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On the Complexity of Register Coalescing

Florent Bouchez, Alain Darte, and Fabrice Rastello

Abstract
Due to the increasing latencies of memory accesses and recent developments
on the SSA form, it has become important to revisit the spilling (load/store
insertion) and register coalescing (removal of move instructions) problems in
order to develop more aggressive register allocation strategies. This report is
devoted to the complexity of register coalescing. We distinguish several op-
timizations that occur in most coalescing heuristics: a) aggressive coalescing
removes as many moves as possible, regardless of the colorability of the re-
sulting interference graph; b) conservative coalescing removes as many moves
as possible while keeping the colorability of the graph; c) incremental conser-
vative coalescing removes one particular move while keeping the colorability
of the graph; d) optimistic coalescing coalesces all moves (when possible),
aggressively, and gives up about as few moves as possible (de-coalescing) so
that the graph becomes colorable. We (almost) completely classify the NP-
completeness of these problems, discussing also on the structure of the interfer-
ence graph (arbitrary, chordal, or k-colorable in a greedy fashion). We believe
that such a study is a necessary step for designing new coalescing strategies.

Keywords: Register allocation, register coalescing, SSA form, chordal graph, NP-completeness,
(greedy)-k-colorable graph.

Résumé
L’augmentation croissante de la durée des accès à la mémoire et des développe-
ments récents liés à la forme SSA poussent à revisiter les problèmes de
« spilling » (placement des loads et stores) et de « coalescing » (suppression de
moves) pour développer de nouvelles stratégies d’allocation de registres plus
agressives. Ce rapport est consacré à la complexité des problèmes de coalesc-
ing. Nous distinguons plusieurs optimisations qui apparaissent dans les heuris-
tiques de coalescing : a) le coalescing agressif supprime autant de moves que
possible, quelle que soit la colorabilité du graphe d’interférences résultant ; b)
le coalescing conservatif supprime autant de moves que possible tout en préser-
vant la colorabilité du graphe ; c) le coalescing incrémental supprime un move
particulier en conservant la colorabilité du graphe ; d) le coalescing optimiste
supprime tous les moves (quand c’est possible), de façon agressive, et en ré-
introduit le plus petit nombre pour que le graphe redevienne colorable. Nous
classifions (presque) complètement ces problèmes en termes de complexité,
discutant également de la structure du graphe d’interférence (quelconque, tri-
angulé, k-colorable de façon gloutonne). Nous pensons qu’une telle étude est
un pas nécessaire pour concevoir de nouvelles stratégies de coalescing.

Mots-clés: Allocation de registres, “coalescing”, forme SSA, graphe triangulé, NP-complétude,
graphe (glouton)-k-colorable.
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Abstract

Due to the increasing latencies of memory accesses and recent developments on the
SSA form, it has become important to revisit the spilling (load/store insertion) and regis-
ter coalescing (removal of move instructions) problems in order to develop more aggressive
register allocation strategies. This report is devoted to the complexity of register coalescing.
We distinguish several optimizations that occur in most coalescing heuristics: a) aggres-
sive coalescing removes as many moves as possible, regardless of the colorability of the
resulting interference graph; b) conservative coalescing removes as many moves as possible
while keeping the colorability of the graph; c) incremental conservative coalescing removes
one particular move while keeping the colorability of the graph; d) optimistic coalescing
coalesces all moves (when possible), aggressively, and gives up about as few moves as pos-
sible (de-coalescing) so that the graph becomes colorable. We (almost) completely classify
the NP-completeness of these problems, discussing also on the structure of the interference
graph (arbitrary, chordal, or k-colorable in a greedy fashion). We believe that such a study is
a necessary step for designing new coalescing strategies.

1 Introduction

Register allocation is one of the most studied problem in compilation. Its goal is to find a way
to map the temporary variables used in a program into physical memory locations (either main
memory or machine registers). The complexity of register allocation (for a fixed schedule) comes
from two main optimizations, spilling and coalescing. Spilling decides which variables should
be stored in memory so as make register assignment possible while minimizing the cost of stores
and loads. Register coalescing reduces the cost of moves between registers as much as possible.
This report is devoted to the study of coalescing problems.

Classical approaches for register allocation integrate spilling, coalescing, and coloring (the
final assignment of variables to registers) in the same framework. This is for example the case
in the iterated register coalescing approach proposed by Appel and George [19], a modified
version of the original allocation scheme of Chaitin [11] and of improvements due to Briggs
et al. [6]. The problem is modeled with the interference graph (two variables interfere if they
cannot share the same register, classically when they are simultaneously live at some program
point) and a greedy approach is used to try to color the graph with k colors (when k registers are
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available), with a combination of the following mechanisms: a) a vertex/variable with at most
(k − 1) neighbors can be removed from the graph since it will be easy to color afterwards; b)
removing a move instruction (coalescing) can be done by merging the two vertices involved in
the move; such a coalescing is usually performed in a conservative way, i.e., with simple rules
to guarantee that the graph remains k-colorable; c) when all vertices have at least k neighbors,
some vertex is removed as a potential spill. The vertices are colored in the order opposite to
their removal. Each vertex is given a color not used by its already-colored neighbors; if no color
is available, an actual spill is performed, i.e., loads and stores are inserted. In this case, the
interference graph is rebuilt and the coloring procedure is restarted.

Such an approach gives fairly good results. But the main reason for its success is certainly its
simplicity both from a conceptual and an implementation point of view. Weights can be easily
added to moves and to vertices to take into account different dynamic execution frequencies of
basic blocks. Physical registers can be added as specific vertices. Some smarter coloring schemes
favoring more coalescing, such as biased coloring, can be used. However, this approach has also
several weaknesses both for spilling and coalescing. For spilling, once a vertex is removed as an
actual spill, no clearly-specified approach (except a “spill-everywhere” approach) is available to
decide where to place loads and stores. Even worse, it can happen that some spilling is done even
if this actually does not help to make the graph k-colorable. For coalescing, although simple and
appealing, conservative coalescing is sometimes not aggressive enough and too many moves may
remain in the code. Finally, even if “splitting” (adding register-to-register moves) is sometimes
considered in such a framework, it is very hard to control the interplay between spilling and
splitting/coalescing. But, with the increasing cost of memory accesses on most architectures,
it is important today to find mechanisms to hide memory latencies and, in particular, to find
heuristics that spill less, possibly at the price of additional register-to-register moves.

Several variants have been proposed to enable more coalescing in the previous framework.
Aggressive coalescing [5] merges move-related vertices, regardless of the k-colorability of the
graph after the merge. To make the graph k-colorable afterwards, one can then “de-coalesce”
some of the previously-merged vertices until the graph becomes easy to color with k colors.
Such an approach is called optimistic coalescing [27, 28]. One can also merge vertices even
if they are not related to a move because this can sometimes make a non k-colorable graph k-
colorable [35, 34].

New coalescing problems have also appeared due to recent developments on the (strict) SSA
form (static single assignment form) [15]. Today, most compilers go through this intermediate
code representation, which makes many code optimizations simpler. In strict SSA, each variable
is defined textually only once and is alive only along the dominance tree associated to the control-
flow graph. Some so-called φ functions are used to transfer values along the control flow not
covered by the dominance tree. These φ functions are not machine code and an out-of-SSA phase
is necessary, which typically introduces many register-to-register moves. Several techniques are
available to go out of SSA [15, 7, 24, 33, 9, 32], some with the objective of reducing the number
of moves. This problem is a form of aggressive coalescing as no register constraint is taken into
account in this phase, which is done before register allocation. With a particular interpretation
of φ functions, this is an aggressive coalescing problem but on special graphs (interference graphs
of SSA programs are chordal).
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Our experiments with classical out-of-SSA approaches revealed many bad situations where a
too aggressive coalescing can increase the number of spills in the subsequent register allocation
phase (unless some splitting is done to undo the coalescing, but this is difficult to control). In
other words, going out of SSA should be done at the same time as register allocation, or at
least with a constraint on the number of registers. On the other hand, a standard conservative
coalescing approach is not enough to coalesce most copies that arise in the out-of-SSA phase.
Therefore, such coalescing problems need to be revisited too.

Finally, the fact that the interference graph of a strict SSA code is chordal, therefore easy
to color, has also led to the developments of new heuristics for register allocation, based on
two separate phases, one for spilling and one for coalescing. The first phase of spilling decides
which values are spilled and where, so as to get to a code with Maxlive ≤ k where Maxlive
is the maximal number of variables simultaneously live 1. The second phase of coloring (called
register assignment in [25]) maps variables to registers, possibly removing (i.e., coalescing) move
instructions (also called shuffle code in [26]), but with no additional spill. This is the approach
advocated by Appel and George [2] and, more recently, in [8, 3, 22]. The coalescing phase of
such an approach seems a priori simpler than for Chaitin-like register allocators because the
initial graph is already k-colorable (it can even be chordal); one just wants to coalesce as many
moves as possible so that the graph remains k-colorable (or remains easy to color with k colors).
However, the fact that the first phase of spilling can be much more aggressive (it spills just the
necessary variables, the code may have a very high register pressure, possibly equal to Maxlive
at many program points) makes the coalescing much more difficult and standard conservative
coalescing approaches are not enough. This has led Appel and George to define a “coalescing
challenge” (http://www.cs.princeton.edu/~appel/coalesce).

We believe that these new developments and variants of the coalescing problem motivate the
need for a better study of its complexity, which has not been addressed in details so far. In this re-
port, we distinguish the different coalescing optimizations previously mentioned: a) aggressive
coalescing removes as many moves as possible, regardless of the colorability of the resulting
interference graph; b) conservative coalescing removes as many moves as possible while keep-
ing the colorability of the graph; c) incremental conservative coalescing removes one particular
move while keeping the colorability of the graph; d) optimistic coalescing coalesces all moves
(when possible), aggressively, and gives up about as few moves as possible (de-coalescing) so
that the graph becomes colorable. We (almost) completely classify the complexity of these prob-
lems, considering also the structure of the interference graph (arbitrary, chordal, or k-colorable
greedily). We view such a study as a necessary step for designing new coalescing strategies.

2 Definitions and general properties

Before analyzing the complexity of the different coalescing problems that arise in register allo-
cation heuristics, we need to introduce a few definitions and properties.

1How to color with k colors a code with Maxlive ≤ k is more subtle that this quick explanation. See the
discussions in [22, 30, 4] for more details on the interplay of critical edges, register swaps, color permutations, etc.
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2.1 Interference graph, affinities, and coalescing

The live-range of a variable is the union of all the intervals of the control-flow graph that link the
different definitions of this particular variable to their uses. A variable is said live at a program
point if this point belongs to its live-range. Two variables interfere if they cannot be stored in
the same register. In general, to define the notion of interference, one assumes that different
variables can possibly have different values (i.e., there is no analysis of values) and that, for
each use of a variable, there is a definition of this variable on any control path from the start of
the program to this use (strict program). Then, two variables interfere iff (if and only if) their
live-ranges intersect. Chaitin et al. [10] relaxed the previous interference condition by defining
that two variables interfere iff the live-range of one contains a definition of the other one. For a
strict program, the two definitions are equivalent. Maxlive is defined as the maximum number of
variables simultaneously live at a program point, among all program points of the control flow
graph. For a strict program, Maxlive is a lower bound on the number of registers required to
store all variables of the program.

The interference graph G = (V, E) is an undirected graph where each vertex v ∈ V corre-
sponds to a variable of the program. There is an interference (u, v) ∈ E iff u and v interfere.
Coloring the interference graph means assigning a color to each vertex so that vertices connected
by an edge have different colors. This color is then interpreted as a register name. Notice that, in
the interference graph model, each variable/name is considered as an atomic object, i.e., it will
be placed in the same register all along its live-range. In other words, borrowing the subtle title
of Cytron and Ferrante’s paper [14], “what’s in a name” has already been decided and no more
live-range splitting [12] will be done.

In addition to interferences (usually represented as solid lines), each copy instruction between
two variables u and v is represented by an affinity (u, v) (usually represented as a dotted line).
Assigning u and v to the same register will save one register-to-register move. Affinities can be
weighted to represent the dynamic execution count of the copy instruction. In this model, the goal
is to remove copy instructions but not to decide where they should be placed (again, a possible
live-range splitting has already decided the placement of moves). A coalescing of G = (V, E)
with affinities A is a function f such that f (u) , f (v) whenever (u, v) ∈ E; an affinity (u, v) ∈ A
is coalesced if f (u) = f (v). A coalescing can be viewed as a coloring, with no constraint on the
number of colors. The coalesced graph G f = (V f , E f ) is the graph obtained from G by merging
all vertices with same value by f . More formally, if f takes n values, f defines a partition of V
into n subsets (S i)1≤i≤n where u and v are in the same subset iff f (u) = f (v). The vertices in V f

are the subsets (S i)1≤i≤n and there is an edge (S i, S j) ∈ E f iff (u, v) ∈ E for some u ∈ S i and
v ∈ S j. The fact that f is a coloring guarantees that G f has no loop (S i, S i).

2.2 Graph structures

Depending on the structure of the control-flow graph from which the interference graph is ex-
tracted and depending on the coloring heuristics used to color the interference graph, we need to
distinguish different graph structures.

Perfect graphs [20] are graphs with some interesting properties for register allocation. In
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particular, they can be colored in polynomial time, which suggests that we can design heuristics
for spilling or coalescing in order to change the interference graph into a perfect graph. For
a graph G, the maximal size of a clique (complete subgraph) is the clique number ω(G). The
minimum number of colors needed to color G is the chromatic number χ(G). Of course, ω(G) ≤
χ(G) because vertices of a clique must have different colors. A graph G is perfect if each induced
subgraph G′ of G (including G itself) is such that χ(G′) = ω(G′). Interval graphs, path graphs,
or chordal graphs are perfect [20].

A graph G is chordal iff any cycle of length at least 4 has a chord. Chordal graphs are of
particular interest for code optimization and, especially, register allocation [8, 3, 29, 22] due to
the following result we recall for completeness.

Theorem 1 Ignoring φ functions, the interference graph G of a strict SSA program is chordal
and ω(G) = Maxlive.

Proof. If one makes the connection between SSA form and graph theory, this property can
be explained briefly as follows. The interference graph of an SSA program is the intersection
graph of a family of subtrees (the live-ranges) of a tree (the dominance tree), which is another
characterization of chordal graphs [20, Thm. 4.8].

One can also give a direct proof using strict SSA properties [22, 3], by noticing that, on
the dominance tree, if two program points p and q dominate a program point r, then either p
dominates q or the converse [9]. If two variables and interfere, their definitions dominate some
program point where they are both live, thus the definition of one dominates the definition of the
other. Now, consider a cycle of length at least 4 in G. One can orient each edge (u, v) of this cycle
from u to v if the definition of u dominates the definition of v. Since the dominance relation is a
partial order, this cannot form a directed cycle, thus there are two edges (u, v) and (v,w), oriented
from u to v and from w to v, i.e., the definitions of u and of w dominate the definition of v. This
proves that u and w are both live at the definition of v, thus they interfere, which makes a chord.

To show that ω(G) = Maxlive, consider a clique in G and orient its edges as above. There is a
vertex u in the clique such that, for any other vertex v in the clique, (u, v) is oriented from v to u,
in other words, a variable whose definition is dominated by the definition of any other vertex.
Thus all variables in the clique are live at the definition of u, which proves ω(G) ≤ Maxlive.
Finally Maxlive ≤ ω(G) since variables simultaneously live form a clique. �

The fact that χ(G) = ω(G) = Maxlive for an SSA program shows that, in terms of coloring,
there is no need to do additional live-range splitting in SSA. This does not help to avoid spilling
(but, it has an effect on coalescing).

Another interesting class of graphs for register allocation is what we call greedy-k-colorable
graphs. The greedy-k-colorability is defined as follows. While this is possible, remove a vertex
of degree < k (in the current graph). A graph is greedy-k-colorable iff this elimination scheme
removes all vertices. This definition seems non-deterministic but it is easy to see that the order
in which vertices are removed (when possible) is not important. A greedy-k-colorable graph is
k-colorable because we can color its vertices in the opposite order of their removal, assigning to
each vertex a color not used by its already-colored neighbors (this is possible because there are
at most (k − 1) such neighbors). This is the coloring heuristic used in Chaitin-like approaches.
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It is worth pointing out that the smallest k such that G is greedy-k-colorable is the coloring
number col(G) [23]. Define a smallest last order of the vertices of G as follows: let xi be a
vertex of minimum degree in Gi, the subgraph of G obtained after removing x1, . . . , xi−1. If
δ(H) denotes the minimum degree in a graph H, a classical result [23, Thm. 12] shows that
col(G) = 1 +max

i
δ(Gi) = 1 +max

G′⊆G
δ(G′). In other words, G is not greedy-k-colorable iff G has a

subgraph G′ in which all vertices have degree (in G′) at least k.

Property 1 If G is a k-colorable chordal graph, it is greedy-k-colorable.

Proof. Any chordal graph G has a simplicial vertex [20], i.e., a vertex v whose neighbors form
a clique. If G is k-colorable, it has no clique of size k, thus v has at most (k − 1) neighbors. We
can thus remove v from the graph. The remaining graph is still chordal and the same argument
applies. We can repeat this process to show that the graph is greedy-k-colorable. �

This basic property, to our knowledge not mentioned in the compiler literature, is particularly
interesting for register allocation. It implies that if we do some spilling and live-range splitting
to reduce Maxlive to k and get a chordal k-colorable interference graph, we can still reuse the
same framework as Chaitin for the last coloring/coalescing phase.

In the next sections, we show several NP-completeness results, for a fixed k, for example
k = 3, which is stronger than assuming that k is an input of the problem. However, one could
wonder if the problem remains NP-complete for another fixed k′ ≥ k. The following property
(with p = k′ − k) will extend our NP-completeness results from k to k′.

Property 2 Let G be a graph. Define G′ by adding to G a clique of p new vertices and an
edge between any vertex of the clique and any vertex of G. Then G is k-colorable iff G′ is
(k + p)-colorable, G is chordal iff G′ is chordal, and G is greedy-k-colorable iff G′ is greedy-
(k + p)-colorable.

Proof. The first property is obvious for, by construction, the additional clique must use p other
colors. For the second property, if G′ is chordal, G is also chordal as a subgraph of G′. Con-
versely, if G is chordal, consider a cycle of G′ of length at least 4. If it is a cycle of G, it has
a chord. Otherwise, it has a vertex v in the clique and two edges (v, u) and (u,w) with w , v.
Since v is connected to any other vertex in G′, (v,w) is a chord. For the third property, suppose
that G is greedy-k-colorable, i.e., vertices can be removed in some order, with degree < k in the
remaining graph. In G′, first remove the vertices of G in the same order, they have degree at
most (k − 1 + p). Then one can remove the vertices of the clique, with degree < p, and thus G′

is greedy-(p+ k)-colorable. Finally, if G is not greedy-k-colorable, it has a subgraph H such that
all vertices have degree (in H) at least k. Adding the clique of size p to H shows that G′ is not
greedy-(p + k)-colorable. �

3 Complexity of aggressive coalescing

The aggressive coalescing problem is to remove as many move instructions as possible, with
no constraint on the number of registers. Only interferences can prevent coalescing. It can be
formulated as follows:
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Problem: A 
Instance Graph G = (V, E), affinities A ⊆ V2, integer K.
Question Is there a coalescing of G, i.e., a function f with f (u) , f (v) whenever
(u, v) ∈ E, such that at most K affinities (u, v) ∈ A are not coalesced, i.e., satisfy
f (u) , f (v)?

We will use a reduction from multiway-cut [16]. Other proofs related to aggressive coalescing
and out-of-SSA translation are available in [31, 21].

Problem: -
Instance Graph G = (V, E), set S = {s1, . . . , sk} ⊆ V of k specified vertices or terminals,
integer K.
Question Can we remove at most K edges from E so that each terminal is in a different
connected component?

In the general multiway-cut problem, edges are weighted but it is NP-complete even for the
version above where all edges have equal weight, and even for k = 3.

Theorem 2 The aggressive coalescing problem is NP-complete even if there are only 3 interfer-
ences.

Proof. The reduction is as follows. Let G = (V, E), S , K, be an instance of multiway-cut. First
define G′ = (V ′, E′) from G by replacing each edge e = (u, v) ∈ E by two edges (u, xe) and (xe, v)
where xe is a new vertex. Clearly, G′ is a positive instance of multiway-cut iff so does G since at
most one of the two (u, xe) and (xe, v) may need to be removed.

We define the interference graph G′′ = (V ′, F) such that (S , F) is a clique (a triangle if
k = 3). We interpret each edge in E′ as an affinity to be coalesced, i.e., A = E′. Then (G′, S ,K) is
a positive instance of multiway-cut iff (G′′, A,K) is a positive instance of aggressive coalescing.
Indeed, each connected component can be colored with a single color: edges removed from G ′

correspond to affinities not coalesced in G′′. See Figure 1 for an example.
It remains to show that we can indeed build a code with an interference graph such as G′′ =

(V ′, F) and affinities E′. We do as follows. For each vertex v ∈ V \ S , a basic block Bv defines
a variable v. A basic block B defines all variables si ∈ S together. For each edge e = (u, v) ∈ E,
a basic block Ce uses a variable xe, which is defined by a move instruction xe = u (resp. xe = v)
in a basic block predecessor of Ce and successor of the block where u (resp. v) is defined (this
corresponds to the introduction of vertex xe in G′). Figure 1 illustrates this reduction. �

As mentioned in Section 1, going out of SSA while minimizing the number of moves is a
form of aggressive coalescing. From a complexity point of view, Theorem 2 shows that aggres-
sive coalescing is difficult even if the interference graph is very simple (but not the affinities), in
particular even if it is chordal or greedy-k-colorable. These properties do not make the problem
simpler. From a practical point of view, aggressive coalescing can degrade register allocation.
Indeed, coalescing means fusing live-ranges and merging, in the interference graph G, the cor-
responding vertices. After these merges, the coalesced graph G f may not be k-colorable. In this
case, three alternatives are available:
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Figure 1: Aggressive coalescing: reduction.

• One can remove some vertices from the graph and spill the corresponding variables; this
is the strategy proposed in Chaitin’s register allocator [11].

• One can give up about some coalesced moves so that the graph gets greedy-k-colorable
again; this is optimistic coalescing [27] that we analyze in Section 5;

• One can prefer to not use aggressive coalescing but to coalesce moves only if the graph is
proved to remain greedy-k-colorable; this is conservative coalescing, introduced in [5], a
technique we analyze in Section 4.

4 Complexity of conservative coalescing

The conservative coalescing problem (for a k-colorable graph) is to coalesce as many moves as
possible so that, after this coalescing, the interference graph is still k-colorable.

Problem: C 
Instance Graph G = (V, E), affinities A, integers K and k.
Question Is there a coalescing f of G such that the coalesced graph G f is k-colorable
and at most K affinities are not coalesced?
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Another possible formulation [2] is to ask directly for a coalescing f that is a k-coloring of G.
We prefer the first formulation: it is closer in spirit to what heuristics do and it allows us to discuss
more precisely the complexity of the problem in terms of the structure of G and G f . Indeed, the
problem may seems simpler in practice, if we start from some graph G with a particular structure,
if we merge only vertices connected by an affinity, or if we target a graph G f not only k-colorable,
but also greedy-k-colorable.

Theorem 3 Conservative coalescing is NP-complete, even for k = 3, even if G is greedy-2-
colorable, even if one asks G f to be also chordal or greedy-3-colorable, and even if only vertices
connected by affinities can be merged.

Proof. As noticed in [2], a simple reduction from the well-known graph k-colorability [17,
Problem GT4] shows that, even for K = 0, conservative coalescing is NP-complete. Given a
graph G = (V, E), define an instance of conservative coalescing as follows. Define an interference
graph with the vertices V and a set of disjoint edges (xe, ye) (new vertices), one for each edge
e = (u, v) ∈ E, and the affinities (u, xe) and (ye, v). See Figure 2 for an illustration. All moves
can be aggressively coalesced and the coalesced graph is G. In other words, we just defined an
instance of conservative coalescing that is positive for K = 0 iff G is k-colorable.

What if we add conditions on the structures of G and G f ? And if we can only merge vertices
connected by affinities? The problem remains NP-complete even if G is chordal or greedy-k-
colorable because the interference graph used in the previous reduction is greedy-2-colorable
(disjoint edges). If we ask G f to be not only k-colorable, but also greedy-k-colorable (resp.
chordal), the problem is still NP-complete (but not for a fixed K because checking that a graph is
chordal or greedy-k-colorable is polynomial). To see this, add two affinities (u, xu,v) and (v, xu,v)
(xu,v is a new vertex) for any two vertices u and v of the original graph G. Then, an optimal
conservative coalescing will lead to a clique and it can be obtained by merging only vertices
connected by affinities. We conclude by noticing that a clique of size k is both chordal and
greedy-k-colorable. �
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Figure 2: Reduction for Thm. 3 (first part).

We point out that we could have used the proof of Theorem 2 to show most of Theorem 3.
Indeed, the graph used in Theorem 2 is a triangle (and some isolated vertices), thus it keeps such
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a structure after any coalescing, thus it is chordal and greedy-3-colorable. We gave the reduction
from graph k-colorability, maybe more natural, to show how to extend the remark of [2] into a
more accurate complexity result.

In practice, conservative coalescing heuristics do not consider the affinities all together, but
one by one, according to some priority (e.g., moves in inner loops are coalesced first, if possible).
This is what we call incremental conservative coalescing. Two incremental conservative tests are
used [6, 19], referred as as Briggs’ and George’s tests in [1].

Briggs Two vertices u and v can be merged if the resulting vertex has at most (k − 1) neighbors
of degree at least k.

George Two vertices u and v can be merged if all neighbors of u with degree at least k are also
neighbors of v.

These rules guarantee that the greedy-k-colorability of the graph does not change. Indeed, con-
sider the elimination process that defines greedy-k-colorability. A vertex merged by Briggs’ rule
can always be removed from the graph once its neighbors of degree < k are removed, thus such
a coalescing is always safe. The situation is slightly different for George’s rule: once the neigh-
bors of degree < k are removed, we end up with a subgraph of the original graph, thus not harder
to color. But if v cannot be removed from the original graph (potential spill), the same is true
for the merged vertex (possibly with a larger cost to spill the two merged live-ranges). Thus, if
George’s rule is used in a Chaitin-like allocator (where spilling and coalescing are done in the
same framework), the interaction with spilling is unclear. This is the reason why George’s rule is
used in [19] only to merge a vertex u with a precolored vertex v (machine register) because such
a vertex never leads to a spill. We point out however that, if we do spilling first as in [2, 3, 22]
to get a greedy-k-colorable interference graph, then George’s rule can be used (in addition to
Briggs’ rule) for any two vertices (possibly with two tests as the rule is asymmetric), resulting
in more coalesced moves. The same applies for the last phase of Chaitin-like approaches, i.e.,
when no spill is introduced. Our current experiments show that this is indeed useful in practice.

When the register pressure is high, such local rules are not enough, in particular to coalesce
parallel copies, when Maxlive is close to the number of registers, as the experiments in [2] show.
The problem is that the decision is local and, even worse, done before all vertices of small degree
are removed from the graph (if they are related to some affinities, they are kept in the graph).
Figure 3 (on the left) shows a permutation of 4 values. Assume k = 6; coalescing the 4 moves
may lead to a greedy-6-colorable graph, but if we coalesce them one at a time and use a local rule
to decide, the merged vertex has degree 6 (Figure 3 in the middle); if its neighbors have degree 6
(due to other vertices not shown), a local rule will decide to not coalesce. Another reason is due
to the incremental nature of these rules. If G is a greedy-k-colorable graph and S a set of affinites
such that G remains greedy-k-colorable when all affinities of S are coalesced simultaneously, it
may happen that coalescing any affinity in S leads to a graph that is not greedy-k-colorable. This
is illustrated in Figure 3 (in the right). The graph remains greedy-k-colorable the two affinities
(a, b) and (a, c) are coalesced, but not if only one is coalesced. To get a sequence of coalescing
that is conservative at each step, one would need to consider affinities “obtained by transitivity”
(such as the pair (b, c) in Figure 3).
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v1 v2 v3 v4

u1 u2 u3 u4

Affinities and interferences
for a permutation of size 4.

u2 u3 u4

v2 v3 v4

{u1, v1}

If (u1, v1) is coalesced, the
degree increases to 6.

bac

Remains greedy-3-colorable
if (a, b) and (a, c) are coa-
lesced, but not if only one of
them is coalesced.

Figure 3: Local rules are not enough.

One can try to improve these local conservative tests. As mentioned in [19], George’s rule
can be extended by considering that only the neighbors of u, with at most (k − 1) neighbors of
degree ≥ k, need to be neighbors of v. But this is more costly to implement. More generally, one
can simply use brute force and coalesce the moves aggressively (i.e., merge the corresponding
vertices if interferences allow it) and check, in linear time, whether the resulting graph is greedy-
k-colorable or not. This is useful to coalesce a bit more aggressively. The same is true for a
given set of moves. One can merge all corresponding vertices and check if the graph is greedy-
k-colorable.

If G is k-colorable with a k-coloring f such that f (x) = f (y), then there is of course a set
of pairs of vertices, including the pair (x, y), that, once merged, lead to a greedy-k-colorable
coalesced graph (simply merge all vertices with same color to get a k-clique). But which vertices
should be merged? The previous heuristics do not answer this problem. This raises the question
of the complexity of incremental conservative coalescing, which is the conservative coalescing
problem for a single affinity.

Problem: I  
Instance Graph G = (V, E), one affinity (x, y), integer k.
Question Can we coalesce (x, y) to get a k-colorable graph, i.e., is there a k-coloring f
of G such that f (x) = f (y)?

We now show that this problem is NP-complete if G can be any k-colorable graph (The-
orem 4), i.e., knowing that G is k-colorable does not help to decide if it remains k-colorable
after a single coalescing! However, the problem is polynomial if G is k-colorable and chordal
(Theorem 5). The complexity of the very interesting intermediate case, i.e., when G is greedy-k-
colorable, is left open.

Theorem 4 Incremental conservative coalescing is NP-complete if G can be any k-colorable
graph, even for k = 3.

Proof. We use a reduction similar to the proof of graph 3-colorability, i.e., with a reduction
from the well-known 3SAT [17, Problem LO1]. However, here, we will make a small detour
through 4SAT. We first show how to build, from an instance of 4SAT, a graph G that is 3-colorable
iff there is an truth assignment for the 4SAT formula.
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Consider an instance of 4SAT, i.e., a set U of n variables x1, . . . , xn, and a set C of m clauses
c1, . . . , cm, each with 4 literals yi,1, . . . , yi,4 (each yi, j is a xk or its negation). We build a graph
G = (V, E) as follows. It has three vertices T (for true), F (for false), and R that form a triangle.
For each variable xi ∈ U, there are two vertices, denoted xi and xi, which form a triangle with R
(with 3 colors, this will force xi and xi to have the colors of T and F, or the converse). For each
clause ci ∈ C, there are four vertices ai, j, two vertices bi, j, and two vertices ci, j, connected as
depicted in Figure 4. As for the original proof of graph k-coloring (see [13, Page 962]), it is
easy to see that G is 3-colorable iff there is a truth assignment for the clauses. Indeed, if G is
3-colorable, then the four literals yi, j cannot all be colored as F, otherwise the two bi, j must be
colored as F, and the two ci, j cannot be colored. Thus interpreting the colors of each xi gives a
truth assignment. Conversely, if there is a truth assignment, color each xi as T iff it is true in the
4SAT formula. Then, color bi,1 as T (resp. F) if yi,1 or yi,2 is true (resp. both are false), the same
for bi,2. The rest of the 3-coloring follows.

bi,1

bi,2 ci,2

T

ci,1

F

R

ai,2yi,1

ai,2yi,2

ai,3

ai,4yi,4

yi,3

Figure 4: Reduction for Thm. 4.

Now consider an instance (U,C) of 3SAT. Add a new variable x0 and define an instance
(U ′,C′) of 4SAT, where U ′ = U ∪ {x0} and each clause c′i ∈ C′ is defined from ci ∈ C, ci =

yi,1 ∧ yi,2 ∧ yi,3, by c′i = yi,1 ∧ yi,2 ∧ yi,3 ∧ x0. Notice that there is a truth assignment for C ′ (set x0

to true). Moreover, there is a truth assignment for C iff there is a truth assignment for C ′ for
which x0 is false. Finally, we define a graph G from C′ as before and we consider the affinity
(x0, F). From the previous study, G is 3-colorable. Furthermore there is a 3-coloring of G such
that the vertices x0 and F have the same color (coalescing) iff there is truth assignment for C ′ for
which x0 is false. �

Theorem 5 Incremental conservative coalescing can be solved in polynomial time if G is chordal.

Proof. Let G = (V, E) be a chordal graph and (x, y) be the affinity to coalesce. A fundamental
property [20, Thm. 4.8] is that G can be represented as the intersection graph of a family of
subtrees (Tv)v∈V of a tree T . We use the word nodes for the vertices of T to distinguish them with
the vertices of G. The nodes of T are the maximal (for inclusion) cliques of G, each vertex v ∈ V
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corresponds to a subtree Tv, and (u, v) ∈ E iff Tu and Tv intersect. A chordal graph with the tree
representation can be easily colored with k ≥ ω(G) colors, starting from any node n of T . Orient
the tree T so that n is the root and color the subtrees that contain n. Then, go down the branches
of the tree and, at each new node, color the subtrees that start at this node with the available
colors. This coloring is always possible because, at each node, at most w(G) subtrees intersect.
Furthermore, there is no cycle in T so no coloring decision can lead to a conflict.

Now the question is: Can we color G with k colors so that x and y have the same color? We
can answer this question in polynomial time as follows. We assume that T x and Ty do not intersect
and k ≥ ω(G), otherwise the answer is no. Consider a path P = (n1, . . . , nk) of T from n1 ∈ Tx to
nk ∈ Ty (this path is unique if n1 and nk are the only nodes of P in Tx or Ty). The intersection of
the subtrees (Tv)v∈V with P are intervals (Iv)v∈V . Add new short intervals containing a single node
so that all nodes of P are contained in exactly ω(G) intervals. We claim that T x and Ty can have
the same color iff there is a set of disjoint intervals, including Ix and Iy, that cover all nodes in P.
Indeed, if G has a k-coloring such that x and y have the same color, then one can cover P with the
intervals Iv such that v is colored as x and y (and possibly some short intervals if not all nodes are
covered). Conversely, if such intervals exist, one can merge all corresponding subtrees to get the
representation of a new chordal graph G′ with w(G′) = w(G) ≤ k; it can thus be colored with k
colors and this coloring corresponds in G to a k-coloring such that x and y have the same color.

It remains to show how to find such a set of intervals in polynomial time. This can be done as
follows: represent the intervals horizontally on w(G) lines (the lines are full because of the short
intervals we added). There is a cover of P with disjoint intervals, including Ix and Iy, iff there
is a path from the line of Ix to the line of Iy, following intervals and possibly changing line only
from the end of an interval to the beginning of another (i.e., contiguous intervals). This can be
checked in O(Vω(G)) = O(V2) by a simple marking process from left to right. See Figure 5 for
an illustration (dotted lines represent the possible changes of line). �

Iy

Ix

Ix and Iy cannot have the same color

Iy

Ix

Ix and Iy can have the same color

Figure 5: Covering by intervals for Thm. 5.

Theorem 5 shows that we could design an incremental conservative coalescing strategy for
chordal graphs. If G is chordal and (x, y) is an affinity that we absolutely want to coalesce because
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the corresponding move is expensive, we can decide if this is possible. The problem is that, then,
if we coalesce the affinity, the graph may not be chordal anymore. However, we can still make
it chordal by an appropriate merge of vertices (as we do in the proof of the theorem). However,
these artificial merges may prevent to coalesce more important affinities afterwards. A better
strategy would be to stay in the class of greedy-k-colorable graphs (which is larger than the class
of chordal graphs). Unfortunately, we do not know the complexity of this problem.

5 Complexity of optimistic coalescing

If G is greedy-k-colorable, coalescing as many moves as possible to that the coalesced graph
is k-colorable (or even greedy-k-colorable) is NP-complete (Theorem 3). To approximate this
problem, incremental conservative coalescing coalesces moves, one by one, so that the graph
remains greedy-k-colorable but, of course, with no guarantee that the chosen moves are the right
ones. Park and Moon [27, 28] proposed a “dual” approach, optimistic coalescing. A first phase
of aggressive coalescing coalesces moves regardless of the k-colorability of the graph. Then,
a second phase gives up about some moves, i.e., “de-coalesce” some moves, so that the graph
becomes greedy-k-colorable.

If most moves can be coalesced, this approach can be more efficient than using too-conserva-
tive local rules such as Briggs’ or George’s rules. However, in practice, it is not clear which
moves should be coalesced aggressively in the first phase (remember that aggressive coalescing
is NP-complete by Theorem 2). Moreover, even if all moves can be aggressively coalesced, it
is not clear which moves should be de-coalesced in the second phase. The goal of this section
is to address the complexity of this problem. If one requires the de-coalesced graph to be just
k-colorable, it is of course NP-complete as the first part of the proof of Theorem 3 shows: after
all affinities are coalesced, it is hard to decide if the resulting graph is k-colorable or not. In
practice, the graph should be easy to color, for example greedy-k-colorable. So, the interesting
instance of optimistic coalescing can be formulated as follows.

Problem: O 
Instance Graph G = (V, E) greedy-k-colorable, affinities A that can all be coalesced
(i.e., there is a coalescing f of G such that for all (u, v) ∈ A, f (u) = f (v)), integers k
and K.
Question Is there a de-coalescing of G f (i.e., a coalescing g of G such that g(u) = g(v)
implies f (u) = f (v)), such that at most K affinities (u, v) are not coalesced (i.e., satisfy
g(u) , g(v)) and such that Gg is greedy-k-colorable?

Theorem 6 The optimistic coalescing problem is NP-complete, even for k = 4, and even if G is
chordal.

Proof. The proof is by reduction from the well-known vertex cover [17, Problem GT1], which
is NP-complete even if all vertices have degree at most three [18].

Let G = (V, E) be a graph such that all vertices have degree at most 3. We build an instance
of optimistic coalescing as follows. For each node v ∈ V , we create a structure as shown on the
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left of Figure 6. Each hexagon in this structure is the widget shown on the lower right part of
the figure. The central vertex A is in fact two vertices A and A′ linked by an affinity (upper right
part of the figure). On this structure, each vertex vi, 1 ≤ i ≤ 3, can be used to connect v to one of
its neighbors. Since v has at most three neighbors, we can transform the whole graph G into this
format. We get a new graph H. H is not chordal, but we will show later how to make it chordal.
Our first goal is to de-coalesce some of the pairs (A, A′) so that H is greedy-4-colorable.

A

v1
v2

v3

A′

A

�� ��

�� ��

�	


�

�

vi

Figure 6: Vertex structure and ad-hoc widget.

The important point is to understand how the greedy 4-coloring algorithm can “eat” a struc-
ture. It can only works if there is at least one node of degree < 4. All the vertices of the hexagonal
widgets have degree ≥ 4 so the structure cannot be attacked by these. If the structure for v ∈ V
has no neighbor (either because v has no neighbor in G or because the neighbor structures have
already been eaten), then each vi has degree 3: they can be eaten, then the hexagonal widgets and
the inner structure can be eliminated too. Finally, notice that the structure cannot be attacked by
any two of its branches: if one vi remains, the inner 4-clique (in bold) cannot be removed. Hence
the only remaining possibility is to attack the structure by A and A′, if they are de-coalesced.
This shows that there are only two ways for the greedy algorithm to attack the structure in H
corresponding to a vertex v of G: either after having eaten all the structures corresponding to the
neighbors of v, or by de-coalescing A and A′ and attacking the structure from the heart.

The previous study shows that H after de-coalescing is greedy-4-colorable iff, for each
(u, v) ∈ E, a de-coalescing occurred in one of the structures corresponding to u and v, i.e., iff
the set of vertices u such that a de-coalescing occurred in the corresponding structure is a vertex
cover for G.

For what we want to prove, H is not enough, we need to build a greedy-4-colorable graph H ′

(even chordal if possible) and affinities such that all affinities can be aggressively coalesced into
H and such that these new affinities will not be chosen to de-coalesce optimally H into a greedy-
4-colorable graph. In H, there are three kinds of chordless cycles: in the hexagonal widgets,
inside each structure (there is a chordless cycle including (A′, vi, v j)), and between structures if G
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itself is not chordal. These cycles are broken by introducing some affinities as shown in Figure 7.
The reduction is still correct because it is always better to choose to de-coalesce an affinity (A, A′)
instead of any other affinity in the structure because this allows to eat the whole structure with a
single de-coalescing.

�� ��

�� ��

�	


�

�

��

vi

vi

ui

Figure 7: To a get a chordal graph.

To conclude, H′ is chordal, greedy-4-colorable, and all affinities can be aggressively coa-
lesced to get H. Furthermore, one can de-coalesce at most K affinities to get a greedy-4-colorable
graph iff G has a vertex cover of size at most K. Finally, with Property 2, optimistic coalescing
is NP-complete for any fixed k ≥ 4. �

6 Conclusion

We addressed the complexity of different variants of register coalescing: aggressive coalesc-
ing, conservative coalescing, incremental conservative coalescing, and optimistic coalescing, for
three main classes of graphs: k-colorable, greedy-k-colorable, and chordal. Our study shows that
most problems are NP-complete, which is certainly not a surprise though never really proved
before in such details, and confirms the practical importance of chordal and greedy-k-colorable
graphs. We believe that their properties are maybe not yet completely exploited for the design
of good conservative coalescing heuristics and good de-coalescing heuristics (the second phase
of optimistic coalescing, after an aggressive coalescing phase). We are currently exploring new
heuristics based on these properties. Our first experiments on the base of graphs proposed by
Appel and George in their “coalescing challenge” shows that there is indeed space for improve-
ments. Our future work will be devoted to the design of such heuristics.
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