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Abstract
This report presents the work done on modifying the lightweight Mutek operating
system to add support for two complex Arm-based SoC architectures. Both of these
platform use nearly the same ARMv4 core CPU model but have a different memory
map and integrate different system peripherals such as interrupt controller, timer and
serial interfaces. An initial support for MMU operations using an identity mapping
has also been added to the hardware abstraction layer. This support was compulsory
to access hardware information needed to activate the data cache.
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Résumé
Ce rapport de recherche présente les modifications faites sur le système d’exploita-
tion léger Mutek pour ajouter le support de deux plateformes complexes utilisant des
processeurs ARM. Les deux plateformes possèdent une version ARMv4 du cœur de
processeur mais utilisent des adressages mémoires ainsi que des périphériques dif-
férents pour le contrôle des interruptions, les timers et les ports de communication
série. Un support préliminaire de gestion de la mémoire virtuelle utilisant la MMU a
projection identité a également été rajouté dans la couche d’abstraction matérielle. Ce
support est nécessaire pour ajouter les fonctions d’activation des caches de données
des processeurs.

Mots-clés: Mutek, Systèmes d’exploitation, Plate-forme ARM, Adaptation
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1 Introduction

The Mutek operating system is available as part of the DISYDENT Open Embedded System Development
Environment [4, 6]. The Mutek operating system is a lightweight kernel that proposes an implementation
of the POSIX threads for multiprocessor platforms with shared memory on multiple memory banks.

Mutek has been developed originally for MIPS R3000 processors. It has then been ported to SPARC

V8 and preliminary support for ARM and POWERPC is currently available within the CVS repository. So
far the Mutek kernel has only been used, to our knowledge, within the DISYDENT framework and with
the SystemC simulation platform available from the SOCLIB initiative [1]. These simulation environments
propose design models and tools that can be used for hardware/software codesign of complex System on
Chip (SoC). These models include processors, system interconnect buses and Network on Chip, RAM
modules and some other system peripherals. However the booting process and input/output peripherals
available as part of the design libraries are not as complex as real peripherals.

As part of our work on embedded systems we need a very lightweight operating system to build power
measurement benchmarks. This research report presents the modifications made to the Mutek kernel in
order to boot it on the ARM Integrator CM922T-XA10 platform [2] and on the skyeye [9] system simulator
for the Atmel AT91RM200 SoC. The interested reader should note that this report is related to the Research
Report 2006-08 [5] on porting the Linux and uCLinux kernel on the same platform.

The next section presents the original software architecture of the Mutek operating system and its
associated libraries.

1.1 The Mutek Kernel

The Mutek kernel uses a monolithic architecture in which both the operating system and application code
are statically linked at compile time. The Mutek source code can be parameterized in a number of ways
through the use of pre-processor variable definitions within the code. Once the libraries have been compiled
for a specific target architecture the application code can be linked to the software libraries in order to
make an ELF file that can be used to boot the platform and run the application code. Figure 1 presents the
basic operations to build a self-contained ELF file. Mutek uses a flat memory model running in physical
address mode. The application code is run within the same memory address space as the kernel services
thus allowing a complete control over the memory allocation of the objects in exchange for the memory
protection mechanism that are usually available on more complex systems. The linker script configuration
file (ldscript) must be explicitly given during the linking process. This file defines the memory mapping
of all objects and sections used within the compiled code.

The Mutek functionalities are separated into the following libraries

• libhandler: platform specific code. The library proposes a hardware abstraction layer on top of
which all the Mutek functionalities are built. This library contains the platform specific assembly
source code.

• libpthread: Posix thread implementation that conforms to the Posix 1003.1 standard.

• libc: tiny libc library that can be used by application code.

• libdpn: Disydent Process Network library. This library proposes communication channel abstrac-
tion that can be used to hide hardware and software communications behind a unified fifo-based
communication framework.

In this report we will only focus on the libhandler library and we propose some extension for
the input output mechanisms contained in the libc library. The libpthread was portable enough to
remain unchanged while being used on another architecture than the one it was primarily designed for. We
also did not modify the libdpn library.
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Figure 1: Basic steps to compile Mutek source and application code

1.2 The libhandler library

The libhandler library is used to build a hardware abstraction layer. This code library regroups
hardware dependant part of some common functions used within the Posix thread API implementation.
Amongst other

• Hardware specific type definitions and macros

• Processor bootstrap and reset code

• Software context switch

• Mutual exclusion mechanism implemented using spin-locks

• Interrupt controller

• Timer interface definition

The current Mutek implementation can only use the peripherals available within the DISYDENT and
SOCLIB environment. These environments include an interrupt controller, a timer and a basic serial char-
acter output device. CPU related functions for ARM based SoC are presented in section 2.1.1. Memory
mapping and devices for our platforms are presented in sections 2.2 and 2.3.

1.3 The libc library

The Mutek libc is used by both the implementation of the pthread library and can be used by the application
code. The functionalities included in the libc library include basic C support functions:

• malloc: Memory allocation for both global and local storage. These memory allocation functions
can be used on an architecture with explicit multi-bank memory regions.

• ctype: character type handling.

• string: C string support and memory manipulation functions.
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• stdlib: standard C library functions (atoi(), bsearch(), exit(), random(), strtol()).

• stdio: basic output text console handling.

The current version of the Mutek libc was left untouched except for the text output functions such as
printf(). Both DISYDENT and SOCLIB support a very simple TTY output device that can take charac-
ters on a single memory mapped register (__tty_addr). The pseudo device is used within simulations
to have a direct feedback from the application code using a terminal type emulator. The modifications we
made in order to support a console interface that can be used over a serial port are presented in the device
driver section 3.2.

1.4 Porting Mutek to a real platform

This report presents the work done on modifying the Mutek sources to add support for two complex ARM-
based SoC architectures. Both of these platform use nearly the same ARMv4 core CPU model but have
a different memory map and integrate different system peripherals such as interrupt controller, timer and
serial interfaces. An initial support for MMU (Memory Managment Unit) operations using an identity
mapping has also been added to the hardware abstraction layer. This support was compulsory to access
hardware information needed to activate the data cache.

2 Platforms Description

2.1 ARM Common Architecture

The two platforms are based on an ARM processor. For the AT91RM9200 SoC it is an ARM 920T and
for EPXA SoC it is an ARM 922T. First of all, it is interresting to note that ARM 920T and ARM 922T
are nearly the same processor. In fact the only difference between the two of them is their cache sizes.
ARM 920T owns 16kB of instruction cache and 16kB of data cache, whereas ARM 922T only gets 8kB
for instruction cache and 8kB for data cache. The remainder of the two processors is strictly identical.
They have the same core, ARM9TDMI and the same MMU, ARMv4 MMU. The global architecture of the
CPU is thus the same for the two platforms and is depicted in figure 2.
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Virtual Addresses
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Data Path
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CPU Core

Cache
Data
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Data Write back

PA TAG RAM
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Figure 2: ARM 920T/922T architecture
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2.1.1 ARM9TDMI Core

We will give in this section more details about the ARM9TDMI core included in our two target CPUs.

Instruction Set Architecture (ISA): ARM9TDMI is a RISC CPU core, whose pipeline is divided into
five stages : Fetch, Decode, Execute and two Load and Store stages. This core fully implements the ARM
32 bit instruction set until revision 4. It also implements the reduced 16 bits instruction set called Thumb.
More recent ARM technologies like DSP instructions or Java accelerations instructions (Jazelle) are not
supported by this core.

Execution Modes: ARM processors have different execution modes. There are 6 modes in older pro-
cessors (ARMv3, and before) : User, Supervisor, Abort, Undefined, IRQ and FIQ modes. In more recent
processors (ARMv4 and above) a seventh mode appeared called System mode. Among these modes five
are exception modes and only one is an unprivileged mode. Indeed, User mode is the normal execution
mode, since it is unprivileged, and Supervisor, Abort, Undefined, IRQ and FIQ are exception mode. The
System mode is the only privileged mode which is not an exception execution mode.

Exceptions: As we just said, there are five exception execution modes, but this does not mean that the
processor has only five exception types. In fact, there are 6 different exceptions : Reset, Abort, Undefined,
SWI, IRQ and FIQ. Here are more details about these exceptions.

Reset is raised when the reset input of the processor is asserted. Abort regroup instruction fetch abort
and data access memory abort, which means that an error occured while accessing the memory for instruc-
tion reading or data access. Undefined exception occurs when an unknown instruction is executed on the
CPU. The three remaining types are interruption exceptions. The first, SWI, represents software interrup-
tions, the second, IRQ, normal hardware interruptions and the third, FIQ, fast hardware interruptions.

For most of the exception types, the mapping of their execution mode is obvious. For the remainder,
Reset and SWI are executed in Supervisor mode.

Let us give a few details about how the CPU behave when an exception raises. On exception assertion,
the instruction execution is stopped and the processor jumps to the CPU Vector regrouping all software ex-
ception handlers. To do so, the program counter is updated with a value obtained by adding the CPU vector
base (0x00000000 or 0xFFFF0000 depending on the CPU configuration) and an offset dependent on
the type of exception. For exemple if the CPU vector base is 0x00000000 and an IRQ occured, the CPU
program counter jumps to the address 0x00000018. At this address we generally find a jump instruction
(b branch) to the real handler address.

Register file: The final point of the core description is the register file. ARM CPUs have a 16 general
purpose register file, r0 to r15. An extra register CPSR (Current Processor Status Register) is available,
it represents the current processor status. Among the 16 registers mentioned before, one is the program
counter (PC), r15. Two other registers are used for special purposes, r13 as stack pointer (SP), and r14
as link return (LR). Which means that when executing a bl (branch and link) instruction, the return address
(address of the bl plus 4) is stored in LR=r14.

In fact ARM CPUs do not have only 16 general purpose registers and one status register, but 32 general
purpose registers and 6 status registers. On top of these 17 registers (r0 to r15 and CPSR), there are
banked registers. The banked registers are available in exception execution modes. For general purpose
ones,they are available replace the normal registers in the 16 registers scope of the CPU. Banked status
registers give access to an extra register, the saved CPU status register (SPSR). Figure 3 shows all banked
registers in a gray filled box. For example, when running in IRQ mode, the r13=SP and r14=LR registers
available are not r13 and r14 of the User/System mode, but r13_irq and r14_irq.

On mode switching, from user (or exception) to exception mode, the CPSR is saved in the SPSR of the
target execution mode, as well as the PC is copied in the LR of the exception mode.
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Figure 3: Banked registers of ARM CPU

2.1.2 Instruction and Data Caches

The ARM 920T and the ARM 922T have seperated instruction and data caches. Their size is 16 kB in the
920T and 8kB in the 922T. As far as the write buffer is concerned, its size is 16 words in the two processors.

These caches are virtually addressed, which means that cache lines are indexed by virtual addresses.
On top of that, the data cache can only be used when MMU is activated. In fact the control bits, which
indicates if the cache and the write buffer must be used for a memory region, are part of the page table
entries. Between the two processors, only one parameter changes, the size of the sets. In the ARM 920T
they are 128 lines deep and in the ARM 922T they are 64 lines deep. Thus, the 920T caches are made of
512 lines and the ARM 922T caches are made of 265 lines. The line size is 8 words (32 bytes) for the two
of them and they are organized in a 4-way associative way.

2.1.3 MMU Behaviour

The MMU integrated in the ARM 920T and in the ARM 922T are the same, ARMv4 MMU. We will give
here more details about the behaviour of this MMU.

First of all, we must underline the fact that instruction and data have their own TLB (Translation Look-
aside Buffer), translation cache. These TLBs have a 64 entry width.

In the ARMv4 MMU, memory can be accessed through four different page or section sizes : 1kB
(tiny page), 4kB (small page), 64kB (large page), 1 MB (section). These pages and sections are accessible
through one or two stage table walking depending on page-mapped or section-mapped access.

Translation base: the translation starts when TLB contains no translation for a virtual memory address.
Then the translation table base (TTB) address gives the location in physical memory of the first stage table.
This register is in the configuration coprocessor CP15.

7



Level 1: Translation Table. The first stage table is also called translation table. It is 4096 entries long,
which means that its size is 16 kB. Each entry in this table represents 1MB of virtual memory. There are
four different entry types in this table as can be seen on Figure 4.

1MB
00

01

10

11

index

12 bits

table base

Fine page

Coarse page

table base

index

20 bits

Section
Translation table

TTB

Figure 4: ARMv4 MMU level 1

The first type is the section descriptor. As we said before, memory is accessible through section.
Obviously these sections have a size of 1 MB. All informations about domain protection, cache and write
buffer are present in this first level entry.

The two following types of entries are page entries. There are two different types of page table : coarse
grained and fine grained. The first level entry in these case only gives the base address of the corresponding
second level page.

The fourth type is undefined and generates an error.

Level 2: Page tables. At this level, we have two different types of page table, the coarse grained and the
fine grained page table. As their name indicates, the first type describes its 1Mo region with big pages and
the second one with smaller pages.

The page size can have three different sizes : 1kB (tiny page), 4kB (small page), 64kB (large page).
Coarse grained page table entries can only describe small or large page. However, Fine grained page table
entries can describe tiny, small or large page entries. This difference is due to the following fact: coarse
grained page table divides its 1MB in 4kB blocks, so it has only 256 entries. When a large page descriptor
is set, it is repeated on the 16 contiguous blocks descriptions. For fine grained page table the situation is
the same, but it divides its 1MB in 1kB blocks (it is 1024 entries). If a small or a large page description is
set the description is repeated on all the blocks descriptor the page contains. The figure 5 summarize this
second level description relations.

To conclude, figure 6 give an global view of the two level page table organisation.

2.2 Integrator CM922T-XA10 Platform

We will have a closer look on the pecularities of the two platforms presented before. The first platform
to be detailed is the ARM Integrator/CM 922T-XA10 in standalone mode. This platform is based on an
Altera Excalibur EPXA10. In the remainder of this section we will only talk about EPXA10 hardware
details, since Integrator/CM has only few hardware embedded on board. A more detailled description of
the platform is available in [5], the following parts will only underline major aspects.

2.2.1 Hardware Architecture

Before going any further, here is a global overview of the hardware architecture of the EPXA10 as it
is integrated on the CM 922T-XA10. The figure 7 depictes this architecture. CM 922T-XA10 specific
hardware is implemented in the FPGA of the EPXA10.

This SoC (System-On-Chip) contains all required hardware to make an Operating System (OS) boot
on it. Indeed, hardware pieces necessary for us are serial port (UART), timer and interrupt controller. To
conclude, it is interesting to underline that we have different types of memory available on the CM 922T-
XA10. Main memory (DRAM) is embedded on the board (128 MB). We also have static RAMs usable
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Figure 6: Global MMU access diagramm

as Scratch PADs. This static RAMs are Single port and Dual port static RAMS (SP / DP SRAM) and are
integrated in the EPXA10. On top of that, CM 922T-XA10 board also integrates an SSRAM chip (2MB).

2.2.2 Memory map

All stripe peripherals are controlled by registers mapped in memory. These registers are regrouped in a
register bank, the stripe register bank. The default mapping address of this bank is 0x0B000000. Another
control and status register bank corresponding to the CM peripherals is mapped at 0x10000000.

The remaining of the memory map contains memories mapping (Flash, SDRAM, SP SRAM and DP
SRAM). Figure 8 gives a full overview of this memory map.
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2.2.3 Interruption Architecture

EPXA10 embed an interruption controller (ITC) linked to the interruption wires (INT_nIRQ and INT_nFIQ).
This ITC gathers all interruptions requests from all hardware of the platform and raises an IRQ or a FIQ
on the CPU. All sources are linked to the ITC by only one wire, then the ITC must know if it must raise an
IRQ or a FIQ. It has interruption priorities for each source, and decide regarding to this level. The highest
level (0x3F) corresponds to fast interruptions.
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2.3 Atmel AT91RM9200 Platform

The second platform is an Atmel AT91RM9200. This is a SoC (System-On-Chip) used in many embedded
commercial products such as PDA (Personal Digital Assistant).

2.3.1 Hardware Architecture

The figure 10 gives a rapid overview of the global hardware architecture of the AT91RM9200. As you can
realize the main difference between this architecture and the CM922T-XA10 one, is the fact that the CPU
is connected to an AMBA System Bus (ASB) and that the peripherals are only accessible through a bridge
(also connected to the ASB bus), since they are connected by an AMBA Peripheral Bus (APB).

Main Memory (SDRAM) is linked to the SDRAM controller in the Expansion Bus Interface (EBI).

Interrupt
Controller

RTC

Timer Counter

EBI

FlashSDRAM

USB Host
Internal
memories

bridge

MCISystem Timer
Ethernet
MACUART[0:3] SSC[0:2]

PMC

Serial Interface Ethernet Interface MMC InterfaceUSB Interface

USB Device

CPU

ASB−APB

USB Interface

APB

ASB

Figure 10: AT91RM9200 architecture. Bold blocks are bus masters

2.3.2 Memory Map

As for CM 922T-XA10, all peripherals can be controlled thanks to memory mapped registers. These
registers are regrouped in the last 256 MB of the address space.

The remainder of the physical address space is assigned to memories or left undefined.
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2.3.3 Interruption architecture

AT91RM9200 also integrates an interruption controller (ITC). Its behavior and integration is very close to
the EPXA10 one. In fact it is linked to the interruption exception wires (INT_nIRQ and INT_nFIQ). The
main difference is that interruption source of the ITC can gather multiple hardware sources. For example,
source 1 is System interruptions, it regroups System timer interruption, real time clock and so on. On top
of that, FIQ managment is completely different since all sources of this ITC raises IRQ except one, source
0, which is specialized to raise FIQ.
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Figure 12: AT91 interruption architecture

12



3 Mutek Modifications

Porting Mutek to these two real platforms needs to be made in two different phases. The first phase is
to ensure that CPU specific routines are available and works fine, and second phase is to port hardware
specific drivers.

3.1 Mutek on ARM (generic implementations)

To make Mutek work on real ARM, we had to modify its managment of exceptions, its semaphore imple-
mentation, and add a cache activation routine.

3.1.1 Exception handling

One of the most meticulous thing to do when implementing an operating system is undoubtlessly the
context save and restore while interrupted by an exception.

ARM architecture is well designed from this point of view. As we mentionned before, when an excep-
tion occurs, the CPU changes of operating mode from normal operating mode to exception mode. In the
ARM implementation of Mutek, the system is always running in supervisor mode. The main advantage of
this mode is the possibility of executing every instructions (privileged or not). For the sake of simplicity,
we assume that only interruptions can occur (IRQ). Figure 13 shows the context before IRQ happens. Note
that context register value will be marked with a “*” in the following steps.
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Figure 13: Before IRQ

When an interruption occurs, the CPU switches from supervisor mode to IRQ mode. The CPU runs
then in IRQ mode, and IRQ and FIQ are disabled. To avoid the PC* register value loss, this register
is saved in a banked register named LR_irq. For the same reason CPSR is saved in SPSR_irq (Saved
Processor Status Register). LR_irq and SPSR_irq are banked register (c.f. section 2.1.1 Register file).

As you can realize from figure 14, registers r0* to r12* are not changed and are accessible in IRQ
mode, we can save them as they are. The register r13_svc* and r14_svc* also called SP_svc* and LR_svc*
are banked, they are not accessible any more. Finally the CPSR* is saved in SPSR_irq.

Before passing the control to the C function responsible of the IRQ managment, we must take care of
storing all the registers, more precisely their value before IRQ occurs (i.e. all value marked with a “*”). To
allow an easier context restore, we will store the context of a thread in its own stack. The trouble is that
we have no access to the current top position of the stack (SP_svc*). The solution is to switch back into
supervisor mode, but we have to save the two register value which would be lost otherwise. Figure 15 give
an overview of the PC* and CPSR* storing process. You can also find the assembly code of this step.

SP_irq (r13_irq) could have been used as a pointer on the IRQ stack, but we will not use it like this.
We use it like an empty general purpose register. This register allows us to store the PC* and CPSR* value
at a known position in main memory, just behind the CPU vector.
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Figure 14: At IRQ raising
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IRQ_Handler:
@
@ Jump here from exception ... sp and lr banked. :-(
@

ldr r13, =current_ctxt @ load temporary save address
sub lr, lr, #4
str lr, [r13], #4 @ Save last PC
mrs r14, spsr
str r14, [r13], #4 @ Save last CPSR

Figure 15: First phase of context storing : the saved registers PC* and CPSR*

Once the two saved registers are stored in memory, we can switch back to supervisor mode, to retrieve
the final memory address of context save. The procedure to get back to supervisor mode is simple, it is
a read-modify-write sequence (figure 16). The modification is only an execution mode modification, then
the CPU will continue to run with IRQ and FIQ disabled.

Now we can store register values in the stack of the process (thread). To do so we only need to allocate
the context size in the stack (by removing this size to the value of the stack pointer), and write the thirteen
first registers at their right place (see figure 17).

Last registers to be saved are SP_svc* (it is not yet available, but it is SP_svc plus context size),
LR_svc* (it is still in place), PC* and CPSR* (these ones are stored in memory, but not at the right
address). Figure 18 gives a description of the actions needed to bring these values in the registers r1 to r4.

Once SP_svc* to CPSR* are placed in registers r1 to r4, we store them in memory (figure 19).
Now we have saved all registers. SP_svc points now to the top of stack, just before our saved con-
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@-------------------------------------------------
@ Switch to SVC mode IRQ disabled
@-------------------------------------------------
mrs r14, cpsr
bic r14, r14, #PSR_MODE_MASK @ clear execution mode
orr r14, r14, #PSR_SVC_MODE @ set supervisor mode
msr cpsr, r14

Figure 16: Switch back to supervisor mode
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@-------------------------------------------------
@ Push context in thread stack
@-------------------------------------------------
sub sp, sp, #CTXT_SIZE @ CTXT size allocation
stmia sp, {r0-r12} @ save r0 though r12

Figure 17: First registers storing : r0* to r12*

text. We can safely pass control to the C function in charge of identifying the source of interruption and
launching the right interruption handler. This part of software is platform dependant, so it will be detailled
further in this report. The situation before passing control to C function called SystemInterrupt() is
depicted by figure 20.

Last step in the exception handling is to restore a context before getting back to the process interrupted.
Note that this process is not necessarily the one interrupted just before, more precisely, this is not the case
when the interruption source is the timer. In the last case it is likely to be a preemption tick. In the restore
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ldr r0, =current_ctxt @ load temporary save address
add r1, sp, #CTXT_SIZE @ SP before IRQ
mov r2, lr @ just for stm
ldmia r0, {r3, r4} @ grab back pc and cpsr.

Figure 18: Last register retrieving : from phase one
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add r5, sp, #SP_OFF
stmia r5, {r1-r4}

Figure 19: Last registers storing : SP*, LR*, PC* and CPSR*

process, we must underline the fact that we first need to read the CPSR value and put it in the SPSR register.
The restore action and control passing is made in one instruction, a ldmia. Since we load the CP value
and as we put a "ˆ", all values are moved to the registers and the SPSR value is moved to the CPSR register.
This means that the execution mode is updated (IRQ and FIQ are re-enabled). The reason why we put the
modifications in SPSR and not directly in CPSR is that we would have enabled IRQ and FIQ exceptions
in the current mode by modifying directly CPSR. By doing direct CPSR modifications, the context restore
process could be interrupted and stopped in an unpredictable state. The instruction described before allow
to make all actions without being interrupted. The full action sequence is shown on figure 21.
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Figure 20: Context ready
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ldr r3, [sp, #PSR_OFF]
msr spsr_cxsf, r3 @ put cpsr in SPSR
ldmia sp, {r0-r15}^ @ restore Context

Figure 21: Restore process

3.1.2 Exception CPU Vector Relocation

We have a full exception handling routine which saves the context before passing control to higher level
interruption handler. The CPU vector is the location where the CPU jumps when an exception occurs. As
we mentionned before, each type of exception has its own offset. The vector looks like this :
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excep:
b reset @ 0x00 reset
b Undefined_Handler @ 0x04
b SWI_Handler @ 0x08
b Prefetch_Handler @ 0x0C
b Abort_Handler @ 0x10
nop @ 0x14 not assigned
b IRQ_Handler @ 0x18
b FIQ_Handler @ 0x1c
subs pc, lr, #4

The CPU vector must be placed in memory at address 0x00000000. In a simulation environment like
Skyeye, there are no problem to load in memory an executable file at address 0x00000000 but on a real
platform like CM 922T-XA10, the software used to load programs in memory does not allow this kind of
action. Our solution to tackle this trouble is to use a code relocation routine which copies the CPU vector
from an alternate position in memory to the 0x00000000 address region.

The relocator code is simple and integrated in our programs for now. Here is the algorithm :

except_reloc:
stmfd sp!,{r0-r12,lr}
adr r0, _b_table
adr r2, _e_table
mov r1, #0 @ excep_vect location : 0x00000000

1: cmp r0, r2
ldrlt r3, [r0], #4
strlt r3, [r1], #4
blt 1b

2: ldmfd sp!,{r0-r12,lr}
mov pc, lr

_b_table and _e_table represents the addresses of the beginning and the end of the CPU vector.
It should also include the low level handler described before.

Full source is here :

IRQ_Handler:
@
@ Jump here from exception ... sp and lr banked. :-(
@

ldr r13, =current_ctxt
sub lr, lr, #4
str lr, [r13], #4 @Save last PC
mrs r14, spsr
str r14, [r13], #4 @Save last CPSR

@-------------------------------------------------
@ Switch to SVC mode IRQ disabled
@-------------------------------------------------
mrs r14, cpsr
bic r14, r14, #PSR_MODE_MASK
orr r14, r14, #PSR_SVC_MODE
msr cpsr, r14

@-------------------------------------------------
@ Push context in thread stack
@-------------------------------------------------
sub sp, sp, #CTXT_SIZE @ thus we can store sp immediately
stmia sp, {r0-r12} @ save r0 though r12
ldr r0, =current_ctxt
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add r1, sp, #CTXT_SIZE @ SP before IRQ
mov r2, lr @ just for stm
ldmia r0, {r3, r4} @ grab back pc and cpsr.
str sp, [r0]
add r5, sp, #SP_OFF
stmia r5, {r1-r4}

@ Jump and link to IT Handler
bl SystemInterrupt

ldr r3, [sp, #PSR_OFF]
msr spsr_cxsf, r3 @ put cpsr in SPSR
ldmia sp, {r0-r15}^ @ restore Context

3.1.3 Spinlocks Implementation

The implementation of the semaphores is based on spinlocks. Unfortunately these spinlocks were not
working due to little implementation mistakes. In short, the previous implementation was based on multiple
asm() calls, to include the assembly langage of the spinlock. On top of that some relative jumps was
made in these instructions. Unfortunately asm() adds some instructions before and after the assembler
instructions given in arguments. Thus the asm sequence was not exactly the same than the one written in
the C file, some instructions were inserted and relatives branches did not jump to the right place.

We took the decision to reimplement the spinlocks. This reimplementation is really simple. Like the
previous, this one is based on the atomic instruction swp (swap), which allows us to read the value of
the spin-lock and replace it by another value in one non interruptible instruction. To implement spinlock
algorithm, the value written is 1 and the value read must be 0 to continue. If it is not the case, we repeat
the swap until it is a 0. To avoid relative branches error to occur in the future, we used labeled jumps, then
the assembler is in charge of putting the right address in the branch instruction. And finally, we put all
assembly instruction in one unique asm() call.

To release the spinlock we only need to write a 0 at the spinlock memory address.
Here is the source code :

#define SEM_LOCK(semaddr) \
do { \

asm( \
" stmdb sp!, {r4-r6} @ \n" \
" mov r6, %0 @load the semaddr in a reg\n" \
" mvn r5, #1 @load 1 \n" \
"1: swp r4, r5, [r6] @ \n" \
" cmp r4, #0 @ \n" \
" bne 1b @loop \n" \
" ldmia sp!, {r4-r6} @ \n" \
::"r"(semaddr):"r4","r5","r6"); \

} while(0)

# define SEM_UNLOCK(semaddr) \
do { \

asm( \
" mov r6, %0 @ \n" \
" mov r5,#0 @ \n" \
" str r5, [r6] @ \n" \
::"r"(semaddr):"r4","r5","r6"); \

} while(0)
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3.1.4 Caches Activation

Instruction and Data caches can be activated thanks to a control register in the configuration coprocessor
CP15 register c1. For instruction cache, no particular attention is needed before activation. But as far
as the data cache is concerned, we have to be careful because some part of the address space must not be
cached and buffered (when written). For example, these parts correspond to the memory mapped physical
registers. We can tell the CPU where (on which part of the address space) to use or not data cache and
write buffer. This information is placed in the page (or section) table entries. The only mean to use the data
cache is thus to activate the MMU.

In our case, we do not need a complex memory mapping, as the one used in the Linux kernel. We
decided to use an identity mapping (it is used in the early deflation stage of the Linux kernel). In that aim,
we choose to build a page directory filled with only section descriptions (c.f. section 2.1.3). We only put
cache-able and buffer-able informations on the 128 first section descriptors since we have an amount of
128 Mo of main memory.

__setup_mmu:
bic r3, r3, #0xff @ Align the pointer
bic r3, r3, #0x3f00

/*
* Initialise the page tables, turning on the cacheable and bufferable
* bits for the RAM area only.
*/

mov r0, r3
mov r8, #0x0 @ start of RAM
add r9, r8, #0x08000000 @ a reasonable RAM size
mov r1, #0x12
orr r1, r1, #3 << 10
add r2, r3, #16384

1: cmp r1, r8 @ if virt > start of RAM
orrhs r1, r1, #0x0c @ set cacheable, bufferable
cmp r1, r9 @ if virt > end of RAM
bichs r1, r1, #0x0c @ clear cacheable, bufferable
str r1, [r0], #4 @ 1:1 mapping
add r1, r1, #1048576
teq r0, r2
bne 1b

Once the page directory is built, last actions are to activate the MMU, the instruction and data caches.
To avoid bad surprises, we invalidate the TLBs and caches, since they could contain expired translations
and cache lines.

__cache_on:
mov r12, lr
bl __setup_mmu @ build page tables
mov r0, #0
mcr p15, 0, r0, c7, c10, 4 @ drain write buffer
mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
mcr p15, 0, r0, c7, c7, 0 @ invalidate caches
mrc p15, 0, r0, c1, c0, 0 @ get control reg
orr r0, r0, #0x5000 @ enable I-cache enable,

@ RR cache replacement
orr r0, r0, #0x0005 @ enable D-Cache and MMU
mvn r1, #0
mcr p15, 0, r3, c2, c0, 0 @ load page table pointer
mcr p15, 0, r1, c3, c0, 0 @ load domain access control
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mcr p15, 0, r0, c1, c0, 0 @ load control register
mov r0, #0
mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs
mov pc, r12

3.2 Specific Device Drivers

3.2.1 Serial device driver

First device to require a driver implementation is the serial interface for character terminal printings. Once
this driver is developped, we will be able to know if Mutek is effectively working.

Driver API: This driver proposes to the remainder of Mutek the following functions (console.h) :

void init();
inline void writec(const char c);
inline void writes(const char* s);
inline char readc();

The function names help to understand their aim. We will not give more details about these.

ARM Integrator CM922T-XA10: In the platform specific part of the driver we must implement func-
tions introduced above :

void uart00_init();
inline void uart00_writec(const char c);
inline void uart00_writes(const char* s);
inline char uart00_readc();

The function names are quite expressive, but we will give some details. uart00 is the name given to
the UART device driver in the Linux kernel. We keep the same name, but there are no particular reason.

On top of defining these functions, the driver also needs to define the register locations and usage. A
structure describe the registers mapping like this :

struct cm922txa10_uart00
{
/* I/O register
* */
unsigned long rsr; /* UART00 Receive Status Register */
unsigned long rds; /* UART00 Received Data Status */
unsigned long rd; /* UART00 Received Data */
unsigned long tsr; /* UART00 Transmit Status Register */
unsigned long td; /* UART00 Transmit Data */
unsigned long fcr; /* UART00 FIFO Control Register */
unsigned long ier; /* UART00 Interrudpt-Enable Set and Clear */
unsigned long iec;
unsigned long isr; /* UART00 Interrupt Status Register */
unsigned long iid; /* UART00 Interrupt ID */
unsigned long mc; /* UART00 Mode-Configuration */
unsigned long mcr;
unsigned long msr;
unsigned long div_lo; /* UART00 Divisor */
unsigned long div_hi;

};

The implementation of the function described before is highly dependent on this structure. For exemple,
here is the implementation of the function writec() :
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#define TX_READY() ((CM922TXA10_UART00_BASEP->tsr & 0x1F) < 16)

inline void uart00_putc(const char c)
{

//unsigned int status;
/* Wait until there is space in the FIFO */
while(!TX_READY());
/* Send the character */
CM922TXA10_UART00_BASEP->td = (unsigned int)c;

}

inline void uart00_writec(const char c)
{

if (c == ’\n’)
uart00_putc(’\r’);

uart00_putc(c);
}

The general behavior of the UART is that we must wait for empty space in the fifo by checking a status
register, and then write the character in the fifo by the mean of a TX register.

ATMEL AT91RM9200: As for CM922T-XA10, we define the following functions :

void usart_init();
inline void usart_writec(const char c);
inline void usart_writes(const char* s);
inline char usart_readc();

The register mapping is the following in AT91RM9200 USART :

struct at91rm92_usart
{

/* I/O register
* */
unsigned long cr; /* control */
unsigned long mr; /* mode */
unsigned long ier; /* interrupt enable */
unsigned long idr; /* interrupt disable */
unsigned long imr; /* interrupt mask */
unsigned long csr; /* channel status */
unsigned long rhr; /* receive holding */
unsigned long thr; /* tramsmit holding */
unsigned long brgr; /* baud rate generator */
unsigned long rtor; /* rx time-out */
unsigned long ttgr; /* tx time-guard */
unsigned long fidi;
unsigned long ner;
unsigned long us_if;

unsigned long sysflg;
};

With this informations, the writec() function implemtentation is the following :

inline void usart_wait()
{

while (AT91RM92_USART_BASEP->csr != (AT91RM92_CSR_TXEMPTY | AT91RM92_CSR_TXRDY))
{
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/* busy wait */
}

}

inline void usart_writec(const char c)
{

AT91RM92_USART_BASEP->thr = c;
usart_wait();

}

The philosophy here is to wait until the fifo is empty after having put a character in it. Then when we
want to write something in it we know that it is allways empty. This implementation is different from the
previous one, but it could have be the same since UART and USART have close mechanisms.

3.2.2 Interrupt Controller Device Driver

The second step in device driver implementation is the Interruption Controller (ITC) since this is a first step
in the direction of preemption implementation.

Driver API: The generic API for this driver is made of the following functions :

void init ();
void mask_irq (unsigned int irq);
void unmask_irq(unsigned int irq);

The meaning of these function is quite simple. When we want to enable an irq, we must tell the ITC
to set its mask. This is the aim of mask_irq(). unmask_irq() has the opposite aim, when an IRQ
occurs we must mask it to continue to work without being interrupted every cycle

ARM Integrator CM922T-XA10: The driver implementation of the EPXA10 interruption controller
itc00 contains exactly the function introduced before :

void cm922txa10_itc00_init(void);
void cm922txa10_itc00_mask_irq(unsigned int irq);
void cm922txa10_itc00_unmask_irq(unsigned int irq);

The device regiter description is also made with a structure looking like this :

struct cm922txa10_itc00
{

unsigned long ims; /* Mask Set */
unsigned long imc; /* Mask Clear */
unsigned long iss; /* Source Status */
unsigned long irs; /* Request Status */
unsigned long iid; /* Interrupt ID */
unsigned long ppr; /* PLD priority */
unsigned long mod; /* PLD Mode */
unsigned long unused[25]; /* unused */
unsigned long prio[17]; /* Priorities */

};

For exemple, the implementation of the function maks_irq() for itc00 is really simple :

void cm922txa10_itc00_mask_irq(unsigned int irq)
{

CM922TXA10_ITC00_BASEP->ims = (1 << irq);
}
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We only need to set a register value (ims interrupt mask set).
The functions described till there are low level interruption controller functions. An extra function need

to be completed, which is the interruption handling function. This function will be called by the exception
routine, when an interruption will occur. The name of this handler is fixed to SystemInterrupt() and
its definition must be placed in the it.c file in the platform directory. Briefly, this function reads the status
register of the interruption controller, and calls the specific interruption handler, which must be registered
by the driver of the source device.

ATMEL AT91RM9200: The implementation of the ITC in AT91RM9200 as a little specificity. On top
of the generic functions described earlier, we need two extra functions set_irq() and clear_irq() :

void at91rm92_aic_init ();
void at91rm92_aic_mask_irq (unsigned int irq);
void at91rm92_aic_unmask_irq(unsigned int irq);
void at91rm92_aic_set_irq (unsigned int irq);
void at91rm92_aic_clear_irq (unsigned int irq);

The register mapping is the following :

struct at91rm92_aic
{

unsigned long aic_smr[32]; /* 0x000 Source Mode register (RW) */
unsigned long aic_svr[32]; /* 0x080 Source Vector register (RW) */
unsigned long aic_ivr; /* 0x100 Interrupt Vector register (RO) */
unsigned long aic_fvr; /* 0x104 Fast Interrupt Vector register (RO) */
unsigned long aic_isr; /* 0x108 Interrupt status register (R0) */
unsigned long aic_ipr; /* 0x10C Interrupt pending register (RO) */
unsigned long aic_imr; /* 0x110 Interrupt Mask register (RO) */
unsigned long aic_cisr; /* 0x114 Core interrupt status register (RO) */
unsigned long reserved[2]; /* 0x118 & 0x11C */
unsigned long aic_iecr; /* 0x120 Interrupt Enable Command register (WO) */
unsigned long aic_idcr; /* 0x124 Interrupt Disable Command register (WO) */
unsigned long aic_iccr; /* 0x128 Interrupt Clear Command register (WO) */
unsigned long aic_iscr; /* 0x12C Interrupt Set Command register (WO) */
unsigned long aic_eoicr; /* 0x130 End of Interrupt Command register (WO) */
unsigned long aic_spu; /* 0x134 Spurious Interrupt Vector register (RW) */
unsigned long aic_dcr; /* 0x138 Debug Control register (RW) */
unsigned long reserved1;

};

As for CM922T-XA10 the mask_irq() operation is only a register value write :

void at91rm92_aic_mask_irq(unsigned int irq)
{

unsigned long mask = 1 << (irq);
AT91RM92_AIC_BASEP->aic_idcr = mask;

}

The definition of SystemInterrupt()must be adapted to the specific registers of this interruption
controller. It is placed in the folder of the platform.

3.2.3 Timer device driver

Final step to get preemption working is to develop a driver for the timer. The main task of this driver is to
configure the timer to interrupt the CPU at a predefined interval of time.
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Driver API: The API of the timer driver is quite complexe in Mutek since it must manage with multiple
processor synchronization. The full list of primitives is the following :

void timerSetInterruptEnable();
void timerSetInterruptDisable();
void timerSetPeriod(unsigned int v);
void timerSetSynchronizedPeriod(unsigned int v);
int timerGetPeriod();
int timerGetState();
void timerSetCountingRun();
void timerResetInterrupt(int procid);
void timerSetSynchronizedMode();
void timerInterruptInit(unsigned int);
void timerInterruptHandler(void);

Briefly, these functions allows to enable and disable the interruption assertion in the hardware timer,
to configure the period between two ticks and to handle the interruption asserted. Some of these functions
have only a sense when we work on multi-processor platforms.

ARM Integrator CM922T-XA10: In a first implementation, we do not forsee the integration of multiple
processor. This choice allows us to declare most of the function presented above as empty functions.

The currently implemented functions are :

void timerSetInterruptEnable();
void timerSetInterruptDisable();
void timerSetPeriod(unsigned int v);
void timerResetInterrupt(int procid);

The timer00, which is the name of the timer available on the EPXA10, we need to set a control bit
to tell it to start (or stop). We decided to implement two extra functions whose aims are to start and stop
the timer.

void timerStart(void);
void timerStop(void);

The registers of the timer are mapped in a structure, as for other peripherals. The definition of this
structure looks like the following one:

struct cm922txa10_timer00 {

unsigned long tcr; /* Timer Control Register */
unsigned long unused_1[3];
unsigned long tpre; /* Timer Prescale */
unsigned long unused_2[3];
unsigned long tl; /* Timer Limit */
unsigned long unused_3[3];
unsigned long tr; /* Timer Read */

};

With all these definition, the timer is ready for usage. But one important thing still needs to be imple-
mented to make preemption work. This last step is the interruption handler for timer interruptions. This
handler will only disable the interruption and call the preemption facilities. This part of the code is left as
it is since it works, once semaphores (more precisely spinlocks used in the semaphore implementation) are
fixed.
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ATMEL AT91RM9200: The functions implemented for the AT91 are the same than the one imple-
mented for the EPXA10. Only the register mapping is different.

struct at91rm92_st {
unsigned long st_cr; // Control Register
unsigned long st_pimr; // Period Interval Mode Register
unsigned long st_wmr; // Watchdog Mode Register
unsigned long st_rtmr; // Real-time Mode Register
unsigned long st_sr; // Status Register
unsigned long st_ier; // Interrupt Enable Register
unsigned long st_idr; // Interrupt Disable Register
unsigned long st_imr; // Interrupt Mask Register
unsigned long st_rtar; // Real-time Alarm Register
unsigned long st_crtr; // Current Real-time Register

};

This timer do not need start and stop functions. The remainder of the procedure is identical to the one
presented for CM922T-XA10.

4 Mutek Design and Programming Model

4.1 CPU Vector Relocalisation or Mapping

In the Mutek implementation section, we presented the current implementation of the CPU vector. In fact,
we build a CPU vector in assembler language and copy it at execution time to the right place (0x00000000).
This solution is the only possible solution when we do not use the MMU, as we have no mapping possi-
bilities. Indeed, with the use of MMU, other solutions are available. Among them, we can use the CPU
vector remapping option, that is to say that the CPU vector can be place at address 0xFFFF0000, which
is impossible whithout MMU.

In that case an interresting option is available. We can map the memory region of the CPU vector at
address 0xFFFF0000 and add a Null pointer trap at address 0x00000000 avoiding to reset the plat-
form each time we make a null pointer access. This is made by declaring an invalid page at location
0x00000000. Each instruction prefetch or data access at this address will generate an abort exception
(prefetch abort or data abort).

The two solutions can be ported into Mutek, since we use the MMU in order to use the data cache.

4.2 Mutek/ARM execution mode

As we mentionned before Mutek is running in supervisor mode. This mode must have been chosen because
all instructions are executable since it is a privileged mode of execution. In the description of context
saving, we saw that two registers are not accessible (SP and LR) while handling an IRQ in IRQ mode. This
is not fully true. In fact they are not accessible because we run in supervisor mode and SP and LR are
banked (SP_svc and LR_svc).

In fact the ARM instruction set allow retrieving normal SP and LR with a special bit in the instructions
ldm and stm. To keep the advantage of running in privileged mode to avoid mode switching when we
want execute privileged instructions we should use the system mode. This mode of execution, present on
ARM v4 architecture, is a privileged mode of execution which uses no banked registers.

This could have great advantages for us, because the exception handler can be simplified, and all context
storing can be made in IRQ mode.

Another great advantage is noticeable. If we envision the use of software interrupts, or some reset
handling, the current configuration will not allow them. The CPU automatically update the LR_svc with
the PC value, and as the exception mode of software interrupts or reset is supervisor, the saved PC will
erase the process LR. LR value will then be lost.

We beleive that these two reasons should promote the use of system mode to run the Mutek operating
system instead of the supervisor mode.

26



4.3 Mutek Programming Model

The Mutek operating system is a very lightweight implementation of the POSIX thread library. As such,
the Mutek programming model is based on a very thin hardware abstraction layer so that threads can have
access to the complete address space. Mutek can already support a wide range of applications. The next
turning point we see on the Mutek development cycle is to know whether the device drivers and high level
support within the kernel code or should be part of the application code. The timer and interrupt controller
is the only hardware dependent part of the kernel, all other drivers can be written in POSIX threads that will
be scheduled with other application threads. This decision has a big impact on the I/O functions provided
by the Mutek libc. The libc should be re-written to refine the Mutek programming model.
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A Core Toolchain compilation Script

The DISYDENT framework comes with gcc 3.2, during our experiments we needed to upgrade to gcc-
3.3. The configuration script to build gcc need to be updated to the new configuration gcc scheme. This
appendix presets the basic steps used to build a cross compiler for Mutek/ARM.

CXTOOLS=/usr/local/cross_toolchain/arm-core/gcc-3.3.6-none/arm-9tdmi-linux-gnu
BUILD_DIR=/home/nfournel/tmp/gcc_crossbuild
TARGET=arm-9tdmi-linux-gnu

GCC_VER=3.3.6
BINUTILS_VER=2.16.1

#binutils
#========

cd $BUILD_DIR/src

if test ! -d binutils-$BINUTILS_VER; then
tar jxvf binutils-$BINUTILS_VER.tar.bz2

fi
mkdir -p $BUILD_DIR/build/binutils-$BINUTILS_VER
cd $BUILD_DIR/build/binutils-$BINUTILS_VER
$BUILD_DIR/src/binutils-$BINUTILS_VER/configure \

--prefix=$CXTOOLS --target=$TARGET
make ; make install

#gcc
#===

export PATH=$CXTOOLS/bin:$PATH

cd $BUILD_DIR/src
if test ! -d gcc-$GCC_VER ; then

tar jxvf gcc-$GCC_VER.tar.bz2
fi
mkdir -p $BUILD_DIR/build/gcc-$GCC_VER
cd $BUILD_DIR/build/gcc-$GCC_VER

$BUILD_DIR/src/gcc-$GCC_VER/configure --prefix=$CXTOOLS \
--srcdir=$BUILD_DIR/src/gcc-$GCC_VER \
--target=$TARGET \
--enable-languages=c,c++ --with-gnu-as --with-gnu-ld \
--disable-shared --disable-multilib --disable-threads \
--disable-libgcj --disable-nls --without-newlib \
--disable-libstdcxx-v3 --with-cpu=arm9tdmi ;

export ALL_TARGET_MODULES=""
export CONFIGURE_TARGET_MODULES=""
export INSTALL_TARGET_MODULES=""
make -e; make -e install
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B AT91RM9200 ldscript

/*
* Mutek linker script for ARM AT91RM9200
* Antoine Fraboulet
*
*/

MEMORY
{

init : ORIGIN = 0xc0000000, LENGTH = 0x00010000 /* 65 KB */
text : ORIGIN = 0xc0010000, LENGTH = 0x00080000 /* 512 KB */
data : ORIGIN = 0xc0090000, LENGTH = 0x00100000 /* 1 MB */
/* 0xc0190000 - 0xc01a0000 is used for stack () */
reset : ORIGIN = 0xc01a0000, LENGTH = 0x00010000
excep : ORIGIN = 0xc01b0000, LENGTH = 0x00010000

}

EXTERN(reset)
EXTERN(excep)
ENTRY(excep)

SECTIONS
{

.init : {
/home/antoine/projets/armgcc/mutek/mutek-oes/lib/libhandler.a(.init)

} > init
.text : {

. = ALIGN(0x4) ;
*(.text)
*(.gnu.linkonce.t*)
*(.glue_7t)
*(.glue_7)
. = ALIGN(0x10) ;
_etext = . ;

} > text
.excep : {

/home/antoine/projets/armgcc/mutek/mutek-oes/lib/libhandler.a(.excep)
} > excep
.reset : {

/home/antoine/projets/armgcc/mutek/mutek-oes/lib/libhandler.a(.reset)
} > reset

.data : {
*(.rodata) *(.rodata.str1.4)
. = ALIGN(4);
*(.data) *(.lit8) *(.lit4) *(.sdata)
__sem_addr = .;
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
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LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
_edata = . ;
*(.sbss) *(.scommon) *(.bss) *(COMMON)
_end = . ;

} > data

/* Semaphore address */
/* __sem_addr = 0x01110100; */

/* Required, but useful only when dealing with scratch pad memories */
__spm_addr = 0;
__spm = 0;

/* Default stack address, for ALL processors */
/* the stack starts above the data section */
__irq_stack_addr = 0xc0190000 + 0x400;
__fiq_stack_addr = __irq_stack_addr + 0x400;
__und_stack_addr = __fiq_stack_addr + 0x400;
__abt_stack_addr = __und_stack_addr + 0x400;
__svc_stack_addr = __abt_stack_addr + 0x1000;

/* peripheral adress */
__tty_addr = 0xfffc0000; /* USART0 */
__itc_addr = 0xfffff000; /* AIC */
__tmr_addr = 0xfffffd00; /* System Timer */

__processor_number = 1;
}

SEARCH_DIR (/home/antoine/projets/armgcc/mutek/mutek-oes/lib)
GROUP (libc.a libhandler.a libpthread.a)
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C Integrator CM922T-XA10 ldscript

/*
* Mutek linker script for ARM Integrator CM922T-XA10
*
*/

MEMORY
{

init : ORIGIN = 0x00020000, LENGTH = 0x00010000 /* 65 KB */
page_table : ORIGIN = 0x00100000, LENGTH = 0x00004000 /* 16 KB */
text : ORIGIN = 0x00200000, LENGTH = 0x00100000 /* 1 MB */
data : ORIGIN = 0x00500000, LENGTH = 0x00100000 /* 1 MB */
/* 0xc0190000 - 0xc01a0000 is used for stack () */
reset : ORIGIN = 0x00600000, LENGTH = 0x00010000

/* excep : ORIGIN = 0x001b0000, LENGTH = 0x00010000 */
}

EXTERN(reset)
EXTERN(excep)
ENTRY(excep)

SECTIONS
{

.init : {
/home/nfournel/CVS_eos/mutek-oes/bin-at91/lib/libhandler.a(.init)

} > init

.excep : {
/home/nfournel/CVS_eos/mutek-oes/bin-at91/lib/libhandler.a(.excep)

} > init

.pgtable : {
__pgt_base = . ;

} > page_table

.text : {
. = ALIGN(0x4) ;
*(.text)
*(.gnu.linkonce.t*)
*(.glue_7t)
*(.glue_7)
. = ALIGN(0x10) ;
_etext = . ;

} > text

.reset : {
/home/nfournel/CVS_eos/mutek-oes/bin-at91/lib/libhandler.a(.reset)

} > reset

.data : {
*(.rodata) *(.rodata.str1.4)
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. = ALIGN(4);
*(.data) *(.lit8) *(.lit4) *(.sdata)
__sem_addr = .;
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
LONG(0)
_edata = . ;
*(.sbss) *(.scommon) *(.bss) *(COMMON)
_end = . ;

} > data

/* Semaphore address */
/* __sem_addr = 0x01110100; */

/* Required, but useful only when dealing with scratch pad memories */
__spm_addr = 0;
__spm = 0;

/* Default stack address, for ALL processors */
/* the stack starts above the data section */
__irq_stack_addr = 0x00390000 + 0x400;
__fiq_stack_addr = __irq_stack_addr + 0x400;
__und_stack_addr = __fiq_stack_addr + 0x400;
__abt_stack_addr = __und_stack_addr + 0x400;
__svc_stack_addr = __abt_stack_addr + 0x1000;

/* peripheral adress */
__tty_addr = 0x0B000280; /* UART00 */
__itc_addr = 0x0B000C00; /* ITC00 */
__tmr_addr = 0x0B000200; /* Timer0 */

__processor_number = 1;
}

SEARCH_DIR (/home/nfournel/CVS_eos/mutek-oes/bin-at91/lib)
GROUP (libc.a libhandler.a libpthread.a)
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