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Abstract
This research report presents a full case study on porting and booting the Linux and
uCLinux operating system on a new platform. We present this work on the ARM
Excalibur CM922TXA10 for which a new machine type has been created to be able
to run the platform in a standalone mode.
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Résumé
Ce rapport de recherche présente une étude de cas complète sur les développement et
l’adaptation des noyaux Linux et uCLinux pour une nouvelle machine. Le dévelop-
pement est effectué sur l’adaptation des noyaux pour une machine ARM Integrator
CM922TXA10 et permet de faire fonctionner cette dernière defaçon autonome.
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1 Introduction: knowing the hardware.

In this section we will give a rapid overview of the platform we will talk about in the next sections. This
platform is an ARMTMdevelopment board, its name isARM Integrator. The board can be divided into two
different parts.

The first part of the platform is theCore Module, which explains its full nameIntegrator/CM. This part
integrates the CPU and the main memory, as well as a FPGA and Flash memory (16 MB).

ARM has a large range ofCore Modules, there exists almost one Core Module by ARM processor,
nearly all these core modules have the same layout. Our Core Module is based on an ARM9, the ARM
922T. However there are two different core modules based on this processor. The first one is a basic core
module with the common layout. The second is a little special, because it is based on an Altera Excalibur
EPXA10, which is a PLD (Programmable Logic Device), or more precisely a FPGA (Field-Programmable
Gate Array), integrating the processor. Our module is the second and its name isIntegrator/CM 922T-XA10.

Figure 1: Integrator/CM922T-XA10 board

The core modules are designed to be used in conjunction with other platforms. For example it is
possible to connect four core modules together and have themcommunicate by a special bus. Another
application is to connect them to a baseboard, CP (Compact Platform) or AP (Application Platform). All
these applications are made possible by the two connectors named HDRA and HDRB (Header A and B).
These connectors are present on both sides of the board (HDRAon the left and HDRB on the right), and
on both faces to allow stacking. An extra connector is available on the upper side of the board, its name is
EXPIM, and its goal is to connect extension boards like FPGA-based ones.

These points are true for all core modules, but concerning CM922T-XA10 an extra application is
available, the standalone mode. In fact, the EPXA10 (the Altera FPGA) integrates a piece of silicon, a
stripe, containing a CPU (ARM 922T) but a lot of peripherals too. For example, the stripe integrates two
timers, an UART, a memory controller, and some other peripherals. With the peripherals embedded on the
CM 922T-XA10 we can run a full operating system.

The second part of the platform is a baseboard. Its name isIntegrator/CP, whereCP stands forCompact
Platform. This part of the platform integrates a large number of peripherals that could be useful for an
embedded software developer. For example, there is 16 MB of Flash memory, which allow the user to
load home brew applications and launch them on the platform.It also includes sound, network and MMC1

reader peripherals. However the CP board does not embed any processing unit nor main memory. In fact

1MMC: Multimedia Card
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it is designed to be connected to a core module. It can be connected with only one module at a time, but
from any type,i.e. with any processor. As we mentioned before, all core modulesare based on a processor,
main memory and an FPGA. In the case of a CP connection (the CM mounted on a CP board), the control
parts of peripherals are implemented in the FPGA of the core module. Indeed, only the remaining parts of
the peripherals are implemented on the CP physically. Theseremaining parts, the physical interfaces, are
available from their controllers through specific buses.

Finally, the CP fully integrates some peripherals, like a GPIO (General Purpose Input/Output), and
these are accessible through a general purpose AHB2 bus.

Figure 2: Integrator/CP board

The core module is connected to the compact platform by the two connectors mentioned before, HDRA
and HDRB. In this configuration, the connectors carry power supplies, general purpose bus and other
specific buses between the two parts.

1.1 CM architecture

As we explained before almost all ARM core modules have the same architecture. The CM 922T-XA10 has
a compatible architecture, but as it is based on an ExcaliburEPXA10[1], it has architectural specificities :

• All core modules integrates an ARM CPU, in the CM 922T-XA10, it is part of the EPXA10 stripe.

• Core modules integrate SSRAM, with a SSRAM controller implemented in a PLD. The CM 922T-
XA10 embeds SSRAM as well, but the SSRAM controller is implemented in the FPGA.

• Core modules integrate an FPGA in which peripherals are implemented. The EPXA10 is an FPGA,
so it is also true for the CM 922T-XA10.

• SDRAM main memory can be plugged in the DIMM slot on core modules, and the memory con-
troller is implemented in the FPGA. CM 922T-XA10 has 128MB ofSDRAM memory on board and
a hardware memory controller is available in the EPXA10. A DIMM slot is also available on the CM
922T-XA10.

On top of these variations on the common CM architecture, CM 922T-XA10 has special features not
available on all core modules :

2AHB: Advanced High speed Bus
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• EPXA10’s stripe embed a lot of basic peripherals like a serial controller, a memory controller, . . .

• CM 922T-XA10 offers 16 MB of flash memory (for user applications). This feature is related to the
possibility of running the CM 922T-XA10 in a full standalonemode.

1.1.1 Hardware architecture

In this subsection we will give a detailed view of the hardware architecture of the core module CM 922T-
XA10. In fact, the hardware can be divided into two parts, thereal hardware and the FPGA-implemented
hardware.

The first part is made of the stripe’s peripherals and the on board integrated chips, here is an exhaustive
list :

• Stripe’s peripherals :

– CPU (ARM 922T)

– memory controller

– watchdog timer

– single and dual port SRAMs (SP/DP SRAM)

– PLL (Phase-Locked Loop)

– reset logic

– two timers

– UART (Universal Asynchronous Receiver-Transmitter)

– EBI (Expansion Bus Interface)

• Onboard chips :

– SDRAM connected to the memory controller

– SSRAM connected to the FPGA-implemented memory controller

– Flash memory connected to the EBI

– clock generators

The second part is not fixed since it is implemented in the FPGA. Indeed, at the boot of the core module,
the image to be loaded in the FPGA is selected according to switches or signal values. One of these images
is especially designed to be used with the CP, another to be used with an AP or in standalone mode. The
last and simplest one is designed for standalone mode, the basic image. We will take the last one to give an
overview of the full hardware architecture of the CM922T-XA10 in standalone mode. In this image only
few peripherals are implemented in the FPGA. In fact, only two interfaces are implemented to control the
clock generators chips, as well as control and status registers. The global architecture is depicted in figure
3.

As far as interconnections are concerned, one can see from this diagram that the peripherals are acces-
sible by three different AHB busses. The stripe of the EPXA10already contains two AHB buses connected
by a bridge (AHB1 and AHB2 on figure3). A third AHB bus (AHB3 on figure3) is implemented in the
FPGA, this one is also connected to the others through another bridge, a bridge between stripe and PLD
(from stripe to PLD).

In this image we must underline that the SSRAM is not used since no SSRAM memory controller is
implemented in the FPGA. The second bridge between stripe and PLD (from PLD to stripe) and the second
ports of the DPSRAMs are not used either.
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Figure 3: Basic image architecture. Bold blocks are bus masters

1.1.2 Interruption architecture and behavior

With the basic image, the CM 922T-XA10 only integrates one interrupt controller linked directly to the
CPU exception wires.

Before describing the behavior of this interruption controller, we will give a few details about ARM
exception management. Interruptions and fast interruptions are two of the six exceptions handled by ARM
processors. The six exceptions are reset, prefetch, aborts, undefined instructions, interruptions, fast inter-
ruptions, and software interruptions. The management of exceptions is the same regardless of their type.
If an exception is raised, the CPU jumps to the exception handler address. This address is calculated as
the sum of the exception base address, which can be either0x00000000 or0xFFFF0000 depending on
the configuration of the processor, plus an offset given by the type of exception, for example interruption
request offset is0x18. The instruction fetched at this address is most of the time ajump to the address of
the full exception handler implemented by the developer.

As we can realize from the previous list, hardware interrupts can be handled by two different exceptions.
These two levels of interruption are : interruption request(IRQ) and fast interruption request (FIQ).

On CM922T-XA10 programmed with basic image, all hardware interruptions are gathered by one inter-
ruption controller linked to the two interruption exception wires of the CPU. Each peripheral is connected
to this interruption controller (ITC) by only one wire. Thusthe ITC raises either an IRQ or a FIQ, according
to the interruption priority. The highest level of priority(0x3F) corresponds to a fast interruption.

1.1.3 Memory map

All stripe peripherals are controlled by registers mapped to memory. These registers are regrouped in a
register bank, the stripe register bank. The default mapping address of this bank is0x0B000000. Another
control and status register bank corresponding to the CM peripherals is mapped at0x10000000.

The remainder of the memory map contains memories mapping (Flash, SDRAM, SPSRAM and DP-
SRAM). Figure5 gives a full overview of this memory map.
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1.2 CP architecture

As mentioned earlier, a specific image must be loaded in the FPGA to take advantage of the compact
platform (CP). The combination CP plus CM 922T-XA10 is called CP 922T-XA10 in the literature.

Connecting the CM to a compact platform offers the developermore peripherals. These additional
peripherals are the following : a sound device, a video device, a network device, storage devices (Flash
memory and MMC card reader), . . .

Most of the peripherals of the CP are in fact implemented in the FPGA of the core module, as well as
a AHB-bridge, allowing other peripherals to be connected.

1.2.1 Hardware architecture

We will show here that the CP 922T-XA10 architecture is only an extension of the CM 922T-XA10 one.
The only difference in terms of hardware architecture between these two platforms are the peripherals
implemented in the FPGA. Thus, the stripe’s peripherals arealways available. In the CP 922T-XA10 we
find almost all peripherals of the CP implemented in the FPGA.The CM control and status registers are
always implemented in it, but the clock generators interfaces are not available any more, because they are
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used for the implementation of the CP peripherals.
The FPGA implements two extra level of interconnections. The first is an APB (Advanced Peripheral

Bus) on which FPGA-implemented peripherals are connected.The second is an AHB-Lite also called
system bus on which peripheral fully implemented on the compact platform are connected, for example the
GPIO (General Purpose Input/Output) and the Ethernet device.
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bridge

controller
CM interruptCM control
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Touchscreen
controller

Primary
interrupt
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Interrupt
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PLD−Stripe Stripe−PLD

bridgebridge

Figure 6: CP 922T-XA10 hardware architecture. Bold blocks are bus masters

1.2.2 Interruption architecture and behavior

The CP 922T-XA10 embed four different interruption controllers (ITC). The stripe’s interruption controller
is always connected directly to the CPU exception wires. Thethree extra ITC are thus connected to the
first one. In fact they are connected to the stripe’s ITC by four wires reserved to FPGA exception sources
(two wires for each ITC, an IRQ wire and a FIQ wire). Then the first ITC’s priority are configured so that
it relays IRQ and FIQ.

The three extra ITC are CM interruption controller and two CPinterruption controllers (primary and
secondary). CM ITC and primary CP ITC are implemented in the FPGA. The third one is implemented in
a PLD on the compact platform and is connected to the primary CP ITC by an interruption wire.

More generally, the CM interruption controller is connected to CM peripherals, and the CP interrupt
controllers are connected to the CP peripherals. Figure7 presents the hierarchical relations between inter-
ruption controllers.

1.2.3 Memory map

As for CM 922T-XA10, all peripherals of the CP 922T-XA10 are mapped in memory. Moreover, they are
mapped in the address space still available in the CM 922T-XA10 memory map.
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The resulting memory map is shown by figure8.
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1.3 ARM 922T architecture

We will give here more details about the ARM 922T architecture, that is to say about its core, its caches
and its MMU, particularly their characteristics and their organisation.
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1.3.1 Global architecture

First, we give here an overall view of this processor. As one can see form figure9, ARM 922T has seperate
instruction and data paths. These paths have their own cacheand MMU/TLB. A common AHB interface
connects the two buses to the general purpose AHB bus. We mustunderline the presence of the CP15,
which is a configuration coprocessor, it allows us to set MMU,caches, . . . configurations.
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Data
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PA TAG RAM
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Write
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Interface
Trace
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DD[31:0]

DPA[31:0]DMVA[31:0]

Figure 9: ARM 922T architecture

1.3.2 ARM9TDMI core

The CPU core of the ARM 922T is an ARM9TDMI. This core fully implements the 32 bit ARM v4 ISA
(Instruction Set Architecture). It also support the Thumb instructions which are 16 bit instructions. As
most ARM CPUs it has no floating point unit, it supports only integer operations. This processor has
multiple operating modes, user, system, supervisor, IRQ, FIQ, undefined and abort modes. Among these
modes only user mode is unprivileged. Finally, as far as registers are concerned, it has 16 general purpose
registers (among which are SP stack pointer, LR link return and PC program counter). These registers are
banked, which means that some registers are not common between certain operating mode.

1.3.3 Caches

The ARM 922T has seperated instruction and data cache. Theirsize is 8 ko, and the write buffer has a size
of 16 words.

These caches are virtually addressed. On top of that, the data cache can only be used when MMU is
activated. In fact the control bits, which indicates if the cache and the write buffer must be used for a data
region are part of the page table entries. The caches are madeof 265 lines of 8 words. They are organized
in a 4-way associative way.

1.3.4 MMU/TLB

The MMU integrated in the ARM 922T is an ARMv4 MMU. We will givehere more details about the
behavior of this MMU.
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First of all, we must underline the fact that instruction anddata have their own TLB (Translation Look-
aside Buffer), translation cache. These TLBs have a 64 entrywidth.

In the ARMv4 MMU, memory can be accessed through four different page or section size : 1ko (tiny
page), 4ko (small page), 64ko (large page), 1 Mo (section). These pages and sections are accessible through
one or two stage table walking depending on page-mapped or section-mapped access. Before going any
further it is important to underline the fact that all page walkings are made in hardware. Thus the translation
is all made in hardware, and MMU only raises prefetch abort exception when no translation are possible or
access to the memory region is not granted .

Translation base
The translation starts when TLB contains no translation fora virtual memory address. Then the translation
table base address gives the location in physical memory of the first stage table. This register is in the
configuration coprocessor CP15.

Level 1 : Translation Table
The first stage table is also called translation table. It is 4096 entries long, which means that its size is

16 ko. Each entry in this table represents 1Mo of virtual memory. As you can realize from figure10, there
are four different type of entries in this table.
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Figure 10: ARMv4 MMU level 1

The first type is the section descriptor. As we said before, memory is accessible through section.
Obviously these sections have a size of 1 Mo. All informations about domain protection, cache and write
buffer are present in this first level entry.

The two following types of entries are page entries. There are two different types of page table : coarse
grained and fine grained. The first level entry in these case only gives the base address of the corresponding
second level page.

The fourth type is undefined and generates an error.
Level 2 : Page tables
At this leve, we have two different type of page table, the coarse grained and the fine grained page

table. As their name indicates, the first type describes its 1Mo region with big pages and the second one
with smaller pages.

The page size can have three different sizes : 1ko (tiny page), 4ko (small page), 64ko (large page).
Coarse grained page table entries can only describe small orlarge page. However, Fine grained page table
entries can descibe tiny, small or large page entries. This difference is due to the following fact. Coarse
grained page table divides its 1Mo in 4ko blocks, so it has only 256 entries. When a large page descriptor
is set, it is repeated on the 24 contiguous blocks descriptions. For fine grained page table the situation is
the same, but it divides its 1Mo in 1ko blocks (it is 1024 entries). If a small or a large page description is
set the description is repeated on all the blocks descriptorthe page contains. The figure11summarize this
second level description relations.

To conclude, figure12give an global view of the two level page table organisation.

2 Booting Linux on the platform

At this point we have a better knowledge of the hardware we areworking on. We will now review the few
steps necessary to make an operating system (OS) boot on suchplatforms.

11



64 kB

4kB

1kB

00

01

10

11

00

01

10

11

index

10 bits

Large page

index

16 bits

Small page

index

12 bits

Tiny page

index

10 bits

Coarse grained PT

Fine grained PT

index
8 bits

Figure 11: ARMv4 MMU level 2

Coarse grained PT

00

01

10

11

01

Fine grained PT

256 entries

1024 entries

index

12 bits

index
8bits

index

10 bits

index

12 bits

index

16 bits

index

20 bits

index

10 bits

TTB

Large page

Section

4kB

1kB

Tiny page

Small page

01

10

11

4096 entrées

Translation table

00

11

10

00

64kB

1MB

Figure 12: Global MMU access diagramm

It is important to underline that the compact platform is well supported under ARM Linux kernel. We
will then focus on the CP 922T-XA10 in this section, because the CM 922T-XA10 is not supported.

In the next subsections we will go over the next points : loading the kernel (boot loader), and the two
kernel Linux and uClinux.

2.1 Boot loader

First of all, to make an OS, like Linux, boot, we must copy the kernel in memory and put the machine in a
state that allow it to work properly in the first critical steps. The little piece of software that is in charge on
this job is the boot loader.
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Classical boot loaders likelilo andgrub are designed for more complex machines. For ARM based
platform, few boot loaders are available, but our choice wasto take a boot loader nameddas U-Boot,
for universal boot. U-Boot supports the ARM Integrator/CP.

The goal of the boot loader is to initialize the platform, that is to say to put it in a known state. During
the first steps of kernel booting, before Linux fully initializes the hardware, Linux uses few hardware
peripherals (serial port, memory, . . . ) that have to be in theright state when we jump to the kernel. Once
the platform is initialized, the boot loader copies the kernel in main memory and optionally an initrd. An
initrd is a file system usually used by the kernel at boot time,but it can also be used as final root file system
in embedded systems. Then the boot loader must give some information to the kernel before giving control
to it. The first two information are to put the value 0 in register r0 and put the machine ID in register r1.
The machine ID is a unique number which is used to identify thetype of platform. Thus during the first
steps of booting, Linux can check if it was configured for the platform it is running on. These machine ID
are listed in a file in the kernel source tree : arch/arm/tools/mach-type. The last information is the kernel
parameters structure named ATAG. The boot loader places this structure in the main memory. For example
this structure gives information on the main memory (size and base address). In order that the kernel can
find this structure, it is placed at a fixed address set beforehand.

We must add a few details about the state of the machine when the kernel gets the control. First, a
standard output console must be initialized, to print messages in the early stages of kernel. The boot loader
must take care to inhibit the MMU and caches too, if it is usingit.

2.2 Compiling and using the Linux kernel

Linux was initially developed for big systems like personalcomputers. For few years now it has been
ported on smaller targets and became a complete embedded operating system. Then booting Linux on the
CM 922T-XA10 is not meaningless. Linux supports a large range of architecture, ranging from m68k to
IA64 (for example). Thanks to the project ARM Linux it was also ported to ARM architecture. This port
integrates today many platform support in which we can find the Integrator/CP platform.

The port is designed to work with the CP regardless of which core module is mounted on. It implements
only the driver of all CP peripheral in a more or less stable way. We only need here to choose the driver we
want to build in our kernel before compiling it.

2.2.1 Linux and application compilation

Once the configuration of the kernel is made, we have to compile it. All steps of the kernel building
are made on a computer whose architecture is different from the platform, we work on a x86 host under
GNU/Linux. The standard GCC (GNU Collection of compiler) proposed on this host does not allow to
produce ARM binary, but x86 binary. We must then use a cross compiler. It is possible by recompiling the
GCC tool chain with the right host/target combination.

It is possible to build two different tool chains. The first can be called core cross compiler or bootstrap
compiler. This tool chain is obtained by only compiling binutils (as, ld, . . . )and the GCC. This tool
chain can be used to compile the Linux kernel or all home brew application which will run directly on
the platform. AppendixA shows our core tool chain compilation script. The second tool chain is more
complex. It is obtained by compiling a bootstrap compiler, alibc (glibc most of the time) and recompiling
the GCC with full support (shared libraries, . . . ). This toolchain may be used to compile applications
which will run on the Linux kernel.

There exists some tools to help compiling these tool chains.For example, crosstool [6] is a script
building a full compilation tool chain for Linux on many architecture among them ARM.

2.2.2 Linux root file system

The last thing to fix for booting a GNU/Linux operating systemis the root file system.
Indeed, after booting, the kernel mounts the root file systemand then executes theinit program (by

default /sbin/init). Therefore this file system must contain the root of the file system tree, and ARM Linux
executable files. The simplest solution is to get sources of each program you want to integrate in your
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embedded GNU/Linux OS, and then cross compile them with the compiler built in the previous step. This
solution is simple but very time consuming.

To solve this problem, thebusybox software was proposed.busybox regroups all basic applications
that are useful on a minimal GNU/Linux OS in a single executable file. After a configuration phase, during
which you can choose the applications you need, you only haveto cross compile it.

2.2.3 Firmware loading

The combination of the boot loader, the kernel image and the root file system image can be also called the
firmware. To be used on the platform you now need to load it either in main memory or in ROM.

In the first solution, you need to load it every time you boot the platform. This configuration can be
useful if you are in development process. For example, on theIntegrator/CP the boot loader can be loaded
by serial port transfer, the kernel image and root file systemcan be transferred using thebootp protocol.
The root file system is an initrd in this case. Another solution is that the root file system is mounted via
NFS protocol. In this solution the platform must be connected with the development host by a serial or
Ethernet cable.

If the development phase is over, and you want a more autonomous solution,i.e. without connections
with a host, you may need to load the firmware on the flash memory. In this case all three images can
be placed in the flash memory. In this configuration the boot loader, the kernel and the root file system
images are copied from the flash into the main memory. This is the initrd solution. An alternative solution
would be to use a file system like JFFS/JFFS2 (Journaling Flash File System). In that case the file system
is read-only and used on the flash memory.

These solutions are only examples. It is obvious that other combinations are possible.

2.3 Compiling and using the uClinux kernel

On top of using the Linux kernel, we focus on another kernel, which is only a modification of the vanilla
Linux kernel. This modification is called uClinux. This namecomes from the first target of the port,
micro controllers. In fact uC stands for micro-controller because “u” is the Greek letterµ (micro) and “C”
for controller. On micro controller based platforms, the memory management is most of the time much
simplified, because no MMU (Memory Management Unit) is integrated. The memory address space is
called a “flat” memory model. There is only one address space shared by all applications and the operating
system. This is the direct consequence of the lack of MMU, as it is in charge of translating virtual memory
addresses into physical addresses.

uClinux wasa posteriori ported to architectures where an MMU is present, but it does not use it, or to
architectures where the memory management hardware is justdesigned for memory protection, like MPU
(Memory Protection Unit) on some ARM CPUs (ARM 946ES for example).

This modification offers interesting perspectives becausehardware in embedded systems is often lack-
ing memory management. Thus uClinux is a good replacement solution for Linux there.

Thanks to the work of Hyok S. Cho, uClinux was ported to the ARM9. The integrator/CP is then
supported by uClinux, as most of the ARM Linux supported platforms.

2.3.1 uClinux and applications compilation

The compilation of an uClinux kernel is quite the same procedure as the one to compile a Linux kernel.
The compiler used is a core cross compiler, the same as the onecompiled for Linux.

What makes the difference is when you want to compile applications for GNU/uClinux. The trou-
ble here is that you must change your cross compile tool chain, because it produces binary in an ELF
format. This format is based on the fact that each application has its own address space starting from
0x00000000, and this is exactly the role of the MMU. In contrast the binary format used by uClinux is
called Flat format, bFLT. This executable binary format hasthe same structure than an ELF binary file, but
a relocation table is added at the end of the file. This table contents is a list of positions, more precisely
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offsets from the beginning of the text segment, where a relative address was placed during the last com-
pilation phase. At loading time, the only computation needed is to add the base address to the entire list
entries in the relocation table.

The compilation tool chain used is close to the one used for ELF application compilation. We only
have to add a tool whose aim is to process all addresses and create the relocation table at linking time. This
tool is calledelf2flt [8].

Practically, we do not use the standard glibc, because its size is far too important. Instead we use an
implementation of the libc optimized for small footprint, uClibc [17].

2.3.2 uClinux root file system

As for Linux, uClinux needs a root file system. Unfortunately, we cannot use the same file system because
the application building process do not use the same memory model. It is necessary to rebuild all these
application with the special cross compilation tool chain.Except this point the procedure is the same as for
GNU/Linux OS.

3 Porting the Linux kernel on the CM922T-XA10 platform

In contrast to the integrator/CP, the integrator/CM 922T-XA10 is not supported by the Linux kernel. We
were particularly interested in using the CM 922T-XA10 in standalone mode for the remaining of our work,
hence we ported Linux to this platform.

As we explained in the section dedicated to the hardware description, the architecture of the CM 922T-
XA10 is centered on the Altera Excalibur EPXA10. We showed inthe previous section that the implemen-
tation of Linux on the integrator/CP does not take advantageof the CM 922T-XA10 peculiarities. This
implementation cannot run on the CM 922T-XA10 in standalonemode. The following subsections will
give a description on our work to get Linux boot on our CM.

3.1 Porting the boot loader

The first step of this work is obviously to get a working boot loader. The Integrator/CM 922T-XA10 was
not in the list of supported platform of U-Boot, so we had to port the boot loader prior to any other work.

Porting the boot loader is a good first experience in the process of porting full operating systems,
because it can be considered as a very simplified OS. Indeed itonly needs a serial port for console and
some peripheral initialization like timer.

First of all, as no support for this platform already exists,we must create our platform in U-Boot.
By creating a platform we mean add thecm922txa10 choice in the configuration tool. This configura-
tion phase is made by callingmake followed byplatformname_config. The first action is then to
modify the U-BootMakefile. In this file we can find a huge list of targets, among them we findthe
integratorcp one :

integratorcp_config : unconfig
@./mkconfig $(@:_config=) arm arm926ejs integratorcp

This target calls the configuration script with the following arguments. First field is grab from the
target name, hereintegratorcp. This field will give the name of the configuration fileinclude-
/configs/integratorcp.h.The second field is the arch, in that casearm, used for simlink the
include/asm on include/asm-arm. Third field is CPU,arm926ejs. A simlink is build be-
tweeninclude/asm/arch-arm926ejs andinclude/asm/arch. And finally the board name,
integratorcp. Extra fields can be present like vendor and SOC (System-On-Chip). As you can realize
from this description, the CP implementation is based on theARM 926EJS which is an ARM9 like ARM
922T which implements ARM v5 instruction set, whereas 922T implements ARM v4t instruction set.

In thecpu folder, we can find two extra ARM9 CPU, ARM 920T and ARM 925T. Itis safer to use
the support of an ARM 920T as implementation base since it is an ARM v4t. In fact ARM 920T and 922T
have the same core processor (ARM9TDMI), the only difference between the two of them are the cache
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sizes which are 16kB for instruction and 16kB for data on the 920T and I 8kB/ D 8kB for the 922T. This
difference is meaningless since U-Boot do not use any cache.

The implementation of the ARM 920T is a SOC based implementation (in U-Boot). We had to build a
SOC implementation for the EPXA10, with a lack of imagination we called itepxa10. For example this
port integrates the serial port, timer, and other peripherals of the stripe drivers. This SOC implementation
has a huge advantage, re-usability in other EPXA10 based platforms ports. The vendor field will stay
empty in our case, so the config line becomes :

cm922xa10_config : unconfig
@./mkconfig $(@:_config=) arm arm920t cm922xa10 NULL epxa10

Now we have our configuration target ready. Next step is to provide the SOC implementation in the
cpu/arm920t folder. All we need is to create a folder which will contain all specific implementation for
our new SOC (epxa10). This folder must have for name, the name given in the config line. We put here
all minimal drivers needed by U-Boot that are directly available on the EPXA10. Thus we have the serial
driver, the timer driver and some PLL information fetch drivers. The driver for the serial port is not used
in any other platform supported by U-Boot, it is logical to keep it in this SOC implementation. The source
code of the driver is placed in the fileserial.c. interrupts.c does not include some interruption
handler sources, but a minimal timer driver for delay loop purposes. Thespeed.c file contains few
functions used by the two other files. These functions fetch the clock speed, in order to calibrate the serial
port or the timer. To conclude, theMakefile of this folder must be filled with the names of the three files
to compile :

OBJS = interrupts.o serial.o speed.o

Once the EPXA10 support is completed, we have to build our board support. This support must be
placed in theboard folder. In this folder, we have to create a sub-folder whose name is the name of the
board given in theMakefile config line. Then we create theboard/cm922xa10 folder. Here we put
all functions specific to the platform, for example the drivers of peripherals implemented in the FPGA.
Most of the functions required by U-Boot are empty functions. Indeed, in filelib_arm/board.c we
can find a structure namedinit_sequence containing function pointers of all initialization functions.
Among these functions, some must be implemented in the boardsupport. For example, theboard_init
and thedram_init, which are defined inboard/cm922xa10/cm922xa10.c. It’s important to note
that the information put in the structuregd (its definition is in fileinclude/asm/global_data.h),
will be used in the ATAG structure to inform the kernel on the amount of memory and the machine ID for
example. Another file is present in this folder, but it is not really important,memsetup.S. All actions
usually placed in this assembler function are made by the ARMbootmonitor. The functionmemsetup is
then empty.

The last things to add in the source tree are the header files. One header file is mandatory, it is the
configuration header file. Its name is the name of the board,cm922xa10.h in our case, and it is placed
in a special folder,include/configs. This file contains configurations for the drivers we decide to
compile in our U-Boot, like serial driver. It allows us to make a selection of the U-Boot command we
would like to integrate in it,bootp commands for example. And finally it sets some default configurations,
which can also be modified at run time, likeBOOTARGS. Other header files are placed in theinclude
folder, and their names areepxa10.h andcm922xa10.h, each of them defining a specific part of the
platform.

3.2 Porting Linux

Once the boot loader is ready to load the kernel in main memory, the last step is to adapt the Linux kernel
to work on our hardware. As we mentioned before, the CP is already supported by the kernel, but this
implementation is not designed to use EPXA10 special hardware. The idea here is to start from scratch or
to find a platform with a similar architecture in the existingkernel implementations.

After few research it appears that the support of a platform named EPXA10db (development board)
was implemented in the ARM Linux kernel. The most interesting thing is that this implementation offers a
good support for most of the EPXA10 stripe peripherals.
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We will now give a few details on how this support was modified.To do so we follow the order of
kernel boot sequence.

3.2.1 Adding a new platform

Since the EPXA10db and the CM922T-XA10 are two quite different integrations of the Altera Excalibur,
their support have two much difference to be merged. The differences in the memory mapping are what
prevents us to merge them. The decision was taken to create a new machine.

To add a new machine (or platform) in the ARM Linux kernel, we first need to register it on the
ARM Linux Project website [4]. This registry is mandatory, because it adds the machine inthe database
contained in thearch/arm/tools/mach-types file. The information of this file are the machineID,
and some variable names used at compile time or at running time to identify the machine. One important
thing is that this file is automatically generated with the registry information provided by the maintainers
of the machine. During the development phase we decided to create the entry in themach-types file
by hand, without registering the platform. To do so, we choose a sufficiently high machineID (999) to
avoid overlapping if we decide to change kernel version while developing. The line added at the end of the
mach-types file is then :

# machine_is_xxx CONFIG_xxxx MACH_TYPE_xxx number
#
[...]
epxa ARCH_CAMELOT CAMELOT 62
[...]
cm922txa10 MACH_CM922TXA10 CM922TXA10 999

The following step is to create the folders containing the support of our new support. As we got a
good base for future developments which is EPXA10db, we can create these folders by copying the folders
of the EPXA10db. Then inarch/arm/ we copymach-epxa10db and call the new foldermach--
cm922txa10.

The second folder that have to be created is in the include sub-tree, and will regroup the header file
specific to our machine.include/asm-arm/arch-epxa10db is copied and namedinclude-
/asm-arm/arch-cm922txa10.

At this point, we have all our new machine support skeletons.We now have to make it accessible during
the configuration phase of the kernel, for example withmake menuconfig. The files used by the con-
figuration tools are namedKconfig. First of all, we have to modify the top levelarch/arm/Kconfig.
In this file, we add the new platform in theSystem Type / ARM system type choice menu. This
addition is made by an extra config entry. Here is what we add (ARCH_CAMELOT was already present
since it is epxa10db machine) :

[...]
config ARCH_CAMELOT

bool "Epxa10db"
help
This enables support for Altera’s Excalibur XA10 development board.
If you would like to build your kernel to run on one of these boards
then you must say ’Y’ here. Otherwise say ’N’

config MACH_CM922TXA10
bool "CM922T-XA10 Standalone"
help
This enables support for ARM Integrator CM922T-XA10 when used in
standalone mode. This platform is based on an Altera Excalibur EPXA10
If you would like to build your kernel to run on one of these boards

then you must say ’Y’ here. Otherwise say ’N’
[...]
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The field placed afterconfig must be the same than the second field in themach-types file. The
text displayed in the choice menu will be"CM922T-XA10 Standalone"

On top of this minimal configuration, we should want extra specific configurations for our machine. In
that case, we create aKconfig file in ourmach-cm922txa10 folder. In our case, this field will remain
empty, because we have no special configuration to add. But incase of future development, we place the
following content in filearch/arm/mach-cm922txa10/Kconfig :

if MACH_CM922TXA10

# here comes machine special configurations

endif

To use this file, we only need to include it in thearch/arm/Kconfig, by adding the line :

[...]
source "arch/arm/mach-epxa10db/Kconfig"

source "arch/arm/mach-cm922txa10/Kconfig"
[...]

Final configuration setting to be made is to give a default configuration to kernel. The default con-
figuration is contained in a file namedcm922txa10_defconfig. This config file can be generated
with a make menuconfig and then copyed from.config to arch/arm/configs/cm922t-
xa10_defconfig

A little modification of otherKconfig files is needed, thearch/arm/mm/Kconfig which is in
charge of selecting the CPU the kernel is compiled for. We just have to tell him that the ARM922T is part
of our machine :

[...]
# ARM922T
config CPU_ARM922T

bool "Support ARM922T processor" if ARCH_INTEGRATOR
depends on ARCH_CAMELOT || ARCH_LH7A40X || ARCH_INTEGRATOR || MACH_CM922TXA10
default y if ARCH_CAMELOT || ARCH_LH7A40X || MACH_CM922TXA10
select CPU_32v4
select CPU_ABRT_EV4T
select CPU_CACHE_V4WT
select CPU_CACHE_VIVT
select CPU_COPY_V4WB
select CPU_TLB_V4WBI
help
The ARM922T is a version of the ARM920T, but with smaller
instruction and data caches. It is used in Altera’s
Excalibur XA device family.

Say Y if you want support for the ARM922T processor.
Otherwise, say N.

[...]

Once the configuration facilities are in place, we now tell the kernel that it will have to compile some
stuff in themach-cm922txa10 folder. This is done by modify thearch/arm/Makefile, and adding
the following line :

[...]
machine-$(CONFIG_ARCH_CAMELOT) := epxa10db
machine-$(CONFIG_MACH_CM922TXA10) := cm922txa10

[...]
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As you could have notice from themach-types file, the name of the variable is notMACH_CM922T-
XA10, butCONFIG_ is appended by the configuration tool, and this variable contains either a ’n’ or an
’y’ (for no or yes boolean value). If it is selected (yes value), the name of the folder of our machine is
appended to the machine-y variable, which contains the folders to be visited during compilation (mach-
is automatically appended).make will enter in our folder, but we must tell him what it must do, then we
create thearch/arm/mach-cm922txa10/Makefilewith the content :

#
# Makefile for the linux kernel.
#

# Object file lists.

obj-y := arch.o irq.o mm.o time.o
obj-m :=
obj-n :=
obj- :=

This Makefile is quite static since we have no configuration available at this time. Object files
listed here are inherited from the EPXA10db machine support. In the same folder we have to put an extra
Makefile, theMakefile.boot which only contains the physical address of the text segment(this
gives the value ofZRELADDR, which is the physical address ofTEXTADDR) :

zreladdr-y := 0x00008000

We now have the base configuration and compilation infrastructure of the kernel for our new machine.
We have now to work on the main part of the job, implement the support of the platform.

The implementation of our support begins with the creation of the structure that describes the ma-
chine. This structure will be placed in the filearch.c (this name can be freely chosen) in thearch-
/arm/mach-cm922txa10. Macro helper are defined to simplify the work. The definitionlooks like
this :

extern void cm922txa10_map_io(void);
extern void cm922txa10_init_irq(void);
extern struct sys_timer cm922txa10_timer;

MACHINE_START(CM922TXA10, "ARM Integrator CM922T-XA10")
/* Maintainer: Nicolas Fournel */
.phys_ram = 0x00000000,
.phys_io = 0x0x0B000000,
.io_pg_offst = ((0x0B000000) >> 18) & 0xfffc,
.boot_params = 0x00000100,
.map_io = cm922txa10_map_io,
.init_irq = cm922txa10_init_irq,
.timer = &cm922txa10_timer,

MACHINE_END

Arguments of the structure listed here are, physical address of main memory (.phys_ram), physi-
cal address of I/O bank (.phys_io), I/O page offset, which allows to give virtual memory (.io_pg-
_offst), boot parameters address (.boot_params), the I/O memory mapping function (.map_io),
the IRQ initialization function (.init_irq) and the timer structure (.timer). We can find additional
fields, but they are not used here.

3.2.2 Deflation phase

The first step when the kernel gets the control is a deflation phase. In this phase, a piece of code extracts
the kernel from the binary file copied in main memory.
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The source code of this part sits in the folderarch/arm/boot/compressed/.
The entry point of the kernel is located inhead.S. Here are made pre-extraction configurations. For

the sake of performance, instruction and data caches are enabled. But on ARM v4 CPU, the only mean to
activate data cache is to use MMU. Indeed, the control bits which tells if a memory address is cache-able
and buffer-able or not are placed in the page table entries. The use of the MMU is then mandatory. The
memory mapping used in this stage is the simplest one, which is to say identity mapping : physical adresses
and virtual addresses are equal.

Once the configuration is made, it launches a C function called decompress_kernel() in mis-
c.c. In this function the well-known printingsUncompressing kernel ... done. are made
on the selected console device, in our case this is the serialport. No initialization of the serial port is made
at this early point, so this initialization is a task of the boot loader. We implemented it in U-Boot.

Finally the caches are disabled and the control is passed to the next stage, end ofhead.S.
In these parts, only two things should be implemented in regard of the new platform. The first is

some debug macros in thedebug_macro.S file in include/asm-arm/arch-cm922txa10. These
macros are used to print messages for debug purposes. Secondthing to implement is a function imple-
mented ininclude/asm-arm/arch-cm922txa10/uncompress.h. This function,putstr()
is called to print messages on the console, it is machine dependent.

Except these two functions, nothing else should have to be modified, but in our case the situation is a bit
different. The main trouble when activating the MMU is to take care not to map the register bank as cache-
able/buffer-able memory region. We should only set these characteristics on the RAM region. By default,
the ARM-Linux kernel uses the write buffer on a region of0x10000000 bytes starting at the start address
of main memory (in fact first address of the kernel file alignedon the 1MB page below). Unfortunately
the stripe control register bank is mapped at0x0B000000 by default on the CM922T-XA10, although it
is mapped at0xFFFC0000 on the EPXA10db. As the UART transmit register is in the register bank of
the stripe, it is buffered and only written once in the register, producing a message with only half of the
characters.

The only way to solve this trouble is to reduce the main memoryregion. This modification has no effect
on the following stages of the kernel boot, because the MMU and caches are stopped just before jumping
to the newly uncompressed kernel.

3.2.3 Linux kernel boot

In this second stage of boot, the kernel will really initialize the hardware and the execution environment.
Before doing anything, the kernel takes care to check if it isrunning on the CPU it was compiled for.

This verification has for main interest to initialize the basic functions responsible of initializing the caches
and the MMU. To do so, it embeds two structures called.proc.info and.arch.info. The structure
.arch.info is in fact the structure defined in thearch.c file. Structure.proc.info is very similar
structure, with information and specific functions relatedto the CPU. The kernel gets the processor ID
(cpuid) from the configuration coprocessor and compares it to the data contained in the.proc.info
structure. It uses the machine ID given to him by the boot loader and checks in the.arch.info if it is
the same ID. All these steps works fine by default, once we takecare to create a machine with the right
information. Processor ARM 922T was already supported, andcm922txa10 is the name of our new
machine.

The following step is the MMU configuration. This configuration is very critical since it is the switching
from physical to virtual address modes. What makes it more difficult than in the first stage is that, this time
the mapping will not be the identity one. Linux has a specific usage of the virtual address space.

Before giving the details of this mapping, we must underlinethe fact that this mapping is made in two
distinct phases. In the first one, the kernel initializes thepage table memory region and direct map 4MB
where the kernel is laying. The second phase finishes building a minimal page table mapping. In Linux,
the address space available for applications starts from address0x00000000 but does not contains the
whole 4GB. Figure13gives a global view of the usage of this virtual memory mapping.

As shown on the figure, the last 1GB are reserved for kernel use. At the beginning of this space, physical
memory is directly mapped (kernel direct mapped region), which means that we only have to
add an offset to the physical address to get the virtual address. The offset here is0xC0000000 named
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PAGE_OFFSET
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high_memory

VMALLOC_START

VMALLOC_END

0xFF000000

0xFFC00000

0xFFFF0000

0xFFFF1000

0xFFFF8000

User space

Kernel mode space

Kernel direct mapped region

Free for platform use

vmalloc() / ioremap() space

CPU vector page / Null pointer trap

copy_user_page / clear_user_page

Reserved

CPU vector

DMA memory mapping region

Reserved (DMA expansion)

Figure 13: Linux memory layout

PAGE_OFFSET. The figure also shows that a special region is reserved for platform use (Free for
platform use). In this region, all I/O control registers must be mapped tokeep them accessible after
virtual memory activation. To know what correspondences itmust implements, the kernel needs a structure
containing the address translations. This structure is named the I/O memory map presented before and is
specific to the platform you are porting. The structure and the function related to the I/O memory map are
placed in themm.c file in ourmach-cm922txa10 folder. In our case the memory map is quite simple.
Since all control registers of stripe’s peripherals are regrouped in a bank mapped at0x0B000000, we
only need to add an entry to give it a mapping as in the following structure.

static struct map_desc cm922txa10_io_desc[] __initdata = {
{ IO_ADDRESS(0x0B000000), 0x0B000000, SZ_16K, MT_DEVICE },
{ IO_ADDRESS(0x10000000), 0x10000000, SZ_8M, MT_DEVICE }

};

This I/O memory description also contains a mapping for the CM control register bank mapped in
physical memory at0x10000000.

IO_ADDRESS is a macro defined to give an automatic translation from physical to virtual address for
peripherals in device drivers. Default one is the following:
#define IO_ADDRESS(x) (((x) >> 4) + 0xF0000000) .

Following initializations are timer and IRQ ones. As we saw in the machine structure, there are struc-
ture/function for this two initializations. As far as IRQ are concerned, we give to the kernel a func-
tion that is responsible of the initialization of the hardware interrupt controller. This function is named
cm922txa10_init_irq() and is defined in theirq.c file in mach-cm922txa10 folder. In this
function a structurestruct irqchip is registered to give to the kernel the functions to use for masking
and unmasking an IRQ. On top of that, we must help the kernel tofind which IRQ is raised. This function is
made in an assembler macro placed in fileentry-macro.S in arch-cm922txa10. This macro only
reads an ITC register giving the highest priority of IRQ raised, but priorities are initialized to the IRQ num-
ber. The return value is then the IRQ number. IRQ numbers allocations are given by the fileirqs.h in
include/asm-arm/arch-cm922txa10. For the timer, the structure registered in the machine struc-
ture contains the timer intialization function pointer. Inthis function, all necessary registers are set to the
right value, and the timer IRQ is activated. Timer initialization is made thanks to a structure. This structure
has an init function pointer field. This one is implemented inthetime.c file in mach-cm922txa10.
It sets timer control registers to desired values and startsthe timer. Finally it activates the timer IRQ, for
preemption purpose.

At this step, we have the following files inmach-cm922txa10 :

arch/arm/mach-cm922txa10/arch.c

21



arch/arm/mach-cm922txa10/irq.c
arch/arm/mach-cm922txa10/Kconfig
arch/arm/mach-cm922txa10/Makefile
arch/arm/mach-cm922txa10/Makefile.boot
arch/arm/mach-cm922txa10/mm.c
arch/arm/mach-cm922txa10/time.c

In thearch-cm922txa10 folder we talked about these files :

include/asm-arm/arch-cm922txa10/debug-macro.S
include/asm-arm/arch-cm922txa10/entry-macro.S
include/asm-arm/arch-cm922txa10/irqs.h
include/asm-arm/arch-cm922txa10/uncompress.h

We now need to add few files in this last folder. First we put hardware definitions in the files :

include/asm-arm/arch-cm922txa10/cm.h
include/asm-arm/arch-cm922txa10/excalibur.h
include/asm-arm/arch-cm922txa10/hardware.h
include/asm-arm/arch-cm922txa10/int_ctrl00.h
include/asm-arm/arch-cm922txa10/platform.h
include/asm-arm/arch-cm922txa10/timer00.h
include/asm-arm/arch-cm922txa10/uart00.h

Finally, we have to place mandatory files. These files are needed for kernel compilation, but do not
contain machine specific information except in very specialcases :

include/asm-arm/arch-cm922txa10/dma.h
include/asm-arm/arch-cm922txa10/io.h
include/asm-arm/arch-cm922txa10/memory.h
include/asm-arm/arch-cm922txa10/param.h
include/asm-arm/arch-cm922txa10/system.h
include/asm-arm/arch-cm922txa10/timex.h
include/asm-arm/arch-cm922txa10/vmalloc.h

The new platform/machine is now ready to be configured and compiled. Our kernel would boot, but
we could not do anything with it because we only give the minimal support here. No drivers are supported,
then no messages will be output for exemple. So the last job isto work on device drivers. We already
put minimal driver support in the kernel, timer and interrupt controller. Remaining drivers are serial port
driver for console input/output for example. Fortunately these peripherals are stripe’s one. The EPXA10db
implements all these drivers. To allow them to compile with our new machine, we need to modify con-
figuration files, because we cannot select them, they are hidden. We will take the example of serial port,
namedUART00 in the Altera port of EPXA10db. In the filedrivers/serial/Kconfig we modify
UART00 entry as follows :

config SERIAL_UART00
bool "Excalibur serial port (uart00) support"
depends on ARM && (ARCH_CAMELOT || MACH_CM922TXA10)
select SERIAL_CORE
help

Say Y here if you want to use the hard logic uart on Excalibur. This
driver also supports soft logic implementations of this uart core.

With this modification, the driver is now selectable during configuration phase, but we have to modify
the driver itself to get it to compile. These modifications are based on the low level hardware defini-
tion. Once these modifications accomplished the driver compiles and works. Another good exemple of
driver “port” is the Flash. In fact on the CM922T-XA10, the flash memory is partitionned thanks to ARM
Firmware Suite (AFS). To use the MTD (Memory Technology Device) on our Flash, we must make the
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AFS work on our flash. This is done by putting initialization actions. We place in thearch.c file some
functions which are responsible of placing the flash in a state where it can be read and written. Point-
ers ofthese functions are placed in structures, where we putsome informations about addresses and type
(armflash)

[...]
/*
* Flash handling.

*/
static int intcm_flash_init(void)
{

u32 val;

val = readl(INTCM_VA_REG_BASE + INTCM_CTRL);
val |= CM_CTRL_EBI_WP;
writel(val, INTCM_VA_REG_BASE + INTCM_CTRL);

return 0;
}

static void intcm_flash_exit(void)
{

u32 val;

val = readl(INTCM_VA_REG_BASE + INTCM_CTRL);
val &= ~CM_CTRL_EBI_WP;
writel(val, INTCM_VA_REG_BASE + INTCM_CTRL);

}

static struct flash_platform_data intcm_flash_data = {
.map_name = "cfi_probe",
.width = 2,
.init = intcm_flash_init,
.exit = intcm_flash_exit,

};

static struct resource intcm_flash_resource = {
.start = INTCM_PA_FLASH_BASE,
.end = INTCM_PA_FLASH_BASE + INTCM_FLASH_SIZE - 1,
.flags = IORESOURCE_MEM,

};

static struct platform_device intcm_flash_device = {
.name = "armflash",
.id = 0,
.dev = {

.platform_data= &intcm_flash_data,
},
.num_resources= 1,
.resource = &intcm_flash_resource,

};

static struct platform_device *intcm_devs[] __initdata = {
&intcm_flash_device,

};
[...]

Finally, we register the flash thanks toplatform_add_devices() in a function, which aim will
be the machine initialization. This function is hence reguistered in the machine structure to be called in an

23



early kernel boot stage.

[...]
static void __init cm922txa10_init(void)
{

platform_add_devices(intcm_devs, ARRAY_SIZE(intcm_devs));
}
[...]
MACHINE_START(CM922TXA10, "ARM Integrator CM922T-XA10")

/* Maintainer: Nicolas Fournel */
.phys_ram = 0x00000000,

[...]
.init_machine = cm922txa10_init,

MACHINE_END

Once the kernel is compiled with MTD and AFS support, the flashis recognized and ready to receive
your root file system for example.

To conclude, in this first port, only these few drivers are integrated, but in future works remaining
peripherals will be ported. The more difficult part in the kernel port is the size of the kernel sources. Since
it is really huge, due to the large number of platform supported, finding a specific piece of code could
become a little difficult.

3.3 porting uClinux

uClinux is based on the Linux kernel, in fact it is a patch for Linux kernel. Hence to port the uClinux
kernel, we reused our port of the Linux kernel. The main characteristic of uClinux is that it does not use
the MMU as we described earlier. MMU configuration is an earlystage responsibility, and is a part of the
processor port. As ARM 922T support was in the Linux tree, it was modified to run uClinux by the patch.
Needless to say that this is a good news for use. No work are needed on the CPU to make the uClinux
kernel work on our new platform. In this implementation we have the choice to use or not the MMU. If we
choose to use it, it is enabled in a non-paged mode, identity mapping presented before.

We present some highest level MMU configurations which are the I/O memory map descriptions. This
description are useless since no more translations are needed, we are working in flat memory (physical
memory). We also presents the macro giving the translation of physical addresses in virtual addresses
IO_ADDRESS. This macro has a different definition in uClinux which is :
#define IO_ADDRESS(x) (x).
Other minor modifications are made in the port to allow the useof physical memory, but nothing really
fundamental.

4 Conclusion

A this point we brought the Linux and uClinux kernels to work on our development platform. This work
could be useful for people owning the same platform. Howeverthis work is only a personal work at this
point. The final step will be to propose this new platform to the main stream source tree of ARM Linux
kernel. The two phases of this proposition are the followingones. The first is to register a MachineID,
the unique number identifying this kind of platform. Our machineID is 934. This step should have been
made before starting the implementation. But to get rid of this step we used a temporary machineID. To
make this choice we took into account the growth of supportedplatform population, and took a sufficiently
big number. The second phase will be to make the source tree patch available to ARM Linux kernel
administrators. Once they give their agreement, our work will officially be part of the ARM Linux kernel
project.
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A Core Toolchain compilation Script

Here is a script for core toolchain compilation :

CXTOOLS=/usr/local/cross_toolchain/arm-core/gcc-3.3.6-none/arm-9tdmi-linux-gnu
BUILD_DIR=/home/nfournel/tmp/gcc_crossbuild
TARGET=arm-9tdmi-linux-gnu

GCC_VER=3.3.6
BINUTILS_VER=2.16.1

#binutils
#========

cd $BUILD_DIR/src

if test ! -d binutils-$BINUTILS_VER; then
tar jxvf binutils-$BINUTILS_VER.tar.bz2

fi
mkdir -p $BUILD_DIR/build/binutils-$BINUTILS_VER
cd $BUILD_DIR/build/binutils-$BINUTILS_VER
$BUILD_DIR/src/binutils-$BINUTILS_VER/configure \

--prefix=$CXTOOLS --target=$TARGET
make ; make install

#gcc
#===

export PATH=$CXTOOLS/bin:$PATH

cd $BUILD_DIR/src
if test ! -d gcc-$GCC_VER ; then

tar jxvf gcc-$GCC_VER.tar.bz2
fi
mkdir -p $BUILD_DIR/build/gcc-$GCC_VER
cd $BUILD_DIR/build/gcc-$GCC_VER

$BUILD_DIR/src/gcc-$GCC_VER/configure --prefix=$CXTOOLS \
--srcdir=$BUILD_DIR/src/gcc-$GCC_VER \
--target=$TARGET \
--enable-languages=c,c++ --with-gnu-as --with-gnu-ld \
--disable-shared --disable-multilib --disable-threads \
--disable-libgcj --disable-nls --without-newlib \
--disable-libstdcxx-v3 --with-cpu=arm9tdmi ;

export ALL_TARGET_MODULES=""
export CONFIGURE_TARGET_MODULES=""
export INSTALL_TARGET_MODULES=""
make -e; make -e install
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