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Abstract

Register allocation is one of the most studied problem in compilation. It is
considered as an NP-complete problem since Chaitin, in 1981, showed that
assigning temporary variables to k machine registers amounts to color, with k
colors, the interference graph associated to variables and that this graph can
be arbitrary, thereby proving the NP-completeness of the problem. However,
this original proof does not really show where the complexity comes from.
Recently, the re-discovery that interference graphs of SSA programs can be
colored in polynomial time raised the question: Can we exploit SSA to per-
form register allocation in polynomial time, without contradicting Chaitin’s
NP-completeness result? To address such a question, we revisit Chaitin’s proof
to better identity the interactions between spilling (load/store insertion), coa-
lescing/splitting (moves between registers), critical edges (a property of the
control-flow graph), and coloring (assignment to registers). In particular, we
show when it is easy to decide if temporary variables can be assigned to k reg-
isters or if some spilling is necessary. The real complexity comes from critical
edges, spilling, and coalescing, which are addressed in our other reports.

Keywords: Register allocation, SSA form, chordal graph, NP-completeness, critical edge.

Résumé
L’allocation de registres est l’un des problèmes les plus étudiés en compilation.
On le considère en général NP-complet depuis que Chaitin, en 1981, a montré
qu’affecter des variables temporaires à k registres physiques revient à colorier
avec k couleurs le graphe d’interférences associé aux variables et que ce graphe
peut être quelconque. En revanche, cette démonstration ne révèle pas vraiment
d’où vient la complexité. Récemment, la re-découverte que les graphes d’in-
terférence des programmes SSA peuvent être coloriés en temps polynomial a
conduit à la question : peut-on exploiter la forme SSA pour faire de l’alloca-
tion de registres en temps polynomial sans contredire la preuve de Chaitin ?
Pour répondre à ce genre de questions, nous revisitons la démonstration de
Chaitin pour mieux identifier les interactions entre le “spilling” (insertion
de store/load), le “coalescing”/”splitting” (moves entre registres), la présence
d’arcs critiques (une propriété du graphe de flot de contrôle) et le coloriage
proprement dit (affectation aux registres). En particulier, nous montrons quand
il est facile de décider si des variables temporaires peuvent être affectées à k
registres ou si du “spilling” est nécessaire. La vraie complexité du problème
d’allocation de registres provient de la présence d’arcs critiques, du “spilling”
et du “coalescing”, problèmes que nous considérons dans nos autres rapports.

Mots-clés: Allocation de registres, forme SSA, graphe triangulé, NP-complétude, arc critique.
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Abstract

Register allocation is one of the most studied problem in compilation. It is considered
as an NP-complete problem since Chaitin, in 1981, showed that assigning temporary vari-
ables to k machine registers amounts to color, with k colors, the interference graph associ-
ated to variables and that this graph can be arbitrary, thereby proving the NP-completeness
of the problem. However, this original proof does not really show where the complexity
comes from. Recently, the re-discovery that interference graphs of SSA programs can be
colored in polynomial time raised the question: Can we exploit SSA to perform register al-
location in polynomial time, without contradicting Chaitin’s NP-completeness result? To
address such a question, we revisit Chaitin’s proof to better identity the interactions be-
tween spilling (load/store insertion), coalescing/splitting (moves between registers), criti-
cal edges (a property of the control-flow graph), and coloring (assignment to registers). In
particular, we show when it is easy to decide if temporary variables can be assigned to k
registers or if some spilling is necessary. The real complexity comes from critical edges,
spilling, and coalescing, which are addressed in our other reports.

1 Introduction

Register allocation is one of the most studied problem in compilation. Its goal is to find a way
to map the temporary variables used in a program into physical memory locations (either main
memory or machine registers). Accessing a register is much faster than accessing memory,
therefore one tries to use registers as much as possible. Of course, this is not always possible,
thus some variables must be transfer (“spilled”) to and from memory. This has a cost, the cost
of load and store operations, that should be avoided as much as possible.

Classical approaches are based on fast graph coloring algorithms (sometimes combined
with techniques dedicated to basic blocks). A widely-used algorithm is iterated register coa-
lescing proposed by Appel and George [12], a modified version of previous developments by
Chaitin [6, 5], and Briggs et al. [3]. In these heuristics, spilling, coalescing (removing register-
to-register moves), and coloring (assigning a variable to a register) are done in the same frame-
work. Priorities among these transformations are done implicitly with cost functions. Splitting
(adding register-to-register moves) can also be integrated in this framework.

Such techniques are well-established and used in any optimizing compiler. However, there
are at least four reasons to revisit these approaches.
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1. Today’s processors are now much faster than in the past, especially faster than when
Chaitin developed his first heuristic (in 1981). Some algorithms not considered in the
past, because they were too time-consuming, can be good candidates today.

2. For some critical applications, especially in embedded computing, industrial compilers
are ready to accept longer compilation times if the final code gets improved.

3. The increasing cost of a memory access compared to a register access suggests that it is
maybe better now to focus on heuristics that give more importance to spilling cost min-
imization, possibly at the price of additional register-to-register moves, in other words,
heuristics that consider the trade-off spilling/coalescing as unbalanced.

4. There are many pitfalls and folk theorems, concerning the complexity of the register
allocation problem, that need to be clarified.

This last point is particularly interesting to note. In 1981, Chaitin [6] showed that allo-
cating variables of a program to k registers amounts to color with k colors the corresponding
interference graph (two variables interfere if they are simultaneously live). As he was able to
produce a code corresponding to an arbitrary interference graph and because graph coloring is
NP-complete [11, Problem GT4], heuristics have been used for everything: spilling, coalesc-
ing, splitting, coloring, etc. Except in a few papers where authors are more careful, the previous
argument (register allocation is graph coloring, therefore it is NP-complete) is one of the first
sentences of any paper on register allocation. This way of presenting Chaitin’s proof can make
the reader (researcher or student) believe more than what this proof actually shows. In particu-
lar, it is in the common belief that, when no instruction scheduling is allowed, deciding if some
spilling is necessary to allocate variables to k registers is NP-complete. This is not what Chaitin
proves. We will even show that this particular problem is not NP-complete except for a few
particular cases (we will make clear which one), which is maybe a folk theorem too. Actually,
going from register allocation to graph coloring is just a way of modeling the problem, but it is
not an equivalence. In particular, this model does not take into account the fact that a variable
can be moved from a register to another one (splitting), of course at some cost, but only the
cost of a move instruction (which is often better than a spill).

Until very recently, only a few authors tried to address the complexity of register allocation
in more details. Maybe the most interesting complexity results are those of Liberatore et al. [16,
9], who analyze the reasons why optimal spilling is hard for local register allocation (i.e.,
register allocation for basic blocks). In brief, for basic blocks, the coloring phase is of course
easy (the interference graph is an interval graph) but deciding which variable to spill and where
is difficult (when stores and loads have nonzero costs). We completed this study for various
models of spill cost in [2].

Today, most compilers go through an intermediate code representation, the (strict) SSA
form (static single assignment) [7], which makes many code optimizations simpler. In such a
code, each variable is defined textually only once and is alive only along the dominance tree
associated to the control-flow graph. Some so-called φ functions are used to transfer values
along the control flow not covered by the dominance tree. The consequence is that the inter-
ference graph of such a code is, again, not arbitrary: it is a chordal graph, therefore easy to
color. Furthermore, it can be colored with k colors if and only Maxlive ≤ k where Maxlive
is the maximal number of variables simultaneously live. What does this property imply? One
can imagine to decompose the register allocation problem into two phases. The first phase (also
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called allocation in [16]) decides what values are spilled and where, so as to get to a code where
Maxlive ≤ k. A second phase of coloring (called register assignment in [16]) maps variables to
registers, possibly removing (i.e., coalescing) or introducing (i.e., splitting) move instructions
(also called shuffle code in [17]). Considering that loads and stores are more expensive than
moves, such an approach is worth exploring. This is the approach advocated by Appel and
George [1] and, more recently, in [4, 2, 14].

The fact that interference graphs of strict SSA programs are chordal is well-known (if one
makes the connection between graph theory and SSA form). Indeed, a theorem of Walter
(1972), Gavril (1974), and Buneman (1974) (see [13, Theorem 4.8]) shows that an interference
graph is chordal if and only if it is the interference graph of a family of subtrees (here the live
ranges of variables) of a tree (here the dominance tree). Furthermore, maximal cliques corre-
spond to program points. We re-discovered this property in 2002 when teaching to students
that register allocation is indeed in general NP-complete but certainly not just because graph
coloring is NP-complete. Independently, Brisk et al. [4], Perreira and Palsberg [18], and Hack
et al. [14] made the same observation. A direct proof of the chordality property for strict SSA
programs can be given, see for example [2, 14].

Recent work has been done on how to go out of SSA [15, 21, 20] and remove φ functions,
which are not machine code. How to avoid permutations of colors at φ points is also addressed
in [14]. These work combined with the idea of spilling before coloring so that Maxlive ≤ k
has led Perreira and Palsberg [19] to wonder where the NP-completeness of Chaitin’s proof
(apparently) disappeared: “Can we do polynomial-time register allocation by first transforming
the program to SSA form, then doing linear-time register allocation for the SSA form, and
finally doing SSA elimination while maintaining the mapping from temporaries to registers?”
(all this when Maxlive ≤ k of course, otherwise some spilling needs to be done). They show
that the answer is no, the problem is NP-complete.

The NP-completeness proof of Perreira and Palsberg is interesting, but it does not com-
pletely answer the question. It shows that if we choose the splitting points a priori (in particular
as φ points), then it is NP-complete to choose the right colors. However, there is no reason to
fix these particular split points. We show in this paper that, when we can choose the split points,
when we are free to add program blocks so as to remove critical edges (as this is often done),
when Maxlive ≤ k, then it is in general easy to decide if and how we can assign variables to
registers without spilling. More generally, the goal of this paper is to discuss the implications
of Chaitin’s proof (and what it does not imply) concerning the interactions between spilling,
splitting, coalescing, critical edges, and coloring.

In Section 2, we first reproduce Chaitin’s proof and analyze it more carefully. The proof
shows that when the control-flow graph has critical edges, which we are not allowed to remove
with additional blocks, then it is NP-complete to decide whether k registers are enough, even
if splitting variables is allowed. In Section 3, we address the same question as Perreira and
Palsberg in [19]: we show that Chaitin’s proof can easily be extended to show that, when the
graph has no critical edge but if splitting points are fixed (at entry and exit of basic blocks),
the problem remains NP-complete. In Section 4, we show, again with a slight variation of
Chaitin’s proof, that even if we can split variables wherever we want, the problem remains
NP-complete, but only when there are machine instructions that can create two new variables
at a time. However, in this case, it is more likely that the architecture can also perform register
swap and then k registers are enough if and only if Maxlive ≤ k. Finally, we show that it is
also easy to decide if k registers are enough when only one variable can be created at a given
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time (as in traditional assembly code representation). Therefore, this study shows that the NP-
completeness of register allocation is not due to the coloring phase (as a misinterpretation of
Chaitin’s proof may suggest), but is due to the presence of critical edges or not, and to the
optimization of spilling costs and coalescing costs.

2 Direct consequences of Chaitin’s proof

Let us look at Chaitin’s NP-completeness proof again. The proof is by reduction from graph
coloring [11, Problem GT4]: Given an undirected graph G = (V, E) and an integer k, can we
color the graph with k colors, i.e., can we define, for each vertex v ∈ V , a color c(v) in {1, . . . , k}
such that c(v) , c(u) for each edge (u, v) ∈ E? The problem is NP-complete if G is arbitrary,
even for a fixed k ≥ 3.

For the reduction, Chaitin creates a program with |V |+1 variables, one for each vertex u ∈ V
and an additional variable x, and the following structure:

• For each (u, v) ∈ E, there is a block Bu,v that defines u, v, and x.

• For each u ∈ V , there is a block Bu that reads u and x, and returns a new value.

• Each block Bu,v is a direct predecessor in the control-flow graph of the blocks B u and Bv.

• An entry block switches to all blocks Bu,v.

Figure 1 shows the program associated to a cycle of length 4, with edges (a, b), (a, c), (b, d),
and (c, d). This is also the example used in [19].

b = 2
x = a + b

a = 3
c = 4
x = a + c

b = 5

x = b + d x = c + d

return a + x return b + x return c + x return d + x

switch

Ba Bb Bc Bd

Ba,c Bc,dBa,b Bb,d

a = 1
d = 6

c = 7
d = 8

Figure 1: The program associated to a cycle of length 4.

It is clear that the interference graph associated to such a program is the graph G plus a
vertex for variable x with an edge (u, x) for each u ∈ V (thus this new vertex must use an extra
color). If one interprets a register as a color then G is k-colorable if and only if each variable
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can be assigned to a unique register for a total of at most k + 1 registers. This is what Chaitin
proved, nothing less, nothing more: for such programs, deciding if one can assign the variables,
this way, to k ≥ 4 registers is thus NP-complete.

Chaitin’s proof, at least in its original interpretation, does not address the possibility of
splitting the live range of a variable (set of program points where the variable is live 1). Each
vertex of the interference graph represents the complete live range as an atomic object, in other
words, it is assumed that one variable must always reside in the same register. The fact that the
register allocation problem is modeled through the interference graph loses information on the
program itself and the exact location of interferences (this is a well-known fact, which led to
many different heuristics).

This raises the question: What if we allow to split live ranges? Consider Figure 1 again
and a particular variable, for example a. In block Ba, variable a is needed for the instruction
“return a + x”, and this value can come from blocks B a,b and Ba,c. Therefore, even if we split
the live range of a in block Ba before it is used, some register must contain the value of a both
at the exit of blocks Ba,b and Ba,c. The same is true for all other variables. In other words,
if we consider the possible copies live at exit of blocks of type Bu,v and at entry of blocks of
type Bv, we get the same interference graph G for the copies. Therefore, the problem remains
NP-complete even if we allow live range splitting.

Splitting live ranges does not help here because, in the general case, the control-flow edges
from Bu,v to Bu are critical edges, i.e., they go from a block with more than one successor to
a block with more than one predecessor. This forces the live range of a copy to span more
than one edge, leading to the well-known notion of web. All copies of a given variable a are
part of the same web and must be assigned the same color. In general, defining precisely what
is colored is important as the subtle title of Cytron and Ferrante’s paper “What’s in a name?”
pointed out [8].

To conclude this section, we can interpret Chaitin’s original proof as follows. It shows that it
is NP-complete to decide if the variables of an arbitrary program can be assigned to k registers,
even if live range splitting is allowed, but only when the program has critical edges that we are
not allowed to remove (i.e., we cannot change the structure of the control flow graph and add
new blocks). In the following section, we consider the case of programs with no critical edges.
The case of programs with some critical edges with a particular structure will be addressed in
another report.

3 SSA-like programs and fixed splitting points

In [19], Ferreira and Palsberg pointed out that the construction of Chaitin (as done in Figure 1) is
not enough to prove anything about register allocation through SSA. Indeed, to assign variables
to registers for programs built as in Section 2, one just have to add extra blocks (where out-
of-SSA code is traditionally inserted) and to perform some register-to-register moves in these
blocks. Any such program can now be allocated with only 3 registers (see Figure 2 for a
possible allocation of the program of Figure 1). Indeed, as there are no critical edges anymore,

1Actually, Chaitin’s definition of interference is slightly different: Two variables interfere only if one is live at
the definition of the other one. However, the two definitions coincide for programs where any control-flow path
from the beginning of the program to a given use of a variable goes through a definition of this variable. Such
programs are called strict. This is the case for the programs we manipulate in our NP-completeness proofs.
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switch

Ba,c Bc,dBa,b Bb,d

r1 = 1
r2 = 2

r1 = 3
r2 = 4

r1 = 5
r2 = 6

r1 = 7
r2 = 8

r3 = r1 + r2 r3 = r1 + r2 r3 = r1 + r2 r3 = r1 + r2

Ba Bb Bc Bd

return r1 + r3 return r1 + r3 return r1 + r3 return r1 + r3

r1 = r2 r1 = r2 r1 = r2r1 = r2

Figure 2: The program of Figure 1 assigned to 3 registers, with additional basic blocks .

we can color the two variables of each basic block of type Bu,v independently and “repair”,
when needed, the coloring to match the colors at each join, i.e., each basic block of type Bu.
This is done by introducing an adequate re-mapping of registers (here a single move) in the
new block along the edge from Bu,v to Bu.

When there are no critical edges, one can indeed go through SSA (or any representation of
live ranges as subtrees of a tree), i.e., consider that all definitions of a given variable belong to
different live ranges, and to color them with k colors, if possible, in linear time (because the
corresponding interference graph is chordal) in a greedy fashion.

At this stage, it is of course easy to decide if k registers are enough. This is possible if
and only if Maxlive, the maximal number of values live at any program point, is less than k.
Indeed, Maxlive is obviously a lower bound for the minimal number of registers needed, as all
variables live at a given point interfere (at least for strict programs). Furthermore, this lower
bound can be achieved by coloring because of a double property of such live ranges: a) Maxlive
is equal to the size of a maximal clique in the interference graph (in general, it is only a lower
bound); b) the size of a maximal clique and the chromatic number of the graph are equal (as
the graph is chordal). Furthermore, if k registers are not enough, additional splitting will not
help as splitting does not change Maxlive.

If k colors are enough, it is still possible that colors do not match at join points where live
ranges were split. Some “shuffle” of registers is needed in the block along the edge where colors
do not match. The fact that the edge is not critical guarantees that the shuffle will not propagate
along other control flow paths. A shuffle is a permutation of the registers. If some register is
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available at this program point, i.e., if Maxlive < k, then any remapping can be performed as
a sequence of register-to-register moves, possibly using the free register as temporary storage.
Otherwise, one additional register is needed unless one can perform register swap (arithmetic
operations are also possible but maybe only for integer registers).

This view of coloring through the insertion of permutations is the base of any approach that
optimizes spilling first. Some spilling is done (optimally or not) so as to reduce the register
pressure (Maxlive) to at most k. In [1], this approach is even used in the most extreme form:
live ranges are split at each program point in order to address the problem of optimal spilling.
After the first spilling phase, there is a potential permutation between any two program points.
Then, live ranges are merged back, as most as possible, thanks to coalescing.

In other words, it seems that going through SSA (for example) makes easy the problem of
deciding if k registers are enough. The only possible remaining case is if we do not allow any
register swap. If colors do not match at a joint point where Maxlive = k, then the permutation
cannot be performed. This is the question addressed by Ferreira and Palsberg in [19]: Can we
easily choose an adequate coloring of the SSA representation so that no permutation (different
than identity) is needed? The answer is no, the problem is NP-complete.

To show this result, Ferreira and Palsberg use a reduction from the problem of coloring
circular-arc graphs [10]. Basically, the idea is to start from a circular-arc graph, to choose a
particular split point of the arcs to get an interval graph, to represent this interval graph as the
interference graph of some basic block, to add a back edge to form a loop, and to make sure
that Maxlive = k on the back edge. In this case, coloring the basic block so that no permutation
is needed on the back edge is equivalent to coloring the original circular-arc graph. Actually,
this is the same proof technique used in [10] to reduce the coloring of circular-arc graphs from
a permutation problem.

This proof shows that if the split points are chosen a priori, then it is difficult to choose the
right coloring of the SSA representation (and thus decide if k registers are enough) even for a
simple loop and a single split point. However, for a fixed k, this specific problem is polynomial
as it is the case for the k-coloring problem of circular-arc graphs. We now show that, with a
simple variation of Chaitin’s proof, a similar result can be proved even for a fixed k, but for an
arbitrary program.

Consider the same program structure as Chaitin does, but after critical edges have been
removed, thus a program structure such as in Figure 2. Given an arbitrary graph G = (V, E),
the program has three variables u, xu, yu for each vertex u ∈ V and a variable xu,v for each edge
(u, v) ∈ E. It has the following structure:

• For each (u, v) ∈ E, there is a block Bu,v that defines u, v, and xu,v.

• For each u ∈ V , there is a block Bu that reads u, yu, and xu, and returns a new value.

• For each block Bu,v, there is a path to the blocks Bu and Bv. Along the path from Bu,v

to Bu, there is a block that reads v and xu,v to define yu, and then defines xu.

• An entry block switches to all blocks Bu,v.

The interference graph restricted to variables u (those that correspond to vertices of G) is still
exactly G. Figure 3 shows the program associated to a cycle of length 4, with edges (a, b),
(a, c), (b, d), and (c, d). It has no critical edge.
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Assume that permutations can be placed only along the edges, or equivalently on entry or
exit of the intermediate blocks that are between blocks of type Bu,v and type Bu. We claim that
the program can be assigned to 3 registers if and only if G is 3-colorable. Indeed, it is easy
to see that on each control-flow edge, exactly 3 variables are live, therefore if only 3 registers
are used, no permutation different than identity can be performed. As a consequence, the live
range of any variable u ∈ V cannot be split, each variable is therefore assigned to a unique color.
Using the same color for the corresponding vertex in G gives a 3-coloring of the G. Conversely,
if G is 3-colorable, assign to each variable u the same color as the vertex u. It remains to color
the variables xu,v, xu, and yu. This is easy: in block Bu,v, only two colors are used so far, the
color for u and the color for v, so xu,v can be assigned the remaining color. Finally assigned xu

to a color different than u, and yu to the remaining color. This gives a valid register assignment
of the program.

yd = c + xc,d
xd = 8

switch

Ba,c Bc,dBa,b Bb,d

Ba Bb Bc Bd

return xb + yb + breturn xa + ya + a

xc,d = c + dxb,d = b + dxa,c = a + cxa,b = a + b
b = 2
a = 1

c = 4
a = 3

d = 6
b = 5

d = 8
c = 7

return xc + yc + c return xd + yd + d

ya = c + xa,c
xb = 3

yc = d + xc,d

yb = a + xa,b
xc = 6
yc = a + xa,c

xd = 7

xa = 2
ya = b + xa,b
xa = 1 xc = 4

xb = 5

yb = d + xb,d

yd = b + xb,d

Figure 3: The program associated to a cycle of length 4.

To get a similar proof for any fixed k > 3, just add k − 3 variables in the switch block and
make their live ranges traverse all other blocks. What we just proved, with this slight variation
of Chaitin’s proof, is that if split points are fixed (as this is traditionally the case when going
out of SSA), then it is NP-complete to decide if k registers are sufficient, even for a fixed k ≥ 3
and even if the program has no critical edge.
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4 When split points can be anywhere

Does the study of Section 3 completely answer the question? Not quite. Indeed, who said
that split points are fixed? Why can’t we shuffle registers at any program point? Consider
Figure 3 again. The register pressure is 3 on any control-flow edge, but it is not 3 everywhere.
In particular, between the definitions of each yu and each xu, the register pressure drops to 2.
At this point, some register-to-register moves could be inserted to permute two colors.

Actually, if we allow to split wherever we want then, for such a program, 3 registers are al-
ways enough. Indeed, for each block Bu,v, color u, v, and xu,v with 3 different colors, arbitrarily.
For each block Bu, do the same for u, xu, and yu. In the block between Bu,v and Bu, give to xu

the same color it has in Bu and give to yu a color different than the color given to u in Bu,v. Now,
between the definitions of yu and xu, only two registers contain a live value: the register that
contains u defined in Bu,v and the register that contains yu. These two values can be moved to
the registers where there are supposed to be in Bu, with one move, two moves, or three moves
in case of a swap, using the available register in which xu is going to be defined just after this
shuffle.

So, is it really NP-complete to decide if k registers are enough when splitting can be done
anywhere? The problem with the previous construction is that there is no way to not leave a pro-
gram point with a low register pressure with simple statements while keeping NP-completeness.
But, if we are considering the register allocation problem for an architecture with instructions
that can define more than one value, it is easy to modify the proof. In a block where yu and xu

are defined, use a parallel statement that uses v and xu,v and defines yu and xu simultaneously,
for example something like (xu, yu) = (b + xu,v, b − xu,v). Now, Maxlive = 3 everywhere in the
program and, even if splitting is allowed anywhere, the program can be mapped to 3 registers if
and only if G is 3-colorable. Therefore, it is NP-complete to decide if k registers are enough if
two variables can be created simultaneously by a machine instruction, even if there is no crit-
ical edge and if we can split wherever we want. Notice the similarity with circular-arc graphs:
as noticed in [10], the problem of coloring circular-arc graphs remains NP-complete even if at
most 2 circular arcs can start at any point (but not if at most 1 can start, as we show below).

However, if such instructions exist, it is more likely that a register swap is also provided in
the architecture, in which case we are back to the easy case where any permutation can be done
and k registers are enough if and only if Maxlive = k. It remains to consider one case: what if
only one variable can be created at a given time as it is in traditional sequential assembly code
representation? We claim this is polynomial to decide if k registers are enough, in the case of a
strict program and if we are allowed to introduce blocks to remove critical edges. This can be
done as follows.

Consider the program after edge splitting and compute Maxlive, the maximal number of
values live at any program point. If Maxlive < k, it is always possible to assign variables to k
registers by splitting live ranges as we already discussed because adequate permutations can
always be performed. If Maxlive > k, this is not possible 2, more spilling has to be done. The
remaining case is thus when Maxlive = k.

If Maxlive = k, restrict to the control-flow graph defined by program points where exactly k
variables are live. We claim that, in each connected component of this graph, if k registers are
enough, there is a unique solution, up to a permutation of colors. Indeed, for each connected

2This is true for a strict program. For a non-strict program, one needs to consider another definition of Maxlive.
We do not address non-strict programs in this report.
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component, start from a particular program point and a particular coloring of the k variables
live at this point. Propagate this coloring in a greedy fashion, backwards or forwards along
the control flow. In this process, there is no ambiguity because the number of live variables
remains equal to k: At any program point, since one variable (and only one) is created, exactly
one must become dead, and the new variable must be assigned the same color as the dead one.
Therefore, going backwards or forwards defines a unique solution (up to the initial permutation
of colors). In other words, if there is a solution, we can define it, in each connected component,
by propagation. If, during this traversal, we reach a program point already assigned and if the
colors do not match, this proves that k registers are not enough.

Finally, if the propagation of colors on each connected component is possible, then k reg-
isters are enough for the whole program. Indeed, we can color the rest in a greedy (but not
unique) fashion and, when we reach a point already assigned, we can resolve a possible regis-
ter mismatch because at most k − 1 variables are live at this point.

To conclude, to decide if k registers are enough, one just need to propagate colors along
the control flow. We first propagate along program points where Maxlive = k. If we reach a
program point already colored and the colors do not match, more spilling needs to be done.
Otherwise, we start a second phase of propagation, along all remaining program points. If we
reach a program point already colored and the colors do not match, we resolve the problem
with a permutation of at most k − 1 registers.

5 Conclusion

In this report, we tried to make clearer where the complexity of register allocation comes from.
Our goal was to recall what exactly Chaitin’s original proof proves and to extend this result.
The main question addressed by Chaitin is of the following type: Can we decide if k registers
are enough for a given program or if some spilling is necessary?

The original proof of Chaitin [6] proves that this problem is NP-complete if each variable
can be assigned to only one register (i.e., no live range splitting). We showed that Chaitin’s
construction also proves the NP-completeness of the problem if live range splitting is allowed
but if we are not allowed to remove critical edges (i.e., no edge splitting).

Recently, Ferreira and Palsberg [19] proves that, if k is arbitrary and the program is a loop,
then the problem remains NP-complete if live range splitting is allowed but only on a block
on the back edge and if register swaps are not available. This is a particular form of register
allocation through SSA. We showed that Chaitin’s proof can be extended to show a bit more.
The problem remains NP-complete for a fixed k ≥ 3, even if the program has no critical edge
and if we can split live ranges along any control-flow edge (but not inside basic blocks). This
again is if register swaps are not available.

These results do not address the general case where we are allowed to split wherever we
want, including inside basic blocks. We show that the problem remains NP-complete but only
if some instructions can define two variables simultaneously. For a strict program and/or if we
consider that two variables interfere if and only if they are both live at some program point,
we can answer the remaining cases. First k must be at least Maxlive, the maximal number of
variables live at any program point. If Maxlive < k or if register swaps are available (which
is likely to be the case if some instructions can define two variables simultaneously) then k
registers are enough. If register swaps are not available and if only one variable can be defined
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at a given program point, then a simple polynomial-time greedy approach can be used to decide
if k registers are enough.

This study shows that the NP-completeness of register allocation is not due to the coloring
phase (as a misinterpretation of Chaitin’s proof may suggest); deciding if k registers are enough
or if spilling is necessary is not as hard as one might think. The NP-completeness of register
allocation is due to the presence of critical edges or not, and to the optimization of spilling costs
(which variables should be spilled and where so as to reduce Maxlive with a minimal cost?)
and coalescing costs (which live ranges should be fused so as to minimize register-to-register
moves while keeping the graph k-colorable?).
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