
HAL Id: hal-02102309
https://hal-lara.archives-ouvertes.fr/hal-02102309v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling communication requests traversing a switch :
complexity and algorithms

Matthieu Gallet, Yves Robert, Frédéric Vivien

To cite this version:
Matthieu Gallet, Yves Robert, Frédéric Vivien. Scheduling communication requests traversing a
switch : complexity and algorithms. [Research Report] LIP RR-2006-25, Laboratoire de l’informatique
du parallélisme. 2006, 2+26p. �hal-02102309�

https://hal-lara.archives-ouvertes.fr/hal-02102309v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Scheduling communication requests traversing
a switch:

complexity and algorithms

Matthieu Gallet,
Yves Robert,
Frédéric Vivien

June 2006

Research Report No 2006-25

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Scheduling communication requests traversing a
switch:

complexity and algorithms

Matthieu Gallet, Yves Robert, Frédéric Vivien

June 2006

Abstract
In this paper, we study the problem of scheduling file transfers through a
switch. This problem is at the heart of a model often used for large grid com-
putations, where the switch represents the core of the network interconnecting
the various clusters that compose the grid. We establish several complexity
results, and we introduce and analyze various algorithms, from both a theo-
retical and a practical perspective.

Keywords: Grid computing, networks, scheduling file transfers, switch, complexity.

Résumé
Dans ce rapport, nous étudions l’ordonnancement de l’envoi de fichiers à
travers un switch. Ce problème est souvent utilisé pour modéliser le réseau
utilisé par une grille de calcul, où le switch représente le coeur du réseau qui
relie les différents clusters composant la grille. Nous établissons différents ré-
sultats de complexité, avant d’étudier plusieurs algorithmes, tant d’un point
de vue théorique que d’un point de vue pratique.

Mots-clés: Ordonnancement de transfert de fichiers, grille de calcul, réseaux, complexité,
commutateur.

1

1 Introduction

Computation grids are more and more used to follow the tremendous growth of the need in com-
putation power. Since computation nodes can be anywhere in the world, there are many issues
involving the scheduling of both communications and computations. Even when communica-
tion links are dedicated, the problems of maximizing the number of files that can be transmitted,
and of allocating the correct bandwidth to each file, turn out to be very difficult.

In this paper, we study the problem of scheduling file transmissions through a classical net-
work switch. This problem could appear somewhat simplistic, but it is often used as a model
for more general instances, where the switch is an Internet backbone, and where the different
links to and from the switch are the bottlenecks; this model has already been studied in several
papers [19, 20, 7, 4].

The bandwidth allocation is an important problem in distributed computating, and con-
straints are quite different from those applying to the general Internet. Indeed, for a standard
DSL line (2Mb/s), the bottleneck is the line itself, and the link between the provider and the
backbone (often rated at 2.5Gb/S) is sufficient. On the contrary, grid sites have links which can
be rated at 2.5Gb/s, and large bulk transfers between sites can take up to several days. Moreover,
performance quickly decreases in case of congestion, since many packets can be dropped by the
TCP/IP protocol.

From the user point of view, any aborted transfer is a useless waste of (potentially scarce)
computational and storage resources, which are reserved for a finite duration. Thus, we have to
choose which requests have to be accepted to ensure the best possible usage of the network. But,
even if constraints are stronger for a computation grid than for the Internet, a better scheduling
can be considered when all transfers can be forecast.

Like many scheduling problems, most problems in this model are NP-complete, and we
have to search for heuristics and approximation algorithms. The idea of reservation was already
studied, by example by L. Marchal et al [19], whose model consists of some ingress or egress
links interconnected over a well-provisioned WAN. Requests (i.e., files to send from an ingress
link to an egress link) have to be chosen and scheduled. During the transfer of a file, the allocated
bandwidth remains constant. However, there is no practical reason to enforce this constraint, and
we should allow the bandwidth to change several times during the transfer, so as to give more
flexibility to the scheduling algorithms.

The rest of the paper is organized as follows. In section 2, the model and notations are de-
tailed. Then we outline some interesting properties in Section 3. Complexity results are the core
of Section 4. Algorithms and heuristics are given in Section 5, and experimental results are pro-
vided in Section 6. Finally, we give some conclusions in Section 7.

2 Model and problem definition

We describe here the model and notations used in this work. Basically, our goal is to send some
files (or requests) from ingress links (or sources) to egress links (or destinations) through a central
switch, in order to maximize one of the two studied objective functions.

• PLATFORM:
We consider a switch, with a capacity Ctot, linked to p ingress links and p′ egress links. The
j-th ingress link has a capacity Cj (with 1 ≤ j ≤ p), and the j-th egress link has a capacity
C ′

j (with 1 ≤ j ≤ p′).

• REQUESTS:
We have a set of n requests to schedule. The i-th request, 1 ≤ i ≤ n, arrives in the system
a time ri ∈ Q+ (its release date), it should be completed before time di ∈ Q+, di > ri

(its deadline). It has to be sent from the ingress link src(i) ∈ {1, . . . , p} to the egress link
dest(i) ∈ {1, . . . , p′}. This request has a size (or surface) Si ∈ Q+ and a weight wi ∈ Q+.

2

• CONSTRAINTS:
A schedule has to respect some constraints to be valid:

– a request is either processed, or discarded: ∀i ∈ {1, . . . , n}, xi ∈ {0, 1}. Any valid
schedule has to choose if the request i is processed (xi = 1) or not (xi = 0), and
then allocates an instantaneous bandwidth bi : R+ → Q+. Some requests may not be
scheduled at all, while some other requests may only be partially completed (in which
case we will consider that they were not processed at all).

– bi is a function, which is integrable over R+,

– bandwidth functions are non-negative functions: ∀t ≥ 0,∀i ∈ {1, . . . , n}, bi(t) ≥ 0,

– deadlines are strictly enforced: ∀t ≥ di,∀i ∈ {1, . . . , n}, bi(t) = 0,

– a request cannot be processed before its release date: ∀t < ri,∀i ∈ {1, . . . , n}, bi(t) = 0,

– we cannot exceed the capacity of an ingress link: ∀t ≥ 0, ∀j ∈ {1, . . . , p},
∑

i,src(i)=j bi(t) ≤
Cj ,

– we cannot exceed the capacity of an egress link: ∀t ≥ 0, ∀j′ ∈ {1, . . . , p′},
∑

i,dest(i)=j′ bi(t) ≤
C ′

j′ ,

– we cannot exceed the switch capacity: ∀t ≥ 0,
∑n

i=1 bi(t) ≤ Ctot,

– any chosen request has to be entirely processed:

∀i ∈ {1, . . . , n}, xi

∫ +∞

0

bi(t)dt = xiSi.

This formulation allows a request to begin without being finished. Such a scenario
has no interest in off-line scheduling strategies, but should be considered for online
algorithms, where a new request can be preferred to one currently being processed.
Note that if we don’t want to allow such scenarios, we simply write∫ +∞

0

bi(t)dt = xiSi.

• OBJECTIVE FUNCTIONS:
Two different objective functions are studied:

– the number of requests that are processed:

n∑
i=1

xi;

– the profit generated by processed requests:

n∑
i=1

xiwi.

3 Some problem properties

In this section, we prove some simplifying lemmas, which allow to focus on certain types of
schedules, thereby reducing the solution space.

3

3.1 We can use only step functions for the bandwidth allocation functions.

Sofar, we have not specified any constraint on the form of the bi functions (except their integra-
bility). Now, we show that we can suppose, without any loss of generality, that the bis are step
functions, with a small number of steps.

Lemma 1. We consider a platform with a capacity Ctot, p ingress links (with respective capacities Cj)
and p′ egress links (with respective capacities C ′

j). Let (bi)1≤i≤n be any schedule. Then we can build a
schedule (b′i)1≤i≤n, which realizes the same objective, and where the b′i are step functions with at most 2n
steps: the bandwidths only change when a request joins the system (release date) or when one is completed.

Proof. We want to show that if we have any schedule (bi)1≤i≤n (cf. Figure 1), then we can build a
schedule (b′i)1≤i≤n, having the same objective, but only using particular step functions (cf. Figure
2).

We note {t1, . . . , tq} the set of release dates and deadlines {r1, . . . , rn} ∪ {d1, . . . , dn} with
t1 < t2 < . . . < tq−1 < tq.

Now we show that we can build a schedule, such that ∀i ∈ {1, . . . , n},∀k ∈ {2, . . . , q}, bi(t) =
constant over [tk−1, tk[.
We set b′i over [tk−1, tk[to the average value of bi over this same interval. By definition, b′i is a
step function, with at most q ≤ 2n− 1 steps.
Formally, let us consider any valid schedule O ((bi)i,(xi)i). It respects the following constraints:

• ∀t ≥ 0,∀i ∈ [1, n], bi(t) ≥ 0;

• ∀t ≥ di,∀i ∈ [1, n], bi(t) = 0;

• ∀t < ri,∀i ∈ [1, n], bi(t) = 0;

• ∀j ∈ {1, . . . , p},∀t ≥ 0,
∑

i∈{1,...,n},src(i)=j bi(t) ≤ Cj ;

• ∀j′ ∈ {1, . . . , p′},∀t ≥ 0,
∑

i∈{1,...,n},dest(i)=j′ bi(t) ≤ C ′
j′ ;

• ∀t ≥ 0,
∑

i∈{1,...,n} bi(t) ≤ Ctot;

• ∀i ∈ {1, . . . , n}, xi

∫ di

ri
bi(t)dt = xiSi.

We build O′ ((b′i)i,(x′i)i) using the following rules:

• ∀i ∈ {1, . . . , n}, x′i = xi;

• ∀k ∈ {2, . . . , q},∀i ∈ {1, . . . , n},∀t ∈ [tk−1, tk[, b′i(t) =

∫ tk

tk−1
bi(t)dt

tk − tk−1
.

Now, we will show that we have a valid schedule, with the same result as the previous schedule:

• ∀i ∈ {1, . . . , n},∀t ≥ 0, bi(t) ≥ 0 then ∀k ∈ {2, . . . , q} ,
∫ tk

tk−1
bi(t)dt ≥ 0, that show that

∀t ≤ 0, b′i(t) ≥ 0;

• ∀t > di,∀i ∈ [1, n], b′i(t) = 0 since bi(t) = 0,

• ∀t ≤ ri,∀i ∈ [1, n], b′i(t) = 0 since bi(t) = 0,

• ∀i ∈ {1, . . . , n},

4

1. src(1) = 1, dest(1) = 1, S1 = 5, r1 = 0, d1 = 4

2. src(2) = 1, dest(2) = 2, S2 = 4, r2 = 2, d2 = 6

3. src(3) = 2, dest(3) = 1, S3 = 1, r3 = 0, d3 = 2

4. src(4) = 3, dest(4) = 2, S4 = 4, r4 = 0, d4 = 2

5. src(5) = 2, dest(5) = 1, S5 = 2, r5 = 5, d5 = 6

6. src(6) = 3, dest(6) = 2, S6 = 2, r6 = 2, d6 = 4

Cj = C ′
j′ = 2 with j = 1, 2, 3 et j′ = 1, 2

Figure 1: A simple schedule example.

5

Figure 2: Schedule with step functions.

∫∞
0

b′i(t)dt =
∫ tq

t1
b′i(t)dt

=
∑q

k=2

(∫ tk

tk−1
b′i(t)dt

)
=

∑q
k=2

(∫ tk

tk−1

R tk
tk−1

bi(s)ds

tk−tk−1
dt

)
=

∑q
k=2

(∫ tk

tk−1
bi(s)ds

)
=

∫ tq

t1
bi(s)ds

=
∫ +∞
0

bi(s)ds

Each request is as processed in the new schedule as in the original schedule.

• ∀i ∈ {1, . . . , n}, xi

∫ di

ri
b′i(t)dt = xiSi

According to the previous line, this property is true.

• Let t ≥ 0 and j ∈ {1, . . . , p}. If t ≥ tq, then ∀i ∈ {1, . . . , n}, b′i(t) = 0 and then
∑

S(j) b′i(t) ≤
Cj is true.
Let S(j) = {i ∈ {1, . . . , n}, src(i) = j}.
If t < tq, there exists k ∈ {2, . . . , q} such that tk−1 ≤ t < tk.

∑
S(j) b′i(t) =

∑
S(j)

1
tk−tk−1

∫ tk

tk−1
bi(s)ds = 1

tk−tk−1

∫ tk

tk−1

∑
S(j) bi(s)ds

≤ 1
tk−tk−1

∫ tk

tk−1
Cjds

≤ Cj .

• ∀j′ ∈ {1, . . . , p′},∀t ≥ 0,
∑

i∈{1,...,n},dest(i)=j′ b
′
i(t) ≤ C ′

j′ : we prove this property as we
proved the previous one.

6

Figure 3: Schedule with bi(t) ∈ {0, C}.

3.2 If all ingress and egress links have the same bandwidth, we can suppose
that at any time at most one request is scheduled in a link.

Now, we want to specialize the bi functions in another way: a bandwidth can only take two
different values, 0 or C. So, only one request can be sent in a given link, at a given time.

Lemma 2. Consider a platform with p ingress links and p′ egress links, of same capacity C. Consider an
unspecified schedule (bi, xi)1≤i≤n. Then there exists a schedule (b′i)1≤i≤n of same objective, such that, at
any time t and for every request i, bi(t) ∈ {0, C}.

Proof. Let us consider a schedule O = (bi, xi)1≤i≤n processing n requests (without loss of gen-
erality, we will assume that all requests are processed). Request i has a size Si = si

q , where
q = gcd1≤i≤n(Si).

First of all, we can suppose, without any loss of generality, that we have, for all i, bi is constant
over on [t1, t2[(t1 . So, we will work only on the interval [t1, t2[and we will suppose that Si =∫ t2

t1
bi(t)dt (cf. Figure 3.1).
We want to show that we can exhibit a schedule O′ = (bi, xi)1≤i≤n, such that, for all i, b′i(t) is

in {0, C} and having the same objective value as the original schedule O.
Let us consider the following weighted bipartite graph:

• the first set of vertices, V1 = {1, . . . , p}, represents the set of ingress links,

• the second one, V2 = {1, . . . , p′}, represents the set of egress links,

• E = {e1, . . . , en} is the set of edges, defined by ei = (src(i),dest(i)),

• a weight c : E → Z+ defined by c(ei) = si.

We know (Egerváry [22, vol. A chap. 20]) that we can find a family of matchings (M1, . . . ,MK)
in a time O(n2), such that the edge e is in c(e) distinct matchings. Moreover, we have K =

7

maxv∈V1∪V2c(δ(v)) (we recall that δ(v) = {ei = (u, u′) ∈ E, s.t. u′ = v}). In our case, we have

K = max

max1≤j≤p

∑
i,src(i)=j

si,max1≤j′≤p′

∑
i,dest(i)=j′

si

 .

With this family, we can define a schedule O′ by: ∀k,∀i, ∀t ∈ [t1 + (k − 1) 1
qC ; t1 + k 1

qC [,

b′i(t) =
{

C if ei ∈ Mk,
0 oherwise

We note t′2 = t1 + K 1
qC the end of O′.

This schedule is valid:

• constraints on capacity are respected, since at most one request is being sent in a link at any
given time,

• ∀i,
∫ t′2

t1
b′i(t)dt = C× 1

qC c(ei), since a request uses a bandwidth exactly equal to C during c(ei)
intervals of a length 1

qC . Since C × 1
qC c(ei) = si

q = Si, all requests are entirely processed;

• no request is sent before its release date;

• bandwidth are all non-negative;

Now, we show that deadlines are respected, i.e., t′2 ≤ t2 ⇔ t2− t1 ≥ K 1
qC (since K

qC = t′2− t1).
By definition of K, we have K = maxv∈V1∪V2c(δ(v)). Let j be the vertex (i.e., the egress or

ingress link) which realizes this maximum. If we consider any request i which is sent through
this link j, we have bi(t) = Si

t2−t1
(since bi is constant and

∫ t2
t1

bi(t)dt = Si) and
∑

i bi(t) ≤ C, we
have

∑
i Si

1
C ≤ t2 − t1. Since si = c(ei), we have (

∑
i c(ei)) 1

qC ≤ t2 − t1, which is exactly the
wanted result as, by definition, c(δ(v)) =

∑
i c(ei) = K.

3.3 Choice of requests to schedule

Lemma 3. Consider any platform and a given subset of n requests. Then we can determine, in polynomial
time in n, p, and p′ (where p is the number of ingress links and p′ the number of egress links), whether
there exists a schedule which can process all these requests. If such a schedule exists, we can find one in
polynomial time too.

Proof. Let {t1, . . . , tq} be equal to
⋃n

i=1{ri, di}, with 0 ≤ t1 < · · · < tq (we have q ≤ 2n). We
define t0 = 0 and tq+1 = +∞. By using Lemma 3.1, we know that if there exists a schedule which
completely processes these n requests, there exists a schedule such that every bandwidth function
is constant over [tk−1; tk[interval. We will exhibit a schedule which verifies this property.
Now we define:

• bi,1, . . . , bi,q the q different values of each bi function. We have bi(t) = bi,u for t ∈ [tu−1, tu[.

• α1, . . . , αq defined by αu = tu − tu−1.

• xi,1, . . . , xi,q defined by xi,u =
{

1 if ri ≤ tu−1 < tu ≤ di

0 else

• yi,1, . . . , yi,p defined by yi,j =
{

1 if src(i) = j
0 else

• y′i,1, . . . , y
′
i,p′ defined by y′i,j′ =

{
1 if dest(i) = j′

0 else

8

Now, we write with these new notations the constraints, which are satisfied by any valid sched-
ule:

• a request is processed or not: xi = 1 since all requests are processed,

• since the bi’s are step functions, they are integrable over a finite time,

• bandwidth functions have to be non-negative: ∀i,∀u, bi,u ≥ 0,

• we change the constraint "we cannot process a request after its deadline" by the constraint:
"any work done after the deadline will not be taken into account",

• we change the constraint "we cannot process a request before its arrival" by the constraint:
"any work done before the release date will not be taken into account",

• we cannot exceed the capacity of an ingress link: ∀u, ∀j,
∑n

i=1 yi,jbi,u ≤ Cj ,

• we cannot exceed the capacity of an egress link: ∀u, ∀j′,
∑n

i=1 y′i,j′bi,u ≤ C ′
j′ ,

• we cannot exceed the capacity of the central switch: ∀u,
∑n

i=1 bi,u ≤ Ctot,

• every chosen request has to be completely processed: ∀i,
∑q

u=1 xi,uαi,ubi,u = Si (we recall
that xi,uαi,u is constant).

So, we want to solve the following linear program:
∀i,
∑q

u=1 xi,uαi,ubi,u = Si

∀i,∀u, bi,u ≥ 0
∀u,
∑n

i=1 bi,u ≤ Ctot

∀u, ∀j,
∑n

i=1 yi,jbi,u ≤ Cj

∀u, ∀j′,
∑n

i=1 y′i,j′bi,u ≤ C ′
j′

which is a linear system with at most 2n2 variables and at most (1+2n+2+2p+2p′)n equations.
We know how to solve such a problem in a time

O
(
n7log (n + p + p′)

)
(with the Karmarkar’s algorithm [14]), since we are looking for a rational solution and not for
an integer solution. So, we know how to build a schedule using step functions if, and only if,
such a schedule exists. By using Lemma 3.1, we can say that we know how to build a schedule
processing the n requests if, and only if, such a schedule exists.

3.4 An upper bound on the optimal solution.

By using the previous result, we can deduce an upper bound on the number of processed requests
in an optimal solution, which will be useful to compare heuristics.

Lemma 4. Let us consider any platform and a set of n possible requests. Then we can find an upper bound
on the number of requests which can be integrally processed, in polynomial time in n, p and p′, by solving
a rational linear program.

Proof. We will use the same notations as in the previous lemma. Let xi be equal to 1 if the request
i is choosen, or equal to 0 in the other case. Now, we can write again the complete linear program:

max

(
n∑

i=1

xi

)
such; that

∀i, xi ∈ {0, 1}
∀i,
∑q

u=1 xi,uαi,ubi,u = xiSi

∀i, ∀u, bi,u ≥ 0
∀u,
∑n

i=1 bi,u ≤ Ctot

∀u, ∀j,
∑n

i=1 yi,jbi,u ≤ Cj

∀u, ∀j′,
∑n

i=1 y′i,j′bi,u ≤ C ′
j′

9

This is a semi-integral linear program, and if we relax the constraint ∀i, xi ∈ {0, 1} by the con-
straint ∀i, 0 ≤ xi ≤ 1, we obtain, in polynomial time, an upper bound of the result of the optimal
solution.

We will use this upper bound in Section 6 to assess the quality of our heuristics.

4 Complexity results

In this section, we study the difficulty of the scheduling problem by fixing or, on the contrary, by
relaxing, some parameters, in order to see why our problem is difficult, and which variants are
NP-complete or polynomial.

4.1 Off-line model

In this section, we assume that we know in advance when a request will be submitted and what
its characteristics will be. We are therefore using the off-line model.

4.1.1 Case where the switch has a total capacity Ctot ≤ Cj , C
′
j

Here, we suppose that the total switch capacity is inferior to the capacity of the links. This as-
sumption allows us to reuse many results on schedules for a single processor with preemption.
We consider the off-line model, i.e., when the problem is entirely known before the execution of
the algorithm.

Lemma 5. Consider a platform with a switch capacity inferior to the capacity of each ingress and egress
links. Then, the maximization of the number of completely processed requests (

∑
xi) or the maximization

of the profit (
∑

wixi) are identical to the maximization of the number of processed tasks on a single pro-
cessor, with preemption. Baptiste has found an O(n4) algorithm for 1|ri; pmtn|

∑
xi [5] and an O(n10)

one for 1|ri;Si = S; pmtn|
∑

xiwi [6]. Lawler has shown that the 1|ri; pmtn|
∑

xiwi case was pseudo-
polynomial [17].

Proof. We want to maximize
(∑n

i=1 xiwi

)
under the following constraints:

• ∀t ≥ 0,∀j ∈ {1, . . . , p},
∑

i,src(i)=j bi(t) ≤ Cj ,

• ∀t ≥ 0,∀j′ ∈ {1, . . . , p′},
∑

i,dest(i)=j′ bi(t) ≤ C ′
j′ ,

• ∀t ≥ 0,
∑n

i=1 bi(t) ≤ Ctot .

The third condition implies the previous two ones, since ∀j, {i, src(i) = j} ⊆ {1, . . . , n}, ∀j, {i, dest(i) =
j} ⊆ {1, . . . , n}, and Ctot ≤ Cj , C

′
j′ . Now, we show that we can transform this problem into a

classical task scheduling problem on one processor with preemption. We can suppose, without
any loss of generality, that Cj = C ′

j′ = Ctot. So, we can build (by following the method described
in Lemma 3.2) a schedule, such that we have ∀i, ∀t, bi(t) ∈ {0, Ctot}. At any time, there is at
most one request in the switch, so we have the problem of task scheduling on one processor (the
switch) with a speed of Ctot and with preemption.

4.1.2 Switch of unbounded capacity and homogeneous ingress and egress links

Here we remove the constraint of the limited bandwidth of the switch.

10

If all requests have same size, arrive at the same time and have the same deadline, the problem
is polynomial.

Lemma 6. Consider a platform with an infinite total capacity, and with links of the same capacity C. If
all requests have same size, same release date, and same deadline, then the maximization of the number of
integrally processed requests (

∑
xi) is a polynomial problem (in n), and there exists a O(n2) algorithm to

solve it.

Proof. First at all, we can suppose, without any loss of generality, that we have ri = 0 and di = 1,
for all i. We want to maximize the number of scheduled requests

∑
i = 1nxi. By using Lemma

3.1, we assume that the bandwidth allocated to any scheduled request is equal to S
ri−di

= S.
The difference between two requests can only be the ingress link, or the egress link, and we

can sort all submitted requests into p′p differents species. Then we can solve the problem by
choosing how many requests from each species will be scheduled. We introduce the following
definitions:

• yj,j′ is the number of submitted requests coming from the ingress link j to the egress link
j′,

• xj,j′ is the number of scheduled requests coming from the ingress link j to the egress link
j′.

So, we want to maximize
∑

1≤j≤p,1≤j′≤p′ xj,j′ under the following constraints:

• S
∑

1≤j≤p,1≤j′≤p′ xj,j′ ≤ Ctot,

• ∀j ∈ {1, . . . , p}, S
∑

1≤j′≤p′ xj,j′ ≤ Cj ,

• ∀j′ ∈ {1, . . . , p′}, S
∑

1≤j≤p xj,j′ ≤ C ′
j′ ,

• ∀j,∀j′, xj,j′ ≤ yj,j′ .

So, we have to solve a linear program with p′p variables and p′p + p + p′ + 1 constraints.
We know how to do that in polynomial time ([14]). If all requests have same size, same release
date, same weight and same deadline, we can maximize the number of scheduled requests in
polynomial time.

If all requests have same release date and deadline, then the problem is NP-complete, even
with one ingress link and one egress link.

Lemma 7 (Ctot = +∞, Cj = C ′
j = C, Si, wi is NP-complete). Consider a platform with an infinite

capacity, and with links with the same capacity C. If the n requests have unspecified sizes and weights, the
decision problem associated to the problem of maximization of the weighted number of processed requests
(
∑

wixi) is NP-complete, even when there are only one ingress link and one egress link, and when all
requests have the same release date and the same deadline.

Proof. We will use a simple reduction from the well-known NP-complete Knapsack problem.
We consider a single ingress link and a single egress link, such that C ′

1 = C1 = 1, and n
requests, with sizes Si ≤ 1, dates ri = 0, di = 1 and weights wi ≥ 0. So, we want to maximize∑n

i=1 xiwi, such that ∀t ∈ [0, 1],
∑n

i=1 bi(t) ≤ 1.
By using Lemma 3.1, we know that we can take bi(t) constant and equal to Si on [0, 1] if xi = 1,

and bi(t) = 0 otherwise. So, our problem is to maximize
∑n

i=1 xiwi with
∑n

i=1 xiSi ≤ 1. This new
problem is exactly the Knapsack problem, which is known to be NP-complete [11].

The previous two complexity results show that request sizes and weights are both responsible
for the NP-completeness of our problem.

11

If all requests have same release date, same deadline, and same weight, then the problem
remains NP-complete.

Lemma 8. Consider a platform with an infinite total capacity and with links of the same capacity C, and
a set of requests of unspecified sizes, but with the same release date ri = 0 and the same deadline di = 1.
Then the decision problem associated to the maximization problem of the number of processed requests
(
∑

xi) is NP-complete.

Proof. We will show that this problem isNP-complete, by reducing it to theNP-complete 2− PARTITION− EQ
problem. [15]. The decision problem associated to our problem is "If we have n requests, can we
scheduled at least K of them ?". We know that our problem is inNP , since we can check in poly-
nomial time whether there exists a schedule for a given set of requests (cf. Lemma 3.3). Now, let
us consider an instance A of n integers (a1, . . . , an) of the 2− PARTITION− EQ problem, with
n ≥ 5 and ∀i ∈ {1, . . . , n}, ai ≤

(∑n
i=1 ai

)
/2. We know that the decision problem "can we find a

subset I of {1, . . . , n} with n
2 elements, such that

∑
i∈I ai =

(∑n
i=1 ai

)
/2" is NP-complete.

First, let us define some new notations:

• C =
∑n

i=1 ai

• ∀i ∈ {1, . . . , n} , a′i = ai + C

• C ′ = 1
2

(∑n
i=1 a′i

)
= 1

2 (n + 1)C

• ∀i ∈ {1, . . . , n} , λi = a′i
4

• ∀i ∈ {1, . . . , n} , ki = b 4C′

a′i
− 5c

• T =
∑n

i=1 ki

From the instance A, we build an instance B of our problem as follows (see Fig. 4):

• n + 2 ingress links, 1, . . . , n + 2, each with a capacity equal to C ′,

• n egress links, 1, . . . , n, each with the same capacity C ′,

• a set A of n requests, 1, . . . , n with ∀i ∈ {1, . . . , n}, Si = a′i, src(i) = 1,dest(i) = i

• a set B of n requests, n+1, . . . , 2n with ∀i ∈ {1, . . . , n}, Sn+i = a′i, src(n+i) = 2,dest(n+i) =
i

• a set C of T requests such that, ∀i ∈ {1, . . . , n}, we have ki identical requests (i, j) (1 ≤ j ≤
ki), with Si,j = λi, src(i, j) = i + 2,dest(i, j) = i.

Using ai + C instead of ai ensures that ki > 2:

ki >
4C ′

a′i
− 6 =

2(n + 1)C
ai + C

− 6.

We have
n ≥ 5 ⇔ (n− 3) ≥ 2

and
ai ≤

C

2
⇔ C ≥ 2ai.

So, we have:
(n− 3)C ≥ 4ai ⇔ (n + 1)C ≥ 4(ai + C)

2(n + 1)C
ai + C

≥ 8.

12

C ′ = 1
2
(n + 1)C

n + 1

n liens sortants

(n + 2) liens entrants

C ′ = 1
2
(n + 1)C 1

ki requetes de taille λi

Figure 4: Platform used for the reduction from 2− PARTITION− EQ

Eventually, we have:

ki >
4C ′

a′i
− 6 =

2(n + 1)C
ai + C

− 6 ≥ 2

which is the desired result. Now, we show that we have a polynomial number (in n) of requests.
We have ki ≤ 4C′

a′i
− 4 ≤ 2 (n+1)C

ai+C ≤ 2 (n+1)C
C ≤ 2(n + 1). So, T =

∑n
i=1 ki ≤ 2n(n + 1), and

the total number of requests is inferior to 2n(n + 1) + 2n, then we can say that the instance B is
polynomial in n.

So, we have T + 2n requests, and we want to know if we can schedule at least K = T + n
ones. We will show that at most T + n requests can be scheduled, and that these T + n requests
can be scheduled only if the set I of the 2− PARTITION− EQ problem exists.

• At most T + n requests can be scheduled:
Let us consider the egress link i (1 ≤ i ≤ n), without taking into account the ingress links.
The different cases are:

– It accepts the requests i ∈ A and n+i ∈ B, and exactly ni of the ki requests (i, j)1≤j≤ki .
ni + 2 ≤ ki + 2 requests are scheduled, but we can show that ni < ki − 2 (we have
ki > 2). Indeed, the bandwdidth needed to schedule i, n+ i and at least ki−2 requests
is at least equal to 2a′i + (ki − 2)λi. By definition of ki and λi, we have:

2a′i + (ki − 2)λi = 2a′i +
(⌊

4C ′

a′i
− 5
⌋
− 2
)

a′i
4

> 2a′i +
(

4C ′

a′i
− 8
)

a′i
4

= 2a′i + C ′ − 2a′i

= C ′

So, no schedule can accept more than ki − 3 requests if it accepts both i ∈ A and
i + n ∈ B.

13

– It accepts a single request between i ∈ A and n + i ∈ B, and ni requests of the ki

requests (i, j). ni + 1 ≤ ki + 1 requests are scheduled, and we will show that we can
have ni = ki, since we have a′i + kiλi ≤ C ′. By definition of ki and λi, we have:

a′i + kiλi = a′i +
⌊

4C ′

a′i
− 5
⌋

a′i
4

< a′i +
(

4C ′

a′i
− 4
)

a′i
4

= C ′

An egress link can accept ki + 1 requests, with ki > 2.

– It only accepts ni of the ki requests (i, j). ni ≤ ki requests are scheduled.

So, the total number of scheduled requests is equal to α + 2β + γ, where α is the number of
egress links with a single request between i ∈ A and n + i ∈ B, β is the number of egress
links with both i ∈ A and n+i ∈ B, and γ is the number of the scheduled requests (i, j) ∈ C.

We have γ ≤ T (by definition), but we also have γ ≤ T − 3β (since ni < ki − 2 when a link
accepts both i and i + n), and we have α ≤ n. So, we have α + 2β + γ ≤ n + 2β + T − 3β =
n + T − β.

Then, α + 2β + γ = T + n implies α = n, β = 0, γ = T , i.e., each egress link has exactly one
of the two requests between i and n + i and all its requests (i, j).

• T + n requests are scheduled if, and only if, the set I (for the problem A) exists:

We have seen that the bound T + n can only be reached when on every egress link exactly
one request between i and i + n is scheduled. So, to reach this bound implies that for all
i ∈ {1, . . . , n}, i or n + i has to be scheduled. Let I be the set of scheduled requests from the
ingress link 1.

We have the following result: we can schedule n + T requests if, and only if,
∑

i∈I a′i ≤ C ′

and
∑

i 6∈I a′i ≤ C ′. By using the definition of C ′, we then have the following equality:∑
i∈I

a′i =
∑
i 6∈I

a′i.

If |I| ≥ n
2 + 1, then

∑
i∈I a′i >

∑
i∈I C = |I| × C ≥

(
n
2 + 1

)
C = C ′. It cannot be true, since

it exceeds the bandwidth of an ingress link. By the same way, , we cannot have |I| ≤ n
2 − 1

(by using {1, . . . , n} − I), so, we have |I| = n
2 . The we can write:∑

i∈I

a′i =
∑
i 6∈I

a′i

⇔

(∑
i∈I

ai

)
+

n

2
C =

∑
i 6∈I

ai

+
n

2
C

⇔
∑
i∈I

ai =
∑
i 6∈I

ai,

This problem is exactly the instance A of the 2− PARTITION− EQ problem. To conclude,
we can say, that our problem is NP-complete.

We do not know the complexity of the case where all requests have the same size and the same
weight, but different release dates and deadlines. However, we conjecture that it isNP-complete
too.

14

4.2 Online model

Here we suppose that the scheduler does not know in advance the characteristics of the requests,
which are submitted during the execution of the scheduling algorithm. So, the scheduler has to
choose requests and to allocate the correct bandwidths without knowing the future, and it cannot
change already taken decisions. As can be expected, this new framework is more challenging,
and decreases the quality of potential algorithms. If we note

∑
i≤n x∗i the number of processed

requests by an optimal algorithm, and
∑

i≤n xi the number of processed requests by an algorithm
A, we recall that A performs a competivity factor of ρ (we say that A is ρ-competitive) if, and only
if, for every instance of the problem we have the following inequality:∑

i≤n

x∗i ≤ ρ
∑
i≤n

xi

Lemma 9. Consider a platform with an infinite capacity, and with links with the same capacity C.

• If all requests have same size and same weight, no online algorithm has a competivity factor strictly
better than 2.

• If all requests have same weight, no online algorithm has a competivity factor strictly better than 3.

• In the general case (if weights and sizes are unspecified), no online algorithm has constant competiv-
ity factor.

First and foremost, we prove the case where all requests have the same size and the same
weight.

Proof. Let us consider 2 ingress links and 2 egress links. Then we submit to the algorithm the
request 1 (S1 = 1, r1 = 0, d1 = 1, src(1) = 1, dest(1) = 1).

We have two cases to consider:

• 1 is accepted : At t = 1− ε, we submit a second request 2 (S2 = 1, r2 = 1− 2ε, d2 = 2− 2ε,
src(2) = 1, dest(2) = 2). Once again, we have to consider two cases:

– request 2 is accepted : request 1 is interrupted. Then we submit 4 (S4 = 1, r4 = 1,
d4 = 2, src(4) = 2, dest(4) = 2)

* 4 is accepted and request 2 is interrupted. Both 1 and 4 could have been processed,
but only 4 is processed.

* 4 is rejected. Both 1 and 4 could have been processed, but only 2 is processed.

– request 2 is rejected and we submit 3 (S3 = 1, r3 = 1 − ε, d3 = 2 − ε, src(3) = 2,
dest(3) = 1)

* 3 is accepted and 1 is interrupted. Both 2 and 3 could have been processed, but
only 3 is processed.

* 3 is rejected. Both 2 and 3 could have been processed, but only 1 is processed.

• request request 1 is rejected, and we stop here the experiment. 1 could have been processed,
and no request is processed.

In all cases, only a single request is processed, instead of 2. So, no online algorithm has a com-
petivity factor strictly better than 2.

Now, we will show that no online algorithm has a competivity factor strictly better thant 3
when requests can have different sizes.

Proof. Consider the requests defined in the following table:

15

i Si ri di src(i) dest(i)
1 3 0 3 1 1
2 1 1− 8ε 2− 8ε 2 1
4 1 2− 8ε 3− 8ε 2 1
5 1 3− 8ε 4− 8ε 2 1
6 1 2− 5ε 3− 5ε 2 2
7 1 2 3 3 1
8 1 3− 8ε 4− 8ε 3 2
9 1− 3ε 1− 7ε 2− 10ε 2 3
10 1 2− 10ε 3− 10ε 2 3
11 1 1− 5ε 2− 5ε 2 2
12 1 2− 10ε 3− 10ε 3 2
13 1 1 2 3 3

We consider that request 1 was accepted (otherwise we stop here the experiment) and we submit
2.

• 2 is rejected, we submit 4

– 4 is rejected, we submit 5

* 5 is rejected : only 1 is processed, instead of 2, 4 and 5,

* 5 is accepted : only 5 is processed, instead of 2, 4 and 5,

– 4 is accepted, 1 is stopped and we submit 6

* 6 is rejected, we submit 7
· 7 is rejected : only 4 is processed, instead of 2, 6 and 7,
· 7 is accepted : only 7 is processed, instead of 2, 6 and 7.

* 6 is accepted, we submit 8
· 8 is rejected : only 6 is processed, instead of 2, 4 and 8,
· 8 is accepted : only 8 is processed, instead of 2, 4 and 8,

• 2 is accepted, 1 is stopped, we submit 9

– 9 is rejected, we submit 10

* 10 is rejected : only 2 is processed, instead of 1, 9 and 10,

* 10 is accepted : only 10 is processed, instead of 1, 9 and 10,

– 9 is accepted, we submit 11

* 11 is rejected, we submit 13
· 13 is rejected : only 9 is processed, instead of 1, 13 and 11,
· 13 is accepted : only 13 is processed, instead of 1, 13 and 11,

* 11 is accepted, we submit 12
· 12 is rejected : only 11 is processed, instead of 12, 9 and 1,
· 12 is accepted : only 12 is processed, instead of 12, 9 and 1.

In all cases, any online algorithm can at most process only one request, when three requests could
have been processed by an optimal off-line algorithm. So, the competivity factor of any online
algorithm cannot be strictly better than 3.

Now, we will show that there exists no online algorithm with a constant competivity factor ,
when requests can have different sizes and weights.

Proof. Let us consider any online algorithm A, with a competivity factor better than an integer f .
First, we submit request 1 (S1 = f2, w1 = f2, r1 = 0, d1 = f2).

16

• request 1 is accepted. Then we successively submit f2 requests 2, . . . , f2 + 1 defined by:
(Si = 1, wi = f , ri = i − 2, d1 = i − 1). If A accepts at least one of these requests, we stop
submitting requests, so it cannot reach a gain better than f . So, there are two different cases:

– A has not accepted any request among 2, . . . , f2 + 1, so it reaches a gain equal to f2

(with the request 1) instead of f3 (by processing the f2 requests with a weight f).

– A has accepted at least one (and then exactly one) request among 2, . . . , f2 + 1, so, it
has a gain equal to f instead of f2 (with the first request).

• request 1 is rejected. A has a gain equal to 0 instead of f2.

In all cases, the online algorithm cannot reach a competivity factor better than f , for any given f .
So, no online algorithm has a constant competivity factor.

5 Study of several algorithms

5.1 Off-line algorithms

5.1.1 Study of Earliest Deadline First in use without priorities.

With underloaded system, only one ingress link or one egress link. We recall that a under-
loaded system is a system in which all proposed requests can be correctly processed. In the
particular case in which we have only one ingress link or one egress link (p = 1 or p′ = 1), the
Earliest Deadline First algorithm (EDF) is optimal [13]. EDF is less expensive than the approach
based on a linear program.

EDF is not an optimal algorithm for an underloaded system with at least 2 ingress links and 2
egress links. In other words, we show that this classical algorithm is not even an approximation
algorithm in this case, thereby exhibiting the combinatorial complexity induced by the many
links..

Consider any ε > 0. We can build an instance, such that
∑

i xi ≤ ε
∑

i x∗i , where (x∗i)1≤i≤b is
an optimal solution.

Indeed, since we have limn→∞
2

2+n = 0, we can find a n such that 2
2+n ≤ ε. Then we define

the following instance:

i Si ri di src(i) dest(i)
1 2n n 3n 2 2
2 n 0 2n 1 1
3 1 0 3n + 1/2 2 1
...

...
...

...
...

...
n + 2 1 0 3n + 1/2 2 1

EDF will begin to schedule the request 2 from t = 0 to t = n, and then the request 1 from t = n
to t = 3n. So, the remaining n requests are not processed. On the contrary, an optimal algorithm
will begin by processing the n requests 3, . . . , n + 2 from t = 0 to t = n then it will schedule the
requests 2 and 1 in parallel from t = n. EDF will process only 2 requests over the n + 2 available
ones, which can all be scheduled, so it has an approximation factor worse than 2

n+2 ≤ ε.

5.1.2 A min(p, p′)-approximation if Cj = C ′
j′ = C, Ctot = +∞, wi = 1, and ri, di, Si are unspec-

ified

Let R =
∑n

i=1 x∗i the optimal number of requests which can be completely processed.
Now, we only consider a single ingress link j. Since all egress links have the same capacity

as the single ingress link, we can simplify the constraints of a valid schedule, and we can only

17

keep the constraint on the capacity of the ingress link. We know that we can transform any
valid schedule into a schedule which uses bandwithes equal to 0 or C (i.e., ∀i, ∀t, bi(t) ∈ {0, C},
see section 3.2). This problem then is exactly the same problem of scheduling tasks on a single
processor. So, we note Rj the total number of requests which can be processed in this problem.
We know that this problem is polynomial, since a O(n4) algorithm exists [5].
Of course, we have R ≤

∑p
j=1 Rj , and then R ≤ p×max1≤j≤p(Rj). If we decide to only process

the max1≤j≤pRj requests (by only processing the requests coming from a link which realizes this
maximum), we have a p-approximation of the original problem.

With the same idea, but using the egress links and not the ingress links, we can have a
min(p, p′)-approximation.

5.1.3 Greedy algorithms

Greedy algorithms are very natural for our problem. We build three algorithms using different
criteria.

1. We sort all the requests by increasing Si

di−ri
(this formula corresponds to the minimal aver-

age allocated bandwidth neeeded to process the request) . If the request i can be processed
with all the already chosen requests (among the i − 1 previous ones) - we can check this
in polynomial time according to the lemma 3.3 -, e add it to the set of processed requests,
otherwise we reject it.

2. We sort all requests by increasing size Si. Then we proceed like in the previous algorithm
for scheduling the requests.

3. We try to process all the requests, and as long as it is not possible, we remove the request
which "obstructs" the largest number of other requests. This notion of obstruction can be
more formally defined by "two differents requests obstruct each other if their respective
intervals [ri; di[intersect each other, and if they have at least one common link (ingress, or
egress link)". Like in previous greedy algorithms, we use a linear program to determine if
we can process the set of chosen requests.

5.1.4 Linear programs

We know that the optimal solution could be computed by a semi-integral linear program, but the
computation time of such a linear program is very large. We can use a rational relaxation of the
integral constraint (on the xi variables) in order to have an approximated solution. If xi is the
integer variable (equal either to 0 or 1), indicating whether we have to process or not the request
i, then x∗i will be a rational variable between 0 and 1.

• "Naive" approximation. A very common method to approximate a linear program is to round
the rational values to the nearest integer: if x∗i < 1/2, we let xi = 0, otherwise we let xi = 1.
Nonetheless, after having chosen a first set of requests, we have to check whether this set is
feasible, otherwise we have to remove some requests as long as the chosen set of requests
is not correct.

• "Naive" approximation, and greedy completion. The idea is only to add a greedy step (by
example by sorting remaining requests in increasing Si/(ri − di) order), to try to add some
rejected requests.

• Randomized linear program. This idea is taken from Coudert and Rivano [10], and consists
in an n step process. In each step, a variable xi is randomly chosen, and set to 0 with a
probability x∗i , and otherwise to 1. The following step allows to check whether the set of
chosen requests is always feasible; if not, we have to set the last chosen variable to 0.

18

5.2 Online algorithms

5.2.1 FCFS

The First Come, First Served algorithm (FCFS) is a very simple algorithm, easy to implement, and
which can have quite good results. One of its good points is that it can work as well in an off-line
context as in an online context. In our problem, requests are sorted by increasing release date
(ri), and the request i is scheduled if we can complete it before its deadline (while completing the
previous scheduled requests), and we allocate to it the maximum available bandwidth.

5.2.2 Load balancing

In this method, we have to keep a list of ready requests (i.e., whose release date is anterior to the
current time, and whose deadline is such that we can still completely process it). When a request
is released or finishes, we choose the requests which will be scheduled in the different links. We
assign a priority to the requests: a request will be more important if it does not increase too much
the load of its links, or if it was already begun (to increase the number of completely processed
requests). The main drawback of this online method is that it can interrupt some already started
requests.

6 Experiments

The different heuristics (described above) were compared by simulations. The simulated plat-
form has 10 ingress links and 10 egress links, all with a capacity of 1GB/s. The used requests have
a randomly chosen size, between 100GB and 1TB. Their starting time was Poisson distributed, the
parameter of this Poisson distribution is the average arrival time of the requests (between 0.1 and
5 seconds). The value of the parameter varies to obtain heavy loaded scenarios and less loaded
cases. The average bandwidth needed to send requests are between 10MB/s and 1GB/s, so we
can fix the corresponding deadlines. The simulation was coded in C++, and an external library,
LP_solve [2], was used to solve the different linear programs used by the algorithms.

6.1 Increasing the speed of algorithms

As said before, many heuristics are based on the use of linear programs. The size of these linear
programs quickly increases with the number of chosen requests (O(n2) variables and constraints).
So, we cannot think to use these heuristics with a large number of requests. By example, with
only 200 requests, one computation was not finished after 60 hours. To allow tests with a large
number of requests, two simplifications were implemented:

• Limitation of the number of bandwidth variations in the linear programming problems .

We have already seen in Section 3.3 that if we have selected n requests, and if only we allow
each bandwidth function bi to change 2n times, we can solve exactly the problem. In order
to speed up the algorithm, we will not allow anymore such a large number of variations.
We arbitrarily fix this number to be quite small (for example 10 or 20, instead of 2n). So the
linear program becomes smaller, and then the computation is by far quicker.

Of course, we cannot expect to always obtain the best solution anymore, so we have to
assess the impact of this simplification on the quality of the produced solutions (cf. Fig. 6).

• Temporal slicing of the original problem into small successive sub-problems.

The previous method has, as main advantage, the property that it does not decrease too
much the quality of the results. However, with this method, the number of variables in
linear programs can still become really too large. So, some further optimization is needed.
A naive idea is to cut the large interval [min(ri);max(di)[in k small intervals [tj , tj+1[. If a
request i can be processed in more than one interval, we arbitrarily decide to force that it is

19

Figure 5: A platform example, with several requests.

Figure 6: The same example, with nb_var = 4.

20

Figure 7: The same example, after temporal cutting

executed in a single interval j. Therefore, we chose ri = max(tj , ri) and di = min(tj+1, di);
So, we force the request i to be completely processed during this interval j (cf. figure 7).

This method still suffers from a drawback: the number of requests in an interval is not
constant. To ensure that the computation time will be small enough, it is smarter to use
different sizes for the k intervals, but to assign the same number of requests to each interval.
So, we have k small linear programs with an almost constant size.

The final problem has stronger constraints, so the number of processed requests will de-
crease. However,the complexity will be linear in the number of requests for each algorithm.
The idea was originally to speed-up linear programs, but, of course, this approach can be
used with every heuristic.

So, we can now choose between a better result costing a large amount of computations, and a
worse result obtained in a shorter time.

6.2 Some results

In this section, tav will be the average time between the arrival of two successive requests, and it
allows to decide if the global system is heavily loaded or not. In the following experiments, tav

will take values between 0.1 and 5 seconds.

• Influence of n on the computation time

As we can see on the three figures 8, 9, 10, with n ≤ 200, computation time quickly increases,
at least with linear programs-based heuristics. Since theses heuristics have good results,
accelerating methods are very interesting if they don’t decrease too much the quality of the
heuristics.

These figures were created with a small set of instance (about 20 instances for each value of
n), but we can see that the computation time can become very large.

• Influence of the number nb_var of steps of bandwidth functions.

21

Figure 8: Influence of n on the computation time (tav = 0.1, nb_var = 0 : no approximation).

Figure 9: Influence of n on the computation time (tav = 0.1, nb_var = 10).

22

Figure 10: Influence of n on the computation time (tav = 0.1, nb_var = 40).

For some practical reasons, a null number of variations corresponds to the original linear
program, without any approximation. Excepting for this special value, the greater the value
of nb_var, the better approximation.

Figure 11 clearly shows that using this acceleration has a great benefit for the computation
time, especially for the randomised linear program.

The computation time is linear in nb_var, here between 10 and 80. We can also see from
Figure 12. So this idea is very interesting.

• Influence of the average load of the system

In order to compare the different heuristics, several instances of the problem were gen-
erated, with 12, 000 requests and average arrival times between 0.1 and 5 seconds. All
heuristics were not tested, since those which were too slow or not interesting enough (like
the p-approximation) were rejected.

Two different parameters were used for the temporal slicing: by blocks of 200 requests for
the three greedy heuristics using linear programs, and by blocks of 1, 000 requests for other
heuristics. From now, we call "optimal" solution the upper bound of the optimal solution,
computed by blocks of 1, 000 requests.

Figure 13 shows that the performance iis better if the system is less loaded (which is quite
normal). The two greedy algorithms have good results, with around 75% of the optimal
soution, if the system is heavily loaded. The three online heuristics (EDF, FCFS and Load
balancing) are very similar between each others, and they are around 50% of the optimal
solution. This is quite good for online algorithms.

When the system is less loaded, all heuristics perform well (more than 80% of the optimal
solution).

On Figure 14, we can see the computation times of these heuristics. It is easy to see the
main drawback of linear program-based algorithms, since the computation time is not pre-
dictible. Since all problems are with 12, 000 requests, one can think that computation time
will be almost constant, and it is clearly not the case. Due to the chosen implementation,
we can understand that the computation time is greater in case of heavily loaded system,
but it is not enough to explain this variation. In fact, this variation is explained by the fact
that LP_solve uses the simplex method, which can be exponential is the worst case (even if
it is polynomial in average).

23

Figure 11: Influence of the number of variations on the computation time (tav = 0.1).

Figure 12: Influence of the number of variations on the objective function (tav = 0.1).

24

Figure 13: Influence of the average arrival time tav on the scheduled requests number.

Figure 14: Computation time for several values of tav .

25

7 Conclusion

This work extend previous work on the optimization of network resource sharing in grids. The
major novelty is to allow bandwidth variations during the schedule of a request, thereby provid-
ing additional flexibility to the scheduler.

Different variants of the problem were studied, in order to assess the difficulty of the off-line
problem and of the online problem. Several algorithms were implemented, tested and compared
to an upper bound of the optimal solution.

Obviously, online heuristics have worse performance than off-line heuristics, because the on-
line problem is more difficult. But it could be interesting to see if we can enhance online heuristics
to derive better solutions. Moreover, the use of linear programs in the greedy heuristics slows
them down, and it would be useful to find another way of determining whether a subset of
requests is feasible or not.

In this paper, only a very simple platform (a switch) was studied. Further extensions should
deal with more complex platforms, in order to model actual networks more closely. While the
combinatorial nature of the scheduling problem would be even greater on such complex plat-
forms, we hope that efficient heuristics could still be introduced and evaluated.

References

[1] The grid 5000 project. http://www.grid5000.org .

[2] Mixed integer programming (mip) solver. http://groups.yahoo.com/group/lp_
solve/ .

[3] Optimizing Network Resource Sharing in Grids. IEEE Communications Society Press, 2005.

[4] F. Baille. Algorithmes d’approximation pour des problèmes d’ordonnancement bicritères : application
à un problème d’accès au réseau. PhD thesis, 2005.

[5] P. Baptiste. An o(n4) algorithm for preemptive scheduling of a single machine to minimize
the number of late jobs. Operations Research Letters, 24:175–180, 1999.

[6] P. Baptiste. Polynomial time algorithms for minimizing the weighted number of late jobs on
a single machine with equal processing times. Journal of Scheduling, 2:245–252, 1999.

[7] C. Bin-Bin and P. Vicat-Blanc Primet. A flexible bandwidth reservation framework for bulk
data transfers in grid networks. Research Report 2006-20, LIP, ENS Lyon, France, jun 2006.

[8] P. Brucker. Scheduling Algorithms. Springer-Verlag, 2004.

[9] Vasek Chvatal. Linear Programming. A Series of Books in the Mathematical Sciences. Free-
man, 1983. ChVA v 83:1 P-Ex.

[10] D. Coudert and H. Rivano. Lightpath assignment for multifibers WDM optical networks
with wavelength translators. In IEEE Globecom, volume 3, pages 2686–2690, Taiwan, Nov
2002. OPNT-01-5.

[11] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[13] J.R. Jackson. Scheduling a production line to minimize maximum tardiness. Research Re-
port 43, UCLA, University of California, 1955.

http://www.grid5000.org
http://groups.yahoo.com/group/lp_solve/
http://groups.yahoo.com/group/lp_solve/

26

[14] N. Karmarkar. A new polynomial-time algorithm for linear programming. In STOC ’84:
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311,
New York, NY, USA, 1984. ACM Press.

[15] R. M. Karp. Reducibility among combinatorial problems. Plenum Press, New York, 1972.

[16] T.W. Lam, T.W. Johnny Ngan, and K.K. To. Performance guarantee for edf under overload.
Journal of Algorithms, 2002.

[17] E.L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single ma-
chine to minimize the number of late jobs. Annals of Operations Research, 26:125–133, 1990.

[18] A. Legrand, A. Su, and F. Vivien. Minimizing the stretch when scheduling flows of biological
requests. Research Report LIP 2005-48, Laboratoire de l’informatique de parallélisme (LIP),
ENS de Lyon, France, oct 2005. Also available as INRIA research report 5724.

[19] L. Marchal, P. Primet, Y. Robert, and J. Zeng. Optimizing network resource sharing in grids.
Research Report 2005-10, LIP, ENS Lyon, France, mar 2005.

[20] L. Marchal, P. Vicat-Blanc Primet, Y. Robert, and J. Zeng. Scheduling network requests with
transmission window. Research Report 2005-32, LIP, ENS Lyon, France, jul 2005.

[21] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A realistic network/application model
for scheduling divisible loads on large-scale platforms. Research Report 2004-21, LIP, ENS
Lyon, France, apr 2004. Also available as INRIA Research Report RR-5197.

[22] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algorithms and
Combinatorics. Springer-Verlag, 2003.

	1 Introduction
	2 Model and problem definition
	3 Some problem properties
	3.1 We can use only step functions for the bandwidth allocation functions.
	3.2 If all ingress and egress links have the same bandwidth, we can suppose that at any time at most one request is scheduled in a link.
	3.3 Choice of requests to schedule
	3.4 An upper bound on the optimal solution.

	4 Complexity results
	4.1 Off-line model
	4.1.1 Case where the switch has a total capacity Ctot Cj, C'j
	4.1.2 Switch of unbounded capacity and homogeneous ingress and egress links

	4.2 Online model

	5 Study of several algorithms
	5.1 Off-line algorithms
	5.1.1 Study of Earliest Deadline First in use without priorities.
	5.1.2 A min(p,p')-approximation if Cj=C'j'=C, Ctot=+, wi=1, and ri,di,Si are unspecified
	5.1.3 Greedy algorithms
	5.1.4 Linear programs

	5.2 Online algorithms
	5.2.1 FCFS
	5.2.2 Load balancing

	6 Experiments
	6.1 Increasing the speed of algorithms
	6.2 Some results

	7 Conclusion
	References

