
HAL Id: hal-02102348
https://hal-lara.archives-ouvertes.fr/hal-02102348v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LSP matrix decomposition revisited
Claude-Pierre Jeannerod

To cite this version:
Claude-Pierre Jeannerod. LSP matrix decomposition revisited. [Research Report] Laboratoire de
l’informatique du parallélisme. 2006, 2+15p. �hal-02102348�

https://hal-lara.archives-ouvertes.fr/hal-02102348v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

LSP Matrix Decomposition Revisited

Claude-Pierre Jeannerod September, 2006

Research Report No 2006-28

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

LSP Matrix Decomposition Revisited

Claude-Pierre Jeannerod

September, 2006

Abstract
In this paper, we study the problem of computing an LSP-decomposition
of a matrix over a field. This decomposition is an extension to ar-
bitrary matrices of the well-known LUP-decomposition of full row-
rank matrices. We present three different ways of computing an LSP-
decomposition, that are both rank-sensitive and based on matrix mul-
tiplication. In each case, for an m by n input matrix of unknown rank
r, the cost we obtain is in O(mnrω−2) for ω > 2. When r is small, this
improves the O(nmω−1) complexity bound of Ibarra, Moran and Hui.

Keywords: Matrix factorization, matrix multiplication, reduced echelon form,
rank profile, algorithmic complexity

Résumé
Cet article considère le problème du calcul d’une décomposition LSP
d’une matrice à coefficients dans un corps. Cette décomposition est une
extension aux matrices de rang quelconque de la décomposition LUP,
classique pour les matrices de rang plein en lignes. On présente trois
façons de calculer une décomposition LSP en fonction du rang et via le
produit de matrices. Dans chaque cas, le coût obtenu pour une matrice
m× n de rang r (inconnu a priori) est en O(mnrω−2) avec ω > 2. Pour
r petit, cela améliore la borne de complexité en O(nmω−1) d’Ibarra,
Moran et Hui.

Mots-clés: Factorisation de matrice, produit de matrices, forme échelonnée,
profil de rang, complexité algorithmique

1

1 Introduction

Let A be an m by n matrix over a field k. It is well known that if A has full row rank then it
has an LUP-decomposition: A = LUP where L ∈ km×m is unit lower triangular, U ∈ km×n is
upper triangular with nonzero elements on the main diagonal, and P ∈ kn×n is a permutation
matrix. Furthermore, Bunch and Hopcroft’s algorithm [3, 1] computes an LUP-decomposition
of A in O(nmω−1) field operations (see for example the proof of [4, Theorem 16.5]). Here, a
field operation is any of {+,−,×,divide by a nonzero, compare with zero} and ω is such that
two n by n matrices over k can multiplied in O(nω) field operations.

When A has not full row rank, LUP-decomposition may not exist anymore and Ibarra,
Moran and Hui [8] extended it to the so-called LSP-decomposition (assuming m ≤ n): A =
LSP where L and P are as before, but where S is only semi-upper triangular, that is, deleting
the zero rows of S yields an upper triangular matrix whose entries on the main diagonal are
nonzero.

LSP-decomposition is interesting because it reveals the rank r of A as the number of
nonzero rows of S. Let i1 < · · · < ir be the indices of those rows. Then another interesting
property is that (i1, . . . , ir) is the row rank profile of A, that is, the lexicographically smallest
subsequence (h1, . . . , hr) of (1, . . . ,m) such that rows h1, . . . , hr have full rank. (The column
rank profile is defined similarly by considering columns instead of rows.)

Following Bunch and Hopcroft’s approach, Ibarra, Moran and Hui also reduced the prob-
lem of computing an LSP-decomposition to that of matrix multiplication: the algorithm they
give in [8, §2]—which we shall call the IMH algorithm—is for m ≤ n and has cost O(nmω−1).

By definition, S has r nonzero rows and thus its size (that is, the number of field elements
required to represent it) is only O(rn). For L, the definition requires no more than a unit lower
triangular shape. However, since rows j 6∈ {i1, . . . , ir} of S are zero and since L multiplies S,
the values of Lj+1,j , . . . , Lm,j can be anything; by choosing them to be zero, we get a factor
L whose jth column is ej , the jth unit vector of km. For example, if A ∈ k4×6 has row rank
profile (1, 3) then

S =

2664
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

3775 → L =

2664
1
∗ 1
∗ 1
∗ ∗ 1

3775 =

2664 ∗
∗
∗ ∗

3775»
1

1

–
+

2664
1

1
1

1

3775 .

With no loss of generality, we can thus consider that L has such a shape, with (vertical) stripes
corresponding to the (horizontal) stripes of S, and we shall say that L is striped according to
S. Clearly, such an L can now be represented in a more compact way as

L = MF T + Im, M ∈ km×r, F = [ei1 , . . . , eir] ∈ km×r. (1)

Here M is dense but strictly lower triangular and even in echelon form: for 1 ≤ j ≤ r,
Mi,j = 0 if i ≤ ij . To sum up, O((m + n)r) field elements are enough for representing an
LSP-decomposition L, S, P with L striped according to S. Since such a decomposition has a
size that depends on r = rank(A), how to compute it in a rank-sensitive manner?

Gaussian elimination with column pivoting would do that with O(mnr) field operations,
which is indeed rank-sensitive, but unlike IMH it does not reduce to matrix multiplication.

Following the approach of [11], we show in this paper that an LSP-decomposition with
L striped according to S can be computed both in a rank-sensitive way and via matrix

2

multiplication. We give three different ways of doing this, each of them having cost O(mnrω−2)
if w > 2 and O(mn log2 r) if ω = 2.

A first way, which we present in Section 2, is to compute the so-called reduced column
echelon form C of A with Storjohann’s fast, rank-sensitive GaussJordan algorithm [11, §2.2].
In Section 2.1 we show that moving from C to L, S, P then essentially reduces to LUP-
decomposition of a full row-rank r by n matrix plus some matrix multiplications, for an extra
cost of O((m + n)rω−1). Since r ≤ min{m,n}, note that (m + n)rω−1 = O(mnrω−2) even if
ω = 2. Conversely, we remark in Section 2.2 that moving from L, S, P to C can be done also
with O((m + n)rω−1) field operations.

A second way, presented in Section 3, is to improve the IMH algorithm [8] itself. Our
improvement is twofold: remove the assumption that m ≤ n; modify the elimination step to
have its cost decreased from O(nmω−1) to O(mnrω−2) for ω ≥ 2. The resulting algorithm LSP
is described in Section 3.1 and, using the techniques of [11, §1.3], its complexity is analysed
in Section 3.2.

The third approach is to directly compute an LQUP-decomposition of A as defined in [8]:
Q is an m by m permutation matrix, U = [V T | 0]T where V ∈ kr×r is upper triangular and
invertible, and QU = S. As before, we can assume with no loss of generality that L is striped
according to S and of the form (1). Then, because of the structure of S and V ,

Q =
[

F G
]

for some G ∈ km×(m−r). (2)

Therefore, using QQT = Im,

A = LSP = LQUP =
(
[M | 0] + Q

)[V

0

]
P. (3)

In Section 4 we give an algorithm for computing an LQUP-decomposition of A in the above
compressed form M,Q, V, P ; again, its cost is O(mnrω−2) if w > 2 and O(mn log2 r) if ω = 2.
The advantage of such a compressed form is that now M and V can be stored as the first
r columns and rows, respectively, of a single m by n matrix. Since recovering L, S, P from
M,Q, V, P is easy, the latter form has been used in [9, 6, 5] to obtain extremely efficient
in-place implementations of LSP-decomposition for matrices over finite fields. However no
rank-sensitive complexities appear in these works.

As shown in [8, 10], LSP-/LQUP-decomposition has several applications beyong the rank
and rank profile. Among them are linear system solving, computing a nullspace basis and
diagonalizing transforms and generalized inverses. We conclude in Section 5 by remarking
how such application problems may benefit from our improved complexity results. This may
be seen as an alternative to Storjohann’s Gauss-Jordan canonical form approach [11, §2.2].

2 LSP-decomposition and reduced echelon forms

For every A ∈ km×n there exists an invertible U ∈ km×m such that UA = R is the reduced
row echelon form of A. That form R is unique and also known as the Gauss-Jordan canonical
form of A [11]. As a row echelon form, R displays the rank r and the column rank profile
(j1, . . . , jr) of A: only the first r rows of R are nonzero and, for 1 ≤ i ≤ r, the first nonzero
entry in row i is Ri,ji . What makes R reduced is the additional property that column ji is
the ith unit vector.

3

For example, if A ∈ k5×9 has rank 3 and column rank profile (2, 5, 7) then its reduced row
echelon form R has the following shape:

R =

266664
1 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗
1 ∗ ∗

377775.

The reduced column echelon form of A can be defined as the transpose of the reduced row
echelon form of AT . If we call it C then AV = C for some invertible matrix V and

C =
[

E + F 0
]
, with F = [ei1 , . . . , eir] ∈ km×r,

and with (i1, . . . , ir) the row rank profile of A. Transposing the above 5× 9 matrix example,
we see that the first r columns of C simply consist of F (which has the 1’s) superimposed on
E (which has the ∗’s). This way of writing C will be used in the next two subsections.

Given A, how fast can we compute R or C? Gauss-Jordan elimination would do that in
time O(mnr). Another way is to use Storjohann’s GaussJordan algorithm [11, p. 42] whose
cost is O(mnrω−2) if ω > 2 and O(mn log2 r) if ω = 2. This recursive algorithm will produce
in particular the rank r as well as a transform U such that UA = R. Then, moving from U
to R is cheap because U is in fact returned in the form

U = U1U2, where U1 =
»

U11

U21 Im−r

–
and U2 is an m×m permutation matrix.

To get the r nonzero rows of R, it suffices to multiply U11 by the first r rows of U2A. The cost
of this rectangular matrix product is at most dn/reMM(r), which for r ≤ m is O(mnrω−2) .

By transposing twice, we obtain the same upper bound on the cost of the reduced column
echelon form.

2.1 From the reduced column echelon form to L, S, P factors

Given the reduced column echelon form C, we already have the row rank profile (i1, . . . , ir)
of A. To find some L, S, P factors, let C ′ consist of rows i1, . . . , ir of C. Then C ′ = [Ir | 0]
and thus

C = (E + F)C ′.

Since AV = C, we have in particular A′V = C ′ where A′ consists of the pivot rows i1, . . . , ir
of A. Since V is invertible, multiplying on the right by V −1 leads further to A = (E + F)A′.
For example, if A ∈ k9×5 has rank 3 and row rank profile (2, 5, 7) then

A = (E + F)A′ =

26666666666664

1
∗
∗

1
∗ ∗

1
∗ ∗ ∗
∗ ∗ ∗

37777777777775

24 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

35 .

Notice that such a factorization reveals an important property of the reduced column echelon
form C = [E + F | 0]: every row i of A is equal to a unique linear combination of earlier pivot

4

rows (that is, of rows i1, i2, . . . of A such that i1, i2, . . . ≤ i) and, above all, the coefficients of
this combination are exactly the entries of the ith row of E + F .

Since A′ ∈ kr×n has full row rank, it has an LUP-decomposition, say A′ = L′U ′P . Let
S = FU ′. Since U ′ ∈ kr×n is upper triangular, S ∈ km×n is semi-upper triangular. Therefore,
using the fact that F T F = Ir we obtain the following factorization:

A = L′′SP, where L′′ = (E + F)L′F T .

The last step to modify L′′ slightly in order to find a unit lower triangular factor L. Let
E′ ∈ km×r be defined by

E′ + F = (E + F)L′.

Since L′ is unit lower triangular, E′+F has exactly the same echelon form as E+F . (However,
notice that row ij of E + F is not a unit vector but contains instead the jth row of L′.) It
follows that L′′ = E′F T +FF T = (strictly lower triangular) + (diagonal) is lower triangular.
To get a unit lower triangular factor, simply replace L′′ with

L = E′F T + Im. (4)

The rows i1, . . . , ir of S being zero, we have indeed A = LSP, which is now an LSP-
decomposition of A. Furthermore, L in (4) is striped according to S.

The above move from C to L, S, P requires LUP-decomposition of an r×n matrix as well
as computing the product (E + F)L′ where E + F is m× r and L′ is r × r. The latter costs
at most dm/reMM(r) ∈ O(mrω−1) and the former can be done in time O(nrω−1) with the
Bunch and Hopcroft algorithm [3]. Hence a total of O((m + n)rω−1), which is in O(mnrω−2)
for r ≤ min{m,n}. We thus have shown the following result:

Theorem 2.1 An LSP-decomposition of A ∈ km×n of (unknown) rank r can be computed
in time O(mnrω−2) by calling Storjohann’s reduced row echelon form algorithm and then the
Bunch and Hopcroft LUP-decomposition algorithm. If ω = 2, the cost becomes O(mn log2 r).

2.2 From L, S, P factors to the reduced column echelon form

Conversely, what if some L, S, P factors of A are given? First, deducing from S the row rank
profile (i1, . . . , ir) of A and taking F = [ei1 , . . . , eir] ∈ km×r, an LQUP -decomposition follows
easily: augment F with m − r columns into a permutation matrix Q = [F |G] ∈ km×m and
let V = F T S; then V is upper triangular with nonzero elements on the main diagonal, and

A = LQUP, U =
[

V

0

]
.

A second step is to move further to the reduced column echelon form of A; this can be done
fast with as claimed below.

Theorem 2.2 Given A = LSP ∈ km×n, one can deduce the reduced column echelon form of
A together with a transformation matrix in O((m + n)rω−1) operations.

Proof. With no loss of generality, assume that L is striped according to S. Then, by (3)
we have A = (M + F)V P . Let N ∈ kr×r consist of rows i1, . . . , ir of M + F . Then N is unit

5

lower triangular and, writing A′ for the submatrix of A that consists of rows i1, . . . , ir, we get
A′ = NV P and thus

A = (M + F)N−1A′.

Now let D ∈ km×r be defined by D + F = (M + F)N−1. It is not hard to see that the m
by n matrix [D + F | 0] is in reduced column echelon form; if we show that A = [D + F | 0]W
for some invertible matrix W then, by uniqueness, [D + F | 0] must be the reduced column
echelon form of A. To show that, let

W = W1W2, W1 =
»

W11 W12

In−r

–
,

[
W11 W12

]
= A′P T , W2 = P T .

Since V = N−1A′P T has nonzero elements on the main diagonal, W1 is invertible and so
is W . On the other hand, using (D + F)A′ = A, we obtain A = [D + F | 0]W . Therefore
[D + F | 0] is indeed the reduced column echelon form of A and a transformation matrix is
W−1.

Since D+F = (M +F)N−1 is m×r and N is r×r, one can obtain D with O(mrω−1) field
operations; since [W11 |W12] is r × n and W11 is r × r, one can obtain W−1 with O(nrω−1)
field operations.

3 A rank-sensitive version of the IMH algorithm

We now present another approach to computing A = LSP , which is a rank-sensitive extension
of algorithm IMH (Ibarra, Mora and Hui [8]; see also [2, p. 103] for a description). The
principle of IMH is as follows: cut A into horizontal slices A1 and A2 with roughly the same
number of rows; compute A1 = L1S1P1 recursively; perform on A2P

T
1 an elimination step

similar to that of block-Gaussian elimination; compute B2 = L2S2P2 recursively with B2 the
lower-right block produced by elimination. This principle is depicted below on a 6× 4 matrix
with row rank profile (1, 3, 5, 6); there, ∗ means a nonzero entry:

A =

26666664

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

37777775
| {z }

=:

24 A1

A2

35

→

26666664

∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

37777775 →
26666664

∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗

37777775
| {z }
=:

24 S11 S12

B2

35

→

26666664

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗
∗

37777775 = S.

Factor S is obtained by stacking [S11 S12P
T
2] over [0 S2], with [S11 S12] = S1. Factors L and

P record respectively the row operations and column interchanges needed for moving from A
to S. For example, after the elimination step, we have an intermediate factorization of the
form [

A1

A2

]
=

[
L1

L21 Im2

][
S11 S12

B2

]
P1. (5)

Now let r1 be the rank of A1. Then r1 is also the number of nonzero rows of S1, and S11

consists of the first r1 columns of S1.
Our algorithm improves on algorithm IMH in two ways. In [8] it is always assumed that

m ≤ n, which implies r1 < n. Unlike algorithm IMH, the algorithm we describe in Section 3.1

6

works for arbitrary input dimensions m×n and the situation where r1 = n may occur. In that
case, B2 is an empty matrix and the second recursive call is not needed. Hence an explicit
test to detect that r1 = n and then exit early. Second, algorithm IMH computes L21 and B2

in O(mω−1n) field operations. We show in Section 3.2 that our algorithm computes them in
O(mnrω−2) with r the rank of A.

3.1 Algorithm description

We present here a rank-sensitive version of the IMH algorithm along with a correctness proof.
The algorithm is written in Maple-like pseudo code. Note that m ≤ n is not assumed.

Algorithm LSP(A)
Input: A ∈ km×n.
Output: an LSP-decomposition of A.
if A = 0 then

L, S, P := Im, 0m×n, In;
else if m = 1 then

j := the index of the first nonzero entry of A;
P := the permutation matrix that interchanges A1,1 and A1,j ;
L, S := I1, AP ;

else
m1,m2 := bm/2c, dm/2e;
L1, S1, P1 := LSP(A1) with A1 the first m1 rows of A;
r1 := the number of nonzero rows of S1;
if r1 = 0 then
L2, S2, P2 := LSP(A2) with A2 the last m2 rows of A;

L, S, P :=
[

Im1

L2

]
,

[
S2

]
, P2;

else
S11 := the first r1 columns of S1;
Q1 := the first r1 rows of a permutation matrix Q such that QS11 = [UT 0]T

with U upper triangular and nonsingular;
T2 := A2P

T
1 with A2 the last m2 rows of A;

L21 := (T21U
−1)Q1 with T21 the first r1 columns of T2;

if r1 = n then

L, S, P :=
[

L1

L21 Im2

]
,

[
S1

]
, P1;

else
B2 := T22 − (L21Q

T
1)(Q1S12) with S12, T22 the last n− r1 columns of S1, T2;

L2, S2, P2 := LSP(B2);

L, S, P :=
[

L1

L21 L2

]
,

[
S11 S12P

T
2

S2

]
,

[
Ir1

P2

]
P1;

fi;
fi;

fi;
return L, S, P ;

7

If A = 0 then correctness of Algorithm LSP is clear. If A 6= 0, we proceed by induction
on m. If m = 1 then P 2 = In and A = (I1)(AP)(P) is an LSP-decomposition of A. Assume
now that m > 1. From m1 = bm/2c and m2 = dm/2e, it follows that

m1 ≤ m2 < m.

Hence by induction we have the LSP-decomposition A1 = L1S1P1; similarly, L2, S2, P2 is an
LSP-decomposition of A2 when r1 = 0 and of B2 when 0 < r1 < n. Therefore, for each of
the three cases “r1 = 0”, “r1 = n” and “0 < r1 < n”, the matrices L, S, P computed by the
algorithm have the desired shape (L is unit lower triangular, S is semi-upper triangular and
P is a permutation matrix). It remains to show that the product LSP indeed equals A. To
do that let us consider each case separately, using r1 = rank(A1) and U−1Q1S11 = Ir1 .

1. If r1 = 0 then A1 = 0 and A2 = L2S2P2, which leads to

A =
[

A2

]
=

[
Im1

L2

][
S2

]
P2 = LSP.

2. If r1 = n then S11 = S1 and T2 = T21. Hence U−1Q1S1 = Ir1 and A2 = T21P1. Since
L21 = T21U

−1Q1, it follows that L21S1P1 = A2. Using A1 = L1S1P1 we arrive at

A =
[

A1

A2

]
=

[
L1

L21 Im2

][
S1

]
P1 = LSP.

3. If 0 < r1 < n then L21Q
T
1 consists of the first r1 columns of L21Q

T and Q1S12 consists
of the first r1 rows of QS12. Since by definition of Q and S1 all other rows of QS12

are zero, (L21Q
T
1)(Q1S12) = (L21Q

T)(QS12) = L21S12. Therefore T22 = L21S12 + B2.
In addition, U−1Q1S11 = Ir1 gives T21 = L21S11. Since T2P1 = [T21 T22]P1 = A2 and
L1[S11 S12]P1 = A1 we get the intermediate factorization (5). Then B2 = L2S2P2 gives

A =
[

L1

L21 L2

][
S11 S12P

T
2

S2

][
Ir1

P2

]
P1 = LSP.

To sum up, the output L, S, P satisfies A = LSP for each case and correctness follows.
Notice that so far we have used only the fact that m1 + m2 = m with m1,m2 < m. The

values m1 = bm/2c and m2 = dm/2e will be used in the next subsection for bounding the
complexity of the algorithm.

3.2 Complexity analysis

First let us verify that the unit lower triangular factor L computed by Algorithm LSP has the
expected sparsity structure.

Property 3.1 The factor L computed by Algorithm LSP is striped according to S.

Proof. For A = 0 this is clear since L − Im is zero. For A nonzero, let us proceed by
induction on m, the case m = 1 being clear too. Assume m > 1 and recall that m1 = bm/2c ≤
m2 = dm/2e < m. If r1 = 0 then (i1, . . . , ir) = (m1 + i′′1, . . . ,m1 + i′′r) with (i′′j) the row rank
profile of A2, and the assertion follows by induction. If r1 > 0 then the row rank profile of A1

8

is (i1, . . . , ir1); hence by induction only those columns of L1 − Im1 can be nonzero. Now, the
jth column of Q1 is zero for all j 6∈ {i1, . . . , ir1}, for otherwise U would have a zero row (a
contradiction). It follows that only columns i1, . . . , ir1 of L21 can be nonzero. If r1 = n then
we are done. If r1 < n then let (i′′j) be the row rank profile of B2. Since from (5) one has
r2 := rank(B2) = r− r1 and ir1+j = m1 + i′′j for 1 ≤ j ≤ r2, the claim follows by induction.

Therefore L requires only O(mr) field elements compared to m(m − 1)/2 for general m × m
unit lower triangular matrices. Now let us bound the cost of the elimination step, that is, of
computing L21 and B2.

Lemma 3.2 Computing L21 and B2 can be done with O(mnrω−2) field operations.

Proof. For L21 = (T21U
−1)Q1, the invertible matrix U is r1 × r1 and T21 is m2 × r1. In

addition, r1 = rank(A1) implies r1 ≤ m2. Hence T21U
−1 can be computed in time O(m2r

ω−1
1).

For B2, let C21 = L21Q
T
1 and R12 = Q1S12. Then C21 is m2 × r1 and R12 is r1 × (n− r1). We

have already seen that r1 ≤ m2. Now, if r1 ≤ n− r1 then one can compute in C21R12 in time
O(m2(n− r1)rω−2

1); else simply multiply C21 by R12 padded first with 2r1 − n zero columns,
and that in time O(m2r

ω−1
1). Adding T22 has cost O(m2(n−r1)). Conclusion follows for both

L21 and B2 from m2 ≤ m and r1 ≤ r ≤ n.

Using this lemma, let us now estimate T (m,n, r), the number of field operations required
by Algorithm LSP for input A ∈ km×n of (unknown) rank r. Following [11] we count a
comparison with zero as a field operation. Then, when r = 0 (that is, A = 0) or m = 1, we
have T (m,n, r) = O(mn). Otherwise, recall that r1 is the rank of A1 and let r2 be the rank
of B2; then, by Lemma 3.2

T (m, n, r) =

T (m1, n, 0) + T (m2, n, r) + O(mn) if r1 = 0,
T (m1, n, r1) + O(mnrω−2) if r1 = n,
T (m1, n, r1) + T (m2, n− r1, r2) + O(mnrω−2) if 0 < r1 < n.

Hence T (m,n, r) is upper bounded by a function fn(m, r) such that

fn(m, r) =

{
O(mn) if m = 1 or r = 0,
fn(bm/2c, r1) + fn(dm/2e, r2) + O(mnrω−2) otherwise,

for some r1, r2 ≥ 0 with r = r1 + r2. By [11, §1.3] one has fn(m, r) = O(mnrω−2) if ω > 2
and fn(m, r) = O(mn log2 r) if ω = 2. Thus we have shown the following:

Theorem 3.3 Let A ∈ km×n of (unknown) rank r. Algorithm LSP computes an LSP-
decomposition of A in time O(mnrω−2) if ω > 2. If ω = 2, the cost becomes O(mn log2 r).

One could modify easily Algorithm LSP so that it returns not only some factors L, S, P but
also the rank and the row rank profile of A. For applications (see Section 5), one might need
L−1 rather than L; modifying Algorithm LSP accordingly and obtaining the same complexity
bound as in Theorem 3.3 is not hard neither. Here it is interesting to note that if L is striped
according to S then its inverse L−1 is too. To check this, simply observe that if j 6∈ {i1, . . . , ir}
then ej is the jth column of both L and Im. Therefore the jth column of L−1 is L−1ej = ej ,
which means that L−1 is striped according to S.

As already observed in [8], once we have an LSP-decomposition of A, an LQUP-decomposition
can be deduced immediately. In the next section, we modify Algorithm LSP so as to compute
directly an LQUP-decomposition.

9

4 A rank-sensitive LQUP-decomposition algorithm

Instead of computing L, S, P recursively, one can work directly with a corresponding LQUP-
decomposition in compressed form. Using the same divide-and-conquer approach as in Sec-
tion 3, the goal is now to compute matrices M,Q, V, P as in (1), (2), (3).

Recall that M ∈ km×r is in echelon form (Mi,j = 0 for i ≤ ij), that the first r columns
of Q are F , and that V ∈ kr×r is upper triangular and invertible. Furthermore, an LSP-
decomposition of A with L striped according S follows from

A =
(
[M | 0] + Q

)[V

0

]
P

by taking

L = [M | 0]QT + Im and S = Q

[
V

0

]
.

Theorem 4.1 Algorithm LQUP is correct. Its cost is O(mnrω−2) if ω > 2 and O(mn log2 r)
if ω = 2.

Proof. The proof is similar to that of Theorem 3.3: for correctness, we can proceed
by induction on m and, for m > 1, study separately three cases “r1 = 0”, “r1 = n” and
“0 < r1 < n.” (Some details about each case are provided in Appendix A.) As for the
complexity bound, it is obtained in exactly the same way as in Section 3.2.

In the algorithm below, by “matrix m× 0” we mean a matrix with m empty rows.

10

Algorithm LQUP(A)
Input: A ∈ km×n.
Output: an LQUP-decomposition of A in compressed form M,Q, V, P and its rank r.
if A = 0 then

M,Q, V, P, r := matrix m× 0, Im,matrix 0× n, In, 0;
else if m = 1 then

j := the index of the first nonzero entry of A;
P := the permutation matrix that interchanges A1,1 and A1,j ;
M,Q, V, r := 01×1, I1, AP, 1;

else
m1,m2 := bm/2c, dm/2e;
M1, Q1, V1, P1, r1 := LQUP(A1) with A1 the first m1 rows of A;
if r1 = 0 then
M2, Q2, V2, P2, r2 := LQUP(A2) with A2 the last m2 rows of A;

M,Q, V, P, r :=
[

M2

]
,

[
Im1

Q2

]
, V2, P2, r2;

else
V11 := the first r1 columns of V1;
T2 := A2P

T
1 with A2 the last m2 rows of A;

M21 := T21V
−1
11 with T21 the first r1 columns of T2;

if r1 = n then

M,Q, V, P, r :=
[

M1

M21

]
,

[
Q1

Im2

]
, V11, P1, r1;

else
B2 := T22 −M21V12 with V12, T22 the last n− r1 columns of V1, T2;
M2, Q2, V2, P2, r2 := LQUP(B2);

M,V, P, r :=
[

M1

M21 M2

]
,

[
V11 V12P

T
2

V2

]
,

[
Ir1

P2

]
P1, r1 + r2;

Q :=
[

Q11 Q12

Q21 Q22

]
with Qi = [Qi1 |Qi2] and Qi1 having ri columns;

fi;
fi;

fi;
return M,Q, V, P, r;

5 Some applications of LSP-/LQUP-decomposition

In [8, §4] and [10, §4], several applications of an LSP- or LQUP-decomposition are given:
solve the linear system Ax = b or detect that it has no solution; find a submatrix of A whose
column and row ranks are both equal to r, and, more generally, reorder the rows and columns
of A to obtain a matrix with generic rank profile; compute left and right nullspace bases of A;
diagonalize A, that is, compute an m by m nonsingular matrix X and an n by n nonsingular
matrix Y such that XAY = diag(Ir, 0); compute various generalized inverses (generalized,
reflexive generalized [8, p.54] and, when k is the field of complex numbers, Moore-Penrose [7,
p.257]).

A consequence of the algorithms of the previous sections is that the complexity of such
application problems is now bounded by O(nmrω−2) or O(mn log2 r) instead of O(nmω−1).

11

We give some details below.

Generic rank profile. Partition V in (3) as V = [V1 |V2] with V1 ∈ kr×r. Then

QT AP T =
[

F T M + Ir

GT M

][
V1 V2

]
.

Since F T M + Ir is unit lower triangular and V1 is upper triangular and nonsingular, the first
r principal minors of the product (F T M + Ir)V1 are nonsingular. Hence QT AP T has generic
rank profile.

Linear system solving. Here the classic process is as follows. Given A ∈ km×n and b ∈ kn,
first compute an LSP-decomposition of A; then compute the vector c = L−1b; conclude that
Ax = b has no solution, otherwise solve Sy = c for y and return x = P T y.

Due to the semi-upper triangular shape of S, solving Sy = c has cost O(rω). In order to
bound the cost of solving Lc = b, observe that

L = [M | 0]QT + Im

leads to
QT LQ = QT [M | 0] + Im.

Now, W := QT LQ has the shape

W =
[

W1

W2 Im−r

]
, with W1 ∈ kr×r invertible.

Therefore, by inverting W , one can compute L−1b = Q
(
W−1(QT b)

)
with O(mrω−1) field

operations. In conclusion, when A = LSP is given, one can solve Ax = b or decide that no
solution exists with O(mrω−1) extra operations.

Left and right nullspace bases. With V1, V2,W1,W2 as above, it is not hard to verify
that bases of the left and right nullspaces of A are given by, respectively,[

−W2W
−1
1 Im−r

]
QT and P T

[
−V −1

1 V2

In−r

]
.

Given A = LQUP , computing those two bases costs O((m + n)rω−1) field operations.

Diagonalizing transforms. Some transforms X ∈ km×m and Y ∈ kn×n such that XAY =
diag(Ir, 0) are (see [8, p.53])

X = Q−1L−1 and Y = P T

[
V −1

1 −V −1
1 V2

In−r

]
.

Hence, given A = LQUP , one can compute them at an extra cost of O((m + n)rω−1).

Generalized inverses. From the proof of [8, Theorem 3.3], an arbitrary generalized inverse
and an arbitrary reflexive inverse can both be deduced from the above X, Y , L, Q, V via
some matrix multiplications having cost O(mnrω−2). From the proof of [8, Theorem 3.4] one
can see that, given A = LQUP , the cost of the Moore-Penrose inverse is dominated by the
cost of multiplying an n× r matrix by an r ×m matrix, which is O(mnrω−2) too.

12

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] D. Bini and V.Y. Pan. Polynomial and Matrix Computations, Volume 1: Fundamental Algorithms.
Birkhäuser, Boston, 1994.

[3] J. Bunch and J. Hopcroft. Triangular factorization and inversion by fast matrix multiplication.
Mathematics of Computation, 28(125):231–236, 1974.

[4] B. Bürgisser, C. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory, volume 315 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997.

[5] J.-G. Dumas, T. Gautier, P. Giorgi, and C. Pernet. Dense linear algebra over finite fields: the
FFLAS and FFPACK packages. Technical Report cs.SC/0601133, arXiv, 2006.

[6] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite Field Linear Algebra Package. In
J. Gutierrez, editor, Proc. International Symposium on Symbolic and Algebraic Computation,
Santander, Spain, pages 119–126. ACM Press, 2004.

[7] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
third edition, 1996.

[8] O.H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. Journal of Algorithms, 3:45–56, 1982.

[9] C. Pernet. Calcul du polynôme caractéristique sur des corps finis. Master’s thesis, Université
Joseph Fourier, 2003.

[10] C. Pernet. Algèbre linéaire exacte efficace: le calcul du polynôme caractéristique. PhD thesis,
Université Joseph Fourier, 2006.

[11] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute of
Technology, ETH-Zurich, 2000.

13

A Some details for the correctness proof of Algorithm LQUP

A.1 Case where r1 = 0

In this case r = r2 and

A =
[

0
A2

]
,

which implies

AP T
2 =

[
0

L2Q2U2

]
=

[
Im1

L2Q2

][
0
U2

]
, L2Q2 = [M2 | 0] + Q2, U2 =

[
V2

0

]
.

Hence

A =
[

Im1

[M2 | 0] + Q2

][
U2

0

]
=

[

0 0m1×(m−r2)

M2 0

]
︸ ︷︷ ︸

=:[M | 0]

+
[

Im1

Q2

]
︸ ︷︷ ︸

=:Q

[

V2

0

]
P2,

and V := V2 and P := P2. The first r columns of Q are
»

0

Q2

–
= [ei′1+m1

, . . . , ei′r+m1] where,

by induction, (i′j) is the row rank profile of A2. Conclusion follows from the fact that when
r1 = 0 one has ij = i′j + m1 for 1 ≤ j ≤ r. Similarly, M is of the desired shape because M2

is, by induction.

A.2 Case where r1 > 0

In this case

A =
[

A1

A2

]
=

[
L1Q1U1

T2

]
P1, L1Q1 = [M1 | 0] + Q1, U1 =

[
V1

0

]
.

Therefore, with V1 = [V11 V12] and T2 = [T21 T22],

AP T
1 =

[
[M1 | 0] + Q1

Im2

] V11 V12

0 0
T21 T22

=

[
[M1 | 0] + Q1

Im2

] Ir1

Im1−r1

M21 Im2

 V11 V12

0 0
0 B2

 ,

where M21 = T21V
−1
11 and B2 = T22 −M21V12.

14

A.2.1 Case where r1 = n

In this case r = r1 = n and thus

A =
[

[M1 | 0] + Q1

Im2

] In

Im1−n

M21 Im2

 V11

0
0

P1

=

[

M1 0m1×(m−n)

M21 0

]
︸ ︷︷ ︸

=:[M | 0]

+
[

Q1

Im2

]
︸ ︷︷ ︸

=:Q

[

V11

0

]
P1, V := V11, P := P1.

In addition the first r columns of Q are the first r1 columns of
»

Q1

0

–
, that is, by induction,

[ei′1
, . . . , ei′r1

] where (i′j) is the row rank profile of A1. Since r1 = n, (i′j) is also the row rank
profile (ij) of A and thus the first r columns of Q are [ei1 , . . . , eir] as wanted. Also, since by
induction M1 has the correct echelon shape, the same holds for M .

A.2.2 Case where 0 < r1 < n

Since B2 = ([M2 | 0] + Q2)
»

V2

0

–
P2 we have

AP T
1 =

([
M1 0
M21 0 M2 0

]
+

[
Q1

Q2

])
V11 V12P

T
2

0 0
V2

0

[
Ir1

P2

]
.

Hence

A =
([

M1 0
M21 0 M2 0

]
+

[
Q11 Q12

Q21 Q22

])
Ir1

Im1−r1

Ir2

Im2−r2

×

V11 V12P

T
2

V2

0 0
0

︸ ︷︷ ︸

=:

»
V

0

–

[
Ir1

P2

]
P1︸ ︷︷ ︸

=:P

.

=

[

M1 0 0
M21 M2 0

]
︸ ︷︷ ︸

=:[M | 0]

+
[

Q11 Q12

Q21 Q22

]
︸ ︷︷ ︸

=:Q

[

V

0

]
P.

Now, r = r1 + r2 and the first r columns of Q are
»

Q11

Q21

–
, that is, by induction,

[ei′1
, . . . , ei′r1

|ei′′1+m1
, . . . , ei′′r2+m1]

15

where (i′j) is the row rank profile of A1 and (i′′j) is the row rank profile of B2. Since the row
rank profile (ij) of A satisfies ij = i′j for 1 ≤ j ≤ r1 and ij = i′′j + m1 for r1 < j ≤ r, we

conclude that he first r columns of Q are [ei1 , . . . , eir] as wanted. Also, M =
»

M1

M21 M2

–
has

the desired shape, because that is true, by induction, for both M1 and M2 and because of the
above relationship between (ij), (i′j) and (i′′j).

	1 Introduction
	2 LSP-decomposition and reduced echelon forms
	2.1 From the reduced column echelon form to L, S, P factors
	2.2 From L,S,P factors to the reduced column echelon form

	3 A rank-sensitive version of the IMH algorithm
	3.1 Algorithm description
	3.2 Complexity analysis

	4 A rank-sensitive LQUP-decomposition algorithm
	5 Some applications of LSP-/LQUP-decomposition
	A Some details for the correctness proof of Algorithm LQUP
	A.1 Case where r1 = 0
	A.2 Case where r1 > 0
	A.2.1 Case where r1 = n
	A.2.2 Case where 0 < r1 < n

