N

N

Algorithms and Tools for (Distributed) Heterogeneous
Computing: A Prospective Report

Jean-Francois Mehaut, Yves Robert

» To cite this version:

Jean-Francois Mehaut, Yves Robert. Algorithms and Tools for (Distributed) Heterogeneous Com-
puting: A Prospective Report. [Research Report] LIP RR-1999-36, Laboratoire de l'informatique du
parallélisme. 1999, 2+45p. hal-02102343

HAL Id: hal-02102343
https://hal-lara.archives-ouvertes.fr /hal-02102343
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102343
https://hal.archives-ouvertes.fr

%

Laboratoiredel’ I nformatique du Parall&isme

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON r 5668

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Algorithms and Tools for

A Prospective Report

J.F. Méhaut and Y. Robert August 1999

(Distributed) Heterogeneous Computing:

Research Report N° 1999-36

Ecole Normale Supérieure de Lyon
46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ip@ens-lyon.fr

- SPI
EEEEN
EEEEN

%I INRIA

Algorithms and Tools for
(Distributed) Heterogeneous Computing:
A Prospective Report

J.F. Méhaut and Y. Robert

August 1999

Abstract

We discuss algorithms and tools to help program and use metacom-
puting resources in the forthcoming years. Metacomputing with highly
distributed heterogeneous environments stands to become a major, if
not dominant, method to implement all kinds of parallel applications.
In this report, we survey some general aspects of metacomputing (hard-
ware, system and administration issues, as well as the application field).
Next we identify some algorithmic issues and software challenges that
must be solved to efficiently program and/or transparently use such
platforms:

e Data decomposition techniques for cluster computing,
e Granularity issues for metacomputing,

e Scheduling and load-balancing methods,

e Programming models.

We illustrate each of these issues and challenges by the analysis of
several case studies: Cluster ScaLAPACK, AppLeS, Globus, Legion,
Albatross and Netsolve. We conclude this report by stating some final
remarks and recommendations.

mbox

Acknowledgments: This research report is directly issued from the
prospective report written by Yves Robert for the “ERCIM Prospective
Reports on ICST Research in Europe”, an initiative of ERCIM which
we gratefully acknowledge.

Keywords: meta-computing, heterogeneous networks, computational grid, distributed
environments.

Résumé

Le calcul distribué & hautes performances, encore appellé “metacom-
puting”, constitue aujourd’hui une des approches les plus prometteuses
pour implémenter des applications paralleles. Ce rapport présente une
synthese des outils facilitant la programmation et I'utilisation des res-
sources du métacomputing, et discute les nouvelles techniques algorith-
miques & mettre en oeuvre pour utiliser efficacement de telles plate-
formes.

Dans la premiere partie, nous introduisons les principes généraux
du métacomputing (infrastructures matérielles, systémes et environne-
ments, administration ainsi que le champ applicatif). Nous détaillons
ensuite quelques uns des nouveaux problemes algorithmiques et les chal-
lenges logiciels pour pouvoir programmer efficacement et/ou utiliser de
maniére transparente ces nouvelles infrastructures:

Techniques d’allocation de données pour le calcul sur les grappes,

Problemes de granularité pour le métacomputing,

Méthodes pour ordonnancer et réguler la charge de calcul,

Modeles de programmation.

Nous illustrons cette étude par ’analyse de plusieurs projets: Cluster
ScalLAPACK, AppLeS, Globus, Legion, Albatross et Netsolve. Nous
concluons ce rapport avec un certain nombre de recommandations sur
les directions & suivre dans ce nouveau domaine de recherche.

Mots-clés: “meta-computing”, “computational grid”, plateforme hétérogene.

Contents

1

Framework

1.1 Metacomputing Platforms
1.2 Algorithmic and Software Issues
1.3 Objectives o e e e e
1.4 Outline o

General Remarks on Metacomputing

2.1 Tomorrow’s Virtual Super-Computer
2.2 Hardware Platformso
2.3 Software L e e
2.4 Administrative Issues. e
2.5 Applications L e

Algorithmic and Programming Aspects

3.1 Data Decomposition Techniques for Cluster Computing
3.2 Granularity Issues for Metacomputingo
3.3 Scheduling and Load-Balancing Applications
3.4 Programming Models.
Case Study: Cluster ScaLAPACK

4.1 Introduction
4.2 Load Balancing on Unidimensional (Heterogeneous) Grids
4.3 Load Balancing on Two-Dimensional (Heterogeneous) Grids
4.4 Solving the 2D Heterogeneous Grid Allocation Problem
4.5 Load Balancing on Collections of Clusters

Case Study: Metacomputing Environments

5.1 AppLeS . . . e
5.2 Globus e e e
5.3 Legion L
5.4 Albatross e e e e

Case Study: NetSolve

6.1 Introduction e e e e
6.2 Overview of the NetSolve System
6.3 Interface to the Condor System
6.4 Integrating Parallel Numerical Libraries
Conclusion

13
13
13
19
24
26

29
29
30
31
32

34
34
34
37
37

39

1 Framework

The future of parallel computing is best described by the key-words distributed and heterogeneous.
Making use of distributed collections of heterogeneous platforms is the activity of metacomputing.
In this section, we briefly survey the field of distributed and heterogeneous (i.e. metacomputing)
platforms. Next we sketch some algorithmic issues and software challenges that must be solved
to efficiently program and/or transparently use such platforms. Then we state the objectives of
this report, whose contents are outlined at end of this section. We stress that we are interested in
tightly-coupled high-performance distributed applications rather than loosely-coupled cooperative
applications.

1.1 Metacomputing Platforms

At the low end of the field of distributed and heterogeneous computing, heterogeneous networks of
workstations or PCs are ubiquitous in university departments and companies, and they represent
the typical poor man’s parallel computer: running a large PVM or MPI experiment (possibly all
night long) is a cheap alternative to buying supercomputer hours. The idea is to make use of all
available resources, namely slower machines in addition to more recent ones. Computing with a
heterogeneous networks of workstations is known as cluster computing®. Several aspects of cluster
computing are covered in the survey books edited by Buyya [19, 20].

At the high end of the field, linking the most powerful supercomputers of the largest supercom-
puting centers through dedicated high-speed networks will give rise to the most powerful computa-
tional science and engineering problem-solving environment ever assembled: the so-called computa-
tional grid, which is nicely described in Foster and Kesselman’s book [38]. Providing desktop access
to this “grid” will make computing routinely parallel, distributed, collaborative and immersive?.

In the middle of the field, we can think of connecting medium-size parallel servers through
fast but non-dedicated links. For instance, each ERCIM institution could build its own specialized
parallel machine equipped with application-specific databases and application-oriented software,
thus creating a “meta-system”. The user is then able to access all the machines of this meta-system
remotely and transparently, without each institution duplicating the resources and the exploitation
costs.

1.2 Algorithmic and Software Issues

Whereas the architectural vision is clear, the software developments are not so well understood.
Even at the low end of the field, the programmer is faced with several challenges. The major limita-
tion to programming heterogeneous platforms arises from the additional difficulty of balancing the
load when using processors running at different speeds. Distributing the computations (together
with the associated data) can be performed either dynamically or statically, or a mixture of both.
Some simple schedulers are available, but they use naive mapping strategies such as master-slave
techniques or paradigms based upon the idea “use the past predict the future”, i.e. use the cur-
rently observed speed of computation of each machine to decide for the next distribution of work.
Furthermore, data dependences may well lead to slowing the whole computing process down to the
pace of the slowest processor, as examples taken from standard linear algebra kernels demonstrate

!See the very interesting discussion on the definition of cluster computing at www.eg.bucknell.edu/ hyde/tfcc/.
This discussion has been initiated by the IEEE Task Force on Cluster Computing.

2See the two special issues of Communications of the ACM: November 1997 (“Blueprint for the future of high-
performance computing”) and November 1998 (“The high-performance computing continuum”)

(see Section 4). In fact, extensions of parallel libraries such as ScaLAPACK are not yet available. A
major algorithmic effort must be undertaken to tackle heterogeneous computing resources. Block-
cyclic distribution is no longer enough: there is a challenge in determining a trade-off between the
data distribution parameters and the process spawning and possible migration policies. Redundant
computations might also be necessary to use an heterogeneous cluster at its best capabilities.

At the high end of the field, the first task is to logically assemble the distributed computer:
given the network infrastructure, configure the distributed collection of machines to which access is
given. Software of this category includes low-level communication protocols that enable distributed
resources to efficiently communicate. Extensions of PVM and MPI are needed to handle distributed
collections of clusters: see Section 3.4 Once this software layer is built, the user must be provided
with meta-computing tools and libraries, i.e software that is able to split the computation into
tasks that will be dynamically allocated to the different resources available. Current strategies to
allocate tasks to resources are very simple (similar to those previously discussed).

A major issue for runtime systems is to address the problem of configuration and performance
optimization in a metacomputing environment. Managing resources within this framework is much
more complicated than in a local and homogeneous environment. These are challenging issues
because of (i) the inherent complexity of networked and heterogeneous systems, (ii) the fact that
resources are often identified at runtime and (iii) the dynamic nature of resource characteristics.
High-performance computing applications must be able to configure themselves to fit the execution
environment, and then adapt their behavior to subsequent changes in resource characteristics.

The ultimate goal would be to use the computing resources remotely and transparently, just
as we do with electricity: without knowing where it comes from. Before reaching this ambitious
goal, there are several layers of software to be provided. Lots of efforts in the area of building
and operating meta-systems are targeted to infrastructure, services and applications. Not so many
efforts are devoted to algorithm design and programming tools, while (we believe) they represent
the major conceptual challenge to be tackled.

1.3 Objectives
The objectives of this report are:

e to survey existing algorithm design methods for heterogeneous platforms, both at the low end
(collection of workstations) and at the high end (multi-component applications to be run on
meta-systems).

e to survey existing technology in the fields of schedulers, compilers, languages and libraries
(including numerical libraries, communication libraries and meta-computing libraries) for such
platforms.

e and to identify new directions of research.

1.4 Outline

The rest of the report is organized as follows. In Section 2 we briefly discuss some key issues in
cluster- and meta-computing: hardware, system and administration issues, as well as the application
field. These issues are not covered in further depth in the report, but Section 2 includes several
pointers to bibliographical sources, mostly from the Web. In the following sections we deal with
all the issues related to the algorithmic of metacomputing:

e Data decomposition techniques for cluster computing (Section 3.1),

e Granularity issue for metacomputing (Section 3.2),
e Scheduling and load-balancing methods (Section 3.3),
e Programming models (Section 3.4).

We illustrate each of these issues and challenges by the in-depth analysis of case studies. Because
this report is oriented to algorithmic issues, we devote a long section to the design of Cluster
ScaLAPACK (Section 4). Next in Section 5, we cover several metacomputing environments: Ap-
pLeS (Section 5.1), Globus (Section 5.2), Legion (Section 5.3), and Albatross (Section 5.4). We
give a detailed presentation of NetSolve in Section 6). We conclude this report by stating some
final remarks and recommendations in Section 7.

2 General Remarks on Metacomputing

In this section we briefly deal with some aspects of metacomputing that will not be covered in details
in this report: hardware, system and administration issues, as well as the application field. We
have no objective of comprehensiveness (refer to Chapter 7 of [19] for a detailed survey). Instead,
we give our personal view on some important aspects of metacomputing, together with several
pointers to external references.

2.1 Tomorrow’s Virtual Super-Computer

Metacomputing is likely to represent a major evolution in the future of computing. Today the
development of Internet is mainly due to communication tools (e-mail, news) and information
services (Web). Functionally, the Web is a huge data-base, which is distributed on the whole set of
computers and servers over the earth. In terms of computing resources, the Web (and the associated
data-base) is built using (i) a set of disks to store the data; (ii) a network infrastructure enabling
a large number of users to access this data. The idea of metacomputing is to use the computing
power of the computers linked by the Internet network to execute various applications (numerically-
intensive applications first, but many other applications to follow): these applications that used to
be implemented a few years ago on dedicated parallel machines. In other words, Internet will slowly
evolve into a virtual super-computer, owing to the fast interconnection of the computing resources
of all centers equipped with parallel machines or even simply with workstation clusters. Therefore,
metacomputing applications will execute on a hierarchical grid, made up with the interconnection
of clusters scattered all around the world. In this context, a cluster can be defined as a group
of processors communicating either through a shared memory (SMP architecture) or through a
communication network whose performances range from 10 Mbits (Ethernet) up to a couple of
Gigabits (high-speed networks such as Myrinet, SCI or Giga-ethernet). See the book by Culler and
Singh [28] for further details on cluster architectures. A fundamental characteristic of the virtual
super-computer is to be composed of a set of strongly heterogeneous and geographically scattered
resources.

2.2 Hardware Platforms

Several experiments in metacomputing have been launched in the US in the last few years. These
experiments are supported by NSF, NCSA, the Department of Energy, etc; they are coordinated by
the National Partnership for Advanced Computational Infrastructure (NPACI)3. Several supercom-
puter centers, national laboratories and universities are linking their resources through high-speed
dedicated links, with the main objective to build computational grids. One famous example is the
GUSTO (Globus Ubiquitous Supercomputing Testbed) grid which interconnects 17 sites et 330 su-
percomputers (over 3600 processors) to deliver an aggregated global power in excess of 2 TeraFlops
per second! The main objective here is to provide scientific researchers with a simple access to the
grids, enabling them to run parallel, distributed, or even cooperative applications.

Right now in Europe, such ambitious projects are not yet launched, due to the lack of super-
computer infrastructures. Intensive parallel computing has been democratized through the use of
heterogeneous networks of workstations (HNOWS), which are widely available in research labora-
tories and enterprises. The computing power of HNOWs is very inefficiently exploited so far: for
instance, a simple local network of 50 workstations or PCs has an aggregated computing power

3NPACI publishes several newsletters and technical reports , see http://www.npaci.edu.

exceeding that of expensive parallel machines. Clearly, the workstations of most local networks
are used interactively during business hours, but remain completely idle otherwise. This gives the
opportunity for overnight runs of numerically intensive parallel applications over the whole local
network. HNOWSs represent a cheap and efficient solution for parallel and distributed computing.

A medium way for metacomputing is to rely on a large-scale interconnection of HNOWs which
are ubiquitous in universities and research laboratories. Such experiments have been initiated in
various locations. For instance in the Netherlands, the DAS platform (Distributed ASCI Supercom-
puter, http://www.cs.vu.nl/"bal/das.html) uses an ATM network to interconnect 200 stations
(or PCs) located within four different universities (Amsterdam, Delft, Leiden et Utrecht). The DAS
user can start computations over the whole set of available processors, without knowing the exact
location of these processors. To avoid the duplication of some resources on each processor (files or
data-bases), the runtime support must also provide features to access remote resources. See Sec-
tion 5.4 for a description of the DAS programming environment. The programming environment
plays a critical role in cluster computing: while network technologies are certainly mature enough
to build very large HNOWS, substantial efforts are still to be spent on the software side (system,
administration, runtime, ...).

2.3 Software

Internet and the Web would not have been so successful without the many simple and easy-to-
use tools (mailers, browsers) that have been rapidly made available for the users. The success of
metacomputing also depends upon the delivery of a large collection of tools and programming/de-
velopment environments. In a word, the objective is to provide the users with all layers of software
needed to design applications in a simple way, while preserving a reasonable level of performance
(far below the goal of squeezing the most out of the infrastructures).

However, during the last 10 years or so, research efforts in the domain of parallel run-time
environments have focused on architectures that are strongly homogeneous (processors, memory,
networks). Homogeneity has motivated the splendid research on array and loop distribution, par-
allelizing compilers, HPF constructs, gang scheduling, MPI, ..., which has contributed a lot to
the success of high performance computing. As already pointed out, metacomputing platforms are
strongly heterogeneous. Run-time environments will have to take this heterogeneity into account.
Today we perfectly know how to communicate data between heterogeneous processors, via stan-
dard data representation formats (XDR). This is not true for communication protocols: so far, the
dominant approach was to rely on a unique communication protocol (TCP/IP) in order to intercon-
nect all computers over the earth. However, this protocol is severely limited for high-performance
computing. In a metacomputing framework, a challenge will be the following: within different
runtime environments such as MPI and Corba, special-purpose but fast protocols such as BIP for
Myrinet (http://lhpca.univ-lyonl.fr) or VIA (http://www.viarch.org) are to co-exist with
the large-scale communication protocol TCP/IP.

2.4 Administrative Issues

The execution of intensive computations on a set of processors distributed across several countries
and institutions requires strict rules to define the (good) usage of shared resources. These rules must
be accepted and obeyed by all the different users. For instance a simple rule is that a workstation
processor cannot be used by other users if the workstation owner is interactively logged on the
machine. Similarly, the processors of a cluster could be reserved for those applications which are
local to a given research center, and therefore would not be available for external demands. It is

mandatory to establish precise rules for the exploitation and sharing of the resources, as it used to
be the case in the first computing centers ... long time ago! The respect of these rules must be
guaranteed by the runtime system, together with methods to migrate computations to other sites
whenever some local request is raised.

Metacomputing provokes new problems at the system administration level. Currently, system
administration is heavily centralized, and mainly consists in managing the accounts and the envi-
ronments of the users. In a metacomputing context, a major difficulty is to avoid a large increase
in the administrative overhead. It is not reasonable to think of a solution where each user would
have an account on each machine on the network (that would dramatically reduce the number of
both users and machines). Neither is it reasonable to propose a solution where a single user (meta-
user) would be the one and only authorized user on the whole set of machines: this would give no
protection at all between the data and programs of the different users (in fact, this would be like
coming back to a mono-user system). The challenge is to find a tradeoff that does not increase the
administrative load while preserving the security of the users.

2.5 Applications

All applications involving parallel computing are good candidates to be ported on a metacomputing
platform. On one hand, the severe constraints due to (i) using a network of heterogeneous ma-
chines and (ii) relying on current (limited) programming environments, may lead to unacceptable
performances, if speed if the main criterion. On the other hand, the other traditional motivation
to go parallel, namely increasing the available memory size and storage capacity, remains valid on
all metacomputing platforms.

“Classical applications” such as the grand challenges can be ported on metacomputing plat-
forms: see the NPACI reports for an impressive list ranging from molecular dynamics to climate
modeling, including all kinds of simulations. For such applications, the granularity of the computa-
tions and of the communications is the main factor to performance. Parallelizing these applications
on traditional parallel machines is generally conducted with a very fine grain, and even at the
innermost loop level. Other strategies must be employed on heterogeneous platforms, taking into
account the deep hierarchy between all memory and communication layers. Code coupling is one of
the nicest applications for metacomputing, because of (i) its large granularity and (ii) the loose ex-
changes between the different component applications. See [4] or http://www.acl.lanl.gov/PAWS
for a widely known example of a code coupling approach. Note that fault tolerance is an issue here,
because such codes run for hours or days.

Another class of applications that can easily benefit from heterogeneous platforms is the fol-
lowing: when the application is divided into phases, such as (i) accessing the data; (ii) computing;
and (iii) visualizing the results, then a disk server for phase (i), a big mainframe for (ii) and a
graphics workstation for (iii) will do the job ideally. A typical example is volume rendering in med-
ical imaging. Other applications can be considered out of the old world of numerical (or scientific)
computing: data-bases, decision-support systems, and all kinds of multimedia servers (e.g. see the
PPI project at http://www.infospheres.caltech.edu).

To summarize in a sentence, the best candidates for metacomputing are all loosely-coupled
applications, those which exchange little data between processors. All kinds of decomposition
(functional, pipeline, data-parallel) can be brought into play for such applications. The actual
challenge is the implementation of tightly-coupled applications.

3 Algorithmic and Programming Aspects

For current parallel applications, most of the work done at the algorithmic level has been targeting
platforms which are more or less homogeneous in terms of computing power, memory access, and
network latency and bandwidth. Cluster computing or metacomputing implies a major effort in
several directions. In this section, we have in mind the implementation of a tightly-coupled ap-
plication, such as a matrix-matrix product or a dense linear system solver, on a metacomputing
platform. How do the man two characteristics of metacomputing, namely heterogenity and dis-
tribution, impact the design of such an application? We successively analyze data decomposition
techniques, granularity issues, scheduling and load-balancing heuristics, communication protocols,
and programming environments.

3.1 Data Decomposition Techniques for Cluster Computing

The Scalable Linear Algebra Package (ScaLAPACK) [9] is a library of high-performance linear
algebra routines for distributed-memory message-passing MIMD computers as well as networks or
clusters of workstations supporting PVM [40] or MPI [61]. It is a continuation of the LAPACK
project, and contains routines for solving systems of linear equations, least squares problems, and
eigenvalue problems. ScaLAPACK views the underlying multi-processor system as a rectangular
process grid. Global data is mapped to the local memories of the processes in that grid assum-
ing specific data-distributions. For performance and load balance reasons, ScaLAPACK uses the
two-dimensional block cyclic distribution scheme for dense matrix computations. Inter-process
communication within ScaLAPACK is done via the Basic Linear Algebra Communication Subpro-
grams.

ScalLAPACK obeys the block-cyclic distribution paradigm, which is very natural for inexperi-
enced users. Blocked algorithms are needed to squeeze the most out of state-of-the-art processors
with pipelined arithmetic units and a multilevel memory hierarchy [31, 23]). Then cyclically dis-
tributing blocks to processors nicely regulates the load. This explains why block-cyclic distribution
is the preferred layout for data-parallel programs (maybe written in High Performance Fortran [47]).
However, such a distribution evenly balances the total workload among all processors only if their
speeds are all the same. This shows that ScaLAPACK is restricted to collections of homogeneous
processors.

Extending ScaLAPACK to heterogeneous clusters turns out to be surprisingly difficult. The
naive idea would be to assign to each processor an amount of computations that is inversely propor-
tional to its cycle-time, so that the load remains balanced despite the differences in the processing
power of the cluster workstations. Such a good load balancing could be achieved either through
dynamic or static strategies. Unfortunately, dynamic strategies may fail because of the many
redistributions that they imply throughout the execution of the algorithm. Even worse, data de-
pendences may well slow everything down to the pace to the slowest processor. Furthermore, in
a library oriented approach, dynamic strategies are difficult to introduce, because they imply a
complicated memory management. What about static strategies then 7 Static strategies are less
general but may prove useful if the speed of the different workstations is known rather accurately.
In that case, sophisticated periodic data distribution strategies are absolutely needed: as already
pointed out, block-cyclic distribution is no longer enough. Determining efficient static strategies is
possible but involves quite a lot of efforts: see Section 4 for further details.

These are bad news: if designing a matrix-matrix product or a dense linear solver proves a hard
task on a heterogeneous cluster, it is likely than more ambitious programs will require even more
work ! The next problems are:

1. implementing simple linear algebra kernels on a collection of clusters (extending the platform)

2. implementing more ambitious routines, composed of a variety of more elementary kernels, on
a heterogeneous cluster (extending the application)

3. implementing more ambitious routines on more ambitious platforms (extending both).

However, the research community has to tackle these problems for the computational grid to be
fully successful!

3.2 Granularity Issues for Metacomputing

In this section we target the first problem stated above: given a distributed collection of heteroge-
neous NOWSs rather than a simple heterogeneous cluster, can we find good data allocation strategies
for numerical kernels such as dense linear solvers on top of such platforms?

A first task is to model the underlying architecture. A simple model for a heterogeneous
grid is the following: we hierarchically define a (d 4+ 1)-deep grid as a homogeneous network of
heterogeneous d-deep grids. Of course a 1-deep grid simply is a heterogeneous NOW. Then a 2-
deep grid is a collection of heterogeneous NOWSs, where the inter-NOW communication links are
assumed to have the same speed, typically one order of magnitude slower than the intra-NOW
communication links. For instance two local networks in Europe and in the US may be connected
by a slower (non-dedicated) link. A 3-deep grid is a collection of 2-deep grids linked by a slower
network, and so on.

We address the problem of finding good data allocation strategies for typical numerical kernels
on 2-deep grids. To this purpose, we assume that in each NOW, a processor is dedicated to handle
the communications between NOWs, as shown in Figure 1.

Cluster A Cluster B Cluster C

,// \\ /// O O \\\ /// O \\\
’I O O \\\ ’I \\ ’/ O \\
: | O o ! o
1 1 1 1 1 1
\ ! \ ! \ !
\\ O O // \\ // \\ O //

" K v O O N O /

Figure 1: Modeling a 2-deep grid.

Because of the characteristics of the 2-deep grid, we have to increase the granularity of the
computations. The basic chunk of data that is allocated to a given NOW is a panel of B blocks of r
columns, where r is chosen to ensure Level 3 BLAS performance [9] and B is a machine-dependent
parameter. The basic idea is to overlap inter-NOW communications (typically the broadcast of a
panel) with independent computations. Updating a panel requires nB?r?7, units of time, where
T 18 the elemental computation time. Communicating a panel between NOWSs requires nBrr,
units of time, where 7. is the inter-NOW communication rate. Of course 7. is several orders of
magnitude greater than 7,, but letting B large enough (in fact B > ;=) will indeed permit the

desired communication-computation overlap. Note that such an overlap cannot usually be achieved
within a single NOW.

We report in Section 4.5 several strategies to implement LU and QR factorizations on a 2-
deep grid. These strategies are preliminary: they are intended to balance computations while
overlapping communications. Actual experiments are needed to validate these implementation
skeletons. However, we can already draw the conclusion that a major software effort is needed.
Some basic tools to write the factorization routines, such as the BLAS3 operations, are still there.
Some other tools such as the BLACS subroutines need to be extended to cope with several NOWs,
using packages such as those described in Section 3.4. What seems unavoidable is a change in the
design philosophy of parallel numerical libraries: we would access pointers to local arrays rather
than addressing a shared-memory global matrix as in the current ScaLAPACK distribution. Such a
major change is a sine-qua-non to tackle the implementation of ScaLAPACK on d-deep grids, where
d > 2: it does not seem reasonable to emulate a global addressing on a collection of heterogeneous
NOWSs or parallel servers that are scattered all around the world.

These results indicate that a major algorithmic and software effort is needed to come up with
efficient numerical libraries on the computational grid.

3.3 Scheduling and Load-Balancing Applications

On classical parallel machines, it is already difficult to trade-off parallelism and communication,
even in the presence of unlimited resources. The most powerful scheduling methods (such as
Gerasoulis and Yang’s dominant sequence clustering [66]) operate in two-steps: in the first step,
heuristics are used to grouping tasks into clusters. This clustering operation is made assuming
unlimited resources, to simplify things. In the second step, clusters will be allocated to available
processors, and the final ordering of the tasks will be computed. The basic rule of the game is
that all the tasks of a given cluster will be allocated to the same processor. We can think of a
virtual processor per cluster in the first phase, while several clusters will be allocated to physical
processors in the second phase. Why is clustering a useful heuristic? Sarkar [58] gives the following
justification: “If tasks are scheduled on the same processor on the best possible architecture with
unbounded number of processors, then they should be scheduled in the same processor in any other
architecture”. Sarkar’s argument, although not true in every case, is very intuitive, and clustering
techniques have been widely explored.

Heterogeneity poses new challenges to scheduling techniques. Of course clustering has no more
meaning, because assuming unlimited resources in a heterogeneous environment would lead to
using only the fastest processors. Still, building upon old ideas such as critical paths and bottom
levels, several sophisticated scheduling heuristics have been developed to cope with heterogeneous
resources: for instance Maheswaran and Siegel [52] propose a dynamic remapping of tasks after
having computed a first allocation based on critical paths. See also [60, 41, 44, 62, 65, 43] for
various scheduling heuristics. A comparative analysis of many scheduling techniques is available
in [63, 16, 51].

Another major limitation to programming heterogeneous platforms arises from the additional
difficulty of balancing the load when using processors running at different speeds. Distributing
the computations (together with the associated data) can be performed either dynamically or
statically, or a mixture of both. Some simple schedulers are available, but they use naive mapping
strategies such as master-slave techniques or paradigms based upon the idea “use the past predict
the future”, i.e. use the currently observed speed of computation of each machine to decide for the
next distribution of work [27, 26, 5]. There is a challenge in determining a trade-off between the

10

data distribution parameters and the process spawning and possible migration policies. Redundant
computations might also be necessary to use a heterogeneous cluster at its best capabilities.

As an example of a high-level scheduling and load-balancing tool, we describe the AppLeS
project (see http://www-cse.ucsd.edu/groups/hpcl/apples/apples.html) in Section 5.1.

3.4 Programming Models

An overview of software support for heterogeneous computing is given by Siegel et al. [59]. There
are several programming models that can be exploited.

The first task is to provide an extension of MPI to enable clusters scattered around the world
to communicate efficiently. Several projects are under development: MPI_Connect [35], Nexus [36],
PACX-MPI [32], MPI-Plus [56], Data-Exchange [33], VCM [57] and MagPle [46].

Several metacomputing projects are currently building the infrastructure on top of which such
extensions of MPI may utilize distributed computing capacity. The most prominent systems are
Globus [37] (see http://www.globus.org) and Legion [42] (see http://www.cs.virginia.edu/
“legion). Globus follows a layered approach to building grid infrastructure. The most fundamental
layer consists of a set of core services, including resource management, security, and communications
that enable the linking and interoperation of distributed computer systems. Toolkits, such as the
Message Passing Interface (MPI) for parallel computing and CavernSoft (for collaborative virtual
reality) provide higher-level, application-friendly access to Grid services. See Section 5.2 for more
information on Globus. Legion inherits features of earlier work on parallel processing systems and
heterogeneous distributed computing systems. In particular, Legion is building on Mentat, an
object-oriented parallel processing system developed at the University of Virginia. See Section 5.3
for more information on Legion.

It is no surprise that Legion makes use of object-oriented approaches. On classical parallel
machines, data-parallelism has been one of the only alternatives (not always successful) to explicit
message-passing, where the user is requested to describe in extension all the communications that
will take place during the execution. On the computational grid, many programming paradigms are
yet to be found! In software engineering, object-oriented language and methodologies have received
a lot of attention. Standards such as Java and Corba are very promising. See [53] for a metacomput-
ing approach based on Corba. In a near future, efficient implementations of Java may well represent
a viable alternative to Fortran for scientific computations (see http://www.javagrande.org). In
the framework of metacomputing, with strongly heterogeneous environments, object-oriented tech-
nologies provide an elegant solution to the problems raised by the heterogeneity of the resources.
The idea is to encapsulate technical “details” such as protocols, data representations, migration
policies, into the implementation of the objects. Object-oriented specifications of resources and
services are described in [18].

In Section 5.4, we describe in more details the Dutch Albatross project [3] (see http://www.cs.
vu.nl/albatross). The Albatross method relies on a high-performance Java system, with a highly
efficient implementation of Java Remote Method Invocation. A quite different approach is to extend
data-parallelism so as to cope with heterogenity: this is the objective of the OPUS project [49] (see
http://www.par.univie.ac.at/~“erwin/opus. OPUS is an object-based extension of HPF that
supports the integration of coarse-grain task parallelism with HPF-style data-parallelism.

Despite all their advanced characteristics and features, the previous programming environments
are far from achieving the holy goal: using the computing resources remotely and transparently,
just as we do with electricity, without knowing where it comes from. The closest approximation to
electricity consumption may come from remote computing systems such as the NetSolve project [21,

11

22] (see http://www.cs.utk.edu/netsolve). We describe NetSolve in Section 6.

12

4 Case Study: Cluster ScaLAPACK

In this section we deal with our first case study. We give a particular emphasis on the algorithmic
aspects relevant to the design of a Cluster ScaLAPACK library in this section. Our discussion is
based on [14, 15, 12, 13, 11, 10].

4.1 Introduction

Consider a heterogeneous NOW: whereas programming a large application made up of several
loosely-coupled tasks can be performed rather easily (because these tasks can be dispatched dy-
namically on the available processors), implementing a tightly-coupled algorithm (such as a linear
system solver) requires carefully tuned scheduling and mapping strategies. Static strategies will
suppress (or at least minimize) data redistributions and control overhead during execution. To
be successful, static strategies must obey a more refined model than standard block-cyclic distri-
butions: such distributions are well-suited to processors of equal speed but would lead to a great
load imbalance with processors of different speed. In this section, we illustrate the design of static
strategies that achieve a good load balance on a heterogeneous NOW. Our target applications are
simple numerical kernels: matrix-matrix product and dense linear solvers from the ScaLAPACK
library.

4.2 Load Balancing on Unidimensional (Heterogeneous) Grids

In this section, a purely static strategy to allocate data and computations to heterogeneous proces-
sors is presented. The basis for such strategies is to distribute computations to processors so that
the workload is evenly balanced, and so that no processor is kept idle by data dependences. We
start with the simple problem of distributing independent chunks of computations to processors.
We use this result to tackle the implementation of linear solvers.

Distributing independent chunks To illustrate the static approach, consider the following
simple problem: given M independent chunks of computations, each of equal size (i.e. each requiring
the same amount of work), how can we assign these chunks to p physical processors P;, P, ..., P, of
respective execution times ¢1, to, ..., tp, so that the workload is best balanced? Here the execution
time is understood as the number of time units needed to perform one chunk of computation. A
difficulty arises when stating the problem: how accurate are the estimated processor speeds? won’t
they change during program execution? We come back on estimating processor speeds later, and
we assume for a while that each processor P; will indeed execute each computation chunk within ¢;
time units. Then how to distribute chunks to processors? The intuition is that the load of P; should
be inversely proportional to ¢;. Since the loads must be integers, we use the following algorithm to
solve the problem:

Algorithm 4.2: Optimal distribution for M independent chunks, over p processors of
speed t1,... ,t,

13

Initialization: Approximate the ¢; so that ¢; X t; = Constant,
and ¢y +c2+...+¢, < M.
1
forallie {1,... ,p}, ¢; = {% X MJ .
i=1 t;
lteratively increment some ¢; until ¢y +co+ ...+ ¢, =M
form=c +co+...+cptoM
find k € {1,... ,p} such that ¢} X (¢t +1) = min{t; X (¢; + 1))}
c. =cp +1

Algorithm 4.2 gives the optimal allocation [14, 15]. This algorithm can only be applied to
simple load balancing problems such as matrix-matrix product on a processor ring. Indeed, such
an algorithm can be decomposed into successive communication-free steps. The communication
between steps are reduced to a simple shift across the ring of processes. Each step consists of a
bunch of independent chunks that can be distributed using Algorithm 4.2. Consider a toy example
with 3 processors of respective cycle-times ¢; = 3, {2 = 5 and t3 = 8. We aim to compute the
product C = A x B, where A and B are of size 2496 x 2496. The matrices can be decomposed into
78 x 78 square blocks of size 32 x 32 (32 is a typical blocksize for cache-based workstations [9]).
Hence, M = 78 blocks of columns have to be distributed among the processors, and M = 78
independent chunks will be computed at each step. Table 1 applies Algorithm 4.2 to this load
balancing problem. A few different steps for matrix multiplication are represented in Figure 2.
Our simple allocation is quite sufficient for matrix multiplication, because each step is optimally
load-balanced.

Steps c1 | c2 | c3 | max;(cit;)
Init, m=76 || 39 | 23 | 14 | 117
m="77 40 | 23 | 14 | 120
m=M=T78 40 | 24 | 14 | 120

Table 1: Steps of algorithm 4.2 for 3 processors with ¢; =3, to =5 and t3 =8, and M =78

When processor speeds are accurately known and guaranteed not to change during program
execution, the previous approach provides the best possible load balancing of the processors. Let
us discuss the relevance of both hypotheses:

Estimating processor speed. There are too many parameters to accurately predict the actual
speed of a machine for a given program, even assuming that the machine load will remain
the same throughout the computation. Cycle-times must be understood as normalized cycle-
times [27], i.e application-dependent elemental computation times, which are to be computed
via small-scale experiments (repeated several times, with an averaging of the results).

Changes in the machine load. Even during the night, the load of a machine may suddenly and
dramatically change because a new job has just been started. The only possible strategy is
to “use past to predict future”: we can compute performance histograms during the current
computation, these lead to new estimates of the ¢;, which we use for the next allocation. See
the survey paper of Berman [5] for further details.

In a word, a possible approach is to slice the total work into phases. We use small-scale
experiments to compute a first estimation of the ¢;, and we allocate chunks according to these

14

1%t step:

ep1: C[x,1:40]+ = A[x,1] x B[1,1 : 40];
opo: Cl#,41 : 64]+ — A, 41] x B[41,41 : 64]
o p3: C[#,65 : 78]+ = A[*, 65] x B[65,65 : 78].

39" step:
ep1: Clx,1:40]+ = A[*,39] x B[39,1 : 40]

Figure 2: Different steps of matrix multiplication on a platform made of 3 heterogeneous processors
of respective cycle-times t; = 3, to = 5 and t3 = 8. All indices in the figure are block numbers.

15

values for the first phase. During the first phase we measure the actual performance of each
machine. At the end of the phase we collect the new values of the ¢;, and we use these values to
allocate chunks during the second phase, and so on. Of course a phase must be long enough, say
a couple of seconds, so that the overhead due to the communication at the end of each phase is
negligible. Each phase corresponds to B chunks, where B is chosen by the user as a trade-off: the
larger B, the more even the predicted load, but the larger the inaccuracy of the speed estimation.

Linear solvers Whereas the previous solution is well-suited to matrix multiplication, it does
not perform efficiently for LU decomposition. Roughly speaking, the LU decomposition algorithm
works as follows for a heterogeneous NOW: blocks of r columns are distributed to processors in a
cyclic fashion. This is a CY CLIC(r) distribution of columns, where r is typically chosen as r = 32
or 7 = 64 [9]. At each step, the processor that owns the pivot block factors it and broadcasts it to
all the processors, which update their remaining column blocks. At the next step, the next block
of r columns become the pivot panel, and the computation progresses. The preferred distribution
for a homogeneous NOW is a CYCLIC(r) distribution of columns, where r is typically chosen as
r =32 or r = 64.

Because the largest fraction of the work takes place in the update, we would like to load-balance
the work so that the update is best balanced. Consider the first step. After the factorization of the
first block, all updates are independent chunks: here a chunk consists of the update of a single block
of r columns. If the matrix size is n = M X r, there are M — 1 chunks. We can use Algorithm 4.2
to distribute these independent chunks.

But the size of the matrix shrinks as the computation goes on. At the second step, the number
of blocks to update is only M — 2. If we want to distribute these chunks independently of the first
step, redistribution of data will have to take place between the two steps, and this will incur a lot of
communications. Rather, we search for a static allocation of columns blocks to processors that will
remain the same throughout the computations, as the elimination progresses. We aim at balancing
the updates of all steps with the same allocation. As illustrated in Figure 3, we need a distribution
that is kind of repetitive (because the matrix shrinks) but not fully cyclic (because processors have
different speeds).

40 24 14

U

- oo —o

Figure 3: 33" step of LU decomposition (indices are block numbers): with the former distribution,
the computation becomes less balanced. Here, after factoring block 33, processor 1 has 7 updates
and works for 7 x 3 = 21 units of time, while processor 2 works 24 x 5 = 120 units of time.

Looking closer at the successive updates, we see that only column blocks of index 2+ 1 to M are

16

updated at step i. Hence our objective is to find a distribution such that for each i € {2,... , M}, the
amount of blocks in {7,... , M’} owned by a given processor is approximately inversely proportional
to its speed. To derive such a distribution, we use a dynamic programming algorithm which is best
explained using the former toy example again:

Number of chunks || ¢; | ¢ | ¢g | Cost || Selected processor
0 0|0 |0 1
1 1 (0|0 |3 2
2 1|1 10 |25 1
3 2 {110 |2 3
4 2 |1 |1 |2 1
5 3 |1 |1 |18 2
6 3 2 |1 |1.67 (|1
7 4 12 |1 1.71 1
8 5 12 |1 | 187 || 2
9 5 13 |1 |1.67 ||3
10 5 [3 |2 1.6

Table 2: Running the dynamic programming algorithm with 3 processors: t; = 3, t = 5, and
t3 = 8.

In Table 2, we report the allocations found by the algorithm up to B = 10. The entry “Selected
processor” denotes the rank of the processor chosen to build the next allocation. At each step,
“Selected processor” is computed so that the cost of the allocation is minimized. The cost of
the allocation is computed as follows: the execution time, for an allocation C = (ci1,ca,... ,¢p) is
maxi<j<p ¢;t; (the maximum is taken over all processor execution times), so that the average cost

to execute one chunk is
maxi<i<p cit;

p .
i=1Ci

cost(C) =

For instance at step 4, i.e. to allocate a fourth chunk, we start from the solution for three chunks,
ie. (c1,c2,c3) = (2,1,0). Which processor P; should receive the fourth chunk, i.e. which ¢; should
be incremented? There are three possibilities (¢; + 1,¢9,¢3) = (3,1,0), (c1,¢2 + 1,¢3) = (2,2,0)
and (c1,c2,c3 + 1) = (2,1,1) of respective costs § (P is the slowest), 2} (P is the slowest), and
(Ps is the slowest). Hence we select 1 = 3 and we retain the solution (¢1,c2,¢3) = (2,1, 1).

Of course, if we are to allocate 10 chunks, we can use Algorithm 4.2 and find that 5 chunks
should be given to processor 3 to P, and 2 to P;. But the dynamic programming algorithm returns
the optimal solution for allocating any number of chunks, from 1 chunk up to B chunks [15].

How can the dynamic programming algorithm be applied to LU decomposition? We allocate
slices of B blocks to processors, as illustrated in Figure 4. B is a parameter that will be discussed
below. For a matrix of size n = m X r, we can simply let B = m, i.e. define a single slice. Within
each slice, we use the dynamic programming algorithm for s = 0 to s = B in a “reverse” order.
Consider the toy example in Table 1 with 3 processors of relative speed t; = 3, o = 5 and t3 = 8.
The dynamic programming algorithm allocates chunks to processors as shown in Table 3. The
allocation of chunks to processors is obtained by reading the second line of Table 3 from right to
left: (3,2,1,1,2,1,3,1,2,1) (see Figure 5 for the detailed allocation within a slice). As illustrated
in Figure 4, at a given step there are several slices of at most B chunks, and the number of chunks
in the first slice decreases as the computation progresses (the leftmost chunk in a slice is computed

17

Chunk number 1123456789110
Processornumber | 1 {2 |1 (3 (12112 3

Table 3: Static allocation for B = 10 chunks.

first and then there only remains B — 1 chunks in the slice, and so on). In the example, the reversed
allocation best balances the update in the first slice at each step: at the first step when there are
the initial 10 chunks (1 factor and 9 updates), but also at the second step when only 8 updates
remain, and so on. The updating of the other slices remains well-balanced by construction, since
their size does not change, and we keep the best allocation for B = 10. See Figure 5 for the detailed
allocation within a slice, together with the cost of the updates.

I=

done

Figure 4: Allocating slices of B chunks.

average time average time
| L
2 4'_I—|_l—'—|—|7 2 [
1r 1t
LU-decomposition LU-decomposition
Py
p)
Py
p)
Static allocation Cyclic distribution

Figure 5: Comparison of two different distributions for the LU-decomposition algorithm on a
heterogeneous platform made of 3 processors of relative speed 3, 5 and 8. The first distribution
is the one given by our algorithm, the second one is the cyclic distribution. The total number of
chunks is B = 10.

We are ready to propose a first solution for a heterogeneous cluster ScalLAPACK library devoted
to dense linear solvers such as LU or QR factorizations. It turns out that all these solvers share the
same computation unit, namely the processing of a block of r columns at a given step. They all

18

exhibit the same control graph: the computation processes by steps; at each step the pivot block
is processed, and then it is broadcast to update the remaining blocks. The proposed solution is
fully static: at the beginning of the computation, we distribute slices of the matrix to processors
in a cyclic fashion. Each slice is composed of B chunks (blocks of r columns) and is allocated
according to the previous discussion. The value of B is defined by the user and can be chosen as
M if n =m x r, i.e. we define a single slice for the whole matrix. But we can also choose a value
independent of the matrix size: we may look for a fixed value, chosen from the relative processor
speeds, to ensure a good load-balancing.

A major advantage of a fully static distribution with a fixed parameter B is that we can use
the current ScaLAPACK release with little programming effort. In the homogeneous case with p
processors, we use a CY CLIC(r) distribution for the matrix data, and we define p PVM processes.
In the heterogeneous case, we still use a CYCLIC(r) distribution for the data, but we define B
PVM processes which we allocate to the p physical processors according to our load-balancing
strategy. The experiments reported in [13] demonstrate that this approach is quite satisfactory in
practice.

4.3 Load Balancing on Two-Dimensional (Heterogeneous) Grids

In this Section we deal with matrix-matrix multiplication and dense linear solvers on 2D hetero-
geneous) grids. We configure the HNOW as a (virtual) 2D grid for scalability reasons [23]. First
we briefly recall the algorithms implemented in the ScaLAPACK library [9] on 2D homogeneous
grids. Then we discuss how to modify the two-dimensional block-cyclic distribution which is used
in ScaLAPACK to cope with 2D heterogeneous grids.

Matrix-Matrix Product on Homogeneous Grids For the sake of simplicity we restrict to
the multiplication C' = AB of two square n x n matrices A and B. In that case, ScaLAPACK uses
the outer product algorithm described in [1, 39, 48]. Consider a 2D processor grid of size p X q.

Assume first that n = p = ¢. In that case, the three matrices share the same layout over the
2D grid: processor P; ; stores a; j, b; j and ¢; j. Then at each step £,

e each processor P, (for all i € {1,..,p}) horizontally broadcasts a;j to processors P, .
e each processor Py ; (for all j € {1,..,q}) vertically broadcasts by ; to processors P, ;.

so that each processor P;; can independently compute ¢; j+ = a; ; X by ;.

This algorithm is used in the current version of the ScaLAPACK library because it is scalable,
efficient and it does not need any initial permutation (unlike Cannon’s algoritm [48]). Moreover,
on a homogeneous grid, broadcasts are performed as independent ring broadcasts (along the rows
and the columns), hence they can be pipelined.

Of course, ScalLAPACK uses a blocked version of this algorithm to squeeze the most out state-
of-the-art processors with pipelined arithmetic units and multilevel memory hierarchy [31, 23].
Each matrix coefficient in the description above is replaced by a r X r square block, where optimal
values of depend on the communication-to-computation ratio of the target computer.

Finally, a level of virtualization is added: usually, the number of blocks [x][%] is much greater
than the number of processors p x q. Thus blocks are scattered in a cyclic fashion along both grid
dimensions, so that each processor is responsible for updating several blocks at each step of the
algorithm. An example is given in Figure 6 with p = ¢ =4 and [%] = 10.

19

9110(11|12] 9|10|11|12| 9 |10
13|14|15|16(13|14|15|16|13|14

9110(11|12] 9|10|11|12| 9 |10
13|14|15|16(13|14|15|16|13|14

Figure 6: Processors are numbered from 1 to 16. This figure represents the distribution of 10 x 10
matrix blocks onto 4 x 4 processors.

Matrix-Matrix Product on Heterogeneous Grids Suppose now we have a p X ¢ grid of
heterogeneous processors. Instead of distributing the r x r matrix blocks cyclically along each
grid dimension, we distribute block panels cyclically along each grid dimension. A block panel is a
rectangle of consecutive B), x B, r x r blocks. See Figure 7 for an example with B, = 4 and B, = 3:
this panel of 12 r x r blocks will be distributed cyclically along both dimensions of the 2D grid.
The previous cyclic dimension for homogeneous grids obviously corresponds to the case B, = p and
B, = q. Now, the distribution of individual blocks is no longer purely cyclic but remains periodic.
We illustrate in Figure 8 how block panels are distributed on the 2D-grid.

1 1 2

1 1 2
B, =4

1 1 2

3/3|6

B,=3

Figure 7: A block panel with B, = 4 and B, = 3. Each processor is labeled by its cycle-time, i.e
the (normalized) time it needs to compute one r x r block: the processor labeled 1 is twice faster
than the one labeled 2, hence it is assigned twice more blocks within each panel.

How many r x r blocks should be assigned to each processor within a panel 7 Intuitively, as in
the case of uni-dimensional grids, the workload of each processor (i.e. the number of block per panel
it is assigned to) should be inversely proportional to its cycle-time. In the example of Figure 7, we
have a 2 x 2 grid of processors of respective cycle-time t1 1 =1, t; 2 = 2, 51 = 3 and t2 2 = 6. The
allocation of the B, x By = 4 x 3 = 12 blocks of the panel perfectly balances the load amongst the
four processors.

There is an important condition to enforce when assigning blocks to processors within a block
panel. We want each processor in the grid to communicate only with its four direct neighbors. This
implies that each processor in a grid row is assigned the same number of matrix rows. Similarly,
each processor in a grid column must be assigned the same number of matrix columns. If these
conditions do not hold, additional communications will be needed, as illustrated in Figure 9.

Translated in terms of r x r matrix blocks, the above conditions mean that each processor P;;,
1 < j < g in the i-th grid row must receive the same number r; of blocks. Similarly, P;;, 1 <4 <p
must receive ¢; blocks. This condition does hold in the example of Figure 8, hence each processor

20

Figure 8: Allocating 4 x 3 panels on a 2 x 2 grid (processors are labeled by their cycle-time). There
is a total of 10 x 10 matrix blocks.

only communicates with its direct neighbors.

Unfortunately, and in contrast with the uni-dimensional case, the additional constraints in-
duced by the communication pattern may well prevent to achieve a perfect load balance amongst
processors. Coming back to Figure 7, we did achieve a perfect load balance, owing to the fact that
the processor cycle-times could be arranged in the rank-1 matrix

tin ti2 \ _ (1 2

tor ta2) \ U3 6)7
For instance, change the cycle-time of P9 into t32 = 5. If we keep the same allocation as in
Figure 7, Pss remains idle every sixth time-step. Note that there is no solution to perfectly balance
the work. Indeed, let rq, r, ¢; and co be the number of blocks assigned to each row and column

grid. Processor P;; computes r; X ¢; blocks in time r; x ¢; X t;;. To have a perfect load balance, we
have to fulfill the following equations:

1 Xt11 X €1 =711 Xt1a X g =179 Xto] X €] =79 X 199 X Co

that is 7r1¢1 = 2rico = 3rac; = 6r9cs.

We derive ¢ = 2¢o, then 1y = 3ry = %T’Q, hence a contradiction. Note that we have not taken into
account the additional condition (r1 +r3) X (¢1 + c2) = 12, stating that there are 12 blocks within
a block panel: it is impossible to perfectly load-balance the work, whatever the size of the panel.

If we relax the constraints on the communication pattern, we can achieve a perfect load-
balance as follows: first we balance the load in each processor column independently (using the
uni-dimensional scheme); next we balance the load between columns (using the uni-dimensional
scheme again, weighting each column by the inverse of the harmonic mean of the cycle-times of the
processors within the column, see below). This is the “heterogeneous block cyclic distribution” of
Kalinov and Lastovetky [45], which leads to the solution of Figure 9. Because processor P» 2 has
two west neighbors instead of one, at each step of the algorithm it is involved in two horizontal
broadcasts instead of one.

21

[e e e N e e = B
G NN [(NIN N[N e

Figure 9: The distribution of Kalinov and Lastovetky. Two consecutive columns are represented
here. Processors have two west neighbors instead of one.

We use the example to explain with further details how the heterogeneous block cyclic distri-
bution of Kalinov and Lastovetky [45] works. First they balance the load in each processor column
independently, using the uni-dimensional scheme. In the example there are two processors in the
first grid column with cycle-times ¢1; = 1 and t91 = 3, so P;1 should receive three times more matrix
rows than P»;. Similarly for the second grid column, P;s (cycle-time ¢12 = 2) should receive 5 out of
every 7 matrix rows, while Py (cycle-time t9o = 5) should receive the remaining 2 rows. Next how
to distribute matrix columns? The first grid column operates as a single processor of cycle-time
2 141 r = % The second grid column operates as a single processor of cycle-time 2+ Jlr T = %. So
out 3of every 61 matrix columns we assign 40 to the first processor column and 21 2t05the second
processor column.

Because we have a library designer’s approach, we do not want the number of horizontal and
vertical communications to depend upon the data distribution. For large grids, the number of hori-
zontal neighbors of a given processor cannot be bounded a priori if we use Kalinov and Lastovetky’s
approach. We enforce the grid communication pattern (each processor only communicates with its
four direct neighbors) to minimize communication overhead. The price to pay is that we have to
solve a difficult optimization problem to load-balance the work as efficiently as possible. Solving

this optimization problem is the objective of Section 4.4.

LU and QR Decomposition on Homogeneous Grids In this section we briefly review the
direct parallelization of the right-looking variant of the LU decomposition. We assume that the
matrix A is distributed onto a two-dimensional grid of (virtual) homogeneous processors. We use
a CYCLIC(b) decomposition in both dimensions. The right-looking variant is naturally suited to
parallelization and can be briefly described as follows: Consider a matrix A of order NV and assume
that the LU factorization of the k& x b first columns has proceeded with &k € {0, 1,... %} During
the next step, the algorithm factors the next panel of r columns, pivoting if necessary. Next the
pivots are applied to the remainder of the matrix. The lower trapezoid factor just computed is
broadcast to the other process columns of the grid using an increasing-ring topology, so that the
the upper trapezoid factor can be updated via a triangular solve. This factor is then broadcast
to the other process rows using a minimum spanning tree topology, so that the remainder of the
matrix can be updated by a rank-r update. This process continues recursively with the updated
matrix. In other words, at each step, the current panel of columns is factored into L and the trailing
submatrix A is updated. The key computation is this latter rank-b update A < A — LU that can

22

be implemented as follows:

1. The column processor that owns L broadcasts it horizontally (so there is a broadcast in each
processor row)

2. The row processor that owns U broadcasts it vertically (so there is a broadcast in each
processor column)

3. Each processor locally computes its portion of the update

The communication volume is thus reduced to the broadcast of the two row and column panels, and
matrix A is updated in place (this is known as an outer -product parallelization). Load balance
is very good. The simplicity of this parallelization, as well as its expected good performance,
explains why the right-looking variants have been chosen in ScaLAPACK [23]. See [30, 23, 8] for a
detailed performance analysis of the right-looking variants, that demonstrates their good scalability
property. The parallelization of the QR decomposition is analogous [25, 24]

LU and QR Decomposition on Heterogeneous Grids For the implementation of the LU and
QR decomposition algorithms on a heterogeneous 2D grid, we modify the ScaLAPACK CYCLIC(r)
distribution very similarly as for the matrix-matrix multiplication problem. The intuitive reason is
the following: as pointed out before, the core of the LU and QR decompositions is a rank-r update,
hence the techniques for the outer-product matrix algorithm naturally apply.

We still use block panels made up with several » x r matrix blocks. The block panels are
distributed cyclically along both dimensions of the grid. The only modification if that the order of
the blocks within a block panel becomes important.

Consider the previous example with four processors laid along a 2 x 2 grid as follows:

t11 tio B 1 2

tor te)\ 3 5)°
Say we use a panel with B, = 8 ad B, = 6, i.e. a panel composed of 48 blocks. Using the methods
described below (see Section 4.4), we assign he blocks as follows:

e Within each panel column, the first processor row receives 6 blocks and the second processor
rows receives 2 blocks

e Out of the 6 panel columns, the first grid column receives 4 and the second grid column
receive 2

This allocation is represented in Figure 10. We need to explain how we have allocated the six panel
columns. For the matrix multiplication problem, the ordering of the blocks within the panel was
not important, because all processors execute the same amount of (independent) computations at
each step of the algorithm. For the LU and QR decomposition algorithms, the ordering of the
columns is quite important: the size of the matrix shrinks at each step of the computation. We use
the uni-dimensional algorithm to compute the column ordering for the 2D panel. In the example,
the first processor column operates like 6 processors of cycle-time 1 and 2 processors of cycle-time 3,
which is equivalent to a single processor A of cycle-time 23—0; the second processor column operates
like 6 processors of cycle-time 2 and 2 processors of cycle-time 5, which is equivalent to a single
processor B of cycle-time % The uni-dimensional algorithm allocates the six panel columns as
ABAABA, and we retrieve the allocation of Figure 10.

23

=
I
o

W

(SR U e e e e e
SOOI (DO [D[N ||
(SR U e e e e e
Wl wl— R |=|R|—=|~
SOOI [DD | |||
(SR U e e e e e

Figure 10: Allocation of the blocks within a block panel with B, = 8 and B, = 6. Each processor
of the 2 x 2 grid is labeled by its cycle-time.

To conclude this section, we have a difficult load-balancing problem to solve. First we do not
know which is the best layout of the processors, i.e. how to arrange them to build an efficient 2D
grid. In some cases (rank-1 matrices) we are able to load-balance the work perfectly, but in most
cases it is not the case. Next, once the grid is built, we have to determine the number of blocks that
are assigned to each processor within a block panel. Again, this must be done so as to load-balance
the work, because processors have different speeds. Finally, the panels are cyclically distributed
along both grid dimensions.

4.4 Solving the 2D Heterogeneous Grid Allocation Problem

Problem Statement and Formulation Consider n processors Pi, P, ..., P, of respective
cycle-times t1,t2,... ,t,. The problem is to arrange these processors along a two-dimensional grid
of size p X ¢ < n, in order to compute the product Z = XY of two N x N matrices as fast as
possible. We need some notations to formally state this objective.

Consider a given arrangement of p X ¢ < n processors along a two-dimensional grid of size p X q.
Let us re-number the processors as P;j, with cycle-time #;;, 1 <17 < p,1 < j < ¢. Assume that
processor P;j; is assigned a block of r; rows and c¢; columns of data elements, meaning that it is
responsible for computing r; X ¢; elements of the Z matrix: see Figure 11 for an example.

There are two (equivalent) ways to compute the efficiency of the grid:

e Processor Pj; is assigned a rectangular data block of size r; X ¢;j, which it will process within
r; X ¢j X t;; units of time. The total execution time T¢,,. is taken over all processors:

Texe = max{ri X tij X C]'}.
lh]
Teze must be normalized to the average time Ty, needed to process a single data element:

since there is a total of N? elements to compute, we enforce that Zle r; = N and that
23:1 cj = N. We get

maxi,j{ri X ti]’ X Cj}

(01 m) x (D01 ¢5)

Tave =

24

Cc1 c2 Cc3 Ca

r1 P11 Pio Pi3 Pia
ro P2y Pao Po3 Py
r3 P31 Pso P33 Psy

Figure 11: Allocating computations to processors on a 3 x 4 grid

We are looking for the minimum of this quantity over all possible integer values r; and c;.
We can simplify the expression for Ty, by searching for (nonnegative) rational values r; and
¢; which sum up to 1 (instead of N):

Objective Objl: min(Ele Ti:152?=1 Cj:l){ri X tij X Cj}

Given the rational values r; and c; returned by the solution of the optimization problem
Obj1, we scale them by the factor N to get the final solution. We may have to round up
some values, but we do so while preserving the relation > ¥, r; = 231:1 c; = N. Stating the
problem as Opt; renders its solution generic, i.e. independent of the parameter N.

e Another way to tackle the problem is the following: what is the largest number of data
elements that can be computed within one time unit? Assume again that each processor P;;
of the p x ¢ grid is assigned a block of r; rows and ¢; columns of data elements. We need to
have r; x t;; X ¢; < 1 to ensure that P;; can process its block within one cycle. Since the total

number of data elements being processed is (.7, ;) x (Zgzl Cj), we get the (equivalent)

optimization problem:
Objective Objy: maxy,ct;xe;<i{ (S0 i) x (X0 ¢)}

Again, the rational values r; and c; returned by the solution of the optimization problem
Objy can be scaled and rounded to get the final solution.

Although there are p + ¢ variables r; and c;, there are only p + ¢ — 1 degrees of freedom: if
we multiply all r;’s by the same factor A and divide all ¢; by A, nothing changes in Objz. In
other words, we can impose r; = 1, for instance, without loss of generality.

The 2D load-balancing problem In the next sections we give a solution to the 2D load-
balancing problem which can be stated as follows: given n = p X ¢ processors, how to arrange
them along a 2D grid of size p X ¢ so as to optimally load-balance the work of the processors for
the matrix-matrix multiplication problem. Note that solving this problem will in fact lead to the
solution of many linear algebra problems, including dense linear system solvers.

The problem is even more difficult to tackle than the optimization problem stated above, because
we do not assume the processors arrangement as given. We have to search among all possible
arrangements (layouts) of the p X g processors as a p x ¢ grid, and for each arrangement we must
solve the optimization problem Obj; or Objs.

The approcach of [10] is the following: first the number of arrangements to be searched is
reduced. . Next an algorithm is derived to solve the optimization problem Obj; or Objs for a fixed

25

(given) arrangement. Despite the reduction, there remains an exponential number of arrangements
to search for. Even worse, for a fixed arrangement, the above algorithm exhibits an exponential cost.
Therefore a heuristic is introduced to give a fast but sub-optimal solution to the 2D load-balancing
problem.

Conclusion Solving the 2D load balancing problem turns out to be surprisingly difficult. How-
ever, we have dealt with simple numerical kernels (matrix-matrix product and dense linear solvers)
on simple target platforms (heterogeneous networks of workstations). We believe that many efforts
are to be spent if tightly-coupled applications are to be implemented on the grid.

4.5 Load Balancing on Collections of Clusters

In this section, we target distributed collections of heterogeneous NOWs, and we discuss both static
and dynamic data allocation strategies for dense linear solvers on top of such platforms. We use
the model presented in Section 3.2. We restrict ourselves to the problem of finding an optimal
allocation for the LU and QR factorizations on a 2-deep grid. To this purpose, we assume that in
each NOW, a processor is dedicated to handle the communications between NOWs, as shown in
Figure 1.

Because of the characteristics of the 2-deep grid, we have to increase the granularity of the
computations. The basic chunk of data that is allocated to a given NOW is a panel of B blocks of r
columns, where 7 is chosen to ensure Level 3 BLAS performance [9] and B is a machine-dependent
parameter. The basic idea is to overlap inter-NOW communications (typically the broadcast of a
panel) with independent computations. Updating a panel requires nB%r?7, units of time, where
Tq 18 the elemental computation time. Communicating a panel between NOWSs requires nBrr,
units of time, where 7. is the inter-NOW communication rate. Of course 7. is several orders of
magnitude greater than 7,, but letting B large enough (in fact B > TT;G) will indeed permit the
desired communication-computation overlap. Note that such an overlap cannot usually be achieved
within a single NOW.

Static strategy We decompose our matrix into panels of size B: a panel is a slice of B column
blocks. The size of the panels is the same for all the clusters. The value for B is discussed below.

Roughly speaking, the number of panels allocated to each cluster is inversely proportional to
its speed: we compute the time needed to update a panel of B column blocks for each cluster.
These times are the “cycle-time” of the clusters. For example, consider a cluster A with 3 machines
whose cycle-times are 2, 3 and 4, and a cluster B with 3 machines whose cycle-times are 3, 5
and 8. Suppose that the size of the panels is B = 5. The optimal allocation for the cluster A is
24232 (meaning that the processor of cycle-time equal to 2 receives the first, third and fifth blocks,
starting the numbering from the right, and so on). The optimal allocation for B is 35383. Hence
the “cycle-time” for cluster A is 6 and the “cycle-time” for the cluster B is 9.

We distribute the panels as if we had machines with these “cycle-times”. In the example, we
would use the optimal allocation of [11]with two machines of cycle-times 6 and 9, leading to a
periodic allocation of panels as ... BAABA|BAABA|BAABA. In fact we can do slightly better
and continue the optimized distribution inside each cluster from one panel to the next one. In the
example, the allocation of the first five panels is AAABA (as stated above, starting the numbering
from the right), and inside the clusters we have the distribution

BgB5B3B3B5 |A3A2A4A2A3 |A2A3A2A4A3 |B33833B5B3 |A2A4A2A3A2.

26

Finally, we can further improve this solution by re-evaluating the “cycle-times” of the clusters.
Indeed, in our example, the time needed to compute the second panel of cluster B is 10 and not
9. So to speak, to refine the allocation of the panels we may take the “cycle-times” of the clusters
into account on the fly.

The size of the panels is chosen so that updating a given panel takes less time than communi-
cating a panel to another cluster. The scheduling corresponds to the look-ahead strategy for the
pointwise algorithm [54]. It is illustrated in Figure 12. Each task in Figure 12 represents a panel
(and not a single column block). After the factor task at step 2 is completed, all processors of
cluster B gather the current panel on the dedicated processor. The broadcast of the panel can take
place while cluster A updates its third panel and cluster B updates its second panel at step 3.

F
A

Figure 12: Scheduling with 2 clusters A and B. Exponents represent the nature of the tasks
(factoring or updating a panel). Indices represent the steps at which the tasks are processed.

Dynamic strategy As above, we decompose the matrix into panels of size B and we compute
the “cycle-time” of the different clusters. We still distribute the panels to the different clusters as
explained, using an optimal allocation inside the clusters. However, we decide that the factor task
and the preceding update task is always executed by the fastest cluster. In the initial distribution
of panels, we suppress the first two occurrences of the fastest cluster to take into account the factor
and update tasks.

For example, if we have 3 clusters of relative speeds 3, 5 and 8, the allocation will be 33|85335385.
The two panels on the left correspond to the factor task and its corresponding update. As before,
the scheduling strategy is “update, factor and broadcast ASAP”. The fastest cluster will indeed
compute the next pivot as soon as possible, and broadcast it to the other clusters, before computing
its last updates. There are additional communications due to the fact that all the pivot panels must
be processed by the fastest cluster, as illustrated in Figure 13 which corresponds to the example
above with 3 clusters. The short communications labeled “Ga” are local gathers within a cluster
(the dedicated communication processor gathers the panel) whereas the long communications stand
for inter-cluster communications, either the receiving of the pivot panel before its factorization by
the fastest cluster, or the broadcast of the pivot panel after factoring. The cost of an inter-cluster
communication remains remains smaller than the time needed for an update because of the choice
of B.

Conclusion Implementing linear algebra kernels on several collections of workstations or parallel
servers, scattered all around the world and connected through fast but non-dedicated links, would
give rise to a “Computational Grid ScaLAPACK”. The above results constitute a very preliminary
step towards achieving this ambitious goal (see [12] for further details). Again, a major algorithmic
effort is needed to efficiently implement tightly-coupled applications on meta-systems (collections

27

Cluster 3 F

Cluster 8

,,,,,,,,

Figure 13: Scheduling the tasks and the communications with the dynamic strategy.

of NOWs).

We believe that squeezing the most out of meta-computing systems will require to solve chal-
lenging algorithmic problems. We insist that the community should tackle these problems very
rapidly to make full use of the many hardware resources that already are at its disposal.

28

5 Case Study: Metacomputing Environments

In this section we summarize four major programming environments: AppLeS (Section 5.1), Globus
(Section 5.2), Legion (Section 5.3) and Albatross (Section 5.4).

5.1 AppLeS

The AppLeS project is dedicated to the achievement of performance for metacomputing applica-
tions, a difficult goal due to the heterogeneity of metacomputing platforms. This is especially true
for parallel applications whose performance is highly dependent upon the efficient coordination of
their constituent components.

In metacomputing systems, applications cannot be efficiently scheduled by a global scheduling
mechanism. Currently, to achieve a performance-efficient implementation on a distributed heteroge-
neous system, the application developer must select a potentially efficient configuration of resources
based on load and availability, evaluate the potential performance on such configurations based on
their own performance criteria, and interact with the relevant resource management systems in
order to implement the application. This approach is termed application-centric by Berman and
Wolski [6, 7].

The AppLeS (Application Level Scheduler) project is developing application-level scheduling
agents to provide a mechanism for scheduling individual applications at machine speeds on pro-
duction heterogeneous systems. The following statements are used as guidelines to implement the
agents [6]:

e Both application-specific and system-specific information are required for good schedules

Performance depends upon the application’s own performance criteria

The “distance” between resources is dependent upon how the application uses them

e Dynamic information is necessary to accurately assess system state

Predictions are accurate only within a particular time frame
e A schedule is only as good as its underlying prediction

The AppLeS application-level scheduling paradigm addresses heterogeneity by explicitly assuming
that all resources (even homogeneous resources) exhibit individual performance characteristics, and
that these performance characteristics may vary over time. Contention is addressed by assessing
the fraction of available resources dynamically, and using this information to predict the fraction
available at the time the application will be scheduled.

AppLeS agents utilize a Network Weather Service (NWS) to monitor the varying performance
of resources potentially usable by their applications. Recently, adaptive regression modeling has
been introduced as a technique to determine data transfer times for network-bound data-intensive
applications [34]. Each AppLeS uses static and dynamic application and system information to se-
lect viable resource configurations and evaluate their potential performance. AppLeS then interacts
with the relevant resource management system to implement application tasks.

The end-user or application developer provides its AppLeS agent with application-specific in-
formation about current implementation(s) (via the Heterogeneous Application Template or HAT)
as well as user preferences. This information is combined with dynamic system information (pro-
vided by the Network Weather Service) by the AppLeS Coordinator to determine a potentially

29

performance-efficient application schedule. The Coordinator then works with the appropriate re-
source management systems to implement the schedule on the relevant resources. The AppLeS
architecture is shown in Figure 14, borrowed from [6]. It is important to note that AppLeS agents

are not resource management systems. The AppLeS system is built on top on tools such as Globus
and Legion.

INFORMATION POOL

Network User Application
Weather Preferences Performance
Service Models

l l

Resource Planner Performance
Selector l Estimator

Coordinator

i

Actuator

Resource Management System

Computational Grid Infrastructure
Figure 14: Organization of an AppLeS agent.

The AppLeS team has reported the design of AppLeS agents for a number of applications
including:

e Two-dimensional and three-dimensional Jacobi iterative applications,
e Genetic Algorithm application,

e Mandelbrot application,

e Protein docking application based on DOT,

e Synthetic Apperture Radar Atlas (SARA) application.

We refer the reader to the AppLeS publications (listed at http://www.cs.ucsd.edu/groups/
hpcl/apples/hetpubs.html for more information on these applications. See also the survey paper
by Berman [5] for a comparison with several other scheduling systems.

5.2 Globus

The Globus toolkit [37] (see http://www.globus.org) is a collection of sotware components de-
signed to support the development of applications for computational grids. The Globus architecture
may be defined as a “bag of services” provided to application and tool developers (as opposed to a
monolithic system). Each Globus component provides a basic service, such as authentication, re-
source allocation, information and remote data-access. Different applications and tools can combine
these services in different ways to construct “grid-enabled” systems.

30

Service Name | Description
Communication Nexus | Unicast, multicast
multiprotocol communications

Resource management GRAM | Resource allocationt
and process management

Executable management | GEM | Construction, cachingt
and location of executables

Health and status HBM | Monitoring of healtht

and status of components
Information MDS | Distributed access to structuret

and state information
Remote access GASS | Remote access to datat

via sequential and parallel interfaces
Security GSI Authenticationt

and related security services

Table 4: The core services of the Globus toolkit.

Briefly, the Globus toolkit comprises the core services listed in Table 4, plus a selection of
higher-level services defiend in terms of these core services. Each core service defines an application
program interface (API) that provides a uniform interface to a local service. As a first example,
the Globus Resource Allocation Manager (GRAM) provides an APT for requesting that some com-
putation be started on a computational resource, and for managing these computations once they
are started [29]. A second example is the following: resource brokers and co-allocators use services
provided by the GRAM and by the Globus information service (named MDS for Metacomput-
ing Directory Service) to locate available resources and to start computations across distributed
computing resources. Both static information (amount of memory, CPU speed) and dynamic in-
formation (network latency, CPU load) are handled by MDS. MDS has been built on the data
representation and APT defined by the Lightweight Directory Access Protocol (LDAP), which in
turn is based on the X-500 standard.

The Globus testbed has been used by several US research groups to conduct a variety of ap-
plication experiments, in such areas as multi-user collaborative environments (tele-immersion),
distributed supercomputing and high-throughput computing.

5.3 Legion

The Legion project [42] (see http://www.cs.virginia.edu/"legion) investigates issues relating
to software architecture and base technologies for grids environments. Legion is mainly organized
around an object-oriented model in which all components of the system are represented by inde-
pendent, active objects that communicate using a uniform method invocation service. In many
ways, Legion’s object model is similar to Corba’s: object interfaces are described using an interface
description language (IDL), and are compiled and linked to implementations in a given language
(C++, Java, Fortran). This object-based approach enables component interoperability between
multiple programming languages and heterogeneous platforms. Objects provides a clean, natural
approach to the well-known problems of encapsulation and interoperability. Because all the ele-
ments in the system are objects, they can communicate with one another regardless of location,

31

heterogeneity or implementation details.

Both processors and storage resources are represented as objects, called host objects and vault
objects. There are two primary benefits resulting from this object-based approach. First, each
object defines a uniform interface to host and vault resources. Host objects provides a uniform
interface to task creation, and vault objects provides a uniform storage allocation interface. Second,
these objects naturally act as resource guardians and policy makers. For example, the host objects
used to manage the processor resources at a given site are the points of access control for task
creation at that site. If an organization participating in Legion wishes to restrict job creation on
local resources exclusively to local users, the host objects can enforce this policy.

In Legion, access control and resources protection are specified entirely at the object level.
Legion allows messages to be fully encrypted for privacy, and signed for integrity checking, or sent
in the clear if low performance overhead is an application priority. Cryptographic services in Legion
are based on the RSA public key system. To protect the system components, object encode their
RSA public key directly in their object identifier (LOID: Legion Object IDentifier), Simply by
knowing the LOID for an object, a client is assured of being able to communicate securely with
that object.

Globus and Legion share a common base of target environments, technical objectives, and target
end users. However, the design philosophies are fundamentally different and driven by different
high level objectives. Globus strives to provide a basic set of services that makes it possible to
write applications that operate in a wide-area environment. The Globus implementation is based
on the composition of working components into a composite metacomputing toolkit. Legion strives
to reduce complexity and provide the programmer with a single view of the underlying resources.
Legion builds higher-level system functionality on top of a single unified object model.

5.4 Albatross

The aim of the Albatross project (see http://www.cs.vu.nl/albatross) is to study applications
and programming environments for wide-area cluster computers. As mentioned in Section 2.2,
the main experimentation platform for the Albatross project is the DAS platform (Distributed
ASCI Supercomputer, http://www.cs.vu.nl/“bal/das.html), which consists of four Myrinet-
based cluster computers located at four Dutch universities and linked through a 6Mbit/s ATM
network.

The focus of Albatross is on programmability and performance, and concentrates on the follow-
ing two issues [3]:

e Efficient communication-protocols and runtime systems for local cluster computers
e Efficient algorithms and programming environments for wide-area cluster computers

The communication software used in Albatross is based on the Panda library [2], which pro-
vides multithreading and communication primitives (point-to-point message passing, RPC and
broadcast). Several wide-area programming environments have been implemented on the top of
Panda:

e Orca, a parallel language that provides an object-based distributed shared memory model [2]

e MagPle, an MPI library based on MPICH whose collective communications primitives have
been optimized for wide-area hierarchical systems [46]

e Manta, a high-performance wide-area Java system [64]

32

We say a few words about Manta, which looks a very promising environment for a wide range of
metacomputing applications. Manta uses a native compiler that generates executable code rather
than byte code. A key feature of Manta is its highly efficient implementation of Remote method
Invocation (RMI). The Albatross team reports that in doing experiments with Java RMI and
JavaParty, they found the programming model of RMI and JavaParty to be convenient, but they
also found that performance of RMI for programming parallel clusters of workstations was too slow
by far. Manta does a null-RMI in 35 microsecond, as opposed to 1200 microsecond or a two-way
latency of Sun’s RMI on Myrinet.

The Albatross project has optimized four applications for wide-area systems: successive over-
relaxation (SOR), all-pairs shortest paths, traveling salesperson problem (TSP) and iterative deep-
ening A*. These four applications have been implemented on the DAS platform. Good speedups
were obtained when using the four distributed Myrinet clusters, at the price of a significant program-
ming effort to optimize the applications. The Albatross results, although preliminary, demonstrate
that it is feasible to efficiently run parallel applications on multiple clusters connected by wide-area
networks. The next step in the project is to develop programming support that eases wide-area
parallel programming.

33

6 Case Study: NetSolve

In we section we describe NetSolve, a high-level environment for metacomputing. Our description
is based on [55].

6.1 Introduction

The main idea of the NetSolve project is to provide non-specialists users with an easy-to-use
programming environment that enables them to benefit from a variety of distributed comput-
ing resources such as massively parallel processors, networks and clusters of workstations and
“piles” of PCs. In order to use efficiently such a diverse and lively computational environment,
many challenging research aspects of network-based computing such as fault-tolerance, load bal-
ancing, user-interface design, computational servers or virtual libraries, must be addressed. User-
friendly, network-enabled, application-specific toolkits have been specifically designed and conceived
to tackle the problems posed by such a complex and innovative approach to scientific problem solv-
ing [38].

In the networked computing paradigm, vital pieces of software and information used by a
computing process are spread across the network, and are identified and linked together only at
run time. This is in contrast to the current software usage model where one acquires a copy (or
copies) of task-specific software package for use on local hosts. In this section, as a case study, we
focus on the ongoing NetSolve project developed at the University of Tennessee and at the Oak
Ridge National Laboratory (see http://www.cs.utk.edu/netsolve).

The NetSolve software system [21, 22] provides users with a pool of computational resources.
These resources are computational servers that provide run-time access to arbitrary optimized
numerical software libraries. The NetSolve software system transforms disparate, loosely-connected
computers and software libraries into a unified, easy-to-access computational service. This service
can make enormous amounts of computing power transparently available to users on ordinary
platforms.

The NetSolve system allows users to access computational resources, such as hardware and
software, distributed across the network. These resources are embodied in computational servers
and allow users to easily perform scientific computing tasks without having any computing facility
installed on their computer. Users’ access to the servers is facilitated by a variety of interfaces:
Application Programming Interfaces (APIs), Textual Interactive Interfaces and Graphical User
Interfaces (GUIs). As the NetSolve project matures, several promising extensions and applications
will emerge. In this section, we provide an overview of the project and examine two extensions
developed for NetSolve: an interface to the Condor system [50], and an interface to the ScaLAPACK
parallel library [9].

6.2 Overview of the NetSolve System

The NetSolve system uses the remote computing paradigm: the program resides on the server; the
user’s data is sent to the server, where the appropriate programs or numerical libraries operate on
it; the result is then sent back to the user’s machine.

Figure 15 depicts the typical layout of the system. NetSolve provides users with a pool of
computational resources. These resources are computational servers that have access to ready-
to-use numerical software. As shown in the figure, the computational servers can be running
on single workstations, networks of workstations that can collaborate for solving a problem, or
Massively Parallel Processor (MPP) systems. The user is using one of the NetSolve client interfaces.

34

Network

reply

choice

#]
4<@— vppsaves Scdlar Sever

reply

Figure 15: NetSolve’s organization

Through these interfaces, the user can send requests to the NetSolve system asking for a numerical
computation to be carried out by one of the servers. The main role of the NetSolve agent is to
process this request and to choose the most suitable server for this particular computation. Once
a server has been chosen, it is assigned the computation, uses its available numerical software, and
eventually returns the results to the user. One of the major advantages of this approach is that
the agent performs load-balancing among the different resources.

As shown in Figure 15, there can be multiple instances of the NetSolve agent on the network,
and different clients can contact different agents depending on their locations. The agents can
exchange information about their different servers and allow access from any client to any server
if desirable. NetSolve can be used either via the Internet or on an intranet, such as inside a
research department or a university, without participating in any Internet based computation.
Another important aspect of NetSolve is that the configuration of the system is entirely flexible:
any server/agent can be stopped and (re-)started at any time without jeopardizing the integrity of
the system.

The Computational Resources When building the NetSolve system, one of the challenges was
to design a suitable model for the computational servers. The NetSolve servers are configurable
so that they can be easily upgraded to encompass ever-increasing sets of numerical functionalities.
The NetSolve servers are also pre-installed, meaning that the end-user does not have to install any
numerical software. Finally, the NetSolve servers provide uniform access to the numerical software,
in the sense that the end-user has the illusion that he or she is accessing numerical subroutines
from a single, coherent numerical library.

To make the implementation of such a computational server model possible, a general, machine-
independent way of describing a numerical computation as well as a set of tools to generate new
computational modules as easily as possible have been designed. The main component of this
framework is a descriptive language which is used to describe each separate numerical functionality
of a computational server. The description files written in this language can be compiled by
NetSolve into actual computational modules executable on any UNIX or NT platform. These files

35

can then be exchanged by any institution wanting to set up servers: each time a new description
file is created, the capabilities of the entire NetSolve system are increased.

A number of description files have been generated for a variety of numerical libraries: ARPACK,
FitPack, ItPack, MinPack, FFTPACK, LAPACK, BLAS, QMR, Minpack and Scal,LAPACK. These
numerical libraries cover several fields of computational science; Linear Algebra, Optimization, Fast
Fourier Transforms, etc.

The Client Interfaces A major concern in designing NetSolve was to provide several interfaces
for a wide range of users. NetSolve can be invoked through C, Fortran, Java, Matlab and Mathe-
matica. In addition, there is a Web-enabled Java GUIL. Another concern was keeping the interfaces
as simple as possible. For example, there are only two calls in the MATLAB interface, and they
are sufficient to allow users to submit problems to the NetSolve system. Each interface provides
asynchronous calls to NetSolve in addition to traditional synchronous or blocking calls. When
several asynchronous requests are sent to a NetSolve agent, they are dispatched among the avail-
able computational resources according to the load-balancing schemes implemented by the agent.
Hence, the user—with virtually no effort—can achieve coarse-grained parallelism from either a C
or Fortran program, or from interaction with a high-level interface. All the interfaces are described
in detail in the “NetSolve’s Client User’s Guide” [21].

The NetSolve Agent Keeping track of what software resources are available and on which
servers they are located is perhaps the most fundamental task of the NetSolve agent. Since the
computational servers use the same framework to contribute software to the system, it is possible
for the agent to maintain a database of different numerical functionalities available to the users.

Each time a new server is started, it sends an application request to an instance of the Net-
Solve agent. This request contains general information about the server and the list of numerical
functions it intends to contribute to the system. The agent examines this list and detects possible
discrepancies with the other existing servers in the system. Based on the agent’s verdict, the server
can be integrated into the system and available for clients.

The goal of the NetSolve agent is to choose the best-suited computational server for each incom-
ing request to the system. For each user request, the agent determines the set of servers that can
handle the computation and makes a choice between all the possible resources. To do so, the agent
uses computation-specific and resource-specific information. Computation-specific information is
mostly included in the user request whereas resource-specific information is partly static (server’s
host processor speed, memory available, etc.) and partly dynamic (processor workload). Rationale
and further detail on these issues can be found in [17], as well as a description of how NetSolve
ensures fault-tolerance among the servers.

Agent-based computing seems to be a promising strategy. NetSolve is evolving into a more
elaborate system and a major part of this evolution is to take place within the agent. Such is-
sues as user accounting, security, data encryption for instance are only partially addressed in the
current implementation of NetSolve and already is the object of much work. As the types of hard-
ware resources and the types of numerical software available on the computational servers become
more and more diverse, the resource broker embedded in the agent need to become increasingly
sophisticated. There are many difficulties in providing a uniform performance metric that encom-
passes any type of algorithmic and hardware considerations in a metacomputing setting, especially
when different numerical resources, or even entire frameworks are integrated into NetSolve. Such
integrations are described in the following sections.

36

6.3 Interface to the Condor System

Condor [50], developed at the University of Wisconsin, Madison, is an environment that can manage
very large collections of distributively owned workstations. Its development has been motivated
by the ever increasing need for scientists and engineers to exploit the capacity of such collections,
mainly by taking advantage of otherwise unused CPU cycles. Interfacing NetSolve and Condor
is a very natural idea. NetSolve provides remote easy access to computational resources through
multiple, attractive user interfaces. Condor allows users to harness the power of a pool of machines
while using otherwise wasted CPU cycles. The users at the consoles of those machines are not
penalized by the scheduling of Condor jobs. If the pool of machines is reasonably large, it is usually
the case that Condor jobs can be scheduled almost immediately. This could prove to be very
interesting for a project like NetSolve. Indeed, NetSolve servers may be started so that they grant
local resource access to outside users. Interfacing NetSolve and Condor could then give priority to
local users and provide underutilized only CPU cycles to outside users.

A Condor pool consists of any number of machines, that are connected by a network. Condor
daemons constantly monitor the status of the individual computers in the cluster. Two daemons
run on each machine, the startd and the schedd. The startd monitors information about the machine
itself (load, mouse/keyboard activity, etc.) and decides if it is available to run a Condor job. The
schedd keeps track of all the Condor jobs that have been submitted to the machine. One of the
machine, the Central Manager, keeps track of all the resources and jobs in the pool. When a job
is submitted to Condor, the scheduler on the central manager matches a machine in the Condor
pool to that job. Once the job has been started, it is periodically checkpointed, can be interrupted
and migrated to a machine whose architecture is the same as the one of the machine on which the
execution was initiated. This organization is partly depicted in Figure 16. More details on the
Condor system and the software layers can be found in [50].

Figure 16 shows how an entire Condor pool can be seen as a single NetSolve computational
resource. The Central Manager runs two daemons in addition to the usual startd and schedd: the
negotiator and the collector. A machine also runs a customized version of the NetSolve server.
When this server receives a request from a client, instead of creating a local child process running
a computational module, it uses the Condor tools to submit that module to the Condor pool. The
negotiator on the Central Manager then chooses a target machine for the computational module.
Due to fluctuations in the state of the pool, the computational module can then be migrated
among the machines in the pool. When the results of the numerical computation are obtained, the
NetSolve server transmits that result back to the client.

The actual implementation of the NetSolve/Condor interface was made easy by the Condor
tools provided to the Condor user. However, the restrictions that apply to a Condor job concerning
system calls were difficult to satisfy and required quite a few changes to obtain a Condor-enabled
NetSolve server. A major issue however still needs to be addressed; how does the NetSolve agent
perceive a Condor pool as a resource? Finding the appropriate performance prediction technique
is at the focus of the current NetSolve/Condor collaboration.

6.4 Integrating Parallel Numerical Libraries

Integrating software libraries designed for distributed-memory concurrent computers into NetSolve
allows a workstation’s user to access massively parallel processors to perform large computations.
This access can be made extremely simple via NetSolve and the user may not even be aware that
he or she is using a parallel library on such a computer. As an example, we describe in this section,
how the ScaLAPACK library [9] has been integrated into the NetSolve system.

37

Condor Central Manager Condor pool

Negotiator
| 7

Machine 1 / NetSolve Machine Machine N

[]
[]

J
Iy
NetSolve {
computational
module

NetSolve
Agent

NetSolve
Client

Request

Figure 16: NetSolve and Condor

Figure 17 is a very simple description of how the NetSolve server has been customized to use the
ScalLAPACK library. The customized server receives data input from the client in the traditional
way. The NetSolve server uses BLACS calls to set up the ScaLAPACK process grid. ScaLAPACK
requires that the data already be distributed among the processors prior to any library call. This is
the reason why each user input is first distributed on the process grid according to the block cyclic
decomposition when necessary. The server can then initiate the call to ScaLAPACK and wait until
completion of the computation. When the ScaLAPACK call returns, the result of the computation
is distributed on the two-dimensional process grid. The server then gathers that result and sends it
back to the client in the expected format. This process is completely transparent to the user who
does not even realize that a parallel execution has been taking place.

This approach is very promising. A client can use MATLAB on a PC and issue a simple
call like [x] = netsolve(’eig’,a) and have an MPP system use a high-performance library to
perform a large eigenvalue computation. A prototype of the customized server running on top of
PVM [40] or MPI [61] has been designed. There are many research issues arising with integrating
parallel libraries in NetSolve, including performance prediction, choice of processor-grid size, choice
of numerical algorithm, processor availability, accounting, etc.

38

RN
c‘,&)&\ \
O
DR9
Input Q
Data

[NetSolve
ScaLAPACK
server

NetSolve

client ScaLAPACK

Processor Grid
/ (NoW or MPP)

Result

Figure 17: The ScaLAPACK NetSolve Server Paradigm

7 Conclusion

In this report, we have discussed some issued related to heterogeneous cluster computing and
metacomputing. Here are a few recommendations:

e While there are several projects related to metacomputing in Europe, there is little coordi-
nation and exchange between these projects. Similarly, only few European institutions have
joined the NPACI initiative: the NPACI Partnership Report of 1999 mentions only three
international affiliates in Europe®.

e The difficulty of algorithmic issues seem to be largely underestimated. Data decomposition,
scheduling heuristics, load balancing, were known to be hard problems in the context of clas-
sical parallel architectures. They become extremely difficult in the context of metacomputing
platforms. We believe that they should receive more attention from the research community,
which seem to focus almost exclusively on low-level communication protocols and distributed
system issues (light-weight process invocation, migration, etc).

e [t is not clear which is the good level to program metacomputing platforms. Data-parallelism
seems unrealistic, due to the strong heterogeneity. Explicit message passing is too low-level.
Despite their many advantages, object-oriented approaches still request the user to have a deep
knowledge and understanding of both its application behavior and the underlying hardware
and network. Remote computing systems such as NetSolve face severe limitations to efficiently
load-balance the work to processors. For the inexperienced user, relying on specialized but
highly-tuned libraries of all kinds (communication, scheduling, application-dependent data
decompositions) may prove a good trade-off until the programming environments evolve into
“high-level-yet-general-purpose-and-efficient” solutions!

“The center for research on parallel computation and supercomputers in Naples, Italy; the computer engineering
department of the university of Lecce, Italy; and the parallel computing center of the royal institute of technology in
Stockholm, Sweden.

39

e Looking backward, we see that key applications (from scientific computing to data-bases)
have dictated the way classical parallel machines are used, programmed, and even updated
into more efficient platforms. Looking forward, we guess that key applications will strongly
influence, or even guide, the development of metacomputing environments. Which applica-
tions will be worth the abundant but hard-to-access resources of the metacomputing grid:
tightly-coupled grand challenges, mobile computing applications or micro-transactions on the

Web 7 All these applications require new programming paradigms to enable inexperienced
users to access the magic grid!

40

References

[1]

R. Agarwal, F. Gustavson, and M. Zubair. A high performance matrix multiplication algorithm
on a distributed-memory parallel computer, using overlapped communication. IBM J. Research
and Development, 38(6):673-681, 1994.

H.E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Riihl, and F. Kaashoek.
Performance evaluation of the orca shared object system. ACM Trans. Computer Systems,
16(1):1-40, 1998.

H.E. Bal, A. Plaat, T. Kielmann, J. Maassen, R. van Nieuwpoort, and R. Veldema. Parallel
computing on wide-area clusters: the albatross project. In Extreme Linuz Workshop, pages
20-24, 1999.

P.H Beckman, P.K. Fasel, and W.F. Humphrey. Efficient coupling of parallel applications
using PAWS. In High Performance Distributed Computing HPDC’98, Chicago, 1L, 1998. IEEE
Computer Science Press.

F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, pages 279-309. Morgan-Kaufmann, 1999.

F. Berman and R. Wolski. The apples project: A status report. In Proceedings of the 8th NEC
Research Symposium, 1997. Available at .

F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-level scheduling on
distributed heterogeneous networks. In Proceedings of Supercomputing 1996. IEEE Computer
Society Press, 1996. Available as UCSD CS Tech Report CS96-482.

L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. Scalapack: A portable linear algebra
library for distributed-memory computers - design issues and performance. In Supercomputing
’96. IEEE Computer Society, 1996.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. STAM, 1997.

V. Boudet, F. Rastello, A. Petitet, and Y. Robert. Data allocation strategies for dense linear
algebra kernels on heterogeneous two-dimensional grids. Technical Report RR-99-31, LIP, ENS
Lyon, 1999. Available at www.ens-1yon.fr/LIP/. To appear in PDCS’99, Boston.

V. Boudet, F. Rastello, and Y. Robert. A proposal for an heterogeneous cluster ScalLA-
PACK (dense linear solvers). Technical Report RR-99-17, LIP, ENS Lyon, 1999. Available at
www.ens-lyon.fr/LIP.

Vincent Boudet, Fabrice Rastello, and Yves Robert. Algorithmic issues for (distributed) het-
erogeneous computing platforms. In Rajkumar Buyya and Toni Cortes, editors, Cluster Com-
puting Technologies, Environments, and Applications (CC-TEA’99). CSREA Press, 1999. Ex-
tended version available as LIP Technical Report RR-99-19.

41

[13]

[14]

[17]

Vincent Boudet, Fabrice Rastello, and Yves Robert. A proposal for a heterogeneous cluster
ScalLAPACK (dense linear solvers). In Hamid R. Arabnia, editor, International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’99). CSREA Press,
1999. Extended version available as LIP Technical Report RR-99-17.

Pierre Boulet, Jack Dongarra, Fabrice Rastello, Yves Robert, and Frédéric Vivien. Algorithmic
issues on heterogeneous computing platforms. In Clusters and Computational Grids Workshop.

to appear as a journal special issue, 1998. Extended version available as LIP Technical Report
RR-98-49.

Pierre Boulet, Jack Dongarra, Yves Robert, and Frédéric Vivien. Static tiling for heterogeneous
computing platforms. Parallel Computing, 25:547-568, 1999.

T.D. Braun, H.J. Siegel, N. Beck, L.L Boloni, M. Maheswaran, A.. Reuther, J.P. Robertson,
M.D. Theys, B. Yao, D. Hensgen, and R.F. Freund. A comparison study of static mapping
heuristics for a class of meta-tasks on heterogeneous computing systems. In FEight Heteroge-
neous Computing Workshop, pages 15-29. IEEE Computer Society Press, 1999.

S. Browne, H. Casanova, and J. Dongarra. Providing Access to High Performance Computing
Technologies. In J. Wasniewski, J. Dongarra, K. Madse, and D. Olesen, editors, Applied
Parallel Computing, volume Springer-Verlag LNCS 1184, pages 123-1345. Springer-Verlag,
1996.

M. Brune, J. Gehring, A. Keller, B. Monien, F. Ramme, and A. Reinefeld. Specifying resources
and services in metacomputing environments. Parallel Computing, 24:1751-1776, 1998.

R. Buyya. High Performance Cluster Computing. Volume 1: Architecture and Systems. Pren-
tice Hall PTR, Upper Saddle River, NJ, 1999.

R. Buyya. High Performance Cluster Computing. Volume 2: Programming and Applications.
Prentice Hall PTR, Upper Saddle River, NJ, 1999.

H. Casanova and J. Dongarra. Netsolve: A network server for solving computational science
problems. Technical Report UT-CS-95-313, University of Tennessee, Knoxville, 1995.

H. Casanova and J. Dongarra. Netsolve: A network server for solving computational science
problems. The International Journal of Supercomputer Applications and High Performance
Computing, 11(3):212-223, 1997.

J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory

computers - design issues and performance. Computer Physics Communications, 97:1-15, 1996.
(also LAPACK Working Note #95).

J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. The design and
implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. Scientific
Programming, 5:173-184, 1996.

E. Chu and A. George. QR factorization of a dense matrix on a hypercube multiprocessor.
SIAM Journal on Scientific and Statistical Computing, 11:990-1028, 1990.

42

[26]

[27]

[28]

[29]

[38]

[39]

[40]

Michal Cierniak, Mohammed J. Zaki, and Wei Li. Customized dynamic load balancing for a
network of workstations. Journal of Parallel and Distributed Computing, 43:156-162, 1997.

Michal Cierniak, Mohammed J. Zaki, and Wei Li. Scheduling algorithms for heterogeneous
network of workstations. The Computer Journal, 40(6):356-372, 1997.

D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann, San Francisco, CA, 1999.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke.
A resource management architecture for metacomputing systems. In Proc. IPPS/SPDP’98
Workshop on Job Scheduling Strategies for Parallel Processing. IEEE Computer Society Press,
1998.

J. Dongarra, R. van de Geijn, and D. Walker. Scalability issues in the design of a library for
dense linear algebra. Journal of Parallel and Distributed Computing, 22(3):523-537, 1994.

J. J. Dongarra and D. W. Walker. Software libraries for linear algebra computations on high
performance computers. SIAM Review, 37(2):151-180, 1995.

Th. Eickermann, J. Henrichs, M. Resch, R. Stoy, and R. Volpel. Metacomputing in gigabit
environments: networks, tools and applications. Parallel Computing, 24:1847-1872, 1998.

G. Eisenhauer, B. Plale, and K. Schwan. Data-exchange: high-performance communications
in distributed laboratories. Parallel Computing, 24:1713-1733, 1998.

M. Faerman, A. Su, R. Wolski, and F. Berman. Adaptive performance prediction for dis-
tributed data-intensive applications. In Proceedings of Supercomputing 1999. IEEE Computer
Society Press, 1999. Available at http://www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.
html.

G. Fagg, J. Dongarra, and A. Geist. Heterogeneous MPI application interoperation and process
management under PVMPIL. In M. Bubak, J. Dongarra, and J. Wasniewski, editors, Recent
advances in PV and MPI, volume 1332 of Lectures Notes in Computer Science, pages 91-98.
Springer Verlag, 1997.

I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thituvathukal, and S. Tuecke. Wide-
area implementation of the message passing interface. Parallel Computing, 24:1735-1749, 1998.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl J. Super-
computer Applications, 11(2):115-128, 1997.

L. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999.

G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hypercube i: matrix multiplication.
Parallel Computing, 3:17-31, 1987.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM Parallel
Virtual Machine: A Users’Guide and Tutorial for Networked Parallel Computing. The MIT
Press, 1996.

43

[41]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

Andrew S. Grimshaw, Jon B. Weissman, Emily A. West, and Ed. C. Loyot Jr. Metasystems:
an approach combining parallel processing and heterogeneous distributed computing systems.
Journal of Parallel and Distributed Computing, 21:257-270, 1994.

A.S. Grimshaw and W.A. Wulf. The legion vision of a worldwide virtual computer. Commu-
nications of the ACM, 40(1):39-45, 1997.

M. Iverson and F. Ozgﬁner. Dynamic, competitive scheduling of multiple dags in a distributed
heterogeneous environment. In Seventh Heterogeneous Computing Workshop. IEEE Computer
Society Press, 1998.

Maher Kaddoura and Sanjay Ranka. Run-time support fo parallelization of data-parallel
applications on adaptive and nonuniform computational environments. Journal of Parallel
and Distributed Computing, 43:163-168, 1997.

A. Kalinov and A. Lastovetsky. Heterogeneous distribution of computations while solving
linear algebra problems on networks of heterogeneous computers. In P. Sloot, M. Bubak,
A. Hoekstra, and B. Hertzberger, editors, HPCN Furope 1999, LNCS 1593, pages 191-200.
Springer Verlag, 1999.

T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjan. Magpie: Mpi’s col-
lective communication operations for clustered wide area systems. In Seventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming PPoPP’99, pages 131-140,
Atlanta, GA, 1999.

Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and Mary E.
Zosel. The High Performance Fortran Handbook. The MIT Press, 1994.

V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. The
Benjamin/Cummings Publishing Company, Inc., 1994.

E. Laure, P. Mehrotra, and H. Zima. Opus: Heterogeneous computing with data parallel tasks.
Parallel Processing Letters, 1999. To appear.

M. Litzkow, M. Livny, and M.W. Mutka. Condor - a hunter of idle workstations. In Proceedings
of the 8th International Conference of Distributed Computing Systems, pages 104-111. IEEE
Computer Society Press, 1988.

M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund. Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. In FEight
Heterogeneous Computing Workshop, pages 30-44. IEEE Computer Society Press, 1999.

M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm for heteroge-
neous computing systems. In Seventh Heterogeneous Computing Workshop. IEEE Computer
Society Press, 1998.

K. Keahey nd D. Gannon. Developing and evaluating abstractions for distributed supercom-
puting. Cluster Computing, 1:69-79, 1998.

J.M. Ortega and C.H. Romine. The ijk forms of factorization methods ii. parallel systems.
Parallel Computing, 7:149-162, 1988.

44

[55]

A. Petitet, H. Casanova, J. Dongarra, Y. Robert, and R.C. Whaley. Parallel and distributed
scientific computing: A numerical linear algebra problem solving environment designer’s per-
spective. In J. Blazewicz, K. Ecker, B. Plateau, and D.Trystram, editors, Handbook on Parallel
and Distributed Processing. Springer Verlag, 1999. Available as LAPACK Working Note 139.

A. Reinefeld, J. Gehring, and M. Brune. Communicating across parallel message-passing
environments. Journal of Systems Architecture, 44:261-272, 1998.

M.C Rosu, K. Schwan, and R. Fujimoto. Supporting parallel applications on clusters of work-
stations: the virtual communication machines-based architecture. Cluster Computing, 1:51-67,
1998.

Vivek Sarkar. Partitioning and scheduling parallel programs for multiprocessors. Pitman, 1989.

H.J. Siegel, H.G. Dietz, and J.K. Antonio. Software support for heterogeneous computing.
ACM Computing Surveys, 28(1):237-239, 1996.

G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems,
4(2):175-187, 1993.

M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI the complete
reference. The MIT Press, 1996.

M. Tan, H.J. Siegel, J.K. Antonio, and Y.A. Li. Minimizing the aplication execution time
through scheduling of subtasks and communication traffic in a heterogeneous computing sys-
tem. IEEFE Transactions on Parallel and Distributed Systems, 8(4):857-1871, 1997.

H. Topcuoglu, S. Hariri, and M.Y. Wu. Task scheduling algorithms for heterogeneous pro-
cessors. In FEight Heterogeneous Computing Workshop, pages 3—14. IEEE Computer Society
Press, 1999.

R. van Nieuwpoort, J. Maassen, H.E. Bal, T. Kielmann, and R. Veldema. Wide-area parallel
computing in Java. In ACM 1999 Java Grande Conference, pages 8-14, San Francisco, CA,
June 1999.

J.B. Weissman and X. Zhao. Scheduling parallel applications in distributed networks. Cluster
Computing, 1(1):109-118, 1998.

Tao Yang and Apostolos Gerasoulis. DSC: Scheduling parallel tasks on an unbounded number
of processors. IEEE Trans. Parallel and Distributed Systems, 5(9):951-967, 1994.

45

