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Abstract

In his seminal work, Kleinberg showed how to augment meshes using random
edges, so that they become navigable; that is, greedy routing computes paths
of polylogarithmic expected length between any pairs of nodes. This yields the
crucial question of determining wether such an augmentation is possible for all
graphs. In this paper, we answer negatively to this question by exhibiting a
threshold on the doubling dimension, above which an infinite family of Cayley
graphs cannot be augmented to become navigable whatever the distribution of
random edges is. Precisely, it was known that graphs of doubling dimension
at most O(log log n) are navigable. We show that for doubling dimension !
log log n, an infinite family of Cayley graphs cannot be augmented to become
navigable. Our proof relies on a result of independent interest: we show that
the analysis of greedy routing worst performances on graphs augmented by
arbitrary distributions of edges can be reduced to the analysis assuming a
symmetric distribution. Finally, we complete our result by studying square
meshes, that we prove to always be augmentable to become navigable.

Keywords: doubling dimension, small world, greedy routing, Cayley graphs.

Résumé

Kleinberg a montré comment augmenter les grilles par des liens aléatoires de
façon à ce qu’elles deviennent navigables; c’est-à-dire que le routage glouton
calcule des chemins de longueur polylogarithmique en espérance entre toute
paire de noeuds. Cela conduit à la question cruciale de déterminer si une telle
augmentation est possible pour tout graphe. Dans cet article, nous répondons
négativement à cette question en exhibant un seuil sur la dimension dou-
blante, au-dessus duquel une famille infinie de graphes de Cayley ne peut
pas être augmentée pour devenir navigable, quelle que soit la distribution de
liens. Précisément, il était connu que les graphes de dimension doublante au
plus O(log log n) sont navigable. Nous montrons que pour une dimension dou-
blante ! log log n, une famille infinie de graphes de Cayley ne peut être aug-
mentée pour devenir navigable. Notre preuve repose sur un résultat d’intérêt
indépendant: nous montrons que l’analyse des pires performances du routage
glouton sur les graphes augmentés par des distributions arbitraires peut être
réduite à son analyse sous l’hypothèse de distributions symétriques. Enfin, nous
complétons notre résultat en étudiant les grilles que nous démontrons pouvoir
toujours être augmentées pour devenir navigables.

Mots-clés: dimension doublante, petit monde, routage glouton, graphes de Cayley.



1 Introduction

The doubling dimension [5, 15, 17] appeared recently as a key parameter for measuring the ability of
networks to support efficient algorithms [9, 16] or to realize specific tasks efficiently [1, 2, 8, 25]. Roughly
speaking, the doubling dimension of a graph G is the smallest d such that, for any integer r ≥ 1, and for
any node u ∈ V (G), the ball B(u, 2r) centered at u and of radius 2r can be covered by at most 2d balls
B(ui, r) centered at nodes ui ∈ V (G). (This definition can be extended to any metric, and, for instance,
Zd with the !1 norm is of doubling dimension d). In particular, the doubling dimension has an impact
on the analysis of the small world phenomenon [23], precisely on the expected performances of greedy
routing in augmented graphs [19].

An augmented graph is a pair (G,ϕ) where G is an n-node graph, and ϕ is a collection of probability
distributions {ϕu, u ∈ V (G)}. Every node u ∈ V (G) is given an extra link pointing to some node v, called
the long range contact of u. The link from a node to its long range contact is called a long range link.
The original links of the graph are called local links. The long range contact of u is chosen at random
according to ϕu as follows : Pr{u → v} = ϕu(v). Greedy routing in (G,ϕ) is the oblivious routing
protocol where the routing decision taken at the current node u for a message of destination t consists
in (1) selecting a neighbor v of u that is the closest to t according to the distance in G (this choice
is performed among all neighbors of u in G and the long range contact of u), and (2) forwarding the
message to v. This process assumes that every node has a knowledge of the distances in G, or at least a
good approximation of them. On the other hand, every node is unaware of the long range links added to
G, but its own long range link. Hence the nodes have no notion of the distances in the augmented graph.
Note that the knowledge of the distances in the underlying graph G is a reasonable assumption when,
for instance, G is a network in which distances can be computed from the coordinates of the nodes (e.g.,
in meshes, as in [19]).

An infinite family of graphs G = {G(i), i ∈ I} is navigable if there exists a family Φ = {ϕ(i), i ∈ I}
of collections of probability distributions, and a function f(n) ∈ O(polylog(n)) such that, for any i ∈ I,
greedy routing in (G(i), ϕ(i)) performs in at most f(n(i)) expected number of steps where n(i) is the
order of the graph G(i). More precisely, for any pair of nodes (s, t) of G(i), the expected number of steps
E(ϕ(i), s, t) for traveling from s to t using greedy routing in (G(i), ϕ(i)) is at most f(n(i)).

In his seminal paper, Kleinberg [19] proved that, for any fixed integer d ≥ 1, the family of d-
dimensional meshes is navigable. Duchon et al [10] generalized this result by proving that any infinite
family of graphs with bounded growth is navigable. Fraigniaud [13] proved that any infinite family of
graphs with bounded treewidth is navigable. Finally, Slivkins [25] recently related navigability to doubling
dimension by proving that any infinite family of graphs with doubling dimension at most O(log log n) is
navigable. All these results naturally lead to the question of whether all graphs are navigable.

Let δ : N %→ N, let Gn,δ(n) be the class of n-node graphs with doubling dimension at most δ(n), and
let Gδ = ∪n≥1Gn,δ(n). By rephrasing Slivkins result [25], we get that Gδ is navigable for any function δ
bounded from above by c log log n for some constant c > 0. This however lets open the case of graphs
of larger doubling dimensions, namely the cases of all families Gδ where δ is satisfying δ(n) ! log log n.
This paper analyzes the navigability of graphs in Gδ for the entire spectrum 1 ≤ δ(n) ≤ log n.

1.1 Our results

We prove a threshold of δ(n) = Θ(log log n) for the navigability of Gδ. More precisely, we focus our
analysis on the Cayley graphs in Gδ, i.e., the graphs whose nodes are the elements of a group and the edges
are determined by the action of a generating set of this group on the nodes. Cayley graphs form a large
class of graphs including graphs as diverse as rings, cliques, toruses, hypercubes, wrapped butterflies, as
well as all graphs defined from permutation subgroups (e.g., star-graphs1, pankace-graphs, etc.), cf [6].
Cayley graphs are highly symmetric, and can be used to build explicit expanders [24].

Let Cayn,δ(n) ⊆ Gn,δ be the class of n-node Cayley graphs with doubling dimension at most δ(n), and
let Cayδ = ∪n≥1Cayn,δ(n). Note that Cayδ ⊆ Gδ. We prove a threshold phenomenon for Cayδ : bellow
a certain function δ, Cayδ is navigable, while above it Cayδ is not navigable. More precisely, we prove
that, for any function δ satisfying limn→∞(log log n)/δ(n) = 0, Cayδ is not navigable. This implies, in
particular, that Gδ is not navigable for log log n ) δ(n). Hence, the result in [25] is essentially the best
that can be achieved by considering only the doubling dimension of graphs.

1Not to be mistaken for K1,n, see [3].
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Hence, we get the following view of the situation related to the doubling dimension :

Gδ navigable [25] Gδ not navigable [This paper]
1 −−−−−−−− log log n −−−−−−−−−−−− log n

Our negative result requires to prove that, for any distribution of the long range links, greedy routing
has expected performances strictly greater than polylogarithmic. For this purpose, we prove a reduction
result that has interest on its own. Namely, we show that the analysis of greedy routing in Cayley
graphs can be restricted to symmetric probability distributions. A distribution of choice of the long
range contacts is symmetric if, for any node γ, Pr{u → uγ} is independent from u (since the nodes of
a Cayley graph are elements of a group, the node uγ is just the node corresponding to the combination
of the two elements u and γ by the operation of the group — in this paper we use the multiplicative
notation). We prove that if G is a Cayley graph then, for any distribution ϕ, there exists a symmetric
distribution ϕ̂ such that the expected length of a path computed by the greedy routing in (G, ϕ̂) is at
most the maximum expected length of a path computed in (G,ϕ), that is for any source s and any target
t, E(ϕ̂, s, t) ≤ maxs′,t′∈V (G) E(ϕ, s′, t′).

Finally, we prove a somehow counter intuitive result by showing that a subgraph of a non navigable
graph is not necessarily non navigable. In particular, we show that all square meshes are navigable, for
all dimensions. Specificaly, we prove that although the family of non navigable Cayley graphs that we
use to disprove the navigability of all graphs contains the standard square meshes of dimension δ as
subgraphs, these latter family of graphs is navigable.

1.2 Related works

Kleinberg showed that greedy routing performs in O(log2 n) steps on d-dimensional meshes augmented
by the d-harmonic distribution. Since then, several results have been developed to tighten the analysis of
greedy routing on randomly augmented networks. Precisely, Barrière et al. [7] showed that greedy rout-
ing expected number of steps is Θ(log2 n) in the d-dimensional meshes augmented by the d-harmonic
distribution. In the special case of rings, Aspnes et al. [4] proved a lower bound of Ω(log2 n/ log log n)
expected number of steps for any edge distribution. For paths, Flammini et al. [11] recently showed a
lower bound of Ω(log2 n) expected number of steps in the case of symmetric and distance monotonic
edge distributions. Martel and Nguyen [22] showed however that the diameter of these networks aug-
mented by the harmonic distribution is Θ(log n). In another perspective, several authors developed new
decentralized algorithms for the d-dimensional mesh augmented by the d-harmonic distribution. Lebhar
and Schabanel [20] presented a decentralized algorithm which performs in O(log n(log log n)2) expected
number of steps in this graph. The algorithm Neighbor-Of-Neighbor presented by Manku et al. [21] per-
forms in O( 1

k log k (log n)2) expected number of steps, where k is the number of long range links per node
in the mesh. Assuming some extra knowledge on the long range links, Fraigniaud et al. [14] described
an oblivious routing which performs in O((log n)1+1/d) expected number of steps. Finally, Martel and
Nguyen [22] presented a non oblivious routing protocol achieving the same performances under the same
assumption as in [14].

1.3 Organization of the paper

The paper is organized as follows : in Section 2, we prove that the analysis of greedy routing in
augmented Cayley graphs can be restricted to symmetric probability distributions. Section 3 presents
the main result of the paper by exhibiting the non navigability of Cayley graphs of doubling dimension
! log log n. Finally, in Section 4, we study the special case of square meshes, and prove that they are all
navigable.

2 Symmetric augmentations

In this section, we prove a lemma that will be used later to prove our main result. This lemma is
of independent interest as it proves that, without any loss of generality, one can restrict the analysis
of greedy routing in Cayley graphs to a specific class of probability distributions. Recall that a Cayley
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graph G is defined by a pair (Γ, S) where Γ is a group, and S a generating set of Γ. We have V (G) = Γ,
and (u, v) ∈ E(G) if and only if u−1v ∈ S. If S−1 = S then G is non directed, otherwise it is directed.
In this paper we use the multiplicative notation, and hence the neutral element of Γ is denoted by 1.

Definition 1 An augmentation (G,ϕ) of a Cayley graph G is symmetric iff for any γ ∈ Γ, ϕu(uγ) =
ϕu′(u′γ) for any pair of nodes u and u′.

In other words, an augmentation (G,ϕ) is symmetric iff for any fixed γ, Pr{u → uγ} is independent
from u. For instance, if the long range contact of a node is chosen uniformly at random among the node
in V (G), this augmentation is symmetric. Symmetric augmentations play an important role as far as
Cayley graphs are concerned. Indeed, we have the following.

Lemma 1 For any augmentation (G,ϕ) of a Cayley graph G = (Γ, S), there exists a symmetric augmen-
tation (G, ϕ̂) for which greedy routing has expected performance upper bounded by the maximum expected
performance of greedy routing in (G,ϕ), taken over all pairs of source and target.

Proof. Let (G,ϕ) be an augmentation of a Cayley graph G = (Γ, S) of order n. For any x ∈ V (G), let
σx : V (G) %→ V (G) defined as σx(u) = xu. It is folklore that σx is an automorphism of G, i.e., a one-to-one
and onto mapping that preserves adjacency. In particular, for any path P = (u0, u1, . . . , uk) from a node
s to a node t, σx(P ) = xP = (xu0, xu1, . . . , xuk) is a path from xs to xt. Given ϕ = {ϕu, u ∈ V (G)}, we
define, for any x ∈ V (G), the set ϕ(x) = {ϕ(x)

u , u ∈ V (G)} where, ϕ(x)
u = ϕxu ◦ σx. I.e. for all v ∈ V ,

ϕ(x)
u (v) = ϕxu(xv).

Since V is finite, we can label the set of nodes V as V = {u1, . . . , un}. From ϕ, we define a symmetric
distribution ϕ̂ as follows :

ϕ̂ = {ϕ(x)
u , u ∈ V (G)},

where x = uX ,

and X is the uniform random variable that takes value i with probability 1
n for all i ∈ {1, . . . , n}.

Intuitively, ϕ̂ corresponds to picking a random origin x = uX and reconstructing distribution ϕ by
translating it by σx.

This augmentation is symmetric. Indeed we show that for all u′, u, v ∈ V , ϕ̂u(uv) = ϕ̂u′ (u′v). It is
enough to show that for all u, v ∈ V , ϕ̂1(v) = ϕ̂u(uv), where 1 is the unit element of G.

Since X is a uniform random variable it follows that for all u, v ∈ V ,

Pr{uX = v} = Pr{uX = uv}.

The proof then follows from the definition of ϕ̂ :

ϕ̂1(v) = ϕ(uX )
1 (v)

=
n∑

i=1

ϕ(ui)
1 (v) Pr{X = i}

=
n∑

i=1

ϕui(uiv) Pr{X = i}

=
∑

x∈V

ϕx(xv) · Pr{uX = x}

=
∑

y∈V

ϕyu(yuv) · Pr{uX = yu}

=
∑

y∈V

ϕyu(yuv) · Pr{uX = y}

=
∑

y∈V

ϕ(y)
u (uv) · Pr{uX = y}

= ϕ̂u(uv).
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The equality of the fifth line follows from the facts that σy is an automorphism of G.
To complete the proof, we show that greedy routing expected performances on G augmented by ϕ̂

are at most the maximum expected performance of greedy routing in G augmented by ϕ. For any source
s and target t in V , recall that E(φ, s, t) denotes the expected length of the path computed by greedy
routing from s to t in G augmented by distribution φ. We have :

E(ϕ̂, s, t) =
∑

x∈V

Pr{uX = x} · E(ϕ(x), s, t),

since, once uX = x, the distribution is ϕ(x) for all the nodes. Hence,

E(ϕ̂, s, t) =
∑

x∈V

Pr{uX = x} · E(ϕ, xs, xt)

≤
(

max
x∈V

E(ϕ, xs, xt)
) (

∑

x∈G

Pr{uX = x}
)

≤ max
s′,t′∈V

E(ϕ, s′, t′).

!

3 Non navigable graphs

In this section, we prove that the result in [25] is essentially the best that can be achieved as far as
doubling dimension is concerned.

Theorem 1 Let δ : N %→ N be such that limn→∞
log log n

δ(n) = 0. Then Gδ is not navigable.

Informally, the argument of the proof is that a doubling dimension ! log log n implies that the number
of possible ”directions” where a random link can go is greater than any polylogarithm of n. Therefore,
for any source, there always exists a target such that the expected path length of greedy routing is
greater than any polylogarithm of n, because of the low probability of a random link to go in the right
direction. Proof. We show that there exists an infinite family of graphs {G(n), n ≥ 1} indexed by
their number of vertices, such that G(n) ∈ Gn,δ(n) and for any family Φ = {ϕ(n), n ≥ 1} of collections
of probability distributions, greedy routing in (G(n), ϕ(n)) performs in an expected number of steps
t(n) /∈ O(polylog(n)) for some couples of source and target.

Let d : N %→ N be such that d ≤ δ, limn→∞
log log n

d(n) = 0, and limn→∞
d(n)√
log n

= 0. For the sake of
simplicity, assume that p = n1/d(n) is integer. G(n) is the graph of n nodes consisting of pd(n) nodes
labeled (x1, . . . , xd(n)), xi ∈ Zp. Node (x1, . . . , xd(n)) is connected to all nodes (x1 +a1, . . . , xd(n) +ad(n))
where ai ∈ {−1, 0, 1}, i = 1, . . . , d(n), and all operations are taken modulo p (cf. Figure 1). Note that
the diameter of this graph is ,p/2-. Note also that, by construction of G(n), the distance between two
nodes y = (y1, . . . , yd(n)) and z = (z1, . . . , zd(n)) is max1≤i≤d(n)(|yi − zi|, p − |yi − zi|).

Claim 1 G(n) ∈ Gn,δ(n).

Clearly G(n) has n nodes. We prove that G(n) has doubling dimension d(n), therefore at most δ(n).
Let 0 = (0, . . . , 0). The ball B(0, 2r) can be covered by 2d(n) balls of radius r, centered at the 2d(n)

nodes (x1, . . . , xd(n)), xi ∈ {−r, +r} for any i = 1, . . . , d(n). Hence the doubling dimension of G(n) is
at most d(n). On the other hand, |B(0, 2r)| = (4r + 1)d(n) and |B(0, r)| = (2r + 1)d(n). Thus at least
(4r + 1)d(n)/(2r + 1)d(n) balls are required to cover B(0, 2r), since in G(n), for any node u and radius
r, |B(u, r)| = |B(0, r)|. This ratio can be rewritten as 2d(n)(1 − 1

2(2r+1))
d(n). For 2r = n1/d(n)

5 , since
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d(n) ≤
√

log n, we get that (2r + 1) > 2
√

log n

5 > d(n) for n ≥ n0, n0 ≥ 1. Then, for n ≥ n0,

(
1 − 1

2(2r + 1)

)d(n)

>

(
1 − 1

2d(n)

)d(n)

= 2d(n) log(1− 1
2d(n))

≥ 2d(n)
“
− 1

2d(n)−
4

4(d(n))2

”

= 2−
1
2−

1
d(n)

There exists n1 ≥ n0, such that 2−
1
2−

1
d(n) > 1

2 for n ≥ n1. Then, for n ≥ n1, |B(0, 2r)|/|B(0, r)| >
2d(n)−1. Thus the doubling dimension of G(n) is at least d(n), which proves the claim.

Consider now a distribution ϕ(n) that belongs to some given collection of probability distributions
Φ = {ϕ(n), n ≥ 1}. From Lemma 1, we can assume that ϕ(n) is symmetric since, if ϕ(n) is not symmetric,
then one can construct a symmetric distribution ϕ̂(n) achieving better maximum expected performances
for greedy routing in G(n). Thus, in order to prove a lower bound on the maximum expected performances
of greedy routing, we can restrict our analysis to symmetric distributions.

Definition 2 For any node u = (u1, . . . , ud(n)), and for any D = (ν1, . . . , νd(n)) ∈ {−1, 0, +1}d(n), we
call direction the set of nodes

diru(D) = {v = (v1, . . . , vd(n)) : vi = (ui + νi · x) mod p, 1 ≤ x ≤ ,p/2-}.

Note that, for any u, the directions diru(D) for D ∈ {−1, 0, +1}d(n) partition the nodes of G(n) (see
Figure 1). There are obviously 3d(n) directions, and the 2d(n) directions defined on {−1, +1}d(n) have all
the same cardinality.

At each node u, and for each of its direction diru(D) for D ∈ {−1, 0, +1}d(n), one can associate a prob-
ability pdiru(D) to have a long-range link in its direction diru(D). Formally, pdiru(D) =

∑
v∈diru(D) ϕ

(n)
u (v).

Since ϕ(n) is symmetric, pdiru(D) is independent of its origin, that is : pdiru(D) = pdirv(D) for any two
nodes u, v. Hence, the index u or v can be omitted while considering these probabilities.

Among directions dir(D) for D ∈ {−1, +1}d(n), we say that ϕ(n) disadvantages the direction dir(D)
if pdir(D) = minD′∈{−1,+1}d(n) pdir(D′). Without loss of generality, we can assume that ϕ(n) disadvantage
direction dir(+1, +1, . . . , +1) at every node. Since

∑
D∈{−1,+1}d(n) pdir(D) ≤ 1, pdir(+1,+1,...,+1) is at most

1/2d(n).
We analyze the performance of greedy routing from source s = (0, . . . , 0) = 0 to target t =

(,p/2-, . . . , ,p/2-), at mutual distance ,p/2-.
We show that distribution ϕ(n) leaves the expected number of steps of greedy routing from s to t

above any polylogarithm of n. For this purpose, we prove the following claim.

Claim 2 If the current node reached by greedy routing on its way from s to t is of the form x =
(k, k, . . . , k), where 0 ≤ k < ,p/2-, then with probability at least 1 − 1/2d(n), greedy routing follows the
local link to node (k + 1, k + 1, . . . , k + 1).

Recall that greedy routing follows the link of x which leads the closest to the target among its local
and long range links. Among its local contacts, the closest node to the target is (k + 1, k + 1, . . . , k + 1),
which reduces the current distance to the target by 1. Therefore, for the algorithm to follow the long
range link of x, the long range contact of x has to have all its coordinates strictly greater than k in order
to reduce the current distance to the target by at least 1. This means that the long range contact has
to be in direction dirx(+1, +1, . . . , +1), which, from the discussion above, happens with probability at
most 1/2d(n). This proves the claim.

The following claim gives a lower bound on the expected number of steps of greedy routing from s
to t.

Claim 3 There exists n0 ≥ 1 such that for any n ≥ n0, E(ϕ(n), s, t) ≥ 2d(n).

Let Ek be the event : ”greedy routing follows a long range link at the kth step”. From Claim 2, Pr E1 ≤
1

2d(n) . All nodes visited by greedy routing are distinct, and thus, their random links are independent.
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dir(+1,+1)

dir(+1,0)dir(−1,0)

dir(0,+1)

dir(0,−1)dir(−1,−1)

dir(−1,+1)

dir(+1,−1)

Fig. 1 – Example of graph G(n) defined in proof of Theorem 1 with d(n) = 2. Source and target are
black nodes. Grey areas represent the various directions.

Therefore, still from Claim 2, Pr{Ek | ∀j < k, Ej} ≤ 1
2d(n) . Let X be the number of steps taken by greedy

routing before it follows a long range link on its way from s to t. We get :

E(X) =
∑

k≥1

Pr{X ≥ k} ≥
∑

k≥1

Pr{
k−1⋂

i=1

Ej} ≥
∑

k≥1

(
1 − 1

2d(n)

)k−1

= 2d(n).

On the other hand, since d(n) )
√

log n, this expected number of steps is less than the distance ,p/2-
from s to t. Indeed, there exists n0 ≥ 1 such that, for any n ≥ n0, d(n) <

√
log n

2 . Then for n ≥ n0,
(d(n))2 < log n

2 and 2d(n) < log n
d(n) . We get :

2d(n)

n1/d(n)/2
= 21+d(n)− log n

d(n) ≤ 21−d(n) < 1.

Then, for n ≥ n0, after the 2d(n) < ,p/2- first steps of greedy routing from s to t in G(n), no long range
link is used. Therefore greedy routing has not yet reached the target. Thus E(ϕ(n), s, t) ≥ 2d(n).

We complete the proof of the theorem by proving the following claim.

Claim 4 2d(n) /∈ O(polylog n).

Let α ≥ 1, we have :
logα n

2d(n)
= 2α log log n−d(n) = 2α d(n)( log log n

d(n) − 1
α ).

Since limn→∞
log log n

d(n) = 0, there exists n1 ≥ 1 such that for any n ≥ n1,
(

log log n
d(n) − 1

α

)
≤ − 1

2α , and thus
logα n
2d(n) ≤ 2−d(n)/2. Moreover, d(n) ≥ log log n, then, for n ≥ n1,

logα n

2d(n)
≤ 2−

log log n
2 = o(1).

In other words, 2d(n) is not a polylogarithm of n, which proves the claim.
Finally, for n ≥ max{n0, n1}, maxs′,t′∈V (G(n)) E(ϕ(n), s′, t′) ≥ E(ϕ(n), s, t) ≥ 2d(n) /∈ O(polylog n),

which yields the result. !
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4 Navigability of meshes

The family of non navigable graphs defined in the proof of Theorem 1 contains the standard square
meshes of dimension d(n) as subgraphs, where d(n) ! log log n. Nevertheless, and somehow counter
intuitively, a subgraph of a non navigable graph is not necessarily non navigable. In this section, we
illustrate this phenomenon by focusing on the special case of d-dimensional meshes, the first graphs that
were considered for the analysis of navigable networks [19]. Precisely, we show that any d-dimensional
torus Cn1/d × . . . Cn1/d is navigable : either it has a polylogarithmic diameter, or it admits a distribution
of links such that greedy routing computes paths of polylogarithmic length. This result has partially
been proven in [11] for the case of constant dimensions. We give here a complete proof that holds for any
dimension.

Theorem 2 For any function positive function d(n), the n nodes d(n)-dimensional torus is navigable.

Proof. We construct a random link distribution ϕ as follows. Let u = (u1, . . . , ud(n)) and v =
(v1, . . . , vd(n)) be two nodes. If they differ in more than one coordinate, then ϕu(v) = 0 ; otherwise,
i.e. they differ in only one coordinate, say the ith, then :

ϕu(v) =
1

d(n)
· 1
2Hk

· 1
|ui − vi|

,

where k = n1/d

2 and Hk =
∑k

j=1
1
j is the harmonic sum. Note that this distribution corresponds to :

– picking a dimension uniformly at random (probability 1
d(n) to pick dimension i)

– and to draw a long-range link on this axis according to the 1-harmonic distribution over distances
( 1
2Hk

is the normalizing coefficient for this distribution), which is the distribution given by Kleinberg
to make the 1-dimensional torus navigable.

Let now s = (s1, . . . , sd(n)) and t = (t1, . . . , td(n)) be a pair of source and target in the mesh. Assume
that the current message holder during an execution of greedy routing is x = (x1, . . . , xd(n)), at distance X
from t. The probability that x has a long range link to some node w = (x1, . . . , xi−1, wi, xi+1, . . . , xd(n)),
1 ≤ i ≤ d(n) such that |ti − wi| ≤ |ti − xi|/2 is greater than

∑
1≤i≤d(n)

1
3d(n)Hk

= 1
3Hk

along the same
analysis as the analysis of Kleinberg one dimensional model, summing over the dimensions. If such a link
is found, it is always preferred to the local contact of x that only reduces one of the coordinate by 1.
Thus, after at most 3Hk steps on expectation, one of the coordinates has been divided by two. Note that
since long range links only get to nodes that differs in a single coordinate from their origin, further steps
cannot increase |xi − ti| for any 1 ≤ i ≤ d(n), x being the current message holder. Repeating the analysis
for all coordinates, we thus get that after 3d(n)Hk steps on expectation, all the coordinates have been
divided by at least two, and so the current distance to the target is at most X/2. Finally, the algorithm
reaches t after at most 3d(n)Hk log(dist(s, t)) steps on expectation, which is O(log2 n). !

Remark. Note that our example of non-navigability in Section 3 may appear somehow counter
intuitive in contrast to our latter construction of long range links on meshes. Indeed, why not simply
repeating such a construction on the graph G(n) defined in the proof Theorem 1 ? That is, why not
selecting long range contacts on each ”diagonal” using the 1-harmonic distribution, in which case greedy
routing would perform efficiently between pairs (s, t) on the diagonals ? This cannot be done however
because, to cover all possible pairs (s, t) on the diagonals, 2d(n) long range links per node would be
required, which is larger than any polylogarithm of n when d(n) ! log log n.

5 Conclusion

The increasing interest in graphs and metrics of bounded doubling dimension arises partially from
the hypothesis that large real graphs do present a low doubling dimension (see, e.g., [12, 18] for the
Internet). Under such an hypothesis, efficient compact routing schemes and efficient distance labeling
schemes designed for bounded doubling dimension graphs would have promising applications. On the
other hand, the navigability of a network is actually closely related to the existence of efficient compact
routing and distance labeling schemes on the network. Indeed, long range links can be turned into small
labels, e.g. via the technique of rings of neighbors [25]. Interestingly enough, our paper emphasizes that
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Fig. 2 – Example of 2-dimensional mesh augmented as in proof of Theorem 2 : 1-harmonic distribution
of links on each axis. Bold links are long range links, they are not all represented.

the small doubling dimension hypothesis of real networks is crucial. Indeed, for doubling dimension
above log log n, networks may become not navigable. It would therefore be important to study precisely
to which extent real networks do present a low doubling dimension.

In a more general framework, our result of non navigability shows that the small world phenomenon,
in its algorithmic definition of navigability, is not only due to the good spread of additional links over
distances in a network, but is also highly dependent of the base metric itself, in particular in terms of
dimensionality.
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