R) = \forall v_v (A) \cup \forall v_v (R) ; \)

• \(\forall v_v (\mu x. C) = \forall v_v (C) \setminus \{x\} ; \)

• \(\forall v_v (a) = \emptyset ; \)

• \(\forall v_v (\Pi x: A. R) = \forall v_v (A) \cup \forall v_v (R) ; \)

• \(\forall v_v (x) = \{x\} ; \)

• \(\forall v_v (R \triangleright E) = \forall v_v (R) \cup \forall v_v (E) ; \)

• \(\forall v_v (\bar{x}.C) = \forall v_v (C) ; \)

• \(\forall v_v ((R \parallel E)) = \forall v_v (R) \cup \forall v_v (E) ; \)

et les variables d’appelé liées comme suit :

• \(bv_v (x) = \emptyset ; \)

• \(bv_v (\lambda x: A. R) = bv_v (A) \cup bv_v (R) ; \)

• \(bv_v (\mu x. C) = bv_v (C) \cup \{x\} ; \)

• \(bv_v (a) = \emptyset ; \)

• \(bv_v (\Pi x: A. B) = bv_v (A) \cup bv_v (B) ; \)

• \(bv_v (x) = \emptyset ; \)

• \(bv_v (R \triangleright E) = bv_v (R) \cup bv_v (E) ; \)

• \(bv_v (\bar{x}.C) = bv_v (C) ; \)

• \(bv_v ((R \parallel E)) = bv_v (R) \cup bv_v (E) . \)
Tout comme précédemment, cette définition produit une notion d’α-conversion, qui permet d’identifier les termes aux classes d’équivalences pour l’α-conversion des expressions, et l’on peut de nouveau adopter la convention de Barendregt pour le choix des représentants.

La réduction demeure inchangée par rapport au λμ-calcul usuel, hormis bien évidemment le fait que l’on est passé d’un calcul à la Curry à un calcul à la Church. Elle est donc définie comme suit :

Définition 2.17 : réduction (de tête) dans les systèmes de types purs pour λμ

La réduction, notée →, est définie comme la clôture contextuelle de l’union des trois axiomes de réduction suivants :

\[(λ) \quad (\lambda x:AM \parallel NE) \rightarrow (M[N/x] \parallel E)\]

\[(μ) \quad (μα.C \parallel E) \rightarrow C[E/α]\]

\[(μ) \quad (R \parallel ùx.C) \rightarrow C[R/x]\]

Une réduction est dite de tête si elle est un axiome, i.e. la relation de réduction de tête \(\rightarrow_1\) est définie comme l’union des trois axiomes \((λ), (μ), (μ)\).

Tout comme dans le λμ-calcul, il convient d’observer que cette réduction a une paire critique engendrée par les deux dernières règles, et que celle-ci n’est pas joiisable. La réduction \(→\) n’est donc pas conflutive. On pourra se reporter à la partie précédente à ce propos (paragraphe 1.2).

Toutefois, il est possible d’intervertir deux pas de réduction quand le rédex implicé dans le premier est inclus dans celui implicé dans le second, i.e. :

Lemme 2.7 : Intercension de rédex

Soient C et D deux capsules et \(G[\]\) un contexte tels que \(C = G[D]\). On suppose que \(C \rightarrow G[D'] \rightarrow C'\) avec \(D \rightarrow D'\).

Alors il existe \(G'[\]\) tel \(C' \rightarrow G'[D'] \rightarrow G'[D'] = C'\).

Démonstration.

Il y a différents cas possibles :

a. \(C = (\lambda x:DH[D,M \parallel NE]).\)

Alors \(C' = (M[N/x] \parallel E)\), et l’on a bien \(C \rightarrow_1 (M[N/x] \parallel E) = C'\).

b. \(C = (\lambda x:A.DM \parallel NE).\)

Alors \(C' = (M[N/x] \parallel E)\), et l’on a bien \(C \rightarrow_1 (M[D][N/x] \parallel E) \rightarrow C'\).

c. \(C = (\lambda x:AM \parallel DH[D,E]).\)

Alors \(C' = (M[H[D]/x] \parallel E)\), et l’on a bien \(C \rightarrow_1 (M[H[D]/x] \parallel E) \rightarrow C'\).

d. \(C = (\lambda x:AM \parallel [N \bullet DH[D]].\)

Alors \(C' = (M[N/x] \parallel [H[D]].)\), et l’on a bien \(C \rightarrow_1 (M[N/x] \parallel [H[D]] \rightarrow C'\).

e. \(C = (\mu x.H[D] \parallel E).\)

Alors \(C' = H[D][E/α]\), et l’on a bien \(C \rightarrow_1 H[D][E/α] \rightarrow C'\).

f. \(C = (\mu x.Z \parallel H[D]).\)

Alors \(C' = Z[H[D]'/α]\), et l’on a bien \(C \rightarrow_1 Z[H[D]/α] \rightarrow C'\).
g. \(C = \langle \mathcal{H}[D] \| \mu x . Z \rangle. \)
Alors \(C' = Z[\mathcal{H}[D']/x], \) et l'on a bien \(C \xrightarrow{\mathcal{H}} Z[\mathcal{H}[D]/x] \xrightarrow{\mu} C'. \)

h. \(C = \langle R \| \mu x . \mathcal{H}[D] \rangle. \)
Alors \(C' = \mathcal{H}[D'[R/x]], \) et l'on a bien \(C \xrightarrow{\mathcal{H}} \mathcal{H}[D][R/x] \xrightarrow{\mu} C'. \)

Dans tous les cas, l'on peut bien effectuer la réduction de tête en premier. Q.E.D.

On en déduit la possibilité de réorganiser une réduction infinie selon une stratégie allant des capsules les plus intérieures aux capsules les plus extérieures :

Corollaire 2.8 : Réduction par l'extérieur

Soit \((C_n)_{n \in \mathbb{N}} \) une chaîne de réduction infinie.

(i) Si \((C_n)_{n \in \mathbb{N}} \) ne comprend aucun pas de réduction de tête, alors \(C_0 = \mathcal{G}[D_0] \) avec \(D_0 \) admettant une réduction infinie comprenant un nombre non nul de pas de réduction de tête.

(ii) Si \((C_n)_{n \in \mathbb{N}} \) comprend une infinéité de pas de réduction de tête, alors \(C_0 \) admet une réduction de tête infinie.

(iii) Si \((C_n)_{n \in \mathbb{N}} \) comprend un nombre fini non nul de pas de réduction de tête et \(C_0 \) n'admet pas de réduction de tête infinie, alors il existe \(k > 0 \) tel que \(C_0 \xrightarrow{\mathcal{H}} C_k = \mathcal{G}[D_0] \) avec \(D_0 \) admettant une réduction infinie comprenant un nombre non nul de pas de réduction de tête.

Démonstration.

(i) C'est une simple conséquence du lemme des tiroirs.

(ii) On a \(C_0 \xrightarrow{k} C_k \xrightarrow{\mathcal{H}} C_{k+1}, \) où le pas ainsi isolé est le premier pas de réduction de tête. On a alors, en appliquant le lemme précédent \(k \) fois, \(C_0 \xrightarrow{\mathcal{H}^k} C'_1 \xrightarrow{\mu} C'_k \xrightarrow{\mathcal{H}} C_{k+1} \xrightarrow{\mu} \cdots. \) On poursuit ainsi la construction en appliquant le même processus à \(C'_1 \) pour obtenir une réduction de tête de longueur non bornée, et l'on peut conclure.

(iii) Soit \(j \) tel qu'à partir de \(C_j \) aucun pas de réduction ne soit de tête. De même que précédemment, l'on obtient \(C_0 \xrightarrow{\mathcal{H}} C'_k \xrightarrow{\mu} C_j \xrightarrow{\mu} \cdots. \) Une alternative se présente alors :

- si \(C'_k \xrightarrow{\mu} C_j \) ne contient pas de pas de réduction de tête, on peut alors conclure en appliquant le cas (i) à \(C'_k \);

- sinon, on répète la construction précédente, ce qui augmente la taille de la réduction de tête issue de \(C_0. \)

Comme \(C_0 \) n'admet pas de réduction de tête infinie, nécessairement la première branche de l'alternative finit par être réalisée. Q.E.D.

Si l'on se trouve dans le troisième cas, l'on peut ensuite réappliquer la transformation indiquée dans ce corollaire à la capsule incluse, et ainsi de suite. On obtient dans tous les cas une chaîne de réduction dite imbriquée :

Définition 2.18 : réduction imbriquée dans les systèmes de types purs pour \(\lambda \mu \bar{\mu} \)

Soit \(C_0 \xrightarrow{} \cdots \xrightarrow{} C_n \) une chaîne de réduction ; pour tout \(i, \) il existe un contexte \(\mathcal{G}_i[] \) tel que
\[C_i = G_i[D_i] \text{ et } C_{i+1} = G_i[D'_i] \text{ avec } D_i \xrightarrow{\pi} D'_i. \]

La chaîne de réduction est dite imbriquée si elle vérifie la propriété suivante : pour tout \(i \), il existe un contexte \(\mathcal{H}_i[] \) tel que \(G_{i+1}[] = G_i[\mathcal{H}_i[]]. \)

On voit donc que la stratégie par l'extérieur est perpétuelle. De telles réductions par l'extérieur seront intéressantes par la suite pour ce qui concerne la normalisation forte.

2. Typage

Les jugements de type des systèmes de types purs pour le \(\lambda \mu \mu \)-calcul sont analogues à ceux des types simples : il s'agit de séquents à formule active, qui peuvent donc être de trois formes, selon que leur formule active est en partie gauche, en partie droite, ou absente.

Définition 2.19 : assertion, contexte, jugement de typage des systèmes de types purs pour \(\lambda \mu \mu \)

Soit \(\Xi \) un système de types purs. On appelle **assertion de typage** un couple de \(\Xi \)-expressions noté \(M : R \), où \(M \) peut être un appelant ou un appelé, et \(R \) est un appelant. Dans un tel couple, le premier élément est appelé **sujet** de l'assertion et le second, **prédicat** de l'assertion. Une assertion peut être dite **active**.

On appelle **contexte gauche de typage** une suite finie – non un ensemble – d'assertions de typage non actives dont les sujets sont des variables d'appelant distinctes. Le contexte gauche vide est noté \([] \). On appelle **contexte droit de typage** un ensemble d'assertions de typage non actives dont les sujets sont des variables d'appelés distinctes. Le contexte droit vide est noté \(\emptyset \). Pour ces deux types de contexte, la concaténation de contextes de supports disjoints est notée par une virgule.

On appelle **jugement de typage** une expression de l'une des trois formes suivante, \(\Gamma \) et \(\Delta \) étant respectivement un contexte gauche de typage et un contexte droit de typage :

- \(\Gamma ; E : A \vdash \Delta \) où \(E \) est un appelé ;
- \(\Gamma \vdash R : A ; \Delta \) où \(R \) est un appelant ;
- \(C : (\Gamma \vdash \Delta) \) où \(C \) est une capsule.

Un jugement est dit **valide** s'il dérive de l'application des figures d'inférence présentées dans la table 5. L'indice \(\Xi \) peut être omis s'il n'y a pas d'ambiguïté.

On remarque dans les figures de la table *infra* une relation \(\equiv \). Il ne s'agit pas ici de la clôture réflexive, symétrique et transitive de \(\rightarrow \) (ce qui n'aurait pas de sens car cette relation n'est pas confluente), mais de celle de \(\equiv (\Pi) \).

En observant la figure (\(\Pi-D \)), on peut voir pourquoi le choix a été fait de traiter les types comme des appelants et non comme des appelés : en effet, on souhaite préserver le fait qu'une \(\lambda \)-abstraction est associée à une \(\Pi \)-quantification sur la même variable. Lorsque l'on considère la figure (\(\Pi-G \)), on peut remarquer qu'il pourrait être possible d'introduire des types duaux en ajoutant des constructeurs de types aux appelés, car une fois la variable liée, elle peut être identifiée par \(\alpha \)-conversion.
\[(\sigma, \tau) \in \mathcal{A} \quad [\emptyset \vdash \sigma : \tau; \emptyset] \quad \text{(axiome)}\]
\[
\Gamma \vdash A : \rho ; \Delta \quad \Gamma, x : A \vdash B : \sigma \quad (\rho, \sigma, \tau) \in \mathcal{A}
\]
\[
\Gamma \vdash (\Pi x : A.B) : \tau ; \Delta \quad \text{(règle)}
\]
\[
\begin{align*}
\Gamma & \vdash A : \sigma ; \Delta \quad \Gamma, x : A \vdash x : A ; \Delta \\
\Gamma & \vdash R : B ; \Delta \quad \Gamma \vdash A : \sigma ; \Delta \\
\Gamma & \vdash R : B ; \Delta, x : A
\end{align*}
\quad \text{(aff-D)}
\]
\[
\begin{align*}
\Gamma & \vdash R : B ; \Delta, A \equiv B \\
\Gamma & \vdash R : A ; \Delta
\end{align*}
\quad \text{(-D)}
\]
\[
\begin{align*}
\Gamma & \vdash R : B ; \Delta \quad \Gamma \vdash A : \sigma ; \Delta \\
\Gamma & \vdash R : A ; \Delta
\end{align*}
\quad \text{(=-D)}
\]
\[
\Gamma \vdash \mu x.C : A ; \Delta' \quad \Gamma' \vdash \mu x.C : A \vdash \Delta
\]
Table 5: Figures d’inférence de type pour les systèmes de types purs pour \(\lambda\mu\Xi\)}
3. Correction des types

Comme il est habituel avec les systèmes de types purs, la notion de contextes bien formés et de correction des types revêt une importance particulière. Pour ce faire, on introduit la définition suivante :

Définition 2.20 : couple de contextes bien formé

Un couple de contextes \((\Gamma, \Delta)\) où les contextes sont respectivement de la forme \(\Gamma = [x_1 : T_1, \ldots, x_n : T_n]\) et \(\Delta = [a_1 : A_1, \ldots, a_k : A_k]\) est dit bien formé si les conditions suivantes sont toutes deux remplies :

i. pour tout \(i\) de \([1, n]\), il existe une sorte \(\sigma_i\) telle que :
\[x_1 : T_1, \ldots, x_i : T_{i-1} \vdash T_i : \sigma_i, \Delta ;\]

ii. pour tout \(j\) de \([1, k]\), il existe une sorte \(\tau_j\) telle que :
\[\Gamma \vdash A_j : \tau_j, \Delta \setminus \{a_j : A_j\}.\]

Naturellement, on peut montrer que les coupless de contextes intervenant dans un jugement validement dérivé sont bien formées :

Lemme 2.9 : Bonne formation de couple

Soit \(\Gamma ; E : A \vdash \Delta, \Gamma \vdash R : A ; \Delta\) ou \(C : (\Gamma \vdash \Delta)\) un jugement valide.

Alors \((\Gamma, \Delta)\) est bien formé.

Démonstration.

*Par induction sur le jugement en discriminant selon la dernière figure :

a. (axiome) : ce cas est trivial.

b. (règle), \((\Pi-G), (\Pi-D), (\Rightarrow-G), (\Rightarrow-D), (\mu), (\mu), (coupure)\) : ces cas sont évidents par hypothèse d’induction, car toutes ces figures ont une prémisse ayant le même couple de contextes que la conclusion.

c. (hyp-D) :
\[
\Gamma \vdash A : \sigma ; \Delta \\
\Gamma, x : A \vdash x : A ; \Delta
\]

Par hypothèse d’induction, \((\Gamma, \Delta)\) est bien formée, et pour montrer que \((x : A, \Delta)\) est bien formé, il suffit donc de montrer qu’il existe \(\sigma\) telle que \(\Gamma \vdash A : \sigma; \Delta\), et cela est assuré par la prémisse.

d. (hyp-G) :
\[
\Gamma ; \alpha : A \vdash \Delta, \alpha : A \\
\Gamma ; \alpha : A \vdash \Delta, \alpha : A
\]

Par hypothèse d’induction, \((\Gamma, \Delta)\) est bien formée. Pour montrer que \((\Gamma, (\Delta, \alpha : A))\) est bien formée, il suffit de montrer deux choses : qu’il existe \(\sigma\) telle que \(\Gamma \vdash A : \sigma; \Delta\), ce qui est assuré par la prémisse, et que, si \(\Gamma = [x_1 : T_1, \ldots, x_n : T_n]\), alors pour tout \(i\) de \([1, n]\), il existe une sorte \(\sigma_i\) telle que \([x_1 : T_1, \ldots, x_i : T_{i-1}] \vdash T_i : \sigma_i, \Delta ; A\). La bonne formation de \((\Gamma, \Delta)\) donne que \([x_1 : T_1, \ldots, x_i : T_{i-1}] \vdash T_i : \sigma_i, \Delta, \alpha : A\). La bonne formation de \((\Gamma, \Delta)\) donne que \([x_1 : T_1, \ldots, x_{i-1} : T_{i-1}] \vdash T_i : \sigma_i, \Delta, \alpha \vdash A; \Delta\), et, avec la prémisse \(\Gamma \vdash A : \sigma; \Delta\), on peut obtenir ce que l’on souhaite par une figure d’(aff-D-D).

e. (aff-D-D), (aff-G-D) : ces deux cas sont analogues à (hyp-D).

f. (aff-D-D), (aff-G-G) : ces deux cas sont analogues à (hyp-G).
À l’aide des quatre figures d’affaiblissement, on peut alors déduire le corollaire suivant :

Corollaire 2.10 : Correction des prédicats de contexte

Soit \((\Gamma, \Delta)\) un couple bien formé. Alors pour toute assertion \(x : A\) dans \(\Gamma\) ou pour toute assertion \(\alpha : A\) dans \(\Delta\), il existe une sorte \(\sigma \in S\) telle que \(\Gamma \vdash A : \sigma \); \(\Delta\).

Avec tout ceci, on peut maintenant démontrer le théorème de correction des types, qui s’énonce de manière très analogue à celui des systèmes de types purs présentés au chapitre I :

Théorème 2.11 : Correction des types dans les systèmes de types purs pour \(\lambda \mu \bar{\nu}\)

Soit \(\Gamma \vdash R : A \); \(\Delta\) ou \(\Gamma ; E : A \vdash \Delta\) un jugement de type valide. Alors soit \(A \in S\), soit il existe une sorte \(\sigma \in S\) telle que \(\Gamma \vdash A : \sigma \); \(\Delta\).

Démonstration.

Par induction sur la dérivation du jugement.

Tous les cas hormis \((\mu)\) et \((\bar{\nu})\) sont évidents car, pour toutes ces figures, soit \(A\) est une sorte, soit la propriété \(\Gamma \vdash A : \sigma \); \(\Delta\) est garantie par une prémisse.

Restent les cas de \((\mu)\) et \((\bar{\nu})\). Pour ceux-ci, la propriété dérive directement du corollaire (2.10). Q.E.D.

Il est intéressant de remarquer que, comme on l’avait déjà noté au chapitre précédent, on voit surgir à nouveau deux notions de correction des types : l’une pour les prédicats de contexte, et l’une pour les prédicats d’assertion. Ces notions sont les mêmes que celles des systèmes de types purs usuels (cf. chapitre I).

III. Propriétés remarquables

Dans cette partie, on donne tout d’abord dans un premier paragraphe quelques lemmes de dérivation, puis, dans les deux paragraphes suivants, deux résultats importants : la réduction du sujet et la correction des types.

1. Lemmes d’inférence de types

Les lemmes suivants sont utiles pour reconstruire des dérivation de types.

Lemme 3.12 : Initialisation pour les systèmes de types purs pour \(\lambda \mu \bar{\nu}\)

Soit \((\Gamma, \Delta)\) un couple bien formé. Alors :

(i) si \((\sigma, \tau) \in \mathcal{A}\), alors \(\Gamma \vdash \sigma : \tau \); \(\Delta\);

(ii) si \((x : T) \in \Gamma\), alors \(\Gamma \vdash x : T \); \(\Delta\);

(iii) si \((\alpha : A) \in \Delta\), alors \(\Gamma ; \alpha : A \vdash \Delta\).
Démonstration.

Par induction sur la taille \(n \) du couple, i.e. le nombre total d’assertions dans ses deux composantes.

- \(n = 0 \). Dans ce cas, le point (i) est une application d’une figure d’axiome) et les points (ii) et (iii) sont triviaux.

- \(n > 0 \). On a alors :

 (i) On a, par hypothèse d’induction, \(\Gamma' \vdash \sigma : \tau \vdash \Delta' \) avec, selon les cas, \(\Gamma = \Gamma' \) et \(\Delta = \Delta' \), \(\alpha : A \) ou bien \(\Gamma = \Gamma' \), \(x : A \) et \(\Delta = \Delta' \). En outre, par définition de la bonne formation, on a \(\Gamma' \vdash A : \sigma ; \Delta \) ce qui permet d’appliquer la figure d’affaiblissement adéquate pour obtenir \(\Gamma \vdash \sigma : \tau \vdash \Delta \).

 (ii) Soit on se trouve dans un cas analogue à celui de la propriété (i), soit on a \(\Gamma = \Gamma' \), \(x : \tau \). Dans ce dernier cas, par définition de la bonne formation, on a \(\Gamma' \vdash \sigma : \Delta \), ce qui permet d’obtenir, par une figure d’hyp-R, que \(\Gamma, x : \tau \vdash \Delta \).

 (iii) Cette démonstration est symétrique de la précédente.

Q.E.D.

Lemme 3.13 : Engendrement pour les systèmes de types purs pour \(\bar{\lambda} \mu \bar{\mu} \)

Soit un jugement de typage valide.

(i) Si le jugement est de la forme \(\Gamma \vdash R : \tau \vdash \Delta \), alors \(R \) doit avoir l’une des formes suivantes :

 a. \(R = \sigma \in S \). Dans ce cas, il existe \(\tau \in S \) telle que \(\tau \vdash \tau \) et \((\sigma, \tau) \in \mathcal{A} \).

 b. \(R = x \in X \). Dans ce cas, il existe \(\tau \in S \) et \((x : U) \in \mathcal{G} \) telles que \(\Gamma \vdash \Gamma \vdash U : \tau \vdash \Delta \) et \(U \equiv U \).

 c. \(R = \Pi x : A. B \). Dans ce cas, il existe \((\rho, \sigma, \tau) \in \mathcal{R} \) tel que \(\Gamma \vdash A : \rho \vdash \Delta \), \(\Gamma, x : A \vdash B : \sigma \vdash \Delta \) et \(T \equiv \tau \).

 d. \(R = \lambda x : A. N \). Dans ce cas, il existe \(\tau \in S \) et un terme \(B \) tels que \(\Gamma \vdash (\Pi x : A. B) : \tau \vdash \Delta \) et \(\Gamma, x : A \vdash N : B \vdash \Delta \) et \(T \equiv \Pi x : A. B \).

 e. \(R = \mu \alpha. C \). Dans ce cas, il existe un terme \(U \) tel que \(C : (\Gamma \vdash \Delta, \alpha : U) \) et \(U \equiv U \).

(ii) Si le jugement est de la forme \(\Gamma ; E : T \vdash \Delta \), alors \(E \) doit avoir l’une des formes suivantes :

 a. \(E = \alpha \in \mathcal{V} \). Dans ce cas, il existe \(\tau \in S \) et \((\alpha : U) \in \Delta \) tels que \(\Gamma ; U : \tau \vdash \Delta \) et \(U \equiv U \).

 b. \(E = R \circ F \). Dans ce cas, il existe \(\tau \in S \), des termes \(A \) et \(B \) et une variable \(x \in X \) telle que \(\Gamma \vdash (\Pi x : A. B) : \tau \vdash \Delta \), \(\Gamma \vdash A : \tau \vdash \Delta \), \(\Gamma ; F : B[R/x] : \Delta \) et \(T \equiv \Pi x : A. B \).

 c. \(E = \bar{u} x. C \). Dans ce cas, il existe un terme \(U \) tel que \(C : (\Gamma, x : U \vdash \Delta) \) et \(U \equiv U \).

(iii) Si le jugement est de la forme \(C : (\Gamma \vdash \Delta) \) avec \(C = \langle R || E \rangle \), alors il existe \(\tau \in S \) et un terme \(A \) tel que \(\Gamma \vdash R : A \vdash \Delta \) et \(\Gamma ; E : A \vdash \Delta \).
Démonstration.
Bien que son énoncé semble plus complexe en raison du plus grand nombre de cas possibles, ce lemme se montre exactement comme son analogue pour les systèmes de types purs implicites présenté au chapitre I.
Q.E.D.

Lemme 3.14 : Dépendances dans les systèmes de types purs pour $\lambda\mu\bar{\nu}$

Les énoncés suivants sont vrais :

(i) Soit $\Gamma \vdash X : T; \Delta$ ou $\Gamma; X : T \vdash \Delta$ un jugement valide. Alors :
 a. toute variable libre de X est dans le domaine de Γ ou Δ selon qu'elle est d'appelant ou d'appelé ;
 b. toute variable libre de T est dans le domaine de Γ.

(ii) Soit (Γ', Δ) un couple bien formé. Alors :
 a. si $\Gamma = \Gamma', x : T, \Gamma''$, alors toute variable libre de T est dans le domaine de Γ' ;
 b. si $\Delta = \Delta, \alpha : A$, alors toute variable libre de A est dans le domaine de Γ.

Démonstration.

(i) Cette propriété se démontre facilement par induction sur la dérivation (pour le point b., la condition $A \notin S$ dans les figures (hyp-G), (aff-d-G) et (aff-g-G) assure que seules les variables d'appelant sont des variables de types).

(ii) C'est un corollaire du point (i) et du théorème de correction des types (2.11).
Q.E.D.

2. Réduction du sujet

Le but ici est de montrer que les systèmes de types purs définis ici pour le $\lambda\mu\bar{\nu}$-calcul vérifient la réduction du sujet. Pour ce faire, on commence par montrer un lemme de substitution, dont il n'est plus nécessaire d'aborder l'utilité, qui a été discuté dans les chapitres précédents.

Lemme 3.15 : Substitution dans les systèmes de types purs pour $\lambda\mu\bar{\nu}$

Soit un jugement de type valide.

(i) Si ce jugement est de la forme $\Gamma \vdash R : T; \Delta$, alors :
 a. si $\Gamma = \Gamma', x : U, \Gamma''$ et $\Gamma' \vdash S : U; \Delta$, alors $\Gamma', \Gamma''[S/x] \vdash R[S/x] : T[S/x]; \Delta[S/x] ;$
 b. si $\Delta = \Delta', \alpha : A$ et $\Gamma; F : A \vdash \Delta'$, alors $\Gamma \vdash R[F/\alpha] : T ; \Delta'$.

(ii) Si ce jugement est de la forme $\Gamma; E : T \vdash \Delta$, alors :
 a. si $\Gamma = \Gamma', x : U, \Gamma''$ et $\Gamma' \vdash S : U; \Delta$, alors $\Gamma', \Gamma''[S/x]: E[S/x] : T[S/x] \vdash \Delta[S/x] ;$
b. si \(\Delta = \Delta', \alpha : A \) and \(\Gamma; F : A \vdash \Delta' \),
 alors \(\Gamma; E[F/\alpha] : T \vdash \Delta' \).

(iii) Si le jugement est de la forme \(C : (\Gamma \vdash \Delta) \) avec \(C = \langle R \parallel E \rangle \), alors :

a. si \(\Gamma = \Gamma', x : U, \Gamma'' \) et \(\Gamma' \vdash S : U; \Delta \),
 alors \(C[S/x] : (\Gamma', \Gamma''[S/x] \vdash \Delta[S/x]) \);

b. si \(\Delta = \Delta', \alpha : A \) and \(\Gamma; F : A \vdash \Delta' \),
 alors \(C[F/\alpha] : (\Gamma \vdash \Delta') \).

Démonstration.
Par induction directe sur la dérivation du jugement.

Q.E.D.

Théorème 3.16 : Réduction du sujet dans les systèmes de types purs pour \(\lambda \mu \bar{\nu} \)

Si \(C : (\Gamma \vdash \Delta) \) et \(C \rightarrow C' \) alors \(C' : (\Gamma \vdash \Delta) \).

Démonstration.
Soit \(C \) égale à \(\langle R \parallel E \rangle \). Il y a trois cas, selon la règle de réduction qui a été utilisée :

(\(\lambda \)) Dans ce cas, \(R = \lambda x : A. M, E = \text{NofE}, \) et \(C' = \langle M[N/x] \parallel F \rangle \). Par le lemme d'engendrement (3.13), il existe un type \(T \) tel que \(\Gamma \vdash R : T; \Delta \) et \(\Gamma; E : T \vdash \Delta \). En utilisant de nouveau le lemme d'engendrement (3.13) et la figure de conversion, on obtient qu'il existe \(B \) tel que \(\Gamma \vdash \Pi x : A. B \) et \(\Gamma, x : A \vdash M : B; \Delta \) et \(\Gamma; F : B[N/x] \vdash \Delta \) et \(\Gamma \vdash N : A; \Delta \). En utilisant le lemme de substitution Using the substitution lemma (3.15) avec le premier et le dernier de ces trois jugements, on obtient que \(\Gamma \vdash M[N/x] : B; \Delta[N/x] \). Comme le couple \((\Gamma, \Delta) \) est bien formé et que \(x \) n'apparaît pas dans \(\Gamma \), par le lemme (3.14), on obtient que \(\Gamma \vdash M[N/x] : B; \Delta \), et donc, par une coupure, \(C' : (\Gamma \vdash \Delta) \).

(\(\mu \)) Dans ce cas, \(R = \mu \alpha. C'' \) et \(C' = C''[E/\alpha] \). Par le lemme d'engendrement (3.13), il existe un type \(V \) tel que \(\Gamma \vdash R : V; \Delta \) et \(\Gamma; E : V \vdash \Delta \). En utilisant de nouveau le lemme d'engendrement (3.13), on obtient que \(C'' : (\Gamma \vdash \Delta, \alpha : V) \), et donc, par le lemme de substitution (3.15), que \(C' : (\Gamma \vdash \Delta) \).

(\(\bar{\nu} \)) Dans ce cas, \(R = \mu \alpha. C'' \) and \(C' = C''[E/\alpha] \). Cette démonstration est analogue à la précédente.

Q.E.D.

3. **Normalisation forte pour le \(\lambda \)-cube**

Dans ce paragraphe, on va montrer que les systèmes de types purs pour \(\lambda \mu \bar{\nu} \) dont la spécification correspond à un système du \(\lambda \)-cube sont fortement normalisants. On ne considérera donc que des systèmes du \(\lambda \)-cube, i.e. avec deux sortes \(* \) et \(\Box \), un seul axiome \(* : \Box \), et des règles prises parmi les règles élémentaires et comprenant au moins \((*, *, *) \).

Soit \(T \) un système de types pur du \(\lambda \)-cube.

On définit trois traductions \([\cdot], [\cdot]'', [\cdot]'' \) sur les termes typables (respectivement, capsules, appelants, appelés), et vérifiant :

- si \(R : A \), alors \([R]' : [A]'' \);
• si $E : A$, alors $[[E]] : (\Pi x : A \Rightarrow U_E) = T_E$ avec U_E un type donné pour un certain η ;
• si $C = (R \parallel E)$, avec $R : A$ et $E : A$, alors $[[C]] : [[A]]^\eta$ pour un certain η ;

ceci s'entend dans un contexte adapté.

La traduction est définie ainsi (lorsqu'elles sont employées, ρ et θ désignent des variables inédites) :

$$[[R \parallel E]] = \rho(\lambda \eta : T_E, ([[E]] \Rightarrow ([[R]])^\eta) [[E]])$$

$$[[\sigma]]^\eta = \sigma ;$$

$$[[\Pi x : A. B]]^\eta = \Pi x : [[A]]^\eta. [[B]]^\eta ;$$

$$[[x]]^\eta = x ;$$

$$[[\lambda x : A. R]]^\eta = \lambda x : [[A]]^\eta. [[R]]^\eta ;$$

$$[[\mu \alpha : C]]^\eta = [[C]]^\eta / \alpha ;$$

$$[[\alpha]] = \alpha ;$$

$$[[R \bullet E]] = \lambda r : [[A]]^\theta. (\rho(\lambda \eta : T_E, ([[E]] \Rightarrow (r [[R]])^\eta)) [[E]])$$

ou $R \bullet E : A$;

$$[[\mu \alpha : C]] = \lambda x : [[A]]^\theta. [[C]]$$

ou $\mu \alpha : C : A$.

On vérifie facilement que cette traduction est bien définie et produit bien des termes typables comme stipulé supra. En effet, on peut vérifier pour chaque construction que si les capsules, appelants et appelés sous-termes de cette construction ont des traductions de type indiqué, alors la traduction de la construction a bien le type indiqué. Pour les appelants, ceci est simple. Pour les appelés, il faut s'assurer que la traduction d'un appelant de type A est une fonction prenant comme argument un terme de type $[[A]]^\theta$, ce qui est bien le cas. Pour une capsule $R \parallel E$, on a donc, comme $R : A$ et $E : A$ – et donc $[[R]]^\eta : [[A]]^\eta$ et $[[E]] : \Pi r : [[A]]^\eta. U_E \Rightarrow$, que $[[E]] [[R]]^\eta : U_E [[R]]^\eta / r$, et donc $\lambda r : T_E, ([[E]] [[R]])^\eta [[E]] : U_E [[R]]^\eta / r [[[E]] / r]$, si bien que, en choisissant la variable ρ du type $\Pi r : U_E [[R]]^\eta / r [[[E]] / r] [[[A]]^\theta$, où c est une variable inédite, on obtient bien que la capsule est du type souhaité.

Par ailleurs, on peut préciser ici les types des traductions d'appelant :

• si $R \bullet E : \Pi x : A. B$ (i.e. $R : A$ et $E : B[R/x]$), alors $T_{R \bullet E} = \Pi \rho r : [[\Pi x : A. B]]^\eta. B[r/x]$ avec la variable d'appelant libre de $[[R \bullet E]]$ du type adéquat comme indiqué supra pour les capsules ;

• si $\mu \alpha : C : A$ et $[[C]] : Y$, alors $T_{\mu \alpha : C} = \Pi x : [[A]]^\eta. Y$.

En outre, comme les variables sont traduites, tant pour les termes que pour les types, par des variables correspondantes, elle est compositionnelle vis-à-vis de la substitution.

Intuitivement, la variable η introduite dans la traduction des appelants permet d’indiquer l’endroit où celle-ci pourrait accueillir un appelé, et est destinée à être liée par le lieu présent dans la traduction de la cellule.

Lemme 3.17 : Simulation

Soient C une capsule typable et C' telle que $C \Rightarrow H C'$ (C' est typable par réduction du sujet). Alors il existe un contexte $\mathcal{K}[\]$ tel que $[[C]] \xrightarrow{\rho} \mathcal{K}([[C']])$.

Démonstration.
Il y a trois cas possibles :

a. $C = \langle \lambda x : A \cdot M | N \cdot E \rangle \rightarrow \langle M[N/x] | E \rangle = C'$. On a alors :
\[
\begin{align*}
[[C]] & = \mathcal{K}[[[N \cdot E]] [[\lambda x : A \cdot M]]] \\
& = \mathcal{K}[(\lambda \eta : T.[[[E] \cdot (r[N \cdot E])] [[E]])(\lambda x : [A] \cdot [M])] \\
& \xrightarrow{\beta} \mathcal{K}[(\lambda \eta : T.[[[E] \cdot (r[N \cdot E])] [[E]]]) \\
& \xrightarrow{\beta} \mathcal{K}[(\lambda \eta : T.[[[E] \cdot (r[N \cdot E])] [[E]]])] \\
& = \mathcal{K}[[C]]
\end{align*}
\]

b. $C = \langle \mu \alpha : Z | E \rangle \rightarrow Z[E / \alpha] = C'$. On a alors :
\[
\begin{align*}
[[C]] & = \mathcal{K}[[[\mu \alpha . Z] \cdot [E]]] \\
& = \mathcal{K}[[[Z] \cdot [E]] / \eta] \\
& = \mathcal{K}[[[Z] \cdot [E]] / \eta] \\
& = \mathcal{K}[[Z] [[E]] / \alpha]
\end{align*}
\]

c. $C = \langle R | \mu \alpha : Z \rangle \rightarrow Z[R / x] = C'$. On a alors :
\[
\begin{align*}
[[C]] & = \mathcal{K}[[[\mu \alpha . E] \cdot [R]]] \\
& = \mathcal{K}[(\lambda x : [A] \cdot [Z] \cdot [R])] \\
& \xrightarrow{\beta} \mathcal{K}[[[Z] \cdot [R]] / \eta] \\
& = \mathcal{K}[[C]]
\end{align*}
\]

Dans tous les cas, on a bien au moins un pas de β-réduction pour parvenir à un contexte contenant la traduction de C'.

Q.E.D.

Corollaire 3.18 : Normalisation forte dans le λ-cube pour $\lambda \mu \tilde{\mu}$

Tous les systèmes de types purs pour le $\tilde{\lambda}\tilde{\mu}$-calcul du λ-cube sont fortement normalisants.

I.e. : Soit C une \exists-capsule \exists-typable. Alors C n’admet pas de réduction infinie.

Démonstration.

Soit une suite infinie de capsules $(Z_i)_{i \in \mathbb{N}}$ telle que pour tout i, $Z_i \rightarrow Z_{i+1}$ et Z_0 soit typable. En appliquant à la chaîne de réductions infinie $(C_i)_{i \in \mathbb{N}}$ la transformation indiquée dans le corollaire 2.8, l’on obtient une réduction infinie imbriquée $C_0 \rightarrow^* G_0[C_1 \rightarrow G_0[G_1[C_2] \rightarrow \cdots$ avec $C_i \rightarrow^* G_i[C_i+1]$. On a alors, par le lemme de simulation précédent, $[[C_i]] \xrightarrow{\beta} \mathcal{K}[[C_{i+1}]]$.

On pose alors $T_i = \mathcal{K}_0[\mathcal{K}_1[\cdots[\mathcal{K}_{i-1}[C_i] \cdots]]$, et l’on vérifie que $(T_i)_{i \in \mathbb{N}}$ est une chaîne infinie de réduction de termes typables dans le calcul des constructions, ce qui est absurde.

Q.E.D.

Conclusion

L’on a étudié ici une extension des systèmes de types purs à un calcul dont le typage repose sur l’utilisation d’un calcul de séquents à formule active classiques. Les calculs basés sur des types de logique classique sont de plus en plus étudiés, et l’enrichissement des théories de typage sous-jacentes à ces calculs semble être une approche intéressante.

Une piste intéressante pourrait consister à combiner cette approche avec une extension à des substitutions explicites (cf. [10, 9]) ; en effet, il existe des versions de $\tilde{\lambda}\tilde{\mu}$ à substitutions explicites (cf. [13]), et il pourrait être intéressant de leur étendre les systèmes de types purs en mettant en œuvre les techniques employées ici.
Bibliographie

[1] Barbier (Franco) & Berardi (Stefano), « A symmetric lambda calculus for classical program extraction ». Information and Computation, 125(2) : p. 103–117, 1996.

