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Abstract
This research report presents a full case study on portiddanting the Linux and
uCLinux operating system on a new platform. We present tligkwon the ARM
Excalibur CM922TXA10 for which a new machine type has beeatzd to be able
to run the platform in a standalone mode.
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Résumé
Ce rapport de recherche présente une étude de cas complite développement et
I'adaptation des noyaux Linux et uCLinux pour une nouvelkchine. Le dévelop-
pement est effectué sur I'adaptation des noyaux pour unéimaédRM Integrator
CM922TXA10 et permet de faire fonctionner cette derniéréagen autonome.
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1 Introduction: knowing the hardware.

In this section we will give a rapid overview of the platfornewill talk about in the next sections. This
platform is an ARMMdevelopment board, its nameA®M Integrator. The board can be divided into two
different parts.

The first part of the platform is th@ore Module, which explains its full naméntegrator/CM. This part
integrates the CPU and the main memory, as well as a FPGA ast Rilemory (16 MB).

ARM has a large range dfore Modules, there exists almost one Core Module by ARM processor,
nearly all these core modules have the same layout. Our CockuM is based on an ARM9, the ARM
922T. However there are two different core modules basethisrptocessor. The first one is a basic core
module with the common layout. The second is a little spebrmtause it is based on an Altera Excalibur
EPXA10, which is a PLD (Programmable Logic Device), or marecisely a FPGA (Field-Programmable
Gate Array), integrating the processor. Our module is thesg and its name Isitegrator/CM 922T-XA10.

Figure 1: Integrator/CM922T-XA10 board

The core modules are designed to be used in conjunction \liter latforms. For example it is
possible to connect four core modules together and have toenmunicate by a special bus. Another
application is to connect them to a baseboard, CP (CompatfoRh) or AP (Application Platform). All
these applications are made possible by the two connectorethHDRA and HDRB (Header A and B).
These connectors are present on both sides of the board (HiDRKe left and HDRB on the right), and
on both faces to allow stacking. An extra connector is akglan the upper side of the board, its name is
EXPIM, and its goal is to connect extension boards like FRta&ed ones.

These points are true for all core modules, but concerning32®IT-XA10 an extra application is
available, the standalone mode. In fact, the EPXA10 (therAlFPGA) integrates a piece of silicon, a
stripe, containing a CPU (ARM 922T) but a lot of peripheralg.tFor example, the stripe integrates two
timers, an UART, a memory controller, and some other pergdeeWith the peripherals embedded on the
CM 922T-XA10 we can run a full operating system.

The second part of the platformis a baseboard. Its naiméegrator/CP, whereCP stands folCompact
Platform. This part of the platform integrates a large number of geaipls that could be useful for an
embedded software developer. For example, there is 16 MBashFmemory, which allow the user to
load home brew applications and launch them on the platftiratso includes sound, network and MMC
reader peripherals. However the CP board does not embedacgssing unit nor main memory. In fact

IMMC: Multimedia Card



it is designed to be connected to a core module. It can be cteohevith only one module at a time, but
from any typej.e. with any processor. As we mentioned before, all core mocariebased on a processor,
main memory and an FPGA. In the case of a CP connection (the Gihtad on a CP board), the control
parts of peripherals are implemented in the FPGA of the caréute. Indeed, only the remaining parts of
the peripherals are implemented on the CP physically. Tresaining parts, the physical interfaces, are
available from their controllers through specific buses.

Finally, the CP fully integrates some peripherals, like d@RGeneral Purpose Input/Output), and
these are accessible through a general purpose?Aids.

m
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Figure 2: Integrator/CP board

The core module is connected to the compact platform by tbetmnectors mentioned before, HDRA
and HDRB. In this configuration, the connectors carry powgypties, general purpose bus and other
specific buses between the two parts.

1.1 CM architecture

As we explained before almost all ARM core modules have theesarchitecture. The CM 922T-XA10 has
a compatible architecture, but as it is based on an ExcaiBXAL10[1], it has architectural specificities :

e All core modules integrates an ARM CPU, in the CM 922T-XA10s ipart of the EPXA10 stripe.

e Core modules integrate SSRAM, with a SSRAM controller impated in a PLD. The CM 922T-
XA10 embeds SSRAM as well, but the SSRAM controller is imptened in the FPGA.

e Core modules integrate an FPGA in which peripherals aredmphted. The EPXA10 is an FPGA,
so it is also true for the CM 922T-XA10.

e SDRAM main memory can be plugged in the DIMM slot on core medublnd the memory con-
troller is implemented in the FPGA. CM 922T-XA10 has 128MBSIIRAM memory on board and
a hardware memory controller is available in the EPXA10. MM slot is also available on the CM
922T-XA10.

On top of these variations on the common CM architecture, GT9IXA10 has special features not
available on all core modules :

2AHB: Advanced High speed Bus



e EPXA10's stripe embed a lot of basic peripherals like a $edatroller, a memory controller, . ..

e CM 922T-XA10 offers 16 MB of flash memory (for user applicat®). This feature is related to the
possibility of running the CM 922T-XA10 in a full standalon®de.

1.1.1 Hardware architecture

In this subsection we will give a detailed view of the hardevarchitecture of the core module CM 922T-
XA10. In fact, the hardware can be divided into two parts,réed hardware and the FPGA-implemented
hardware.

The first part is made of the stripe’s peripherals and the @ndimtegrated chips, here is an exhaustive
list :

e Stripe’s peripherals :

— CPU (ARM 922T)

— memory controller

— watchdog timer

— single and dual port SRAMs (SP/DP SRAM)

— PLL (Phase-Locked Loop)

— reset logic

— two timers

— UART (Universal Asynchronous Receiver-Transmitter)
— EBI (Expansion Bus Interface)

e Onboard chips:

— SDRAM connected to the memory controller

— SSRAM connected to the FPGA-implemented memory controller
— Flash memory connected to the EBI

— clock generators

The second partis not fixed since it is implemented in the FAGdeed, at the boot of the core module,
the image to be loaded in the FPGA is selected according tols®g or signal values. One of these images
is especially designed to be used with the CP, another toduetwih an AP or in standalone mode. The
last and simplest one is designed for standalone mode, geibsge. We will take the last one to give an
overview of the full hardware architecture of the CM922T-KAin standalone mode. In this image only
few peripherals are implemented in the FPGA. In fact, only imterfaces are implemented to control the
clock generators chips, as well as control and status ezgisthe global architecture is depicted in figure
3.

As far as interconnections are concerned, one can see fismidigram that the peripherals are acces-
sible by three different AHB busses. The stripe of the EPXAlt8ady contains two AHB buses connected
by a bridge (AHB1 and AHB2 on figurg). A third AHB bus (AHB3 on figure3) is implemented in the
FPGA, this one is also connected to the others through anbtitge, a bridge between stripe and PLD
(from stripe to PLD).

In this image we must underline that the SSRAM is not usedesimcSSRAM memory controller is
implemented in the FPGA. The second bridge between strig€ab (from PLD to stripe) and the second
ports of the DPSRAMSs are not used either.
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Figure 3: Basic image architecture. Bold blocks are bus engast

1.1.2 Interruption architecture and behavior

With the basic image, the CM 922T-XA10 only integrates orteriupt controller linked directly to the
CPU exception wires.

Before describing the behavior of this interruption colero we will give a few details about ARM
exception management. Interruptions and fast interraptéoe two of the six exceptions handled by ARM
processors. The six exceptions are reset, prefetch, abodsfined instructions, interruptions, fast inter-
ruptions, and software interruptions. The management cégbions is the same regardless of their type.
If an exception is raised, the CPU jumps to the exception learatidress. This address is calculated as
the sum of the exception base address, which can be &xt#000000 or Ox FFFFO000 depending on
the configuration of the processor, plus an offset given leytype of exception, for example interruption
request offset i9x18. The instruction fetched at this address is most of the tijuerg to the address of
the full exception handler implemented by the developer.

As we can realize from the previous list, hardware integsgan be handled by two different exceptions.
These two levels of interruption are : interruption reqeR0Q) and fast interruption request (FIQ).

On CM922T-XA10 programmed with basic image, all hardwateriuptions are gathered by one inter-
ruption controller linked to the two interruption exceptiwires of the CPU. Each peripheral is connected
to this interruption controller (ITC) by only one wire. Thile ITC raises either an IRQ or a FIQ, according
to the interruption priority. The highest level of priorigx 3F) corresponds to a fast interruption.

1.1.3 Memory map

All stripe peripherals are controlled by registers mapmecthemory. These registers are regrouped in a
register bank, the stripe register bank. The default maypgdturess of this bank @3x0B0O00000. Another
control and status register bank corresponding to the Chplperals is mapped &x10000000.

The remainder of the memory map contains memories mapplagi(FSDRAM, SPSRAM and DP-
SRAM). Figure5 gives a full overview of this memory map.



INT_nFIQ Bits Name
31:17 Reserved
ARM core INT_nIRQ 16 FASTCOMMSINT
15 COMMRX
14 COMMTX
13 AHB12INT
12 S2PLDINT
11 EBIINT
© 10 PLLINT
2 |9 TIMERINT1
28 TIMERINTO
a7 UARTINT
6 EXTINT
5 INT_PLD5
4 INT_PLD4
3 INT_PLD3
2 INT_PLD2
1 INT_PLD1
0 INT_PLDO

Figure 4: CM interrupt architecture

OXFFFFFFFF

Eg:i 0x0F800000
0xOF000000
Undefined
Bus error Stripe Registers 0XOB000000
Undefined
DPERAMé 0x08110000
DPSRAM 0x08100000
2E2$é 0x08020000
0x08000000
SDRAM1
0x04000000
0x10800000
CM Registers
0x10000000 SDRAMO
Stripe

Figure 5: CM 922T-XA10 memory map

1.2 CP architecture

As mentioned earlier, a specific image must be loaded in tHeA-® take advantage of the compact
platform (CP). The combination CP plus CM 922T-XA10 is cdl@P 922T-XA10 in the literature.
Connecting the CM to a compact platform offers the developere peripherals. These additional
peripherals are the following : a sound device, a video @gvécnetwork device, storage devices (Flash
memory and MMC card reader), ...
Most of the peripherals of the CP are in fact implemented mRRGA of the core module, as well as
a AHB-bridge, allowing other peripherals to be connected.

1.2.1 Hardware architecture

We will show here that the CP 922T-XA10 architecture is omyeatension of the CM 922T-XA10 one.
The only difference in terms of hardware architecture betwthese two platforms are the peripherals
implemented in the FPGA. Thus, the stripe’s peripheralssbways available. In the CP 922T-XA10 we
find almost all peripherals of the CP implemented in the FPG#e CM control and status registers are
always implemented in it, but the clock generators intex$agre not available any more, because they are



used for the implementation of the CP peripherals.

The FPGA implements two extra level of interconnectionse Titst is an APB (Advanced Peripheral
Bus) on which FPGA-implemented peripherals are connectdtw second is an AHB-Lite also called
system bus on which peripheral fully implemented on the cachplatform are connected, for example the
GPIO (General Purpose Input/Output) and the Ethernet devic
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Figure 6: CP 922T-XA10 hardware architecture. Bold bloadlkskais masters

1.2.2 Interruption architecture and behavior

The CP 922T-XA10 embed four different interruption conlerd (ITC). The stripe’s interruption controller
is always connected directly to the CPU exception wires. fhinee extra ITC are thus connected to the
first one. In fact they are connected to the stripe’s ITC by feies reserved to FPGA exception sources
(two wires for each ITC, an IRQ wire and a FIQ wire). Then thstfiTC’s priority are configured so that
it relays IRQ and FIQ.

The three extra ITC are CM interruption controller and two i@frruption controllers (primary and
secondary). CM ITC and primary CP ITC are implemented in tR&A. The third one is implemented in
a PLD on the compact platform and is connected to the prim&yTC by an interruption wire.

More generally, the CM interruption controller is connette CM peripherals, and the CP interrupt
controllers are connected to the CP peripherals. Figymesents the hierarchical relations between inter-
ruption controllers.

1.2.3 Memory map

As for CM 922T-XA10, all peripherals of the CP 922T-XA10 ar@pped in memory. Moreover, they are
mapped in the address space still available in the CM 922TOWemory map.



Bits Name
31:17 Reserved
16 FASTCOMMSINT Bits Name
15 COMMRX CM_IRQ | © [31:3 Reserved
14 COMMTX El2 COMMTX
13 AHB12INT CM_FIQ 3L COMMRX
12 S2PLDINT 0 SOFTINT
11 EBIINT
Q|10 PLLINT Bits Name
o |9 TIMERINT1 31:29 Reserved
218 TIMERINTO CP_IRQ 28 TSPENINT
0|7 UARTINT 27 ETHINT
6 EXTINT 26 CPPLDINT
5 INT_PLD5 25 AACINT
4 INT_PLD4 24 MMCIINT1
3 INT_PLD3 o |23 MMCIINTO Bits Name
2 INT_PLD2 -~ E 22 CLCDCINT 31:12 Reserved
1 INT_PLD1 CP_FIO 22111 Reserved 11 LM_INT7 (FIQ3)
0 INT_PLDO - &= E 10 LM_LLINT1 (FIQO) 10 LM_INT6 (FIQ2)
() LM_LLINTO (IRQO) |9 LM_INT5 (FIQ1)
RE RTCINT > [8 LM_INT4 (FIQO)
7 TIMERINT2 s |7 LM_INT3 (IRQ3)
6 TIMERINT1 § 6 LM_INT2 (IRQ2)
5 TIMERINTO e LM_INT1 (IRQ1)
4 MOUSEINT o |4 LM_INTO (IRQO)
3 KBDINT O I3 CARDIN
2 UARTINTL 2 RI1
1 UARTINTO 1 RIO
0 SOFTINT 0 SOFTINT

Figure 7: CP interruption management. Stripe ITC is digectbnnected on CPU INT_nFIQ and
INT_nIRQ.

The resulting memory map is shown by figie

OXFFFFFFFF
POR
_ 0XC8000000
Static 0xC1000000
Static 0xC0000000
Eg:i 0XOF800000
0XOF000000
Default Slave Undefined
Stripe Register 0xOB000000
Undefined
0x28000000 DPSRAML | 08110000
DPSRAMO | 0408100000
System Bus
0x20000000 SRAM1 0x08020000
SRAMO 0x08000000
Peripherals
SDRAM1
A 0x11000000 0x04000000
SS 0x10800000
,\?f_jerf’e" 0x10000100 BRAM
C egisters 0x10000000 S 0
Stripe

Figure 8: CP 922T-XA10 memory map

1.3 ARM 922T architecture

We will give here more details about the ARM 922T architeetdhat is to say about its core, its caches
and its MMU, particularly their characteristics and theaiganisation.



1.3.1 Global architecture

First, we give here an overall view of this processor. As aresee form figur®, ARM 922T has seperate
instruction and data paths. These paths have their own each®MU/TLB. A common AHB interface
connects the two buses to the general purpose AHB bus. Weundstline the presence of the CP15,
which is a configuration coprocessor, it allows us to set MMéathes, ... configurations.

|

Instruction Path

External
i i IPA[31:0]
coprocessor Instruc}:mn Instruction [31:0]
interface cache MMU
Virtual Addresses 1 IMVA[31:0] 1
R13 Physical Addresses
ID[31:0]
IVA[3L:0] 1
Trace AMBA AHB1
Interface ARMOTDMI CP15 bus L .
port CPU Core .
interface
DVA[31:0] 4
' Write
DD[31:0] buffer
R13 .
DMVA[31:0] DPA[31:0] Physical Addresses
Virtual Addresses 1
Data Data Write back
Cache MMU PA TAG RAM WBPA[31:0]
JTAG
| DINDEX[5:0] T
Data bus
Address bus

Data Path

Figure 9: ARM 922T architecture

1.3.2 ARM9TDMI core

The CPU core of the ARM 922T is an ARM9TDMI. This core fully itempents the 32 bit ARM v4 ISA
(Instruction Set Architecture). It also support the Thumstiuctions which are 16 bit instructions. As
most ARM CPUs it has no floating point unit, it supports onlyetrer operations. This processor has
multiple operating modes, user, system, supervisor, IRQ, Endefined and abort modes. Among these
modes only user mode is unprivileged. Finally, as far asstegs are concerned, it has 16 general purpose
registers (among which are SP stack pointer, LR link retmchRRC program counter). These registers are
banked, which means that some registers are not commondreteetain operating mode.

1.3.3 Caches

The ARM 922T has seperated instruction and data cache. 3ilzeirs 8 ko, and the write buffer has a size
of 16 words.

These caches are virtually addressed. On top of that, tleecdahe can only be used when MMU is
activated. In fact the control bits, which indicates if theekhe and the write buffer must be used for a data
region are part of the page table entries. The caches areoh@6é lines of 8 words. They are organized
in a 4-way associative way.

1.3.4 MMU/TLB

The MMU integrated in the ARM 922T is an ARMv4 MMU. We will givieere more details about the
behavior of this MMU.

10



First of all, we must underline the fact that instruction aiatia have their own TLB (Translation Look-
aside Buffer), translation cache. These TLBs have a 64 eviti.

In the ARMv4 MMU, memory can be accessed through four difiepage or section size : 1ko (tiny
page), 4ko (small page), 64ko (large page), 1 Mo (sectiongs& pages and sections are accessible through
one or two stage table walking depending on page-mappedtiosanapped access. Before going any
further itis important to underline the fact that all pagdkirggs are made in hardware. Thus the translation
is all made in hardware, and MMU only raises prefetch abarepiion when no translation are possible or
access to the memory region is not granted .

Translation base
The translation starts when TLB contains no translatiorafeirtual memory address. Then the translation
table base address gives the location in physical memoriyeofitst stage table. This register is in the
configuration coprocessor CP15.

Level 1 : Translation Table

The first stage table is also called translation table. 108&entries long, which means that its size is
16 ko. Each entry in this table represents 1Mo of virtual megmas you can realize from figurg0, there
are four different type of entries in this table.

TTB

[:::::::::::}“““14444.7 Translation table
]

index

! [E—
12 bits | o0 1 1MB
! index
v 20 bits !

01 Y

Section

10—

ol

Coarse page
table base

Fine page
table base

Figure 10: ARMv4 MMU level 1

The first type is the section descriptor. As we said beforemorg is accessible through section.
Obviously these sections have a size of 1 Mo. All informadiabout domain protection, cache and write
buffer are present in this first level entry.

The two following types of entries are page entries. Theedwao different types of page table : coarse
grained and fine grained. The first level entry in these calsegires the base address of the corresponding
second level page.

The fourth type is undefined and generates an error.

Level 2 : Page tables

At this leve, we have two different type of page table, therseayrained and the fine grained page
table. As their name indicates, the first type describeshits degion with big pages and the second one
with smaller pages.

The page size can have three different sizes : 1ko (tiny pdde)(small page), 64ko (large page).
Coarse grained page table entries can only describe snmatigerpage. However, Fine grained page table
entries can descibe tiny, small or large page entries. Tiffexeince is due to the following fact. Coarse
grained page table divides its 1Mo in 4ko blocks, so it hay @Bb entries. When a large page descriptor
is set, it is repeated on the 24 contiguous blocks descnipti®or fine grained page table the situation is
the same, but it divides its 1Mo in 1ko blocks (it is 1024 ezgji If a small or a large page description is
set the description is repeated on all the blocks descrip&opage contains. The figuté summarize this
second level description relations.

To conclude, figurd 2 give an global view of the two level page table organisation.

2 Booting Linux on the platform

At this point we have a better knowledge of the hardware wenarking on. We will now review the few
steps necessary to make an operating system (OS) boot oplsticiims.

11
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Figure 11: ARMv4 MMU level 2
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Figure 12: Global MMU access diagramm

It is important to underline that the compact platform is hgelported under ARM Linux kernel. We
will then focus on the CP 922T-XA10 in this section, becaleeG@M 922T-XA10 is not supported.

In the next subsections we will go over the next points : Ingdhe kernel (boot loader), and the two
kernel Linux and uClinux.

2.1 Bootloader

First of all, to make an OS, like Linux, boot, we must copy tleerel in memory and put the machine in a
state that allow it to work properly in the first critical stefhe little piece of software that is in charge on
this job is the boot loader.
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Classical boot loaders likei | 0 andgr ub are designed for more complex machines. For ARM based
platform, few boot loaders are available, but our choice toaske a boot loader namelhs U- Boot ,
for universal boot. U-Boot supports the ARM Integrator/CP.

The goal of the boot loader is to initialize the platform,ttisato say to put it in a known state. During
the first steps of kernel booting, before Linux fully inifieds the hardware, Linux uses few hardware
peripherals (serial port, memory, ...) that have to be irridjiet state when we jump to the kernel. Once
the platform is initialized, the boot loader copies the ledin main memory and optionally an initrd. An
initrd is a file system usually used by the kernel at boot tibug it can also be used as final root file system
in embedded systems. Then the boot loader must give sontenafion to the kernel before giving control
to it. The first two information are to put the value 0 in registO and put the machine ID in register r1.
The machine ID is a unique number which is used to identifytyipe of platform. Thus during the first
steps of booting, Linux can check if it was configured for tfefprm it is running on. These machine ID
are listed in a file in the kernel source tree : arch/arm/{otdsh-type. The last information is the kernel
parameters structure named ATAG. The boot loader placgstthicture in the main memory. For example
this structure gives information on the main memory (sizé lamse address). In order that the kernel can
find this structure, it is placed at a fixed address set beéoreh

We must add a few details about the state of the machine wieekettmel gets the control. First, a
standard output console must be initialized, to print mgssan the early stages of kernel. The boot loader
must take care to inhibit the MMU and caches too, if it is ustng

2.2 Compiling and using the Linux kernel

Linux was initially developed for big systems like personamputers. For few years now it has been
ported on smaller targets and became a complete embeddedingeystem. Then booting Linux on the
CM 922T-XA10 is not meaningless. Linux supports a large eaofjarchitecture, ranging from m68k to
IA64 (for example). Thanks to the project ARM Linux it was@jsorted to ARM architecture. This port
integrates today many platform support in which we can fird tttegrator/CP platform.

The port is designed to work with the CP regardless of whick amodule is mounted on. It implements
only the driver of all CP peripheral in a more or less stablg.Wée only need here to choose the driver we
want to build in our kernel before compiling it.

2.2.1 Linux and application compilation

Once the configuration of the kernel is made, we have to camipil All steps of the kernel building
are made on a computer whose architecture is different flenplatform, we work on a x86 host under
GNU/Linux. The standard GCC (GNU Collection of compilerpposed on this host does not allow to
produce ARM binary, but x86 binary. We must then use a crosgder. It is possible by recompiling the
GCC tool chain with the right host/target combination.

It is possible to build two different tool chains. The firshdae called core cross compiler or bootstrap
compiler. This tool chain is obtained by only compiling hiitai(as, | d, ...)and the GCC. This tool
chain can be used to compile the Linux kernel or all home bneplieation which will run directly on
the platform. AppendiA shows our core tool chain compilation script. The secondl¢bain is more
complex. It is obtained by compiling a bootstrap compildiba (glibc most of the time) and recompiling
the GCC with full support (shared libraries, ...). This teblain may be used to compile applications
which will run on the Linux kernel.

There exists some tools to help compiling these tool chakm. example, crosstoob] is a script
building a full compilation tool chain for Linux on many aiitdcture among them ARM.

2.2.2 Linux root file system

The last thing to fix for booting a GNU/Linux operating systenthe root file system.

Indeed, after booting, the kernel mounts the root file systaththen executes theni t program (by
default /shin/init). Therefore this file system must contidiie root of the file system tree, and ARM Linux
executable files. The simplest solution is to get sourcesaofi g@rogram you want to integrate in your
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embedded GNU/Linux OS, and then cross compile them with ¢hepder built in the previous step. This
solution is simple but very time consuming.

To solve this problem, theusybox software was proposetiusybox regroups all basic applications
that are useful on a minimal GNU/Linux OS in a single execlatéite. After a configuration phase, during
which you can choose the applications you need, you only teagess compile it.

2.2.3 Firmware loading

The combination of the boot loader, the kernel image anddbefile system image can be also called the
firmware. To be used on the platform you now need to load ieeitthmain memory or in ROM.

In the first solution, you need to load it every time you boa gtatform. This configuration can be
useful if you are in development process. For example, ointiegrator/CP the boot loader can be loaded
by serial port transfer, the kernel image and root file systambe transferred using theot p protocol.
The root file system is an initrd in this case. Another soluimthat the root file system is mounted via
NFS protocol. In this solution the platform must be connéatéth the development host by a serial or
Ethernet cable.

If the development phase is over, and you want a more autonsswiutionj.e. without connections
with a host, you may need to load the firmware on the flash memarthis case all three images can
be placed in the flash memory. In this configuration the boatléw, the kernel and the root file system
images are copied from the flash into the main memory. Thisdsritrd solution. An alternative solution
would be to use a file system like JFFS/JFFS2 (JournalindFHds System). In that case the file system
is read-only and used on the flash memory.

These solutions are only examples. It is obvious that otbetinations are possible.

2.3 Compiling and using the uClinux kernel

On top of using the Linux kernel, we focus on another kernélctvis only a modification of the vanilla
Linux kernel. This modification is called uClinux. This naroemes from the first target of the port,
micro controllers. In fact uC stands for micro-controllechuse “u” is the Greek letter(micro) and “C”
for controller. On micro controller based platforms, thenneey management is most of the time much
simplified, because no MMU (Memory Management Unit) is intégd. The memory address space is
called a “flat” memory model. There is only one address splaaeesl by all applications and the operating
system. This is the direct consequence of the lack of MMUt iadm charge of translating virtual memory
addresses into physical addresses.

uClinux wasa posteriori ported to architectures where an MMU is present, but it deg¢sise it, or to
architectures where the memory management hardware idgagtned for memory protection, like MPU
(Memory Protection Unit) on some ARM CPUs (ARM 946ES for exda).

This modification offers interesting perspectives becéasdware in embedded systems is often lack-
ing memory management. Thus uClinux is a good replacemérit@ofor Linux there.

Thanks to the work of Hyok S. Cho, uClinux was ported to the ARMIhe integrator/CP is then
supported by uClinux, as most of the ARM Linux supportedfplats.

2.3.1 uClinux and applications compilation

The compilation of an uClinux kernel is quite the same proceds the one to compile a Linux kernel.
The compiler used is a core cross compiler, the same as thepomgiled for Linux.

What makes the difference is when you want to compile apgibica for GNU/uClinux. The trou-
ble here is that you must change your cross compile tool ¢hweEnause it produces binary in an ELF
format. This format is based on the fact that each applioatias its own address space starting from
0x00000000, and this is exactly the role of the MMU. In contrast the binformat used by uClinux is
called Flat format, bFLT. This executable binary format tieessame structure than an ELF binary file, but
a relocation table is added at the end of the file. This tabieerts is a list of positions, more precisely
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offsets from the beginning of the text segment, where aiveladdress was placed during the last com-
pilation phase. At loading time, the only computation nekideto add the base address to the entire list
entries in the relocation table.

The compilation tool chain used is close to the one used fdf &pplication compilation. We only
have to add a tool whose aim is to process all addresses aatd the relocation table at linking time. This
tool is calledel f 2f | t [8].

Practically, we do not use the standard glibc, becauseziesisifar too important. Instead we use an
implementation of the libc optimized for small footprin€Clibc [17].

2.3.2 uClinux root file system

As for Linux, uClinux needs a root file system. Unfortunatglg cannot use the same file system because
the application building process do not use the same memodem It is necessary to rebuild all these
application with the special cross compilation tool ch&Rrcept this point the procedure is the same as for
GNU/Linux OS.

3 Porting the Linux kernel on the CM922T-XA10 platform

In contrast to the integrator/CP, the integrator/CM 92281X is not supported by the Linux kernel. We
were particularly interested in using the CM 922T-XA10 iarglalone mode for the remaining of our work,
hence we ported Linux to this platform.

As we explained in the section dedicated to the hardwareigéisn, the architecture of the CM 922T-
XA10 is centered on the Altera Excalibur EPXA10. We showetthaprevious section that the implemen-
tation of Linux on the integrator/CP does not take advant#gbe CM 922T-XA10 peculiarities. This
implementation cannot run on the CM 922T-XA10 in standaloragle. The following subsections will
give a description on our work to get Linux boot on our CM.

3.1 Porting the boot loader

The first step of this work is obviously to get a working boaider. The Integrator/CM 922T-XA10 was
not in the list of supported platform of U-Boot, so we had totploe boot loader prior to any other work.
Porting the boot loader is a good first experience in the m®aé porting full operating systems,
because it can be considered as a very simplified OS. Indeedyilneeds a serial port for console and
some peripheral initialization like timer.
First of all, as no support for this platform already exist® must create our platform in U-Boot.
By creating a platform we mean add tbeP22t xal0 choice in the configuration tool. This configura-
tion phase is made by callingake followed bypl at f or nnanme_confi g. The first action is then to
modify the U-BootMakef i | e. In this file we can find a huge list of targets, among them we fired
i nt egratorcpone:

integratorcp_config : unconfig
@/ nkconfig $(@ _config=) arm arnB26ejs integratorcp

This target calls the configuration script with the follogiarguments. First field is grab from the
target name, herent egr at or cp. This field will give the name of the configuration filencl ude-
/ configs/integratorcp. h.The second field is the arch, in that casem used for simlink the
i ncl ude/ asmoni ncl ude/ asm arm Third field is CPU,ar nD26ej s. A simlink is build be-
tweeni ncl ude/ asnf ar ch- arnB26ej s andi ncl ude/ asni ar ch. And finally the board name,
i nt egr at or cp. Extra fields can be present like vendor and SOC (System-@p}CAs you can realize
from this description, the CP implementation is based orAlRM 926EJS which is an ARM9 like ARM
922T which implements ARM v5 instruction set, whereas 928plements ARM v4t instruction set.

In the cpu folder, we can find two extra ARM9 CPU, ARM 920T and ARM 925Tidtsafer to use
the support of an ARM 920T as implementation base since it B’RM v4t. In fact ARM 920T and 922T
have the same core processor (ARM9TDMI), the only diffeecbetween the two of them are the cache
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sizes which are 16kB for instruction and 16kB for data on th@®and | 8kB/ D 8kB for the 922T. This
difference is meaningless since U-Boot do not use any cache.

The implementation of the ARM 920T is a SOC based implemamtgin U-Boot). We had to build a
SOC implementation for the EPXA10, with a lack of imaginatiee called itepxal0. For example this
port integrates the serial port, timer, and other peripbartthe stripe drivers. This SOC implementation
has a huge advantage, re-usability in other EPXA10 basefbptes ports. The vendor field will stay
empty in our case, so the config line becomes :

cnmP22xal0_config : unconfig
@/ nmkconfig $(@ _config=) arm arnP20t cnB22xal0 NULL epxal0

Now we have our configuration target ready. Next step is teigethe SOC implementation in the
cpu/ ar m@20t folder. All we need is to create a folder which will contaihsecific implementation for
our new SOC¢pxal0). This folder must have for name, the name given in the confeg e put here
all minimal drivers needed by U-Boot that are directly aabié on the EPXA10. Thus we have the serial
driver, the timer driver and some PLL information fetch eérs. The driver for the serial port is not used
in any other platform supported by U-Boot, it is logical tceeket in this SOC implementation. The source
code of the driver is placed in the figeri al . c. i nterrupts. ¢ does not include some interruption
handler sources, but a minimal timer driver for delay looppmses. Thespeed. c file contains few
functions used by the two other files. These functions feietctock speed, in order to calibrate the serial
port or the timer. To conclude, thdakef i | e of this folder must be filled with the names of the three files
to compile :

OBJS = interrupts.o serial.o speed.o

Once the EPXA10 support is completed, we have to build ourdbeapport. This support must be
placed in theéboar d folder. In this folder, we have to create a sub-folder whos@a is the name of the
board given in thévakef i | e config line. Then we create thmar d/ cn®22xal0 folder. Here we put
all functions specific to the platform, for example the drévef peripherals implemented in the FPGA.
Most of the functions required by U-Boot are empty functiohsleed, in filel i b_ar m boar d. ¢ we
can find a structure namedadi t _sequence containing function pointers of all initialization funotis.
Among these functions, some must be implemented in the Izegmolort. For example, theoar d_i ni t
and thedr am i ni t , which are defined iboar d/ cnm22xal10/ cn922xal0. c. It's important to note
that the information put in the structugel (its definition is in filei ncl ude/ asnl gl obal _dat a. h),
will be used in the ATAG structure to inform the kernel on tmecaunt of memory and the machine ID for
example. Another file is present in this folder, but it is neally importantrenset up. S. All actions
usually placed in this assembler function are made by the ARbtmonitor. The functiomenset up is
then empty.

The last things to add in the source tree are the header filas. h@ader file is mandatory, it is the
configuration header file. Its name is the name of the baari22xal10. h in our case, and it is placed
in a special folderj ncl ude/ confi gs. This file contains configurations for the drivers we decigle t
compile in our U-Boot, like serial driver. It allows us to n&k selection of the U-Boot command we
would like to integrate in itboot p commands for example. And finally it sets some default conditions,
which can also be modified at run time, liIBOOTARGS. Other header files are placed in thecl ude
folder, and their names agpxal0. h andcn®22xal0. h, each of them defining a specific part of the
platform.

3.2 Porting Linux

Once the boot loader is ready to load the kernel in main mentloeyiast step is to adapt the Linux kernel
to work on our hardware. As we mentioned before, the CP isdlresupported by the kernel, but this
implementation is not designed to use EPXA10 special harlvilhe idea here is to start from scratch or
to find a platform with a similar architecture in the existkeynel implementations.

After few research it appears that the support of a platfoamed EPXA10db (development board)
was implemented in the ARM Linux kernel. The most interasgtimng is that this implementation offers a
good support for most of the EPXAL0 stripe peripherals.
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We will now give a few details on how this support was modifid@. do so we follow the order of
kernel boot sequence.

3.2.1 Adding a new platform

Since the EPXA10db and the CM922T-XA10 are two quite difficiategrations of the Altera Excalibur,
their support have two much difference to be merged. Themiffces in the memory mapping are what
prevents us to merge them. The decision was taken to cre&i® machine.

To add a new machine (or platform) in the ARM Linux kernel, wstfineed to register it on the
ARM Linux Project website4]. This registry is mandatory, because it adds the machirledrdatabase
contained in thar ch/ ar m t ool s/ mach-t ypes file. The information of this file are the machinelD,
and some variable names used at compile time or at runnirggttridentify the machine. One important
thing is that this file is automatically generated with thgisgy information provided by the maintainers
of the machine. During the development phase we decidecettecthe entry in theach-t ypes file
by hand, without registering the platform. To do so, we cleoasufficiently high machinelD (999) to
avoid overlapping if we decide to change kernel version @tidveloping. The line added at the end of the
mach-t ypes file is then :

# machi ne_i s_xxx CONFI G_xxXXX MACH_ TYPE_xxX nunber
#

[...]

epxa ARCH_CAMELOT CAMVELOT 62
[...]

cnP22t xall MACH_CMB22TXA10 CMD22TXA10 999

The following step is to create the folders containing thppsut of our new support. As we got a
good base for future developments which is EPXA10db, we ozaite these folders by copying the folders
of the EPXA10db. Then imr ch/ ar mi we copymach- epxal0db and call the new foldemach- -
cnB22t xalo.

The second folder that have to be created is in the includdrseh and will regroup the header file
specific to our machinei ncl ude/ asm ar nf ar ch- epxal0db is copied and nametdnc| ude-

[ asm arnm ar ch-cnmB22t xalo.

At this point, we have all our new machine support skelet¥vssnow have to make it accessible during
the configuration phase of the kernel, for example wittke nenuconfi g. The files used by the con-
figuration tools are namdtconf i g. First of all, we have to modify the top levat ch/ ar m Kconfi g.

In this file, we add the new platform in tf®/st em Type / ARM syst em t ype choice menu. This
addition is made by an extra config entry. Here is what we &RCH _CAMELOT was already present
since it is epxal0db machine) :

[...]

config ARCH CAMELOT

bool "EpxalOdb"

hel p
Thi s enabl es support for Altera’s Excalibur XA10 devel opnment board.
If you would like to build your kernel to run on one of these boards
then you nust say 'Y here. OGtherw se say 'N

config MACH CMVMB22TXA10
bool "CWBR22T- XAl0 St andal one"
hel p
Thi s enabl es support for ARM I ntegrator CMB22T- XA10 when used in
standal one node. This platformis based on an Al tera Excal i bur EPXALO
If you would like to build your kernel to run on one of these boards
then you nust say 'Y here. Otherwi se say 'N

[...]
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The field placed afteconf i g must be the same than the second field inntheh- t ypes file. The
text displayed in the choice menu will BEEMB22T- XA10 St andal one”

On top of this minimal configuration, we should want extracsfi@ configurations for our machine. In
that case, we createk@onf i g file in ourmach- cn®22t xal0 folder. In our case, this field will remain
empty, because we have no special configuration to add. Biase of future development, we place the
following content in filear ch/ ar m mach- cmB22t xal0/ Kconfi g:

if MACH CWVMB22TXA10
# here comes machi ne special configurations
endi f
To use this file, we only need to include it in taech/ ar mf Kconf i g, by adding the line :

[...]

source "arch/ arm mach- epxalOdb/ Kconfi g"

source "arch/ arm mach- cnD22t xal0/ Kconfi g"

[...]

Final configuration setting to be made is to give a defaulffigomation to kernel. The default con-
figuration is contained in a file namedr®22t xal0_def confi g. This config file can be generated
with a make menuconfi g and then copyed fromconfi g to arch/ arm confi gs/ cnb22t -
xal0_defconfig

A little modification of otherKconf i g files is needed, thar ch/ ar m nmi Kconf i g which is in
charge of selecting the CPU the kernel is compiled for. Wehase to tell him that the ARM922T is part
of our machine :

[...]
# ARMD22T
config CPU_ARMD22T
bool "Support ARMD22T processor"” if ARCH | NTEGRATOR
depends on ARCH CAMELOT || ARCH LH7A40X || ARCH_ I NTEGRATOR || MACH_CWB22TXA10
default y if ARCH CAMELOT || ARCH LH7A40X || MACH _CMD22TXA10
sel ect CPU 32v4
sel ect CPU_ABRT_EVAT
sel ect CPU_CACHE_VAWr
sel ect CPU_CACHE VI VT
sel ect CPU_COPY_V4VB
sel ect CPU_TLB_V4VBI
hel p
The ARMD22T is a version of the ARMB20T, but with smaller
instruction and data caches. It is used in Altera's
Excal i bur XA device famly.

Say Y if you want support for the ARMD22T processor.
O herwi se, say N

[...]

Once the configuration facilities are in place, we now tedl Kernel that it will have to compile some
stuffin themach- cnmB22t xal0 folder. This is done by modify thar ch/ ar m Makef i | e, and adding
the following line :

[...]

machi ne- $( CONFI G_ARCH_CANMELQT) ;= epxalOdb
machi ne- $( CONFI G_MACH_CMB22TXA10) := cnB22t xall
[...]
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As you could have notice from threach- t ypes file, the name of the variable is ngACH_CVB22T-
XA10, but CONFI G_ is appended by the configuration tool, and this variableaiosteither a 'n’ or an
'y’ (for no or yes boolean value). If it is selected (yes valutae name of the folder of our machine is
appended to the machine-y variable, which contains theefsltb be visited during compilatiomich-
is automatically appendediyake will enter in our folder, but we must tell him what it must dbgh we
create thar ch/ ar m mach- cnmB22t xal0/ Makef i | e with the content :

#
# Makefile for the |inux kernel
#

# Object file lists.

obj -y = arch.oirg.o mmo tine.o
obj -m =
obj -n =
obj - =

This Makef i | e is quite static since we have no configuration available it time. Object files
listed here are inherited from the EPXA10db machine suppothe same folder we have to put an extra
Makefi | e, the Makefi | e. boot which only contains the physical address of the text segrttbist
gives the value oZRELADDR, which is the physical address BEXTADDR) :

zrel addr-y : = 0x00008000

We now have the base configuration and compilation infrasire of the kernel for our new machine.
We have now to work on the main part of the job, implement thgpsut of the platform.

The implementation of our support begins with the creatibthe structure that describes the ma-
chine. This structure will be placed in the fide ch. ¢ (this name can be freely chosen) in thech-
[ arm mach-cnB22t xal0. Macro helper are defined to simplify the work. The definitioaks like
this :

extern void cnmb22t xalO_map_i o(void);
extern void cnmB22txalO_init_irq(void);
extern struct sys_tinmer cnP22txall_tiner;

MACHI NE_START( CMB22TXA10, "ARM I nt egrator CVB22T- XA10")
/* Maintainer: N colas Fournel =/

. phys_ram = 0x00000000,
.phys_io = 0x0x0B000000,
.io_pg_offst = ((0x0BO0O0000) >> 18) & Oxfffc,
. boot _parans = 0x00000100,
.map_i o = cnmB22t xalO_nmap_i o,
Linit_irq = cnb22t xallO_init_irq,
Ctimer = &nP22t xalO _ti ner,
MACHI NE_END

Arguments of the structure listed here are, physical addoésnain memory.(phys_r am, physi-
cal address of /0O bank phys_i 0), I/O page offset, which allows to give virtual memoryi (0_pg-
_of f st), boot parameters addresspot _par ans), the /O memory mapping function fap_i o),
the IRQ initialization function (i ni t _i r q) and the timer structure ¢ i ner). We can find additional
fields, but they are not used here.

3.2.2 Deflation phase

The first step when the kernel gets the control is a deflati@s@hlin this phase, a piece of code extracts
the kernel from the binary file copied in main memory.
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The source code of this part sits in the foléerch/ ar m boot / conpr essed/ .

The entry point of the kernel is locatedliread. S. Here are made pre-extraction configurations. For
the sake of performance, instruction and data caches abéegin@ut on ARM v4 CPU, the only mean to
activate data cache is to use MMU. Indeed, the control bitshwvtells if a memory address is cache-able
and buffer-able or not are placed in the page table entribs. uBe of the MMU is then mandatory. The
memory mapping used in this stage is the simplest one, whitthsay identity mapping : physical adresses
and virtual addresses are equal.

Once the configuration is made, it launches a C functiond¢aleconpr ess_kernel () inm s-

c. c. In this function the well-known printinggnconpr essi ng kernel ... done. are made
on the selected console device, in our case this is the penialNo initialization of the serial port is made
at this early point, so this initialization is a task of theobtoader. We implemented it in U-Boot.

Finally the caches are disabled and the control is passéw toeixt stage, end dfead. S.

In these parts, only two things should be implemented innegé the new platform. The first is
some debug macros intdebug_rmacr o. Sfileini ncl ude/ asm ar m ar ch- cn®22t xal0. These
macros are used to print messages for debug purposes. Saogdo implement is a function imple-
mented ini ncl ude/ asm ar nf ar ch- cn®22t xal0/ unconpr ess. h. This function,put str ()
is called to print messages on the console, it is machineraigme.

Except these two functions, nothing else should have to k#fiad, but in our case the situation is a bit
different. The main trouble when activating the MMU is toegatare not to map the register bank as cache-
able/buffer-able memory region. We should only set theseattieristics on the RAM region. By default,
the ARM-Linux kernel uses the write buffer on a regiordafL 0000000 bytes starting at the start address
of main memory (in fact first address of the kernel file aligioedthe 1MB page below). Unfortunately
the stripe control register bank is mappe®adB000000 by default on the CM922T-XA10, although it
is mapped aOx FFFC0000 on the EPXA10db. As the UART transmit register is in the regidank of
the stripe, it is buffered and only written once in the regjisproducing a message with only half of the
characters.

The only way to solve this trouble is to reduce the main memegjon. This modification has no effect
on the following stages of the kernel boot, because the MMiaathes are stopped just before jumping
to the newly uncompressed kernel.

3.2.3 Linux kernel boot

In this second stage of boot, the kernel will really inizalithe hardware and the execution environment.

Before doing anything, the kernel takes care to check ifitirming on the CPU it was compiled for.
This verification has for main interest to initialize the teasinctions responsible of initializing the caches
and the MMU. To do so, it embeds two structures callpd oc. i nf o and. ar ch. i nf o. The structure
.arch.infoisin fact the structure defined in tlae ch. c file. Structure proc. i nf o is very similar
structure, with information and specific functions relatedhe CPU. The kernel gets the processor ID
(cpuid) from the configuration coprocessor and compares thé data contained in thepr oc. i nf o
structure. It uses the machine ID given to him by the bootdéoahd checks in thear ch. i nf o if it is
the same ID. All these steps works fine by default, once we take to create a machine with the right
information. Processor ARM 922T was already supported, a2t xal10 is the hame of our new
machine.

The following step is the MMU configuration. This configumatiis very critical since it is the switching
from physical to virtual address modes. What makes it mdfiedlit than in the first stage is that, this time
the mapping will not be the identity one. Linux has a speci§iage of the virtual address space.

Before giving the details of this mapping, we must underreefact that this mapping is made in two
distinct phases. In the first one, the kernel initializesfihge table memory region and direct map 4MB
where the kernel is laying. The second phase finishes bgilaiminimal page table mapping. In Linux,
the address space available for applications starts fraineaddx 00000000 but does not contains the
whole 4GB. Figurel3 gives a global view of the usage of this virtual memory mapgpin

As shown on the figure, the last 1GB are reserved for kernelAttbe beginning of this space, physical
memory is directly mappedkér nel di rect mapped regi on), which means that we only have to
add an offset to the physical address to get the virtual addréhe offset here 8xC0000000 named
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/cl
OXFFFF8000 copy_user_page / clear_user_page

Reserved
OxFFFF1000

CPU vector
OxFFFF0000

DMA memory mapping region
0xFFC00000 'y mapping reg

Reserved (DMA expansion)
0xFF000000

Free for platform use
VMALLOC_END

vmalloc() / ioremap() space
VMALLOC_START 0 p() sp

high_memory

Kernel direct mapped region
PAGE_OFFSET

Kernel mode space
TASK_SIZE

User space
0x00001000

CPU vect / Null pointer t
0x00000000 vector page / Null pointer trap

Figure 13: Linux memory layout

PAGE _OFFSET. The figure also shows that a special region is reserved &ifgpin use Free for

pl at f or m use). In this region, all I/O control registers must be mappe#idep them accessible after
virtual memory activation. To know what correspondencesist implements, the kernel needs a structure
containing the address translations. This structure isedtme /O memory map presented before and is
specific to the platform you are porting. The structure ardftinction related to the I/O memory map are
placed in thetm c file in ourmach- cnP22t xal10 folder. In our case the memory map is quite simple.
Since all control registers of stripe’s peripherals aregaged in a bank mapped @k0B000000, we
only need to add an entry to give it a mapping as in the follgvgtiucture.

static struct map_desc cnP22txall0_io_desc[] __initdata = {

{ | O_ADDRESS( 0x0B000000), 0x0B000000, SZ 16K, MI_DEVICE },
{ 1 O_ADDRESS( 0x10000000), 0x10000000, SZ_8M MI_DEVI CE }
s

This I/O memory description also contains a mapping for thé €dntrol register bank mapped in
physical memory adx10000000.

| O_ADDRESS is a macro defined to give an automatic translation from lay$o virtual address for
peripherals in device drivers. Default one is the following

#define | O ADDRESS(x) (((x) >> 4) + 0xF0000000)

Following initializations are timer and IRQ ones. As we sawvitie machine structure, there are struc-
ture/function for this two initializations. As far as IRQeaconcerned, we give to the kernel a func-
tion that is responsible of the initialization of the harderénterrupt controller. This function is named
cmB22t xalO_init _irqg() and is defined in thér q. c file in mach- cnB22t xal0 folder. In this
function a structurset ruct irqchi pis registered to give to the kernel the functions to use foskimey
and unmasking an IRQ. On top of that, we must help the kerrfgldavhich IRQ is raised. This function is
made in an assembler macro placed indilg r y- macr 0. Sin ar ch- cn®22t xal0. This macro only
reads an ITC register giving the highest priority of IRQ egisbut priorities are initialized to the IRQ num-
ber. The return value is then the IRQ number. IRQ numbersaiions are given by the filer gs. h in
i ncl ude/ asm ar m’ ar ch- cnm®22t xal0. For the timer, the structure registered in the machinestru
ture contains the timer intialization function pointer.this function, all necessary registers are set to the
right value, and the timer IRQ is activated. Timer initialion is made thanks to a structure. This structure
has an init function pointer field. This one is implementedhat i ne. c file in mach- cnm®22t xal0.

It sets timer control registers to desired values and stlaetsimer. Finally it activates the timer IRQ, for
preemption purpose.

At this step, we have the following files mach- cnm®22t xa10 :

arch/ arm mach-cnB22t xal0/ arch. c
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arch/ arm mach-cnd22t xall/irq.c

ar ch/ ar ml mach- cn®22t xal0/ Kconfi g

arch/ arm mach- cnB22t xal0/ Makefil e
arch/ armi mach-cnD22t xal0/ Makefi |l e. boot
arch/ arm mach-cnD22t xal0/ nm ¢

arch/ arm mach-cnB22t xalO/tine. c

Inthear ch- cnB22t xal0 folder we talked about these files :

ncl ude/ asm arm ar ch- cn®22t xal0/ debug- macro. S
ncl ude/ asm arm ar ch- cnB®22t xal0/ entry-macro. S
ncl ude/ asm arm ar ch- cnB22t xal0/irgs. h

ncl ude/ asm ar m ar ch- cnP22t xal0/ unconpress. h

We now need to add few files in this last folder. First we putigre definitions in the files :

ncl ude/ asm arnif arch-cnP22t xal0/cm h

ncl ude/ asm arm ar ch- cn®22t xal0/ excal i bur. h
ncl ude/ asm ar nf arch- cnmB22t xal0/ har dwar e. h
ncl ude/ asm arm ar ch- cnm®22t xalO/int _ctrl 00. h
ncl ude/ asm arm ar ch- cnP22t xal0/ pl atform h
ncl ude/ asm arnf arch-cnmP22t xal0/ti mer 00. h

ncl ude/ asm ar nf arch- cnmP22t xal0/ uart 00. h

Finally, we have to place mandatory files. These files are ewéar kernel compilation, but do not
contain machine specific information except in very spemaaks :

ncl ude/ asm ar nf arch- cnmP22t xal0/ dna. h

ncl ude/ asm arnif arch-cnP22t xal0/i 0. h

ncl ude/ asm ar m ar ch- cnP22t xal0/ menory. h
ncl ude/ asm ar m ar ch- cn®22t xal0/ param h
ncl ude/ asm arm ar ch- cnB22t xal0/ system h
ncl ude/ asm arm ar ch-cn®22t xal0/ti nmex. h
ncl ude/ asm ar nf arch-cnmP22t xal0/ vnal | oc. h

The new platform/machine is now ready to be configured andpdech Our kernel would boot, but
we could not do anything with it because we only give the malisupport here. No drivers are supported,
then no messages will be output for exemple. So the last job Wgork on device drivers. We already
put minimal driver support in the kernel, timer and intertrapntroller. Remaining drivers are serial port
driver for console input/output for example. Fortunatélgge peripherals are stripe’s one. The EPXA10db
implements all these drivers. To allow them to compile withh nbew machine, we need to modify con-
figuration files, because we cannot select them, they areshidd/e will take the example of serial port,
namedUARTOO in the Altera port of EPXA10db. In the fildri ver s/ seri al / Kconf i g we modify
UARTOO entry as follows :

confi g SERI AL_UART00

bool "Excalibur serial port (uart00) support”

depends on ARM && (ARCH CAMELOT || MACH _CWVR22TXA10)

sel ect SERI AL_CORE

hel p
Say Y here if you want to use the hard | ogic uart on Excalibur. This
driver also supports soft logic inplenentations of this uart core.

With this modification, the driver is now selectable durirgnfiguration phase, but we have to modify
the driver itself to get it to compile. These modifications &ased on the low level hardware defini-
tion. Once these modifications accomplished the driver desjand works. Another good exemple of
driver “port” is the Flash. In fact on the CM922T-XA10, thedtamemory is partitionned thanks to ARM
Firmware Suite (AFS). To use the MTD (Memory Technology @eYyion our Flash, we must make the
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AFS work on our flash. This is done by putting initializatioctians. We place in thar ch. c file some
functions which are responsible of placing the flash in aestétere it can be read and written. Point-
ers ofthese functions are placed in structures, where wegiae informations about addresses and type
(ar nf | ash)

[...]
| *
* Flash handl i ng.

*/

static int intcmflash_init(void)

{
u32 val ;
val = readl (I NTCM_VA REG BASE + | NTCM CTRL) ;
val |= CM CTRL_EBI Wp;
writel (val, | NTCM VA REG BASE + | NTCM CTRL) ;
return O;

}

static void intcmflash_exit(void)

{
u32 val ;
val = readl (1 NTCM VA REG BASE + | NTCM CTRL) ;
val & ~CM CTRL_EBI _WP;
writel (val, | NTCM VA REG BASE + | NTCM CTRL) ;

}

static struct flash_platformdata intcmflash_data = {
. map_nane = "cfi_probe",
.width =2,
.init = intcmflash_init,

.exit intcmflash_exit,

}s

static struct resource intcmflash_resource = {

.start = | NTCM_PA_FLASH BASE,
.end = | NTCM_PA_FLASH BASE + | NTCM FLASH SI ZE - 1,
.flags = | ORESOURCE_MEM
b
static struct platformadevice intcmflash_device = {
. nane = "arnfl ash",
.id =0,
. dev ={
.platformdata= & ntcm fl ash_dat a,
8
.num_resources= 1,
.resource = & ntcm flash_resource,
s
static struct platformdevice *intcmdevs[] _ initdata = {
& ntcm fl ash_devi ce,
b

Finally, we register the flash thankspb at f or m add_devi ces() in a function, which aim will
be the machine initialization. This function is hence ratgried in the machine structure to be called in an
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early kernel boot stage.

[...]
static void __init cnP22txall_init(void)

{

}

[...]
MACHI NE_START( CVB22TXA10, "ARM | ntegrator CWVB22T- XA10")

/* Maintainer: Nicolas Fournel =*/
. phys_ram = 0x00000000,

pl at f or m add_devi ces(i ntcm devs, ARRAY_SI ZE(i ntcm devs));

[...]
.init_nmachine = cnP22txall_init,
MACHI NE_END

Once the kernel is compiled with MTD and AFS support, the fiastecognized and ready to receive
your root file system for example.

To conclude, in this first port, only these few drivers areegmaited, but in future works remaining
peripherals will be ported. The more difficult part in thetelrport is the size of the kernel sources. Since
it is really huge, due to the large number of platform supgahrfinding a specific piece of code could
become a little difficult.

3.3 porting uClinux

uClinux is based on the Linux kernel, in fact it is a patch fanux kernel. Hence to port the uClinux

kernel, we reused our port of the Linux kernel. The main ctteréstic of uClinux is that it does not use
the MMU as we described earlier. MMU configuration is an eatfge responsibility, and is a part of the
processor port. As ARM 922T support was in the Linux tree,aswnodified to run uClinux by the patch.

Needless to say that this is a good news for use. No work amedeen the CPU to make the uClinux
kernel work on our new platform. In this implementation wedthe choice to use or not the MMU. If we

choose to use it, it is enabled in a non-paged mode, identfyping presented before.

We present some highest level MMU configurations which aed/tb memory map descriptions. This
description are useless since no more translations areedewee are working in flat memory (physical
memory). We also presents the macro giving the translatigrhgsical addresses in virtual addresses
I O_ADDRESS. This macro has a different definition in uClinux which is :

#define | O ADDRESS(x) (X).
Other minor modifications are made in the port to allow the efsghysical memory, but nothing really
fundamental.

4 Conclusion

A this point we brought the Linux and uClinux kernels to work @ur development platform. This work
could be useful for people owning the same platform. Howévisrwork is only a personal work at this
point. The final step will be to propose this new platform te thain stream source tree of ARM Linux
kernel. The two phases of this proposition are the follonangs. The first is to register a MachinelD,
the unique number identifying this kind of platform. Our raeID is 934. This step should have been
made before starting the implementation. But to get rid &f sitep we used a temporary machinelD. To
make this choice we took into account the growth of suppgutatiorm population, and took a sufficiently
big number. The second phase will be to make the source tited paailable to ARM Linux kernel
administrators. Once they give their agreement, our wotkofficially be part of the ARM Linux kernel
project.
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A Core Toolchain compilation Script

Here is a script for core toolchain compilation :

CXTOOLS=/ usr/ | ocal / cross_t ool chai n/ arm core/ gcc- 3. 3. 6-none/ arm 9t dni - | i nux-gnu
BUI LD _DI R=/ hore/ nf our nel / t np/ gcc_crossbui |l d
TARGET=ar m 9t dmi - | i nux- gnu

GCC_VER=3.3.6
Bl NUTI LS_VER=2. 16. 1

#binutils

cd $BU LD DI R/src

if test ! -d binutils-$BINUTILS VER; then
tar jxvf binutils-$BINUTILS VER tar.bz2

fi

nkdir -p $BU LD DI R/ bui | d/ bi nutil s-$BI NUTI LS _VER

cd $BUI LD DI R/ bui | d/ bi nutils-$BI NUTI LS VER

$BUI LD DI R/ src/ binutils-$BINUTILS VER configure \
--prefix=$CXTOOLS - -t ar get =$TARGET

make ; make install

export PATH=$CXTOOLS/ bi n: $PATH

cd $BU LD DI R/src
if test ! -d gcc-$GCC VER ; then
tar jxvf gcc-$GCC _VER tar.bz2
fi
nkdir -p $BU LD DI R/ bui | d/ gcc- $GCC_VER
cd $BUI LD DI R/ bui | d/ gcc- $GCC_VER

$BUI LD DI R/ src/ gcc- $GCC_VER/ confi gure --prefix=$CXTOOLS \
--srcdir=$BU LD DI R/ src/gcc-$GCCC_VER \
--target =$TARGET
--enabl e- | anguages=c, c++ --wi th-gnu-as --with-gnu-1d
--di sabl e-shared --disable-nmultilib --disable-threads
--di sable-libgcj --disable-nls --without-newib
--di sabl e-1i bstdcxx-v3 --with-cpu=arndbtdm

— - - -

export ALL_TARGET MODULES=""
export CONFI GURE_TARGET MODULES=""
export | NSTALL TARGET MODULES=""
make -e; nmake -e install
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