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Abstract
We obtain optimal lower bounds on the nonadaptive probabilistic query com-
plexity of a class of problems defined by a rather weak symmetry condition. In
fact, for each problem in this class, given a number T of queries we compute
exactly the performance (i.e., the probability of success on the worst instance)
of the best nonadaptive probabilistic algorithm that makes T queries. We show
that this optimal performance is given by a minimax formula involving certain
probability distributions. Moreover, we identify two classes of problems for
which adaptivity does not help.
We illustrate these results on a few natural examples, including unordered
search, Simon’s problem, distinguishing one-to-one functions from two-to-one
functions, and hidden translation. For these last three examples (which are of
particular interest in quantum computing), the recent theorems of Aaronson,
of Laplante and Magniez, and of Bar-Yossef, Kumar and Sivakumar on the
probabilistic complexity of black-box problems do not yield any nonconstant
lower bound.

Keywords: probabilistic query complexity, lower bounds, symmetry.

Résumé
Nous dérivons des bornes inférieures optimales sur la complexité en requête
des algorithmes probabilistes non adaptatifs pour une classe de problèmes dé-
finie par une condition de symétrie assez faible. En réalité, pour chaque pro-
blème de cette classe, nous calculons exactement la performance optimale d’un
algorithme non adaptatif de complexité donnée T . Nous montrons que cette
performance optimale est donnée par une formule min-max faisant intervenir
certaines distributions de probabilité. De plus, nous identifions deux classes de
problèmes pour lesquels l’adaptivité n’aide pas.
Nous illustrons ces résultats sur quelques exemples naturels, dont la recherche
dans un tableau non trié, le problème de Simon, le problème de la translation
cachée. Pour certains de ces exemples, qui sont d’un intérêt particulier en calcul
quantique, les théorèmes récents d’Aaronson, de Laplante et Magniez, et de
Bar-Yossef, Kumar and Sivakumar sur la complexité en requête probabiliste ne
donnent pas mieux qu’une borne inférieure constante.

Mots-clés: complexité en requête, algorithmes probabilistes, symétrie, bornes inférieures.



1 Introduction

There has been in the past few years a surge of interest for lower bounds in the black-box model,
motivated in particular by the study of quantum algorithms. Indeed, since quantum circuit lower
bounds seem very difficult to obtain, most of the known quantum lower bounds have been de-
rived in the black-box setting ([11], which shows how to simulate classically certain families of
constant-depth quantum circuits, may be considered an exception). Two methods proved partic-
ularly successful: the polynomial method and the adversary method. We will not give exhaustive
references here, and will just point out [7] and [2] for the polynomial method as well as [4] and [24]
for the adversary method. There was recently some unexpected feedback from quantum to proba-
bilistic complexity: inspired by quantum adversary lower bounds, Aaronson [1] and Laplante and
Magniez [19] obtained new lower bounds on probabilistic query complexity. Applications to sort-
ing, ordered search [19], local search [1] and Sperner problems [13] were given. Earlier probabilistic
query lower bounds were often obtained by ad-hoc arguments. As pointed out in [1], with a general
method one can more easily “focus on what is unique about a problem, and ignore what is common
among many problems”. Like their quantum ancestors, the lower bounds of [1, 19] are very general
(they apply to any black-box problem) and nevertheless give optimal results for some natural prob-
lems. They unfortunately suffer from the same drawback as their ancestors, namely, they cannot
yield any nonconstant lower bound for promise problems such that every positive instance is “far
away” from every negative instance. Note that the polynomial method does not suffer from this
drawback [2, 15, 16, 18].

The contribution of this paper is twofold. First, we identify a class of problems, dubbed “transi-
tively symmetric problems”, for which optimal lower bounds on the nonadaptive probabilistic query
complexity can be obtained. Our lower bound method is close in spirit to the adversary method.
More precisely, for each problem in this class, given a number T of queries we compute exactly
the performance (i.e., the probability of success on the worst instance) of the best nonadaptive
probabilistic algorithm that makes T queries. We show that this optimal performance is given by
a minimax formula involving certain probability distributions. A precise definition of the class of
transitively symmetric problems is given at the beginning of section 3. The idea is that the auto-
morphism group of the problem must act transitively on the set of positive instances as well as on
the set of negative instances. The elements of the automorphism group act by permutations on the
domain of the black-box function and by permutations on its range. For instance, when arbitrary
permutations on the domain but no permutation of the range (except the identity) are allowed the
usual notion of symmetric function is recovered. A lower bound for approximating such functions
can be found in [6]. By contrast, in some of the examples studied in section 3, permutations on
the domain come from a strict subgroup of the symmetric group but arbitrary permutations of
function values are allowed. According to [6], “an important open problem is to find tight lower
bounds for the query complexity of non-symmetric functions”. In this paper we make a step in this
direction since we work with a weaker notion of symmetry than the usual one.

The restriction to nonadaptive algorithms is of course rather severe. Our second contribution
is the identification of two classes of problems for which adaptivity does not help. The first one is
the class of problems that are symmetric in the usual sense of this word, i.e., are invariant under
arbitrary permutations on the domain of the black-box. This observation was already implicit in [6].
The second class is the class of collision problems that are invariant under arbitrary permutations
on the range of the black-box.

We illustrate these result on several natural problems: search in an unordered list, distinguish-
ing 1-to-1 functions from 2-to-1 functions, Simon’s problem, and the hidden translation problem.
Namely, we show that adaptivity does not help for any of these problems, and we give optimal lower
bounds on their probabilistic query complexity. The first two problems are symmetric in the usual
sense, but the last three are not. The results of [1] and [19] yield a nonconstant lower bound only
for the first problem. In the quantum setting, no nonconstant lower bound is known for the hidden
translation problem. Note that symmetry considerations are essential in recent applications of the
polynomial method [2, 15, 16, 18]. Our paper may be seen as a systematic attempt to incorporate
such considerations into the probabilistic adversary method. Symmetry considerations also play
an important role in a recent quantum version of the adversary method [3].
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Organization of the paper. The probabilistic query model is defined in section 2. Transi-
tively symmetric problems are defined at the beginning of section 3, and their probabilistic query
complexity is computed in Theorem 1. We explain in section 4 why the restriction to nonadaptive
algorithms in Theorem 1 is essential, and we present the two classes of problems for which adap-
tivity does not help. Several examples are discussed in section 5. Finally, the relations between
Theorem 1, the variation distance and the results of [6] are discussed in section 6. In particular,
we show that the methods of [6], based on the block sensitivity and on the Hellinger distance, do
not yield any nonconstant lower bound on a problem which is as symmetric as one might wish:
the 1-to-1 versus 2-to-1 problem. These methods also do not yield any nonconstant lower bound
for Simon’s problem and Hidden Translation, which are subproblems of the 1-to-1 versus 2-to-1
problem.

2 The probabilistic query model

We define black-box problems to be partial functions P from [M ][N ] to [L], where N , M and L are
positive integers and [n] stands for {0; 1; . . . ; n − 1}. In the sequel L = 2 and we call X the set of
function f ∈ [M ][N ] such that P(f) = 1 and Y the set of function g ∈ [M ][N ] such that P(g) = 0.

Next we define our model of a probabilistic algorithm.
Such an algorithm is defined by the following data: a probability distribution on the space

Ω = {0, 1}t of internal random bits, a function h1 from Ω to [N ], h2 from Ω × [M ] to [N ], ..., hT

from Ω × [M ]T−1 to [N ] and finally a function O from Ω [M ]T to {0, 1}. By definition, T is the
query complexity of A. On a black box function f , the algorithm works as follows:

• Choose randomly ω ∈ Ω.
• Compute i1 = h1(ω); query i1 and set j1 = f(i1).
• Compute i2 = h2(ω, j1); query i2 and set j2 = f(i2).
• ...
• Compute is = hs(ω, j1, . . . , js−1); query is and set js =

f(is).
• Output O(ω, j1, . . . , js).

As there is clearly no need for an algorithm to perform the same query twice, we will always
assume, unless explicitly stated otherwise, that the queries are distinct. Formally, this means that
we assume hk (ω, j1, . . . , jk−1) is never equal to h1(ω), h2 (ω, j1), . . . or hk−1 (ω, j1, . . . , jk−2).

An algorithm A solving P queries a black-box function to decide whether it belongs to X or
to Y . The algorithm succeeds on a black-box f ∈ X if it decides that f ∈ X , that is, if its output
is equal to 1. Similarly, the algorithm succeeds on a black box g ∈ Y if it decides that g ∈ Y ,
that is, if its output is equal to 0. If A is a probabilistic algorithm its success probability ε is its
worst case success probability, that is the minimum over all f ∈ X ∪ Y of the success probability
of A with black-box f . By contrast, the average success probability of an algorithm is relative to
a given probability distribution on the set X ∪ Y .

We say that an algorithm A is nonadaptive if the functions h2,. . . ,hs do not depend on j1, . . . , js.
A nonadaptive algorithm can thus be informally described in a simpler way: first choose the queries
to be made, then perform them, at last decide to accept or reject the black-box based on the answers
to the queries and on the values of your random bits.

Let us look at an example: the unordered search problem Psearch. Let N be an integer and
M = 2. The set X only contains the constant zero function z. Let fi be the function such that
fi(i) = 1 and fi(j) = 0 if j �= i. We set Y = {fi|i ∈ [N ]}. Consider the following simple-minded
algorithm: choose i ∈ [N ] uniformly at random, query i and set j = f(i). Decide that f ∈ X
if j = 0 and that f ∈ Y if j = 1. The query complexity of this algorithm is 1. Its success
probability for the function z ∈ X is 1 and for a function f ∈ Y is 1/N , so its success probability
is 1/N . We can do better with another 1-query probabilistic algorithm: choose i ∈ [N ] uniformly
at random, query i and set j = f(i). With probability (N − 1)/(2N − 1) decide that f ∈ Y ;
with probability N/(2N − 1) decide that f ∈ X if j = 0 and that f ∈ Y if j = 1. The success
probability for the function z ∈ X is N/(2N − 1). The success probability for a function f ∈ Y is

2



(N − 1)/(2N − 1)+ 1/(2N − 1), that is N/(2N − 1). So the success probability of our algorithm is
N/(2N − 1), which is much better than 1/N . Can we do better? What happens if we allow more
queries? We will be able to answer these questions thanks to the results of sections 3 and 4.

3 Nonadaptive query complexity of transitively symmetric
problems

3.1 Statement of the Theorem

As explained in the introduction, our theorem applies to black-box problem which are transitively
symmetric. Here is a precise definition. Let SN and SM be the permutations group of respectively
[N ] and [M ]. We consider the group SN × SM endowed with the product (σ′, τ ′)(σ, τ) = (σ′ ◦
σ, τ ′ ◦ τ).

Definition 1 An automorphism of a black-box problem P is an element (σ, τ) of SN ×SM under
which P is invariant, i.e.

(i) For every f ∈ X, τ ◦ f ◦ σ−1 ∈ X.

(ii) For every g ∈ Y , τ ◦ g ◦ σ−1 ∈ Y .

The automorphisms of P form a subgroup of SN SM , which will be noted Aut (P).

Definition 2 A subgroup G of SN × SM acts transitively on a black-box problem P if:

(i) G ≤ Aut(P).

(ii) For every (f, g) ∈ X2 ∪ Y 2 there exists (σ, τ) ∈ G such that g = τ ◦ f ◦ σ−1.

We say that a black-box problem P is transitively symmetric if Aut (P) acts transitively on P.

For example, SN × {Id} acts transitively on Psearch. This fact was used in the design of the
two algorithms of section 2 since we chose i ∈ [N ] uniformly at random.

Let P be a black-box problem. Let I be a list of queries and B a set of possible answers. If the
length of I is T then B is a subset of [M ]T . We define PX

I (B) as the proportion of functions f in
X satisfying the condition f(I) ∈ B. Likewise, we define PY

I (B) to be the proportion of functions
g in Y satisfying the condition g(I) ∈ B. We can now state our main theorem.

Theorem 1 Let P be a transitively symmetric black-box problem. The success probability of the
best nonadaptive algorithm for P of query complexity T is equal to:

γ = min
0≤p≤1

max
I∈[N ]T ,B⊆[M ]T

pPX
I (B) + (1 − p)(1 − PY

I (B)).

In this formula for γ the maximum is taken over all lists of queries of length T . In particular,
the same query may occur several times in I. It should come as no surprise that we can restrict our
attention to lists of T distinct queries I as soon as T ≤ N (which is of course the case of interest).
Indeed, suppose that query i ∈ [N ] appears at least twice in the list. We replace the second query
i by an element i′ ∈ [N ] which does not appear in the list I. This yields a new list I ′ of T queries.
Consider now a set B of list of answers J . We are looking for a set B′ of lists of answers such
that f(I) ∈ B iff f(I ′) ∈ B′, and thus PX

I (B) = PX
I′ (B′) and PY

I (B) = PY
I′ (B′). In a list J ∈ B,

consider the two answers j1 and j2 to the query i. If j1 �= j2 then no function f satisfies f(I) = J ,
and so suppose there is no such J in B. If j1 = j2 then replacing j2 by all elements of [M ] yields
a set B′J of M lists of answers such that f(I) = J iff f(I ′) ∈ B′J . We then have the expected
property for B′ = ∪J∈BB′J .

This remark will be used later in this section in the study of several specific examples.
The proof of Theorem 1 is naturally divided into an upper bound proof (that is, the presentation

of an efficient algorithm) and a lower bound proof. The upper bound is established in section 3.2
and the lower bound in section 3.3. Note that the lower bound is actually an upper bound on the
success probability γ, and vice versa.
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3.2 Proof of the Upper Bound

Given an algorithm A, we define the symmetrized algorithm Ã as follows: Ã simulates A on function
τfσ−1 where (σ, τ) is a random permutation uniformly distributed in Aut(P). For this purpose
replace query i on τfσ−1 by query σ−1(i) on f and then apply τ . More formally:

Definition 3 Let P be a problem, and A an algorithm for P. Ã, the symmetrization of A, is
defined as follows:

• Choose randomly ω ∈ Ω and (σ, τ) ∈ Aut(P).

• Compute i1 = h1(ω). Query σ−1(i1) and set j1 =
τfσ−1(i1).

• Compute i2 = h2(ω, j1). Query σ−1(i2) and set j2 =
τfσ−1(i2).

• ...

• Compute is = hs(ω, j1, . . . , js−1). Query σ−1(is) and set
js = τfσ−1(is).

• Output O(ω, j1, . . . , js).

Note that the success probability of Ã (as defined in section 2) is at least equal to that of A.

Proposition 1 Let P be a transitively symmetric black-box problem. There exists a nonadaptive
algorithm for P of query complexity T and success probability γ, where

γ = min
0≤p≤1

max
I∈[N ]T ,B⊆[M ]T

pPX
I (B) + (1 − p)(1 − PY

I (B))

is defined as in Theorem 1.

Proof. For every list of queries I and set of answers B we have a line ∆I,B of equation: e =
pPX

I (B) + (1 − p)(1 − PY
I (B)). So e = F (p) = maxI,A pPX

I (A) + (1 − p)(1 − PY
I (A)) is the

equation of a continuous function F , piecewise affine and convex (see figure 1). By definition, its
minimum value between 0 and 1 is γ. Lets η be a real number such that γ = F (η). We first
prove that γ ≥ 1/2. For B = ∅ and any I, the equation of ∆I,B is e = 1 − p. When B is equal
to the set of all possible answers, that is, B = [M ]T , the equation of ∆I,B is e = p. Thus F is
everywhere greater or equal to the function max(p, 1 − p), and its minimum γ greater or equal
to min0≤p≤1 max{p, 1 − p} = 1/2. A consequence of the inequality F (p) ≥ max(p, 1 − p) is that
there are two list of queries I1 and I2 and two set of answers B1 and B2 such that M = (η, γ) is
the intersection of ∆I1,B1 and ∆I2,B2 . We now compute the coordinates of this intersection point.
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Figure 2: the minimum of F as intersection of two lines

This is not strictly necessary for the proof, but it helps to understand what the algorithm really is.
If we use the notations PX

1 = PX
I1

(B1), PX
2 = PX

I2
(B2), PY

1 = PY
I1

(B1) and PY
2 = PY

I2
(B2) we have

γ = ηPX
1 + (1 − η)(1 − PY

1 ) = ηPX
2 + (1 − η)(1 − PY

2 )

so that:

η =
PY

1 − PY
2

PX
1 − PX

2 + PY
1 − PY

2

, γ =
PX

2 PY
1 − PX

1 PY
2 + PX

1 − PX
2

PX
1 − PX

2 + PY
1 − PY

2

.

Consider now the points N1(0, 1−PY
1 ), N2(0, 1−PY

2 ), R(0, γ), N ′1(1, PX
1 ), N ′2(1, P2) and R′(1, γ)

of Figure 2. There exists ζ between 0 and 1 such that R is the barycenter of N1 and N2 with
respective weights ζ and 1− ζ. The triangles (N1MN2) and (N ′1MN ′2) are homothetic, so that R′

is the barycenter of N ′1 and N ′2 with the same weights. It follows that

γ = ζPX
1 + (1 − ζ)PX

2 = ζ(1 − PY
1 ) + (1 − ζ)(1 − PY

2 ),

hence

ζ =
1 − PX

2 − PY
2

PX
1 − PX

2 + PY
1 − PY

2

.

We can now define our probabilistic algorithm. Let A be the following algorithm:
Run either subroutine (i) or subroutine (ii), the first one with probability ζ and the second one

with probability 1 − ζ:

(i) Query I1. If f (I1) ∈ B1 decide that f ∈ X ; otherwise, decide that f ∈ Y .

(ii) Query I2. If f (I2) ∈ B2 decide that f ∈ X ; otherwise, decide that f ∈ Y .

Now we consider Ã. Ã is clearly nonadaptive, as well as A. What is its success probability?
By definition, the probability of success for f ∈ X by querying I1 is PX

1 = PX
I1

(B1) and is
PX

2 = PX
I2

(B2) by querying I2. Thus the success probability for any black-box function in X is
ζPX

1 + (1− ζ)PX
2 = γ. Similarly the success probability for any function in Y is ζ(1− PY

1 ) + (1−
ζ)(1 − PY

2 ) = γ. We have shown that the success probability of the algorithm is equal to γ. �

3.3 Proof of the Lower Bound

We now turn our attention to the lower bound. Our proof is somewhat closer to the probabilistic
lower bound of [1] than to [19] since we use a version of Yao’s minimax principle (see Lemma 1
below).

Lemma 1 (Yao’s principle for nonadaptive algorithms) Assume that the success probabil-
ity of a nonadaptive algorithm A of query complexity T on any function f ∈ X ∪ Y is at least ε.
Fix some arbitrary probability distribution on X ∪ Y . Then there is a deterministic algorithm
of query complexity T with average success probability at least ε on this probability distribution.
Moreover, the queries I made by this algorithm are independent of the input black-box function
f ∈ X ∪ Y .
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Proof. Let p : X∪Y → [0; 1] be a probability distribution. Consider an array where column indices
are the functions of X ∪ Y . The width of a column indexed by f is its probability in X ∪ Y . Row
indices are of the form (ω, I), where I is a sequence of (distinct) queries of length T and ω ∈ Ω.
The height of the row (ω, I) is the probability that the random bits are equal to ω and A queries
I. The array is therefore of area 1. The cell at row (ω, I) and column f contains O(ω, f(I)) if
f ∈ X and 1 − O(ω, f(I)) if f ∈ Y — let us recall that O is the output function of the algorithm,
defined in section 2. In other words, the cell contains a 1 if the algorithm’s output is correct, and
a 0 otherwise.

The success probability of algorithm A is at least ε for every function in X ∪ Y and so in each
column the proportion (according to cell area) of 1’s is at least ε. The sum of the areas of all cells
in the array which contain a 1 must therefore be at least ε. Thus there must be a row (I, ω) such
that the proportion of 1 in the row is at least ε. Let B = {J |O(ω, J) = 1}. Our deterministic
algorithm is the following: make the queries I on f , decide that f ∈ X if f(I) ∈ B, and decide
that f ∈ Y otherwise. �

We can now complete the lower bound proof. Let A be a probabilistic algorithm for P, and ε
its success probability. For p ∈ [0, 1], consider the following distribution on the set X ∪ Y : f ∈ X
gets probability p/|X | and g ∈ Y gets probability (1 − p)/|Y |. By Lemma 1 there is a tuple of
queries I and a set of answers B (both depending on p) such that the deterministic algorithm
querying I and deciding that f ∈ X iff f(I) ∈ B has success probability at least ε. By definition of
the deterministic algorithm, its success probability is equal to pP X

I (B)+(1−p)(1−PY
I (B)). Thus

ε ≤ maxI,B pPX
I (B) + (1− p)(1−PY

I (B)). Since this inequality holds true for every p ∈ [0, 1], we
have

ε ≤ γ = min
0≤p≤1

max
I,B

pPX
I (B) + (1 − p)(1 − PY

I (B)).

4 When adaptivity does not help

In light of the results of section 3, it is natural to ask whether the restriction to nonadaptive
algorithms is a severe one. This seems to be a hard problem in general. For instance, a famous
conjecture, still open to this day, states that that any nontrivial monotone graph property is elusive
(i.e., any deterministic algorithm checking this property must in the worst case query all of the(
n
2

)
entries of the adjacency matrix of the input graph). This conjecture is attributed to Karp by

Rosenberg [21]. The nonadaptive deterministic query complexity of any nontrivial graph property
is equal to

(
n
2

)
. Karp’s conjecture therefore amounts to the statement that adaptivity does not

help for deterministically checking monotone graph properties.
A related (nonmonotone) example, the recognition of a scorpion graph, shows that strong

hypotheses are needed in Theorem 1. A graph G of order n is called a scorpion graph if it contains
a vertex b of degree n − 2, the only vertex not adjacent to b being of degree 1 and linked with a
vertex u, itself of degree 2. There exists a deterministic algorithm recognizing scorpion graphs of
size n, using at most 6n queries. For a proof of this result and a nice picture of what a scorpion
graph looks like, see [9], chapter VIII, theorem 1.5. Now, fix a minimal scorpion graph G on n
vertices, and an edge e of G. Let G′ be the graph obtained from G by deleting e. Let X be the set
of graphs on n vertices which are isomorphic to G, and Y the set of graphs which are isomorphic
to G′. The problem of distinguishing graphs of X from graphs of Y is transitively symmetric in
the sense of Definition 2. Its nonadaptive deterministic query complexity is equal to

(
n
2

)
, but as

explained above it can be solved by a deterministic algorithm of query complexity at most 6n (in
fact, there is a significantly simpler linear time algorithm for this promise problem than for the
total problem of scorpion graph recognition). Distinguishing star graphs from star graphs deprived
from an edge provides yet another example of a transitively symmetric problem of query complexity
O(n) but of nonadaptive query complexity

(
n
2

)
1. These observations show that adaptivity can help

for some transitively symmetric problems, and that the nonadaptivity hypothesis therefore can’t
be removed from Theorem 1. Note that the extent to which adaptivity can help has also been

1A star graph is a graph with n−1 edges which connect n−1 “external” vertices to one “central” vertex.
The proof of the O(n) upper bound on the query complexity of this problem is simple and left to the
reader.
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studied in the related framework of graph property testing, where one must accept (in the one-sided
error case) all graphs that satisfy a given property, and reject with high probability all graphs that
are “far” from satisfying this property [8, 14].

In this section we identify two simple classes of problems for which adaptivity does not help:
the class of problems that are invariant under an arbitrary permutation on the domain of the black-
box function, and the class of collision problems that are invariant under an arbitrary permutation
on the range of the black-box function.
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4.1 Invariance under permutations on the domain

We have already defined, for an algorithm A, its symmetrized version Ã. In this subsection we give
a symmetry condition on P which implies that Ã is nonadaptive, whatever A.

We denote by PA(f, I) the probability that algorithm A makes queries I when f is the black-box
function. It is an immediate consequence of the definition that an algorithm A of query complexity
T can be written in a nonadaptive way if and only if, for every I of size at most T , PA(f, I) does
not depend on f .

Fact 1 Suppose that there exists H ≤ S[N ] such that H×{0} ≤ Aut (P) and H acts k-transitively
on [N ]. Then for every f ∈ X ∪ Y and every I of size at most k, PÃ(f, I) = 1

N(N−1)···(N−|I|+1) .

Recall that H acts k-transitively on [N ] if given two tuples (a1, . . . , ak) and (b1, . . . , bk), each made
up of distinct elements of [N ], there exists σ ∈ H such that σ(ai) = bi for all i = 1, . . . , k.

Proof. Let us fix the value of the random bits ω, and thus assume for now that A is a deterministic
algorithm. As explained in section 2, we also assume that A never makes the same query twice.

The first query is always the same, i1. The actual first query made by Ã is σ−1 (i1), where
(σ, τ) is chosen at random in Aut(P). If k ≥ 1, Aut(P) act transitively on [N ], so σ−1 (i1) is
uniformly distributed on [N ], so that PÃ(f, I) = 1

N when |I| = 1.
After the first query, A won’t ask for i1 a second time, so we can see the remaining part of

the algorithm as an auxiliary algorithm that works on P as if the functions were only defined on
[N ] \ {i1}. To put it in another way, it would not change anything if, before the second query, we
were to replace (σ, τ) by a new random (σ′, τ) such that σ′(i1) = σ(i1). So, actually, each query is
chosen at random among the set of queries not yet made. This proves the result for deterministic
algorithms. An arbitrary randomized algorithm just consists of randomly picking a deterministic
algorithm, so the result remains true in the general case. �

Unfortunately, it is a well known fact — see for instance [10], section 1.12 — that if a permu-
tation group acts 7-transitively, then it acts n−2-transitively. This lemma will then only be useful
when H happens to be the full symmetric group S[N ] or the alternating group A[N ]. For instance,
we have the following corollary for S[N ] (it also follows immediately from Lemma 9 of [6]).

Corollary 1 Let P be a problem such that S[N ] × {0} ≤ Aut(P). Then nonadaptive algorithms
for P are no weaker than adaptive algorithms.

Proof. Let A be a probabilistic algorithm for P. Algorithm Ã is nonadaptive by Fact 1, and its
success probability is at least equal to that of A. �

It could seem at first sight that the hypotheses for Fact 1 are too strong, that it is enough
to suppose that Aut(P) acts k-transitively on [N ] — the action being defined by (σ, τ).i = σ(i).
However, this may not be the case if there is some kind of entanglement between the σ’s and the τ ’s.
For instance, consider the following problem: N = M , X contains only one function, the identity,
and Y contains all transpositions. The groups of automorphisms of this problem is the diagonal
group,

{
(σ, σ)/σ ∈ S[N ]

}
. Now let A be the following algorithm (we give only the beginning of the

sequence of queries, as for now this is the only relevant thing):

• Query i = 1, 2, 3, . . . until finding i such that f(i) �= i.

• When that happens, let the following query be f(i).

This is what Ã looks like:

• Query random distinct i’s until finding i such that f(i) �= i.

• When that happens, let the following query be f(i).

The conclusion of Fact 1 is thus false in this case. For instance, let f be the (12) transposition;
then PÃ(f, (1, 3)) = 0.
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4.2 Invariance under permutations on the range

In this subsection we show that adaptivity does not help for a certain class of collision problems.

Definition 4 A problem P is a collision problem if every function in X, but no function in Y ,
is one-to-one — or vice-versa.

The idea is that a collision problem is solved by answering the question: “is the black-box function
one-to-one?”. Like in section 4.1 our argument relies on the symmetrized algorithm Ã, but in
contrast with that section we will have to modify Ã. Namely, whenever Ã finds a collision, we will
fool it by answering its queries with distinct elements randomly known from the range [M ] of the
black-box function.

Fact 2 If P is a collision problem such that {0} × S[M ] ≤ Aut(P), then nonadaptive algorithms
for P are no weaker than adaptive algorithms.

Proof. Let P be such a problem, let A be an algorithm for P of query complexity T and let Ã
be the symmetrized algorithm. Assume for instance that X contains only one-to-one functions;
Y therefore contains none of them. Since Aut(P) contains {0} × S[M ], X actually contains all
one-to-one functions from [N ] to [M ].

Suppose that f ∈ X . Let us denote by J the sequence of answers to the queries of Ã when the
black-box function is f . Since {0} × S[M ] ≤ Aut(P), in Ã, after each query σ−1(i), τfσ−1(i) is
uniformly distributed among the elements of [M ] which are not results of previous queries. This
means that J is uniformly distributed among the sequences of size T of distinct elements of [M ].

We now define an algorithm A′ by modifying Ã in the following way: while a collision is not
found, we apply Ã respectfully. But, as soon as a collision is found we lure Ã into thinking that
there is no collision until after the last query, when we take control of the output of Ã in its place
and declare that the black-box function has a collision. To make Ã believe that it deals with a
one-to-one function, we just answer its queries with random distinct elements of [M ] which are not
the result of previous queries. This ensures that until the last query, Ã cannot tell the difference
between the functions of X ∪ Y . Indeed, whatever f , the answers to the queries of Ã are distinct
elements drawn uniformly at random from [M ]. In particular, PA′(f, I) is independent of f , so
that A′ can be written in a nonadaptive way. Moreover, the success probability of A′ is at least
equal to that of Ã, and the success probability of Ã is at least equal to that of A. �

5 Examples

5.1 Unordered Search

Let us first return to the problem Psearch from section 2. As noticed earlier, this problem is
transitively symmetric; moreover, its symmetry group is S[N ] × {0}, so we can use Fact 1 and
Theorem 1 to study it. First let us take a closer look at algorithms of query complexity 1. For
every pair (I, B) there is a line ∆I,B of equation e = pPX

I (B) + (1 − p)(1 − PY
I (B)) in the (p, e)

plane. In fact, for any query we obtain the same four lines, depicted in Figure 3:

• B = ∅: e = 1 − p.
• B = {0}: e = p(1 − 1/N) + 1/N .
• B = {1}: e = (1 − p)(1 − 1/N).
• B = {0; 1}: e = p.

Note the symmetry of this figure relatively the line of equation e = 1/2: the lines ∆I,B and
∆I,P([N ])\B are symmetric.

We find that γ = N/(2N − 1) so the second algorithm from section 2 was optimal.
Suppose now that we allow k queries (k ≤ N). By Theorem 1, the best success probability

that can be achieved is γ = N/(2N − k).
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Figure 3: one query and k queries for the search problem

Usually, we are given a success probability ε > 1/2 and we want to compute the minimal number
k of queries needed to have a probabilistic algorithm with k queries and success probability ε. In
our example this value can be computed exactly:

k =
⌈
N

(
2ε − 1

ε

)⌉

5.2 Simon’s problem

For Simon’s problem, N = M = 2n. However, it is not so convenient to see the black-box functions
as mere functions from [N ] to [M ]. Instead, we will look at them as functions from the additive
group (Z/2Z)n to itself. We then define Y as the set of one-to-one functions on (Z/2Z)n, and X
as the set of functions f such that there exists sf ∈ (Z/2Z)n \ {0} such that for all x, y ∈ (Z/2Z)n,
f(x) = f(y) if and only if x = y + sf . Such an sf is unique, hence the notation. This problem is
transitively symmetric: if H is the group of all linear automorphisms of (Z/2Z)n and H ′ the group
of all permutations of (Z/2Z)n, then H × H ′ is suitable. Moreover, since it is a collision problem
and its symmetry group contains {0} × S[N ], we need only consider nonadaptive algorithms by
Fact 2.

Simon’s problem has received a great deal of attention in the quantum computing literature
because it was one of the first problems for which an exponential speedup over classical computation
was exhibited. To demonstrate this speedup, Simon [22, 23] gave an efficient quantum algorithm for
his problem and proved an Ω

(√
2n

)
lower bound in a probabilistic model of computation (his result

is stated in a slightly different manner, but the Ω
(√

2n
)

lower bound does follow for algorithms
with a bounded probability of error). However, Simon’s lower bound was established only for the
search version of his problem, that, is for the problem of finding a collision (that is, two distinct
elements with the same image by f) in the case f ∈ X . The decision problem is a priori easier, and
the corresponding lower bound more difficult. A proof sketch of a probabilistic lower bound for
this decision problem can be found in the lecture notes of a recent course on quantum computing2.

Let I be a sequence of T distinct queries, and J a sequence of T answers. Of course, if J takes
the same value twice or more, then PY

I (J) is 0. So, when trying to evaluate γ, we only need to
consider those B that include all the non-injective sequences, the set of which we will call Λ. The
point is that when two queries are given the same answer, this is no time to quibble: the black-box
function is in X for sure.

Let us compute PX
I (Λ). A function f ∈ X is one-to-one on I if and only if for all x, y ∈ I,

sf �= x − y. When picking a random function f in X with uniform probability, sf is uniformly
distributed among (Z/2Z)n\{0}; so PX

I (Λ) = |I−I|−1
2n−1 , where I−I denotes the Minkowski difference

of I and itself, i.e. I − I = {x − y/x, y ∈ I}.
Let I be fixed. Note that, for a fixed I, neither PX

I (J) nor PY
I (J) depend on J when J is a

sequence of distinct elements (for instance, PY
I (J) is equal to (N−T )!

N ! since N ! is the total number
of one-to-one functions and (N − T )! the number of the those taking the values J on I). When
B contains only one-to-one J ’s, PX

I (B) and PY
I (B) are therefore linear functions of the size of B.

2http://www.cwi.nl/themes/ins4/qc2005/yaoprin.pdf
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Figure 4: The lines DI,B for a fixed I, and when I varies

Taking into account the fact that we only need to consider those B that contain Λ, this remark
implies that (for our fixed set I of T queries) all the relevant lines ∆I,B go through the same point.
As shown in Figure 4, this point is in particular at the intersection of the lines corresponding to
B = Λ and B = [M ]T (in that picture, Ξ and Ξ′ are sets of one-to-one functions respectively
containing a proportion ξ and ξ′ of the set of all one-to-one functions).

From these observations we obtain that, for a fixed I,

min
0≤p≤1

max
A

pPX
I (A) + (1 − p)

(
1 − PY

I (A)
)

=
1

2 − PX
I (Λ)

=
1

2 − |I−I|−1
2n−1

It should also be clear from Figure 4 that, since the minmaxes all take place on the line of
equation y = x, we can switch min

0≤p≤1
and max

I
in the definition of γ so that

γ = max
I

1

2 − |I−I|−1
2n−1

The best algorithm using T queries then consists in choosing an I of size T maximizing |I − I|,
querying f on I and then applying one of the following two subroutines, the first one with proba-
bility 1 − γ and the second one with probability γ:

• Discard the answers and claim that f is in X .
• Claim that f is in X if and only if the same answer has been returned twice.

U
If we want the algorithm to be successful with probability at least ε for every black-box function,

we need to find an I such that |I − I| ≥ (2n − 1)
(
2 − 1

ε

)
+ 1. Computing exactly the size of the

smallest such set seems to be a difficult combinatorial question. However, it is easily proven that
for a fixed ε, the size of this set (and therefore the query complexity of our optimal algorithm) is
Θ

(√
2n

)
5.3 One-to-one versus two-to-one functions

For this problem we have N = M = 2K. While Y is still the set of one-to-one functions, X is now
the set of all two-to-one functions, so that there is no longer any algebraic structure. Quantum
lower bounds for this are established in [2, 5, 17]. This problem is transitively acted upon by
S2K × S2K . And once more, according to Fact 2, we need only consider nonadaptive algorithms.

As for Simon’s problem, the sequences J containing at least twice the same element play a
distinctive role, since knowing that f takes twice the same value is a mean — and the only mean,
provided that T is small enough — to know for sure that f is in X ; so we will likewise name Λ the
set of those sequences.

Again, let us compute PX
I (Λ). This is the probability that a random two-to-one function f

be not injective on a fixed set I. Dually, this is also the probability for the restriction of a fixed
two-to-one function f on a random set I of a given size to be non injective. There are

(
2K
T

)
sets

of size T . Now, to count the number of sets I such that the restriction of f on I is one-to-one,
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consider the domain of f divided into a partition of two-element sets on which f is constant. First,
choose T of those sets: there are

(
K
T

)
possibilities. Then for each two-element set choose which

element you keep: there are 2T possibilities. Hence PX
I (Λ) = 1 − 2|I| (

K
|I|)

(2K
|I|)

.

In the same way as for Simon’s problem, for a fixed I neither PX
I (J) nor PY

I (J) depend on J
when J is made up of distinct elements. It follows that

γ = max
|I|=T

1
2 − PX

I (Λ)
=

1

1 + 2T (K
T )

(2K
T )

.

From this formula it can be inferred that, in order for an algorithm to solve this problem with
bounded probability of error, the optimal number of queries is Θ(

√
N).

5.4 Hidden Translation

This problem is studied from a quantum point of view in [12]. We set M = N = 2K and Y is once
more the set of one-to-one functions. In a similar manner as for Simon’s problem, we will look at
our functions as functions from the set {0; 1}×Z/KZ to itself. We define Y as the set of one-to-one
functions, and X as the set of functions f that are one-to-one on {0}×Z/KZ and such that there
exists an element sf ∈ Z/KZ such that for all x ∈ Z/KZ we have f(1, x) = f(0, x+ sf). This sf is
the eponymous hidden translation of f , since on one half on its domain f is deduced from its values
on the other half by a translation of parameter sf . Let us denote by σ0, . . . , σk−1 the elements of
the additive group Z/KZ. We can make H act on {0; 1}×Z/KZ as follows: σi(0, j) = (0, i+j) and
σi(1, j) = (1, j). Our problem is transitively acted upon by H × S2K and, by Fact 2, nonadaptive
algorithms are optimal.

As expected, we can still define Λ in the same way as in the previous two examples, since there
is no one-to-one function in X . For I ⊆ {0; 1}×Z/KZ, let us define two subsets of Z/KZ, I0 and
I1, such that I = ({0} × I0) ∪ ({1} × I1).

A function f ∈ X is non-injective on I if and only if there are x ∈ I0 and y ∈ I1 such that
f(x) = f(y+sf ). But, when f is uniformly distributed on X , sf is uniformly distributed in Z/KZ;
hence PX

I (Λ) = |I1−I0|
K . Once again, for a fixed I, neither PX

I (J) nor PY
I (J) depends on J when

J is made up of distinct elements. So, for a fixed number T of queries, we have

γ = max
|I|=T

1
2 − PX

I (Λ)
= max
|I|=T

1

2 − |I1−I0|
K

=
1

2 −
max
|I|=T

|I1−I0|
K

.

We again encounter a nontrivial combinatorial problem: given T , maximizing A−B for A, B ⊆
Z/KZ, under the condition that |A|+|B| = T . Nevertheless, it is easy to prove from this expression
for γ that the optimal number of queries is Θ(

√
N).

5.5 Completely Symmetric Problems

For a black box f : [N ] → [M ], let nf,i denote the number of x’s such that f(x) = i. A completely
symmetric problem is a black-box problem P such that Aut (P) ⊇ SN × {Id}, i.e., such that
P(f) depends only on the numbers nf,i. As pointed out already in the introduction, this is the
usual notion of a symmetric problem. According to Fact 2, for completely symmetric problems,
nonadaptive algorithms are optimal. However, as soon as M ≥ 2 and N ≥ 4, a problem which is to-
tal and completely symmetric cannot be transitively symmetric3. These problems can nevertheless
be made to fit our framework through a reduction. Indeed, let P be a problem which is total and
completely symmetric, and suppose moreover that P is nontrivial in the sense that it has at least
one positive instance and one negative instance. Then there exist black boxes f and g and j1, j2
in [M ] such that P(f) �= P(g), ng,j1 = nf,j1 +1, ng,j2 = nf,j2 − 1 and ng,i = nf,i for all i �= j1, j2.

3This follows from the fact that for M = 2, an automorphism (σ, τ ) either preserves nf,0 (in the case
τ = Id) or replaces it by N − nf,0. For N ≥ 4 there are at least 5 possible values for nf,0, so one of the
two classes must contain black boxes f with 3 different values for nf,0.
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Figure 5: γ and the variation distance

To find a lower bound for P, we can restrict P to the easier problem P ′ equal to P except that
it is defined only for the functions h such that nh,i = nf,i for all i, or nh,i = ng,i for all i. This is a
generalization of the unordered search problem studied in section 5.1 (take M = 2, j1 = 0, j2 = 1,
nf,j1 = N −1, nf,j2 = 1, ng,j1 = N , ng,j2 = 0). The promise problem P ′ is transitively symmetric,
and could therefore be handled with Theorem 1. It is however more convenient to make use of the
Hellinger distance (see section 6.3). The parameter h0(P ′) defined in that section is equal to

h =

√
1
N

(
r + s −

√
r(r + 1) −

√
s(s − 1)

)
,

where r = nf,j1 and s = nf,j2 . Since h ≤
√

1
N , an Ω(N) lower bound follows from equation (1) of

section 6.3.

6 Connection to the variation distance, to block sensitivity

and to the Hellinger distance

6.1 The variation distance

In this section we define for every black-box problem P a new parameter α which is closely related
to the parameter γ of Theorem 1. Its definition is somewhat simpler than that of γ, and is based
on the variation distance (a notion which was also used in [6]).

Let P be a black-box problem from [M ][N ] to {0, 1}. Recall that if T is an integer, I ∈ [N ]T

a list of queries and B ⊆ [M ]T a set of possible answers, we denote by PX
I (B) the proportion of

functions f ∈ X satisfying the condition f(I) ∈ B; and that we denote by PY
I (B) the proportion

of functions g ∈ Y satisfying the condition g(I) ∈ B.
Let αI be the variation distance between the probability distributions PX

I and PY
I . It is by

definition equal to the supremum over B of |PX
I (B)−PY

I (B)|. It is a well known (and elementary)
fact that the variation distance is equal to one half of the L1-distance. We therefore have:

αI = max
B⊆[M ]T

|PX
I (B) − PY

I (B)| =
1
2
dL1(P

X
I , PY

I ) =
1
2

∑
J∈[M ]T

|PX
I (J) − PY

I (J)|.

The parameter α is defined as the maximum of the αI ’s:

α = max
I∈[N ]T

αI = max
I∈[N ]T ,B⊆[M ]T

|PX
I (B) − PY

I (B)|.

We now show that this new parameter provides a reasonably good approximation of γ.

Proposition 2 For every black-box problem P we have 1
2−α ≤ γ ≤ 1

2 + α
2 .
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Figure 6: Optimality of Proposition 2

Proof. Let us consider the convex function

E : [0; 1] → [
1
2 ; 1

]
p �→ maxI∈[N ]T ,B⊆[M ]T pPX

I (B) + (1 − p)(1 − PY
I (B)) .

Almost by definition, E
(

1
2

)
= 1+α

2 . Hence γ ≤ 1
2 + α

2 since γ = min E . Suppose that this minimum
of E is attained for p ∈ [

0; 1
2

]
— the other case is of course quite similar. Taking B = ∅ shows

that E (p) ≥ 1 − p. Furthermore, the convexity of E gives another relation, as can be seen on
Figure 5. Namely, for p ∈ [

0; 1
2

]
, the graph of E must be above the line (d) passing through the

points
(

1
2 ; 1+α

2

)
and (1; 1). The equation of (d) being e = (1 − α)p + α, the two minorations of E

on
[
0; 1

2

]
imply that γ ≥ 1

2−α . �

These inequalities are optimal. Indeed, given λ ∈ [0; 1) ∩ Q and µ ∈ [
1
2 ; 1

) ∩ Q such that
1

2−λ ≤ µ ≤ 1+λ
2 , one can consider the following problem. Take M = 3 and N such that λN and

(2−λ)µ−1
µ−λ N are both integral. Put in X all the functions which take (2−λ)µ−1

µ−λ N times the value
0 and, which never take the value 2. Put in Y all the functions which take the value 2 exactly
λN times, and which never take the value 0. A careful study of this problem for T = 1 (i.e., for
algorithms making only one query) shows that α = λ and γ = µ. Here is a quick justification. First,
note that the constraints on λ and µ ensure that 0 ≤ (2−λ)µ−1

µ−λ ≤ 1. Then, it is a bit tedious but
straightforward to check that the graph of E is made of two line segments: the first one corresponds
to the question “is f(i) equal to 0?”, and the second one to the question “is f(i) in {0; 1}?”. The
minimum of the convex function is achieved at the intersection of these two line segments, and its
value there is indeed equal to µ. For p = 1

2 the higher line is the one asking if f(i) is in {0; 1},
and its value there is λ. Probably the best way to understand that is to stare at Figure 6 for a
sufficiently long time. For each B ⊆ {0; 1; 2}, the line of equation e = pPX

{i}(B) + (1 − p)PY
{i}(B)

is drawn and tagged with B, so that there are eight lines corresponding to the eight subsets of
{0; 1; 2}.

6.2 Block sensitivity

In the next two subsections we will discuss the relations between our result and the results of [6].
In particular, we show that the methods of that paper do not yield any nonconstant lower bound
for the problem of section 5.3 (distinguishing one-to-one functions from two-to-one functions).

14



The notion of block sensitivity was defined by Nisan [20] for Boolean functions and generalized
in [6] for general finite domains and range.

First we give the definitions of “approximation” and “disjoint inputs”, which are simplified
versions of the definitions in [6]. Let P be a function from a subset Z of [M ][N ] to [L], where N ,
M and L are positive integers. By definition, the black-box functions in Z are said to respect the
promise.

Definition 5 An approximation for P is a function C : Z → 2[L]. Two black-box functions
f, g ∈ Z are said to be C-disjoint if C(f) ∩ C(g) = ∅.

The trivial approximation function is C(f) = {P(f)} for every f and more generally, we
choose for every f ∈ Z a set C(f) that contains P(f).

Now we adapt the definition of block sensitivity to a partial function. In the following definition
we denote by f (I←Q) the black-box function obtained from f by changing the images f(I) of the
elements in I ⊆ [N ] to the values Q ∈ [M ]|I|. The function f (I←Q) is not necessarily respecting
the promise.

Definition 6 P is C-sensitive to a subset of variables I ⊆ [N ] on function f ∈ Z if there exists
Q ∈ [M ]|I| such that f and f (I←Q) are C-disjoint and f (I←Q) ∈ Z. The C-block sensitivity of P
on f , bsC(P, f), is the maximum number t of pairwise disjoint subsets I1, . . . , It ⊆ [N ], such that
P is C-sensitive to each of them on f . The C-block sensitivity of P, bsC(P), is the maximum of
bsC(P, f) over all f ∈ Z.

The block sensitivity gives a lower bound for the query complexity.

Definition 7 An algorithm is said to (C, ε)-approximate P if for every black-box f ∈ Z the
probability that the output of the algorithm belongs to C(f) is at least ε. The worst-case query
complexity of the algorithm is then the maximum number of queries of the algorithm on a black-box
function f ∈ Z. The (C, ε) worst-case query complexity of P is the minimum worst-case query
complexity of an algorithm (C, ε)-approximating P; we denote it Sw

C,ε(P).

If C is the trivial approximation then Sw
C,ε(P) is the query complexity of the best probabilistic

algorithm solving P with probability of success at least ε. The next theorem, as the above
definitions, is relative to some approximation C.

Theorem 2 For every 1 ≥ ε ≥ 1/2, P : Z ⊆ [M ][N ] �→ [L] and approximation C of P we have:

Sw
C,ε(P) ≥ (2ε − 1) bsC(P).

In [6] this theorem seems to be stated for total functions only (i.e., for the case Z = [M ][N ]),
probably because the examples that the authors have in mind (such as approximating the median,
the mean, and higher statistical moments) are total. In fact, this theorem is still true for partial
functions, and can be proven with essentially the same proof as in the total case. Here we prove it
by extending P. Let P ′ be any total extension of P. We define an approximation C′ for P ′: if
f ∈ Z then C′(f) = C(f) and if f /∈ Z then C′(f) = 2[L].

The first remark is that if f /∈ Z and g ∈ [M ][N ] then f and g are not C′-disjoint. Thus
bsC′(P ′) = bsC(P). Moreover an algorithm (C, ε)-approximates P iff it (C′, ε)-approximates
P ′. So Sw

C,ε(P) = Sw
C′,ε(P

′) and the theorem is proven.
For the following applications we work with the trivial approximation function, we take L = 2

and as in the remainder of the paper we call X the set of function f ∈ [M ][N ] such that P(f) = 1
and Y the set of function g ∈ [M ][N ] such that P(g) = 0. Therefore, Z = X ∪ Y .

First we consider the problem Psearch from section 2. The block-sensitivity of the constant
zero function is N and the block-sensitivity of the others functions are 1. Thus the block sensitivity
of Psearch is N and we get the lower bound N(2ε − 1) which is equal up to a factor ε to the one
of section 5.1.

For the one-to-one versus two-to-one problem (see section 5.3), Simon’s problem and the hidden
translation problem which are subproblems of the one-to-one versus two-to-one problem, the block-
sensitivity is 2 and so we obtain a constant lower bound. The lower bounds of section 5 are of
course much higher.
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6.3 The Hellinger distance

Suppose that problem P (a function from [M ][N ] to {0; 1}) is completely symmetric in the sense
that SN ×{Id} ≤ Aut (P). As a consequence, P(f) depends only on the number of x ∈ [N ] such
that f(x) = y, for each y in [M ]. Then the theorem 8 of [6] gives a lower bound on Sw

C (P, ε).
Recall that the Hellinger distance between two distributions P and Q on a finite set Ω is defined
as follows:

h(P, Q) =
√

1 −
∑
ω∈Ω

√
P (ω)Q(ω).

Each function f in [M ][N ] induces a probability distribution Pf on [M ]. Now, hC(P) for an
approximation C of P is defined as the minimum of the Hellinger distances between Pf and Pg

for f and g being C-disjoint. According to the theorem 8 of [6], the following lower bound holds
provided that ε > 3

4 , hC(P) ≤ 1/2, and Sw
C (P, ε) ≤ N/4:

Sw
C,ε(P) ≥ 1

4h2
C(P)

ln
1

4(1 − ε) + O
(

1
N

) . (1)

The parameter hC(P) is defined only in terms of the Pf ’s, and thus does not seem to take into
account the possibly complex effects that can happen when the behaviors of black boxes in X and
Y are compared on several inputs. This peculiarity may explain some of the limitations of lower
bound (1). It also makes it fairly easy to compute hC(P) on specific examples.

Like the block sensitivity lower bound, lower bound (1) is stated in [6] for total problems only.
Fortunately, the same technique as in the block sensitivity section shows that the theorem is also
true for partial function. We define a total extension P ′ of P and the approximation C′ for P ′

such that if f ∈ Z then C′(f) = C(f) and if f /∈ Z then C′(f) = 2[L]. Then Sw
C,ε(P) = Sw

C′,ε(P
′),

hC(P) = h′C(P ′) and the lower bound (1) is true for P.
In the following, C is the trivial approximation. As a first example, let us see what (1) says

about Psearch, the unordered search problem studied in section 5.1. There is only one function in
X , the zero function. The corresponding distribution P is given by

P (0) = 1; P (1) = 0.

In Y , we find the functions fi such that fi(i) = 1 and fi(j) = 0 when j �= i. The corresponding
distributions Qi are given by the formula

Qi(0) = 1 − 1
N

; Qi(1) =
1
N

.

The Hellinger distance between P and Qi being
√

1 −
√

1 − 1
N , we find an Ω(N) lower bound.

Our second example is the “one-to-one versus two-to-one” problem. Now X is made up of all
one-to-one functions, so that the corresponding distribution P satisfies

P (j) =
1

2K
for all j in [2K].

For a function f in Y , the corresponding distribution Qf is defined by

Qf (j) =
{

1
K if j ∈ im(f);
0 otherwise.

The Hellinger distance between P and any Qf is
√

1 − 1√
2
, which does not depend on K, so

that in this case (1) only proves a constant lower bound. This is only to be expected, since this
lower bound method does not “see” that the images of black-box functions as well as the entries
are permutable. As a result, this method cannot distinguish between the one-to-one versus two-to-
one problem and a modified version of this problem where we are promised that the range of the
two-to-one functions is some fixed subset of [2K], say [K]. Obviously, this modified problem is a
lot easier – in fact, its query complexity for a given allowed error 1 − ε is constant.
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