
HAL Id: hal-02102284
https://hal-lara.archives-ouvertes.fr/hal-02102284

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A flexible bandwidth reservation framework for bulk
data transfers in grid networks

Bin Chen Bin, Pascale Primet

To cite this version:
Bin Chen Bin, Pascale Primet. A flexible bandwidth reservation framework for bulk data transfers
in grid networks. [Research Report] LIP RR-2006-20, Laboratoire de l’informatique du parallélisme.
2006, 2+18p. �hal-02102284�

https://hal-lara.archives-ouvertes.fr/hal-02102284
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

A flexible bandwidth reservation

framework for bulk data transfers in grid

networks

Bin Bin Chen ,

Pascale Primet
May 2006

Research Report No 2006-20

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

A flexible bandwidth reservation framework for bulk data

transfers in grid networks

Bin Bin Chen , Pascale Primet

May 2006

Abstract

In grid networks, distributed resources are interconnected by wide area
network to support compute and data-intensive applications, which re-
quire reliable and efficient transfer of gigabits (even terabits) of data.
Different from best-effort traffic in Internet, bulk data transfer in grid
requires bandwidth reservation as a fundamental service. Existing reser-
vation schemes such as RSVP are designed for real-time traffic specified
by reservation rate, transfer start time but with unknown lifetime. In
comparison, bulk data transfer requests are defined in terms of volume
and deadline, which provide more information, and allow more flexibility
in reservation schemes, i.e., transfer start time can be flexibly chosen,
and reservation for a single request can be divided into multiple intervals
with different reservation rates. We define a flexible reservation frame-
work using time-rate function algebra, and identify a series of practi-
cal reservation scheme families with increasing generality and potential
performance, namely, FixTime-FixRate, FixTime-FlexRate, FlexTime-
FlexRate, and Multi-Interval. Simple heuristics are used to select repre-
sentative scheme from each family for performance comparison. Simula-
tion results show that the increasing flexibility can potentially improve
system performance, minimizing both blocking probability and mean
flow time. We also discuss the distributed implementation of proposed
framework.

Keywords: Reservation, grid, bulk data transfer, flexibility

Résumé

Dans les réseaux de grilles, les ressources distribuées sont interconnectées
par des réseaux longues distance pour exécuter des applications inten-
sives de calcul ou de traitement de données, qui nécessitent des transferts
fiables et efficaces de volumes de données de l’ordre de plusieurs giga-
octets ou teroctets. Le transferts massifs dans les grilles, contrairement
au trafic “best effort” de l’Internet, requierent un service de réservation
de bande-passante. Les schémas de réservation existants, tels RSVP, ont
été conçus pour du trafic temps-réel et pour lequel on spécifie un débit
réservé, une date de début de transfert mais on ne précise pas la durée.
En comparaison, les transferts massifs de grilles sont définis en termes de
volumes et de date limite, ce qui offre plus d’informations et autorise des
schémas de réservation plus flexibles. Le début effectif du transfert peut
être choisi, une réservation pour une même requête peut être divisés en
plusieurs intervals avec des débits réservés différents. Nous définissons un
cadre flexible de réservation de bande passante à l’aide d’une algèbre de
fonctions temps-débit et identifions une série de familles de schémas de
réservation, que nous nommons FixTime-FixRate, FixTime-FlexRate,
FlexTime FlexRate, et Multi-Interval, présentant une généralité et un
potentiel de performance croissants. Des heuristiques simples sont utili-
sées pour sélectionner un schéma représentatif dans chaque famille pour
comparer les performances. Les résultats de simulation montrent que
l’augmentation de la flexibilité peut potentiellement augmenter les per-
formances du système, minimiser la probabilité de blocage et la durée
moyenne des flux. Nous discutons aussi de l’implantation distribuée du
cadre proposé.

Mots-clés: Réservation, grille, transferts massifs, flexibilité

2

Flexible bandwidth reservation for bulk transfer 1

1 Introduction

Grid computing is a promising technology that brings together large collection of geographi-
cally distributed resources (e.g., computing, storage, visualization, etc.) to build a very high
performance computing environment for compute and data-intensive applications [7]. Grid
networks connect multiple sites, each comprising a number of processors, storage systems,
databases, scientific instruments, and etc. In grid applications, like experimental analysis and
simulations in high-energy physics, climate modeling, earthquake engineering, drug design,
and astronomy, massive datasets must be shared by a community of researchers distributed in
different sites. These researchers transfer large subsets of data across network for processing.
The volume of dataset can usually be determined from task specification, and a strict deadline
is often specified to guarantee in-time completion of the whole task, also to enforce efficient
use of expensive grid resources, not only network bandwidth, but also the co-allocated CPUs,
disks, and etc.

While Internet bulk data transfer works well with best-effort service, high-performance
grid applications require bandwidth reservation for bulk data transfer as a fundamental ser-
vice. Besides strict deadline requirement and expensive co-allocated resources as we discussed
above, the smaller multiplexing level of grid networks compared to Internet also serves as a
main driving force for bandwidth reservation. In Internet, the source access rates are gen-
erally much smaller (2Mbps for DSL lines) than the backbone link capacity (hundreds to
thousands of Mbps, say). Coexistence of many active flows in a single link smoothes the
variation of arrival demands due to the law of large number, and the link is not a bottleneck
until demand attains above 90% of its capacity [13]. Thus no proactive admission control is
used in Internet for bulk data transfer. Instead, distributed transport protocols, such as TCP,
are used to statistically share available bandwidth among flows in a “fair” way. Contrarily,
in grid context, the capacity of a single source (c = 1Gbps) is comparable to the capacity of
bottleneck link. For a system with small multiplexing level, if no pro-active admission control
is applied, burst of load greatly deteriorates the system performance.

A concrete example is given in Section 2 to demonstrate the importance of resource reser-
vation for grid networks. Through the example, we also show that existing RSVP-type frame-
work is not flexible enough for bulk data transfer reservation. In Section 3, we define a flexible
reservation framework using time-rate function algebra. Section 4 identifies a series of practi-
cal reservation scheme families with increasing generality, and we use simple heuristics to select
representative scheme from each family. In Section 5, simulation result of chosen schemes are
presented and the impact of flexibility is analyzed. A distributed architecture is proposed in
Section 6. In Section 7, we briefly review related works on bandwidth reservation. Finally,
we conclude in Section 8.

2 Motivation

In Figure 1, we simulate a single link with capacity C. Bulk data transfer requests arrive
according to a Poisson process with parameter λ. Request volume is independent of arrival
time, and follows an exponential distribution with parameter µ. Simulations with other arrival
processes and traffic volume distributiones reveal similar trend, which are not presented here
for brevity. Load ρ = λ/(C ∗ µ). Requests have maximal transfer rate Rmax. In Internet
setting RInternet

max = C/100, and in grid setting Rgrid
max = C/10. Ideal transport protocol is

2 B. Chen , P. Primet

assumed, so that if there are no more than C/Rmax active flows, all of them transfer at full
rate Rmax. If there are n > C/Rmax active flows, they all transfer at rate C/n. A request
with volume v “fails” and immediately terminates, if it does not complete transfer within
v/Rmin time, where Rmin ≤ Rmax is the expected average throughput of the request (in
this example Rmin = Rmax/2 for all requests). In Internet-NoAC setting (AC stands for
“Admission Control”), the fail probability is low until load ρ attains above 95%. In grid-
NoAC setting, however, the fail probability is nonneglectable even under a medium load,
and it deteriorates rapidly as load increases. Thus we consider using a simple reservation
scheme, which enforces requests to reserve Rmin bandwidth when they arrive, so that all
accepted requests are guaranteed to complete before deadline (fail probability is 0). Requests
are blocked if the number of active reservations reaches C/Rexp. This kind of reservation can
be supported by existing reservation schemes, for example, RSVP [3]. In grid-AC setting, we
still assume ideal transport protocol, i.e., accepted requests are able to fairly share unreserved
capacity in addition to their reserved bandwidth. Block probability of grid-AC setting is
much lower than fail probability of grid-NoAC setting.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5 0.6 0.7 0.8 0.9 1

bl
oc

ki
ng

 /
fa

il
pr

ob
ab

ili
ty

load

grid-NoAC
grid-AC

Internet-NoAC
M/M/m/m

Figure 1: Fail/block probability under different multiplexing level

In Figure 1, we also plot a variation of grid-AC setting in which flows can only use re-
served bandwidth. With this dull transport protocol assumption, the link can be modeled as a
standard M/M/m/m queuing system with m = C/Rmin = 10. Comparing this M/M/m/m
setting against grid-NoAC setting, simple reservation scheme with dull transport protocol
can still outperform no admission control setting with ideal transport protocol when load is
relatively high. This again demonstrates the benefit of reservation. Meanwhile, the big per-
formance gap between M/M/m/m setting and grid-AC setting shows that when transport
protocol is dull, a RSVP-type reservation does not fully exploit the system’s capacity. The
transport protocol design for high speed network is still an ongoing research. Complemen-
tarily, we consider how to improve system’s performance by using more flexible reservation
schemes in this paper.

RSVP is designed for real-time traffic which normally requests for a specified value of
bandwidth from a fixed start time. Their lifetime is unknown, thus reservation remains in
effect for an indefinite duration until explicit “Teardown” signal is issued or soft state expires.
In stead, bulk data transfer requests are specified by volume and deadline. This allows more
flexibility in the design of reservation schemes. As volume is known, the completion time

Flexible bandwidth reservation for bulk transfer 3

can be calculated by scheduler and kept in time-indexed reservation states. If there is not
enough bandwidth at the moment a request arrives, transfer can be scheduled to start at some
future time point as long as it can complete before deadline. Bandwidth reservation can also
comprise sub-intervals with different reserved rates.

0
 Time

(h)

Rate

(Tbph)

1
 2
 3
 4
 5
 6
 7

Link

capacity C

f

1

f

2

f

3

f

4

No

solution

4

3

2

1

One

solution

Multiple

solutions

Figure 2: Flexible reservation schemes example

Limitation of RSVP-type reservation for bulk data transfer is illustrated in Figure 2. In
this example, we consider a link with capacity C = 4Tbph. Requests arrive online with
varying volume, their maximal transfer rate is Rmax = 2Tbph and their minimum average
transfer rate is Rmin = 1Tbph. A request arrives at time t with volume v has a deadline
t + v/Rmin. Assume at current time 0h, there are four active reservations each reserving
1Tbph bandwidth. Their termination times are known and marked in the figure. A new
request arrives at 0h with volume v = 4Tb, and its deadline is 0h + 4Tb/Rmin = 4h. Since
there is no bandwidth left at time 0h, this request will be rejected by RSVP-type reservation
scheme. This unnecessary rejection can be avoided, if we use more flexible reservation scheme
and exploit the time-indexed reservation state information. A feasible reservation solution is
to reserving 1Tbph for the request from time 1h (other than from 0h) until 3h, followed by a
different reservation rate of 2Tbph until 4h.

In the case of v = 4Tb, this is the only solution to accept the request and guarantee its
successful completion without preempting any existing reservations. However, if the request
has volume v = 2Tb and thus deadline 2h, no feasible solution exists to accept the new request
unless preemption is allowed. The concept of preemption is borrowed from job scheduling
literature, which means the modification (including teardown) of the reservation state of
an already-accepted request by system. Compared to non-preemptive schemes, preemptive
schedulers enjoy higher decision flexibility which implies potential performance gain. But
they have some drawbacks including:

• Dropping accepted request causes more dissatisfaction than blocking new one;

• Dynamic change (QoS degration) of reservation state hurts service predictability, which
is important because bandwidth is co-allocated with other resources.

Also, it is challenging to design a distributed preemptive reservation architecture. In this
paper, we focus on a non-preemptive reservation framework.

There may be multiple feasible solutions to accept a request, for example if the request here
is with volume v = 6Tb and deadline 6h. The algorithm to select a solution out of all feasible

4 B. Chen , P. Primet

solutions depends on the objective functions of reservation schemes. Besides increasing accept
probability, there are other important performance criteria. Borrowing concept again from
job scheduling, flow time is defined as the time between a request’s arrival and its completion.
For bulk data transfers, especially in grid applications, it is desirable to minimize flow time.
Smaller flow time not only improves users’ satisfaction, but also releases all co-allocated
resources earlier back to sharing pool. Fairness among flows is also an important performance
criteria. For example, bulk data transfer may define fairness over their average throughput.
These criteria may be conflicting with each other. For example, the solution to minimize flow
time here is to reserve 1Tbph from 1h to 3h, and 2Tbph from 3h to 5h so that the request can
be finished at 5h. While the solution to minimize peak reservation rate is to reserve 1Tbph
from 1h to 3h, and 4/3Tbph from 3h to 6h. Yet another reasonable solution is to reserve
0.5Tbph from 1h to 3h, 1.5Tbph from 3h to 5h, followed by 2Tbph (Rmax) from 5h to 6h, so
that the remained bandwidth variation along time axis is minimized.

It is very difficult (if not totally impossible) to identify the optimal solution in both
off-line and on-line setting. Sometimes it is preferable to reject a request even when feasible
solution exists. In this paper, we don’t emphasis the choice of objective functions and optimal
solutions. Instead, we focus on formalizing a flexible yet practical solution space, so that
a potential candidate solution will not be missed because of the limitation in reservation
framework flexibility.

3 Flexible reservation framework

3.1 System model

We model grid networks as a set of resources interconnected by wide area network. The under-
lying communication infrastructure of grid networks is a complex interconnection of enterprize
domains and public networks that exhibit potential bottlenecks and varying performance char-
acteristics. For simplicity, we assume a centralized scheduler manages reservation state vector
L for all links in the system. We will discuss the distributed implementation in Section 6.

We define a request as a 6-tuple:

r = (sr, dr, vr, ar, dr, R
max
r) (1)

As suggested by name, source sr requests to transfer bulk data of volume vr to destination
dr. Request arrives at time ar and transfer is ready to begin immediately. Transfer should
complete before deadline dr, and Rmax

r is the maximum rate that request r can support,
constrainted by either link capacity of end nodes, application or transport protocol.

A bandwidth scheduler makes decision for request based on system state L(t) and request
specification r. As shown in Figure 3, a scheduler first calculates constraint function Cr(t)
for the reservation, considering both request specification and current system state L(t).
Calculation of constraint is a min operation over time-rate function which will be defined
below. Constraint function Cr(t) then is used to make reservation decision Dr(t). Dr(t) is
the output of scheduler, and is also used internally to update link state L(t).

3.2 Time-rate function algebra

We denote the set of all time-rate functions as F , and we define Min-Plus algebra over F :

Flexible bandwidth reservation for bulk transfer 5

Request r

Plus

func
Min

System

State L(t)

Decision

D
r
(t)

Constraint

C
r
(t)

Figure 3: Reservation schemes algorithm framework

(f1 min f2)(t) = min(f1(t), f2(t)) (2)

(f1 + f2)(t) = f1(t) + f2(t) (3)

While Min-algebra is a semigroup, Plus-algebra is a group with identity element f0(t) =
0,∀t ∈ (−∞,∞). We define ≤ relation over F as:

f1 ≤ f2, iff f1(t) ≤ f2(t),∀t ∈ (−∞,∞) (4)

Note that F with ≤ is a partial order set not satisfying comparability condition.
ar, dr, R

max
r in request specification determines a time-rate function, which can be viewed

as the original constraint function imposed by request specification:

Crequest
r (t) = Rmax

r h(t − ar) − Rmax
r h(t − dr) (5)

where:

h(t) =

{

1 t ∈ [0,∞)
0 otherwise

(6)

is the Heaviside step function (unistep function). Translation of h(t) is indicator function for
half-open interval.

The constraint calculation stage shown in Figure 3 is to consider both Crequest
r (t) and

system reservation state L(t), so that the resulted Cr(t) returns the maximum bandwidth
that can be allocated to request r at time t:

Cr(t) = (Crequest
r min L1 min L2 min . . . min Lk)(t) (7)

where we assume links L1, L2, . . . Lk form path from source[r] to dest[r], and Li(t) is the
time-(remained bandwidth) function for link Li. The min operation is illustrated in Figure 4
with two links L1 and L2 in request r’s path:

Reservation decision function Dr(t) returns the reserved data rate for r at time t. If
scheduler rejects the request, no bandwidth will be reserved for the request in the whole time
axis. Thus rejection decision can be represented by f0. Dr(t) satisfies:

Dr(t) ≤ Cr(t) (8)
∫ dr

t=ar

Dr(t)dt = vr, if Dr 6= f0 (9)

6 B. Chen , P. Primet

a

r
 time

rate
 L

1

(t)

L

2

(t)

C

r

request
(t)

C

r

(t)

0

R
max

r

d

r

Figure 4: Calculate request’s constraint function Cr(t)

In the system state update stage shown in Figure 3:

Li(t) = (Li − Dr)(t),∀Li ∈ path of r (10)

At time τ , an empty link Li without any reservation has Li(t) = B[Li]h(t − τ), where
B[Li] is the total capacity of link Li.

3.3 Step time-rate functions

General time-rate functions are not suitable for implementation, thus we restrict our discussion
to a special class of time-rate functions, i.e., the step time-rate functions, which are easy to
be stored and processed.

Formally, a function is called step function if it can be written as a finite linear combi-
nation of indicator functions of half-open intervals. Informally speaking, a step function is a
piecewise constant function having only finitely many pieces. A time step function f(t) can
be represented as:

f(t) = a1h(t − b1) + a2h(t − b2) + · · · + anh(t − bn) (11)

We denote the set of all step functions as Fs ⊂ F . A step function with n non-continuous

points can be uniquely represented by a 2 × n matrix

[

a1 . . . an

b1 . . . bn

]

with elements in first

row non-zero, and elements in second row strictly increasing. All step functions with n non-
continuous points form n-step function set Fn

s ⊂ Fs. F
0
s = {f0}. F1

s = {all translations of h(t)}.
All non-regressive linear combination of two different elements in F1

s form F2
s . For f2 ∈ F2

s , if
a1 +a2 = 0, f2 and f0 encompass a rectangular in time-rate coordinate. All such f2 form the
rectangular function set Frec. We also define general n-step function set Gn = F0∪F1 . . .Fn.

Following discussions restrict reservation schemes to make decision in step function form,
i.e., Dr ∈ Fs . For fn(t) ∈ Fn

s and fm(t) ∈ Fm
s , it is easy to show that (fn min fm)(t) ∈

Fn+m
s , and (fn + fm)(t) ∈ Fn+m

s , i.e., both min and plus operations are closed in Fs,
thus constraint function Cr(t) and time-(remained bandwidth) function Li(t) are also step
functions. The computation and space complexity for min, plus and order operations over
function fn(t) and fm(t) are O(n + m). We discuss calculation of Dr(t) based on Cr(t) and
vr in next section.

Flexible bandwidth reservation for bulk transfer 7

Schemes accept decision flexibility
FixTime-FixRate Dr(t) = Cr(t) 0
FixTime-FlexRate Dr(t) ∈ Frec with

term h(t − ar)
1

FlexTime-FlexRate Dr(t) ∈ Frec 2
Multi-Interval Dr(t) ∈ Gn 2n-2

Table 1: Reservation schemes

4 Reservation schemes

4.1 Schemes taxonomy and heuristics

Existing RSVP-type reservation schemes only supports reservation of a fixed bandwidth from
a fixed start time, which we name as FixTime-FixRate schemes. Slightly more general are
FixTime-FlexRate schemes, which still enforces a fixed start time, but allow scheduler to flex-
ibly determine the reservation bandwidth. To further generalize the idea, we have FlexTime-
FlexRate schemes, which allows reservation starts from any time in [ar, dr] and reserves any
rate (but need to be constant) continuously until transfer completes. Finally, by allowing reser-
vation comprise of multiple (n ≤ 1) sub-intervals with different reservation bandwidths, we
have Multi-Interval schemes. Regarding their solution space, FixTime-FixRate ⊂ FixTime-
FlexRate ⊂ FlexTime-FlexRate ⊂ MultiRate. Their different flexibilities are summarized in
Table 1.

The flexibility makes it hard to choose a suitable decision Dr(t) if multiple candidates
are available. As mentioned in Section 2, there are multiple performance criteria, increasing
accept probability, minimizing flow time, and ensuring fairness among flows, just name a few.
In fact, even for RSVP-type reservation scheme with only two choices (reject, or accept the
request with fixed rate at fixed start time), it is hard to make an optimal selection as proved
in [12]. Instead, we use simple heuristics to select representative scheme from each family for
performance comparison. A threshold-based rate-tuning heuristic is used to choose candidate
from FixTime-FlexRate schemes which will be detailed in Section 5. Simple Greedy-Accept
and Minimize-FlowTime heuristics are used to choose candidate from FlexTime-FlexRate
family and Multi-Interval family.

Greedy-Accept means: If there is at least one feasible solution to accept a coming request,
the request should not be rejected. Greedily accept new request is not optimal in an off-
line sense, because sometimes it maybe better to Early-Reject a request even when feasible
solution exists, so that capacity can be kept for more rewarded-requests which arrive later.
Despite this, it is an interesting heuristic to study, because:

• Greedy-Accept heuristic can be used orthogonally with trunk reservation to mimic the
behavior of Early-Reject ;

• Greedy-Accept introduces a strict priority based on arriving order, which by itself is a
reasonable assignment philosophy.

Minimize-FlowTime means: If there are multiple feasible solutions in the solution space,
the one with minimal completion time will be chosen. Besides the straightforward benefit on
minimizing flow time, this philosophy also helps maximize the utilization of resource in near

8 B. Chen , P. Primet

future, which otherwise is more likely to be wasted if no new request comes soon. However,
since the near future is more densely packed with reservation, assuming all requests have
identical Rexp, then a small volume request with short life span is easier to get rejected
than a large volume request with long life span. This unfairness can also be addressed by
volume-based trunk reservation.

4.2 FixTime-FixRate schemes

In FixTime-FixRate schemes, request specifies its desired reservation rate. Scheduler can only
decide to accept or reject. As shown in [1], reducing reservation rate increases system’s Erlang
capacity. Thus a candidate FixTime-FixRate scheme to maximize accept rate is to enforce:

Dr =

{

Rmin
r (h(t − ar) − h(t − dr)) if Rmin

r ≤ Cr(ar)
f0 otherwise

(12)

Here Rmin
r = vr

dr−ar

satisfy Equation (9). In this scheme, every accepted request completes
transfer exactly at its deadline, if a dull transfer protocol is used. This is the reservation
scheme used in Figure 1. Notice that for FixTime schemes without advance reservation,
Equation (8) is simplified to consider constraint function Cr(t)’s value at ar only, because:

• FixTime schemes’ reservation is enforced to begin from ar;

• Under FixTime schemes without advance researvation, time-(remained capacity) func-
tion Li(t) for any link Li is non-decreasing along time axis.

4.3 FixTime-FlexRate schemes

FixTime-FlexRate schemes still enforce transfer start at ar, thus Dr(t) ∈ Frec must have term
h(t − ar). Compared to FixTime-FixRate schemes, FixTime-FlexRate schemes can flexibly
choose the rate parameter Rr in Dr(t). FixTime-FlexRate schemes allocate a single rate Rr

for accepted request r from its arrival time ar to its completion time ar + vr

Rr

:

Dr(t) = Rr(h(t − ar) − h(t − ar −
vr

Rr

)) (13)

The second term above is calculated using Equation (9). While Equation (8) is simplified
as: ar + vr

Rr

≤ dr thus Rr ≥ vr

dr−ar

, and Rr ≤ Cr(ar) similar to FixTime-FixRate schemes.

4.4 FlexTime-FlexRate schemes

FlexTime-FlexRate schemes relax the fix start time constraint. Thus, Decision Function
Dr(t) of FlexTime-FlexRate schemes can be any rectangular function satisfying Equation (8)
and (9). FlexTime-FlexRate schemes allocate a single rate Rr in interval [tstart

r , tstart
r + vr

Rr

] ⊆

[ar, dr]. The Dr can be fully characterizes by a pair (tstart
r , Rr). Completion time is calculated

using Equation (9).

To simplify Equation (8), we define constraint rectangular function set Fconstraint
rec and

Pareto optimal rectangular function set FPareto
rec for constraint function Cr(t):

Fconstraint
rec = {f(t)|f(t) ∈ Frec and f(t) ≤ Cr(t)} (14)

Flexible bandwidth reservation for bulk transfer 9

FPareto
rec = {f(t)|f(t) ∈ F constraint

rec and

g(t) ∈ Fconstraint
rec , g(t) > f(t)} (15)

Pareto optimal rectangular function set of a n-step constraint function Cr(t) can be cal-
culated in O(n2) as illustrated in Figure 5, FPareto

rec contains O(n2) elements.

Left

1

Left

2

Left

3

Right

11

Right

12

Right

21

Right

31

time

Rate

C

r

(t)

Rectangle

Side

Diagonal

a

r

d

r

Figure 5: Pareto Optimal Rectangular function set

Apply Greedy-Accept and Minimize-FlowTime heuristics here: a request r is rejected,
if and only if there is no f(t) ∈ FPareto

rec with integration no less than vr; otherwise, all
Pareto optimal rectanglar functions with large enough integration are checked to identify
the one providing minimum flow time. Given a Pareto optimal rectangular function f(t) =
a1(h− t1)− a1(h− t2), the minimum flow time it can provide is t1 + vr

a1
. The implementation

of this scheme is detailed in Table 2.

4.5 Multi-Interval schemes

Compared to all above schemes, reservation decision in Multi-Interval schemes can be com-
posed of multiple intervals with different reservation rates. Note that Multi-Interval schemes
are different from preemptive schemes. Although multiple rates can be used in Multi-Interval
schemes, and flows are probably scheduled to transfer in two discontinuous intervals, this
decision is determined at the moment the request arrives, and is not changed (preempted)
after that.

time

rate

v

r

C

r

(t)

a

r

d

r

Figure 6: Multi-Interval schemes

Apply Greedy-Accept and Minimize-FlowTime heuristics here, if integration of Cr(t) over

10 B. Chen , P. Primet

struct time-rate{
double time;
double rate;
boolean unVisited = true;

};

Input: 6-tuple representation of request r and its constraint function Cr(t), which is
a n-step function represented by a time-rate vector v. For i∈ [0, . . . , n − 1]:

v[i].time is the (i + 1)th noncontinuous points of Cr(t),
v[i].rate = Cr(v[i].time).

Output: decision d in a time-rate structure.

int nextIncrease(int i){
for(i++; i <= n; i++)

if(v[i-1] < v[i])
break;

return i;
}

int nextDecrease(int i){
if(v[i].unVisited){

v[i].unVisited = false;
double r = v[i].rate;
for(i++; i < n; i++)

if(r > v[i].rate)
break;

return i;
}
else

return n;
}

struct time-rate reservation(request r, struct time-rate v[]){
struct time-rate d;
d.time = r.deadline;
d.rate = 0;
for(int left = 0; left < n-1 && v[left].rate > 0 && v[left].time < d.time; left =

nextIncrease(left)){
double resv-rate = v[left].rate;
for(int right = nextDecrease(left); right < n; right = nextDecrease(right)){

if(v[left].time + r.volume / resv-rate < d.time){
d.time = v[left].time + r.volume / resv-rate;
d.rate = resv-rate;
break;

}
resv-rate = v[right].rate;

}
}
if(d.rate > 0) d.time − = r.volume / d.rate;
return d;

}

Table 2: Greedy-Accept Minimize-FlowTime FlexTime-FlexRate schemes

Flexible bandwidth reservation for bulk transfer 11

time axis is larger than vr:

Dr(t) =

{

Cr(t) t ≤ τ
0 t > τ

(16)

where time τ satisfies:
∫ τ
t=ar

Cr(t)dt = vr. Dr(t) = f0 if no such τ exists. As shown in Figure
6, when Cr(t) ∈ Fn

s is a n-step function, computational complexity of MR-MaxPack-MinDelay
scheme is O(n), and Dr(t) ∈ Gn

s .
Sometimes it is useful to enforce Dr(t) ∈ Gn

s for a constant n. For example, FlexTime-
FlexRate schemes are subset of Multi-Interval schemes enforcing Dr(t) ∈ G2

s . If reservation
decision is allowed to be composed of at most two adjecent subintervals with different rates,
it can be modeled as subset of Multi-Interval schemes enforcing Dr(t) ∈ G3

s .

5 Performance evaluation

5.1 Simulation setup

We use simulation to demonstrate the potential performance gain from the increasing flexibil-
ity. We consider the performance of both blocking probability and mean flow time for following
schemes:

• FixTime-FixRate-Rmax scheme is a FixTime-FixRate scheme with reservation rate of
Rmax;

• FixTime-FixRate-Rmin scheme is a FixTime-FixRate scheme with reservation rate of
Rmin;

• Threshold-FixTime-FlexRate scheme is a simple FixTime-FlexRate scheme which re-
serves Rmax when the minimum unreserved bandwidth among all links along the path
is above a threshold (set as 20% of link capacity in this simulation), and reservates Rmin

otherwise;

• Greedy-Accept and Minimize-FlowTime heuristic in the FlexTime-FlexRate family;

• Greedy-Accept and Minimize-FlowTime heuristic in the Multi-Interval family.

For all above settings, dull transport protocol is assumed, which uses and only uses reserved
bandwidth.

To simplify the discussion on the potential gain of increasing flexibility, we ideally assume
that bulk data transfer requests arrive online according to a Poisson process with parameter
λ, all requests have the same volume v, Rmax = C/10 and Rmin = C/20, where C is the
link capacity. Observation in this simple setting also helps explain the system behavior in
more general settings, which may have different arrival process, volume distribution, Rmax

and Rmin.

5.2 Single Link setting

We first consider the case of single bottleneck link. Performance of above schemes is plotted
under increasing load.

Figure 7 shows that in terms of blocking probability, FixTime-FixRate-Rmin scheme per-
forms better than FixTime-FixRate-Rmax scheme. When reservation rate decreases, two

12 B. Chen , P. Primet

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

load

Rmax
Rmin

threshold 10%
FlexTime-FlexRate

Multi-Interval
Rmin + Ideal Transport Protocol

Figure 7: Blocking probability of reservation schemes

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ea

n
flo

w
 ti

m
e

load

Rmax
Rmin

threshold 10%
FlexTime-FlexRate

Multi-Interval
Rmin + Ideal Transport Protocol

Figure 8: Mean flow time of reservation schemes

conflicting effects happen: On one hand, more requests can be accepted simultaneously; on
the other hand, each request takes a longer time to finish. [1] shows that decreasing reser-
vation rates increase system’s Erlang capacity, which is verified in this Figure. However, as
FixTime-FixRate-Rmin always conservatively reserve Rmin, its request flow time is always
vr/Rmin. Contrarily, flow time of FixTime-FixRate-Rmin scheme is aways vr/Rmax, which is
only half of vr/Rmin under our simulation setting, as shown in Figure 8.

Exploiting the flexibility of selecting reservation rates, Threshold-FixTime-FlexRate scheme
strikes a good balance between reducing blocking probability and minimizing mean flow time.
When load is low, a new request reserves full rate Rmax, so that its flow time is mini-
mized. Although the new request agressively seizes bandwidth, the threshold statistically
ensures that there are still abundant bandwidth left. Thus the probability is low that in
a near future coming flows are blocked due to this aggressive request. Instead, the new
request exploits the resource which will otherwise be wasted, and also it is able to release
network resource more quickly, which benefits the system at a middle-range time scale. In
the lightly-loaded region Threshold-FixTime-FlexRate scheme performs similar to FixTime-

Flexible bandwidth reservation for bulk transfer 13

FixRate-Rmax scheme. However when load increases, links are often run in saturated state,
a new request has higher probability to find remained capacity below threshold. Thus in
this region, Threshold-FixTime-FlexRate scheme automatically adapts its behavior to per-
form similar to FixTime-FixRate-Rmin. From the two figures, it is observed that Threshold-
FixTime-FlexRate scheme has a much lower blocking probability than FixTime-FixRate-Rmax

scheme, while has a much lower mean flow time than FixTime-FixRate-Rmin scheme.

In this single link setting, behavior of selected FlexTime-FlexRate and Multi-Interval
schemes are identical. This is an artificial result of the uniform volume and Rmax setting, as
well as the integer value of C/Rmax. We also conduct extensive simulations over more general
volume, Rmax and Rmin distribution over a single link, and results also show that the perfor-
mance of FlexTime-FlexRate and Multi-Interval remains close. Both FlexTime-FlexRate and
Multi-Interval schemes perform much better than above three schemes in both blocking rate
and flow time.

A remarkable observation is that, FlexTime-FlexRate and Multi-Interval schemes with
dull transport protocol even outperform the FixTime-FixRate-Rmin scheme equipped with
ideal transport protocol, in terms of both blocking rate and flow time (see the Rmin + Ideal
Transport Protocol curve in both Figure. In addition, the small flow time of Rmin + Ideal
Transport Protocol is achieved opportunistically by ideal transport protocol, which can not be
guaranteed at the moment when the reservation is made (in contrast, FixTime-FixRate-Rmin

scheme can only guarantee that accepted requests are completed before deadline). Thus other
co-allocated resources can not exploit the small flow time to increase their scheduling efficiency.
On the other hand, the request flow time is known and guaranteed in reservation schemes
at the moment when request is processed. This predictability can benefit other co-allocated
resources. This result strongly motivates the study of advanced reservation schemes.

5.3 Grid network setting

We also evaluate different schemes’ performance in a network setting. We use the topology as
shown in Figure 9. n ingress sites and n egress sites are interconnected by over-provisioned
core networks. Each site composed of a cluster of grid nodes, and is connected to core network
with a link of capacity C. The maximal aggregate bandwidth demands from the culster may
exceed C, making these links potential bottlenecks. For simplicity, we assume that the core
network is over-provisioned, like the visioned Grid5000 networks in France [5]. Core network
can be provisioned, for example, using hose model [6]. When generating request, its source
is randomly selected from ingress sites, then a random destination is selected independently
among egress sites. All sites have the same probability to be chosen.

Figure 10 and Figure 11 plot the performance when there are 10 ingress nodes and 10
egress nodes in the network. Compared to Figure 7 and Figure 8, three phenomenons are
observed:

• Overall, performance of schemes degrades slightly;

• FlexTime-FlexRate scheme’s blocking probability shows a big increase, and its perfor-
mance is no longer close to Multi-Interval scheme;

• Multi-Interval scheme’s mean flow time performance deteriorates obviously.

14 B. Chen , P. Primet

Ingress sites I

Egress sites E

Over provisioned

Core networks

Bottlenecks

r

3

r

2

r

1

Figure 9: Topology

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

load

Rmax
Rmin

threshold 10%
FlexTime-FlexRate

Multi-Interval

Figure 10: Blocking probability of reservation schemes

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ea

n
flo

w
 ti

m
e

load

Rmax
Rmin

threshold 10%
FlexTime-FlexRate

Multi-Interval

Figure 11: Mean flow time of reservation schemes

The overall performance degration can be traced to the fact that reservation in a network
need to consider multiple links (both ingress and egress link in this topology). A reservation

Flexible bandwidth reservation for bulk transfer 15

request is blocked or its flow time becomes longer when any one of them is congested. If
we assume that congestion states in two links are independently and identically distributed,
with mean congestion probability p, the probability that there is at least one of them being
congested is 2p − p2 > p. This intuitively explains the overall degration of performance.

The performance degration of FlexTime-FlexRate scheme’s blocking probability and Multi-
Interval scheme’s mean flow time can be explained using a simple example in Figure 12.

Ingress I
1

Ingress I
2

Egress E
1

Egress E
2

r
1

r
1

r
2
 r
2

r
3

r
3

Figure 12: A fragmentation example

In this example, there are two ingress links and two egress links interconnected by over-
provisioned core networks. Existing request r1 reserves bandwidth in I1 and E1, while existing
request r2 reserves bandwidth in I2 and E2 as shown in the Figure. At current system time,
a new request r3 arrives at I1 with destination E2. For the three FixTime schemes (FixTime-
FixRate-Rmax scheme, FixTime-FixRate-Rmin scheme and Threshold-FixTime-FlexRate scheme),
they are not allowed to accept r3 since bandwidth is fully reserved for the current time. This
prevents fragmentation as shown in the Figure when both FlexTime-FlexRate scheme and
Multi-Interval scheme exploit their flexibility to accept r3. This time-axis framentation in-
creases FlexTime-FlexRate scheme’s blocking probability, since FlexTime-FlexRate scheme
can only allocate a continuous time interval. On the other hand, blocking rate of Multi-
Interval scheme is not affected as much as FlexTime-FlexRate scheme because Multi-Interval
scheme can make use of multiple (discontinuous) intervals. However Multi-Interval scheme’s
mean flow time is affected.

In above examples, Multi-Interval schemes often give the best perfromance. However,
using multiple intervals comes at a cost. Figure 13 shows the increase trend of sub-interval
number when network size is increased. It is shown that this number becomes quite stable
around a small level, when the number of nodes grows larger than the multiplexing level of
a single link, which is C/Rmax. This result holds for different load levels. This observation
shows the feasibility of exploiting Multi-Interval scheme.

6 System architecture

The logic framework shown in Figure 3 corresponds to a centralized scheduler, which may
not be desirable because:

• links may be under control of different authorities;

• when network size grows, the centralized scheduler itself may become a bottleneck;

• Centralized scheduler presents an one-failure-point.

16 B. Chen , P. Primet

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 5 10 15 20 25 30

m
ea

n
nu

m
be

r
of

 s
ub

 in
te

rv
al

s
pe

r
flo

w

number of in(e)gress nodes

load=0.9
load=0.8
load=0.7

Figure 13: Mean number of intervals per flow in Multi-Interval scheme

source

Scheduler

L
1

....

Decision

D
r
(t)

System

State L
1
(t)

Plus

Request
 Request
Min

Reply
 Decision

D
r
(t)

System

State L
1
(t)

Plus

Constraint

C
r
(t)

Min

func

dest

Scheduler

L
2

Scheduler

L
n

Figure 14: Distributed architecture

Thus we present a simple distributed architecutre as shown in Figure 14. In this architec-
ture, every bottleneck link is associated with a local bandwidth scheduler, which maintains
the local reservation state. Request generated from the source first arrives at link L1, whose
scheduler uses min operation to combine its local link state constraint into the request spec-
ification. The updated request specification is forwards to the nexthop. In this way, the
constraint function is updated hop by hop: Ci

r(t) = (Li min Ci−1
r)(t). When request reaches

the last hop Ln, the constraint function Cr(t) is completely constructed, and the scheduler in
Ln makes decision Dr(t) based on Cr(t). Dr(t) is sent to destination, which may issue a con-
firmation. Dr(t) is then sent through the same path back to source. Dr(t) is kept unchanged
along the path, and each hop uses Dr(t) to update its local reservation state Ln.

Single out a local scheduler, its logic can still be interpreted using the logic framework of
Figure 3. The only difference is that for schedulers not in the last hop, their “func” operation
is not a local operation but depends recursively on the next hop.

Flexible bandwidth reservation for bulk transfer 17

7 Related works

Admission control and bandwidth reservation have been studied extensively in multimedia
networking. A real-time flow normally requests a specified value of bandwidth. Existing
reservation schemes such as RSVP [3] attempt to reserve the specified bandwidth immediately
when request arrives. Reservation remains in effect for an indefinite duration until explicit
“Teardown” signal is issued or soft state expires. No time-indexed reservation state is kept.

Time-indexed reservation is needed when considering advance reservation of bandwidth
[15], which allows requesting bandwidth before actual transfer is ready to happen. For exam-
ple, a scheduled tele-conference may reserve bandwidth for a specified future time interval.
[4] shows that advance reservation causes bandwidth fragmentation in time axis, which may
significantly reduce accept probability of requests arriving later. To address the problem,
they propose the concept of malleable reservation, which defines advance reservation request
with flexible start time and rate.

Optimal control and their complexity is studied for different levels of flexibility. [2] studies
call admission control in a resource-sharing system, i.e. how to use the reject flexibility
regarding different classes of traffic. Optimal policy structure is identified for some special
case. [12] proved that in a network with multiple ingress and egress sites, off-line optimization
of accept rate for uniform-volume uniform-rate requests with randomly specified life span is
NP-complete. They also consider flexible tuning of reservation rate. [1] studies the increase of
Erlang capacity of a system by decreasing the service rate. In its essential, such service rate
scaling is identical to the capacity scaling, which is studied by [10] and [9] to approximate
large loss networks.

There is also a large literature of online job scheduling with deadline, for example, [8], [11],
[14]. A job monopolizes processor for the time it’s being scheduled, which maps exactly to
packet level scheduling, while in flow level, we must consider multiple flows share bandwidth
concurrently, as represented by Rmax.

8 Conclusion

In this paper, we study the bandwidth reservation problem for bulk data transfers in grid
networks. We model grid networks as multiple sites interconnected by wide area networks
with potential bottlenecks. Data transfer requests arrive online with specified volumes and
deadlines, which allow more flexibility in reservation schemes design. We formalize a general
non-preemptive reservation framework, and use simulation to examine the impact of feasibility
over performance. We also propose a simple distributed architecture for the given framework.
The increased flexibility can potentially improve system performance, but the enlarged design
flexibility also raises new challenges to identify appropriate reservation schemes inside the
solution space.

References

[1] E. Altman. Capacity of multi-service cellular networks with transmission-rate control:
A queueing analysis. In MOBICOM, September 2002.

18 B. Chen , P. Primet

[2] E. Altman, T. Jimenez, and G. Koole. On optimal call admission control in a resource-
sharing system. IEEE Transactions on Communications, 49(9):1659–1668, September
2001.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S.Jamin. Resource reservation protocol
(rsvp), September 1997.

[4] L. Burchard, H. Heiss, and C. De Rose. Performance issues of bandwidth reservations
for grid computing. In CAHPC, pages 82–90, November 2003.

[5] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou, S. Lanteri, N. Melab,
R. namyst, P. Primet, O. Richard, E. Caron, J. Leduc, and G. Mornet. Grid’5000:
A large scale, reconfigurable, controlable and monitorable grid platform. In the 6th
IEEE/ACM International Workshop on Grid Computing, Grid’2005, November 2005.

[6] N. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramakrishnan, and J. van der Merwe.
A flexible model for resource management in virtual private networks. In SIGCOMM,
pages 95–108, 1999.

[7] I. Foster. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
2004.

[8] M. Goldwasser. Patience is a virtue: the effect of slack on competitiveness for admission
control. In SODA, pages 396–405, January 1999.

[9] P. Hunt and T. Kurtz. Large loss systems. Stochastic Processes and their Applications,
53:363–378, October 1994.

[10] F. Kelly. Loss networks. The Annals of Applied Probability, 1(3):319–378, 1991.

[11] F. Li, J. Sethuraman, and C. Stein. An optimal online algorithm for packet scheduling
with agreeable deadlines. In SODA, pages 801–802, January 2005.

[12] L. Marchal, P Vicat-Blanc Primet, Y. Robert, and J. Zeng. Optimizing network resource
sharing in grids. In Globecom, volume 2, pages 835–840. IEEE Computer Society Press,
November 2005.

[13] J. Roberts. A survey on statistical bandwidth sharing. Computer Networks, 45(3):319–
332, June 2004.

[14] B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times and
deadlines. SIAM Jnl on Computing, 12:294–299, May 1983.

[15] D. Wischik and A. Greenberg. Admission control for booking ahead shared resources. In
INFOCOM, pages 873–882, April 1998.

	1 Introduction
	2 Motivation
	3 Flexible reservation framework
	3.1 System model
	3.2 Time-rate function algebra
	3.3 Step time-rate functions

	4 Reservation schemes
	4.1 Schemes taxonomy and heuristics
	4.2 FixTime-FixRate schemes
	4.3 FixTime-FlexRate schemes
	4.4 FlexTime-FlexRate schemes
	4.5 Multi-Interval schemes

	5 Performance evaluation
	5.1 Simulation setup
	5.2 Single Link setting
	5.3 Grid network setting

	6 System architecture
	7 Related works
	8 Conclusion

