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Abstract

In this article we will focus on a famous open question about algorithmic
complexity classes on one dimensional cellular automata, and we will
show that if all problems recognizable in space n (where n is the length of
the input) can be recognized in time n then for every space-constructible
function f all the problems that are recognizable in space f can be
recognized in time f .
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Résumé

Nous nous penchons, dans cet article, sur une question ouverte concer-
nant les classes de complexité algorithmique sur automates cellulaires
uni-dimensionels, et nous montrons que si tous les problèmes reconnaiss-
ables en espace linéaire sont reconnaissables en temps-réel alors pour
toute fonction f constructible en espace, tout problème reconnaissable
en espace f est reconnaissable en temps f .

Mots-clés: Automates cellulaires, reconnaissance de langages, temps-réel, espace linéaire.
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1 Introduction

Cellular automata (CA) are a simple yet powerful and complex massively parallel computing
model. It is known to be Turing-complete, but the parallelism of the computation make
it quite different from usual sequential models (Turing machines, RAM machines etc.) in
terms of algorithmic complexity. Many examples have shown how it can lead to very efficient
computations [4, 5].

For these reasons it is interesting to investigate the properties of cellular automata as
language recognizers, and a lot of work has been done specifically on the lower complexity
classes: real-time (RT), linear time (LINTIME) and linear space (LINSPACE). It is obvious
that

RT ⊆ LINTIME ⊆ LINSPACE

but whether or not these inclusions are strict is still unknown. Significant progress has been
made, for example relating the equality of complexity classes to their closure properties [6] or
working on weaker versions of CA [1, 2, 3].

In this article we will work on the two extremal classes RT and LINSPACE. We will show
how the possible (although unlikely) equality implies the equality of a more general family of
classes, namely that what is recognizable by a one-dimensional cellular automaton in space f
is also recognizable in time f , for any space-constructible function f .

The article is structured as follows: in section 2 we give all necessary definitions and
remind some basic and useful properties of language recognition by cellular automata. In
section 3 we state the main theorem of the article and prove it, and in section 4 we discuss
the main consequences of this theorem.

2 Definitions and Useful Properties

2.1 Cellular Automata

In this article, we will only consider one-dimensional cellular automata working on the classical
neighborhood.

Definition 1 A cellular automaton (CA) is a pair A = (Q, δ) where Q is a finite set called
set of states containing a special state B, and δ : Q3 → Q is the transition function such that
δ(B, B, B) = B (B is a quiescent state).

For a given automaton A, we call configuration of A any function C : Z → Q. From the
local function δ we can define a global function

∆ :

{
QZ → QZ

C 7→ C′ | ∀x ∈ Z, C′(x) = f(C(x − 1), C(x), C(x + 1))

Elements of Z are called cells. Given a configuration C, we’ll say that a cell c is in state q
if C(c) = q.

If at time t ∈ N the CA is in a configuration C, we’ll say that at time (t + 1) it is in the
configuration ∆(C). This enables us to define the evolution of a CA from a configuration.
This evolution is completely determined by the initial configuration C and the automaton.
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Definition 2 (Finite Configuration) A configuration C : Z → Q is said to be finite if
there exists x, y ∈ Z (x ≤ y) such that for all n /∈ Jx, y − 1K, C(n) = B.

The size of the configuration is the minimal value of (y − x) for all (x, y) statisfying the
definition.

It is obvious (because the state B is quiescent) that for every finite configuration C, ∆(C)
is also finite. In this article we will only consider finite initial configurations so at all times
the configuration of the automaton will be finite.

Definition 3 (Signals) A signal in a CA is a special set of states that “moves” in a direction
at a given speed. For example, a signal s moving at speed 1 to the right is a pair of states
{s, s} such that δ(s, s, s) = s and δ(s, s, s) = s (if a cell sees that its left neighbor is in state
s, it becomes of state s at the next time, so in some sense the s state has moved right). In
this example, s is a neutral state.

To have a signal move at speed 1/k (k ∈ Z
+), we will use k + 1 states {s1, . . . , sk, s}, and

the rules
δ(s, si, s) = si+1 i ∈ J1, k − 1K
δ(s, sk, s) = s
δ(sk, s, s) = s1

so that the state si stays on a cell during k steps before moving to the right (again, all cells
that don’t hold the signal are in state s).

Signals are a very useful tool for computations on cellular automata. Given an automaton
A = (Q, δ), adding a signal S = {s1, . . . , sk, s} corresponds to making a new cellular automa-
ton whose states are Q × S. Any finite number of signals can be added to an automaton
(while still having a finite number of states). Signals can then evolve according to their move
rule (as explained in the definition) but can also interact the ones with the others when they
meet on a cell (disappear, generate new signals etc.), or even change the main evolution of the
automaton on a given cell when it receives a given signals (and that’s what they are useful
for).

Proposition 3 will give a good example of the use of signals.

Definition 4 (Space-Time Diagram) Given a CA A = (Q, δ) and a configuration C, we
can represent by a two-dimensional diagram the complete evolution of the automaton from
C. The initial configuration is drawn horizontally on the bottom line and all the following
configurations are drawn successively (time goes from bottom to top). Such a diagram is
called space-time diagram of A from configuration C.

For obvious reasons, we only represent a finite part of a space-time diagram (finite in both
space and time) however since we’ll only consider finite configurations and computations over
a finite time we will be able to represent all the necessary information.

Figure 1 shows part of a space-time diagram for a cellular automaton with two states. A
specific neighborhood (white,black,white) has been highlighted to illustrate the fact that the
rule of the automaton is completely deterministic (each time we have this neighborhood, the
next state of the central cell is black because we have δ(w, b, w) = b).

The space-time diagram of a CA is a discrete diagram. However, we will sometimes
represent it as a continuous figure. In this case the signals will be represented as line segments,
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initial
configuration

time

Figure 1: An example of a space-time diagram

and they’ll partition the diagram in polygonal parts. This “continuous” representation can
most of the times be seen as a limit of space-time diagrams when the size of the input
increases, and when the size of the cells becomes negligible (and therefore, a continous space-
time diagram is scale-free). Figure 2 illustrates such a process. It represents three space-time
diagrams of a cellular automaton that marks the origin at time 3n/2 when given an input
word of length n with the use of three different signals (two that move at speed 1 from each
end of the word the one towards the other to find the cell n/2 and the last one that moves at
speed 1/2 towards the origin to mark it at time 3n/2). The two first diagrams are discrete
representations of the behavior of the automaton on two words of different lengths, and the
third one is the continous representation of the space-time diagram.

Figures 3 and 4 also represent continous space-time diagrams.

Figure 2: Discrete and continuous space-time diagrams

2.2 Language Recognition

Definition 5 (Word Recognition) We consider a CA A = (Q, δ) and an accepting state
qf ∈ Q such that for all q1, q2 ∈ Q we have δ(q1, qf , q2) = qf (if a cell is in state qf at one
point, it stays in this state forever, such a state is called persistent). Let w = w0w1 . . . wl−1
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be a word on a finite alphabet Σ ⊆ Q. We define the configuration Cw as follows.

Cw : Z → Q{
x
x

7→
7→

wx

B
if 0 ≤ x < l
otherwise

We’ll say that the CA A recognizes the word w with accepting state qf in time tw ∈ N and
space sw ∈ N if, starting from the configuration Cw at time 0, the cell 0 is in state qf at time
tw and no cell other than the ones in J0, sw − 1K was ever in a state other than B.

Definition 6 (Language Recognition) Let A = (Q, δ) be a CA, L ⊆ Σ∗ a language on
the alphabet Σ ⊆ Q and qf ∈ Q a persistent state. Given two functions T : N → N and
S : N → N, we’ll say that the language L is recognized by A in time T and space S with
accepting state qf if for every word w ∈ Σ∗ of length l, the CA A recognizes w with accepting
state qf in time T (l) and space S(l) if and only if w ∈ L.

We will denote as CATIME(T ) the class of languages recognizable in time T and as
CASPACE(S) the class of languages recognizable in space S.

Definition 7 (Real-Time) Let A = (Q, δ) be a CA and L a language on Σ ⊆ Q. We’ll say
that the CA A recognizes L in real-time if it recognizes L in time x 7→ x. The class of all
languages that are recognizable by a CA in real-time will be denoted as RT.

Definition 8 (Linear Space) Let A = (Q, δ) be a CA and L a language on Σ ⊆ Q. We’ll
say that the CA A recognizes L in linear space if it recognizes L in space x 7→ kx for some
k ∈ N. The class of all languages that are recognizable by a CA in linear space will be denoted
as LINSPACE.

2.3 Functions

Definition 9 (Time-Constructible Function) Given a function f : N → N, we’ll say that
f is time-constructible if there exists a CA A = (Q, δ) and two states q1, qf ∈ Q such that
for every n ∈ N, starting from the initial configuration Cqn

1
(the unary encoding of n into a

finite configuration of A) at time 0, the cell 0 is in state qf for the first time at time f(n).

The above definition simply means that, given an integer n in unary form, the automaton
can “count” f(n) steps and mark the origin when it’s done.

Definition 10 (Space-Constructible Function) Given a function f : N → N, we’ll say
that f is space-constructible if there exists a CA A = (Q, δ) and two states q1, qf ∈ Q such
that for every n ∈ N, starting from the initial configuration Cqn

1
, after some time all cells

ranging from 0 to f(n) − 1 switch to the state qf , no cell was in this state before and during
the whole computation none of the cells c such that c < 0 or c ≥ f(n) was ever in a state
other than B.

This definition means that, on input n (encoded in unary), the automaton will compute
f(n) in unary without using more cells in the process than the ones needed to write the output
(the ones between 0 and f(n) − 1). The synchronization is not a problem because we can
apply the firing squad technique at the end of the computation (proposition 1).
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Remark. It is obvious, according to this definition, that any function f that is space-
constructible is such that f(x) ≥ x for all x.

Remark. A function f is space-constructible according to the above definition if and only
if there is a one semi-infinite tape, one head Turing machine that, on input n in unary, com-
putes f(n) in unary without ever moving its head past cell f(n). This result is a consequence
of proposition 5 (and proposition 1 for the synchronization part).

2.4 Basic Properties

Proposition 1 (Firing Squad) It is possible to synchronize a segment of k adjacent cells
(have them enter a specific state for the first time at the same time). It can be done in time
ak + b for any a ≥ 2 and b ≥ 0, starting from the time when the leftmost cell emits the
“synchronization” signal. The rightmost cell need only be created at time (a − 1)k.

The firing squad problem has been well studied, and many ingenious solutions have been
found. In this article we will need a solution that can be delayed so that the synchroniza-
tion takes exactly ak steps for some integer a ≥ 2 and such that the rightmost cell can be
constructed as late as possible (at time (a − 1)k). Such a solution is a particular case of the
general “delayed” solutions explained in [7].

Proposition 2 (Grouping and Scaling) Similarly to the acceleration theorems in the Tur-
ing case it is possible on cellular automata to “compress” the information of k cells into a sin-
gle one (this requires the use of |Q|k states if the original automaton before compression had
states Q). A finite configuration of length l is therefore compressed into a finite configuration
of length dl/ke, and the computation can be accelerated by a multiplicative factor k (k steps of
the original computation can be performed in only one step of the compressed computation).

Using this grouping technique, if a function f is time-constructible, it is possible to create
an automaton that, on input n compressed by a factor k, will mark the origin at time df(n)/ke.

Proposition 3 Let f : N → N be a time-constructible function. If for all x ∈ N, we have
f(x) ≥ 3x then the function x 7→ f(x) − x is also time-constructible.

Proof. We use the construction illustrated in figure 3 where all dashed signals move at speed
1/2.

The first step is to mark the cell n/31, this can be done at time 2n/3 by sending a signal
at speed 1/2 to the right from the origin and a signal at speed 1 to the left from the rightmost
letter of the word. Then, with a firing squad technique between the origin and the cell n/3 (see
proposition 1) and a compression of the information it is possible to start the computation of
f(n) at scale 1/3 from time n. This will mark the time n + f(n)/3 on the origin, and from
this time, a signal s1 appears and moves to the right at speed 1

Meanwhile, we mark the time 2n on the origin, and from there a signal s2 starts going
right at speed 1/2. This signal meets the signal s1 at time 2f(n)/3 on cell f(n)/3 − n (the
signals meet only if s2 was generated before s1, which means that 2n ≤ n + f(n)/3, i.e.
3n ≤ f(n)), and from here a new signal starts moving towards the origin at speed 1, this last

1Obviously this point is in fact located on a cell of integer coordinates (bn/3c) but has also the information n
mod 3 so that the automaton has enough information to handle the point as if it were at rational coordinates.
The same applies for all the other points that will be said to be at non-integer coordinates.



6 Victor Poupet

signal will arrive at the origin at time 2f(n)/3 + f(n)/3 − n = f(n) − n.
¤

Proposition 4 Let f : N → N be a time-constructible function and k ≥ 2 an integer. If for
all x ∈ N we have f(x) ≥ 2kx then the function x 7→ f(x)/k is also time-constructible.

Proof. We use the construction illustrated in figure 4 to construct F : x 7→ f(x)/k + x
and then use proposition 3 to construct x 7→ F (x) − x = f(x)/k.

This construction is simpler than the previous one, all we have to do is mark the cell
f(n)/k at time (k − 1)f(n)/k with the use of a signal moving to the right at speed 1/k and
one going to the left at speed 1, and then with a firing squad technique start the computation
of f(n) at scale 1/k to mark the origin at time f(n)/k + n.

The combination of both constructions requires f(x) ≥ 2kx.
¤

n

n

f(x)
3

f(n)
3 − n

f(n)
3 − n

n

firing squad

computation of f(n)
at scale 1/3

n

n + f(n)
3

f(n) − n

Figure 3: Time-constructibility of x 7→ f(x) − x

Proposition 5 (Turing-Cellular Comparison) Let P be a problem on Σ∗. If P is solvable
in time T : N → N and space S : N → N by a Turing machine using one tape and one head,
then it is recognizable in time T and space S by a cellular automaton.

Moreover, if P is recognized by a cellular automaton in time T and space S then it is
recognized by a one-tape Turing Machine in time T × S and space S.

Proof. The first part of the proposition is proved by simulating a Turing machine of states
Q and tape alphabet Γ with a cellular automaton of states Q× {Γ ∪ {−}}.
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n

f(n)
k

n

signal of speed 1
k−1

firing squad

computation of f(n)
at scale 1/k

n

n + f(n)
k

Figure 4: Time-constructibility of x 7→ f(x)/k + x

A configuration of the Turing Machine

q
↓

. . . B a1 a2 . . . ak . . . an B . . .

will be represented on the automaton as

− − − q − −
. . . B a1 a2 . . . ak . . . an B . . .

and from there it is easy to make it so that the automaton doesn’t change its states except
in the immediate vincinity of the location of the head of the Turing machine, where it can
apply the rule of the Turing machine.

It is immediate that this simulation doesn’t require more space than the computation on
the Turing machine, and that it takes exactly the same time.

The second part of the proposition is proved by a converse simulation. To simulate a
cellular automaton of states Q by a Turing machine, we will use Q as tape alphabet and
have the head of the Turing machine move across the whole configuration (we assume that
all configurations are finite) and apply the transition rule of the automaton on each cell, then
move across the configuration the other way and apply the rule of the automaton, etc. This
simulation doesn’t use more space than the computation on the CA, but the time needed to
simulate one step of the automaton is the size of the current configuration, therefore if all
configurations in the computation are of size bounded by S, the total time to simulate the
computation is at most T × S.

More details on these simulations can be found in [9].
¤

Proposition 6 For every problem P and every integer k, if P is solvable in space x 7→ kx
then it is solvable in space x 7→ x. In other words LINSPACE = CASPACE(x 7→ x).

Proof. This proposition can be seen as a consequence of the previous proposition since it is
well known that we have this result in the Turing case. It can also be proved in purely cellular
terms the same way it is proved in the Turing case. Assuming we can solve a problem P in
space x 7→ kx for a given k ∈ N with a CA of states Q, we’ll create a new CA of states Qk and
“fold” the configurations of length kn (where n is the size of the input) into configurations of
length n as shown in figure 5.
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0 n 2n kn. . .
. . .

0 n

2n

(k − 1)nkn

Figure 5: Folding a configuration of length kn into a configuration of length n

It is then easy to see how the initial configuration of the automaton translates into the
folded version (the lower layer receives the letters of the input, all other layers have blank
states) and check that the automaton can compute the other configurations by applying the
rule of the initial one (all dependencies remain local).

¤

Proposition 7 For every problem P solvable in time T and space S on a cellular automaton,
there is a CA that solves P in time T ′ ≤ T , S′ ≤ S and such that all cells c < 0 remain in
the blank state B during all the computation (for every word w).

Proof. This proposition can also be seen as a consequence of proposition 5 since it is known
that what can be done on a bi-infinite tape Turing machine can also be done on a semi-infinite
tape Turing machine. The method is the same in cellular terms, we create an automaton of
states Q2 and consider that all configurations of the initial automaton are folded in two on
the origin so that all states are on positive cells. The rule of the automaton can be applied
on such a folded configuration, so there is no loss in time and all negative cells remain blank
at all times.

¤

3 Main Theorem

In this section, we will state and prove the main theorem of the article. Other consequences
of this theorem will be discussed in the next section.

Theorem 1 (Main Theorem) Given a space-constructible function f , if RT = LINSPACE
then all problems that are solvable in space f are solvable in time f .

To prove this, we will consider a space-constructible function f , a problem P over the
alphabet Σ that can be recognized in space f and we will assume that RT = LINSPACE. We
will then prove that P can be recognized in time f .

3.1 The problem P̃

Lemma 1 Under the hypothesis that RT = LINSPACE, every function f that is space-
constructible is also time-constructible.

Proof. Given a space-constructible function f , the problem

Pf = {1x#f(x)−x | x ∈ N}
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is obviously recongnizable in space f(x) (the size of the input): the machine reads x, computes
f(x) and compares it to the input word. If more space is needed then the word is rejected.

Because of the assumption that RT = LINSPACE Pf is solvable in real-time. From here
it is easy to compute f(x) in real-time: on input 1x, the automaton simulates the recognition
of Pf in real-time, assuming that all symbols after the rightmost “1” of the input are #. This
computation is continued until the automaton accepts a word. When it does, it means that
it has recognized the word 1x#f(x)−x and it does so at time f(x).

¤

Lemma 2 The problem P̃ = {w#f(|w|)−|w| | w ∈ P}, where # is a new symbol not in Σ, is
recognizable in real-time.

Proof. First we show that P̃ is in LINSPACE. We will use two layers. On the first
one we check that w is in P . This doesn’t require more than f(|w|) cells, so it can be done
in LINSPACE. On the second layer, we compute f(|w|) (which can be done in space f(|w|)
since the function f is space-constructible) and check that the number of # symbols after w
matches the definition of P̃ . If at some point in the computation of either layer we need to
use more cells than the ones of the input, it means that the input doesn’t have enough # and
so the word is rejected.

To conclude, since we have assumed that LINSPACE = RT, P̃ is recognizable in real-time.
¤

From now on, we will assume that we have a CA A that recognizes P̃ in real-time, and we
will explain how to construct a CA A′ that, on input w of length n, simulates the behavior
of A on input w#f(n)−n without any loss of time so that A′ recognizes P in time f .

3.2 The Space-Time Diagram of A

Let’s have a closer look at a typical space-time diagram of A on input w#f(n)−n (figure 6).

1

2

3 4

w # #B

Figure 6: The Space-Time Diagram of A on input w#f(n)−n
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3.2.1 Where There Is Little to Say.

The initial configuration (the bottom line) consists of the word w (of length n), followed by
just enough # cells so that the total length is exactly f(n). All other cells in this configuration
(infinitely many to the right and to the left) are blank cells (in state B).

The only part that we’ll be interested in is the area of the diagram that can affect the
answer of the automaton located on the origin at time f(n) (the dark cell on top of the figure).
All cells outside of the triangle (area 1) have no importance. Moreover, we can assume that
the cells on the left of the origin remain blank at all times (proposition 7).

The area of the diagram that is vertically over the word w (area 3) is very easy to simulate,
provided we are able to compute correctly (by means we will discuss later) the vertical line
that is on the right side of the dashed vertical line. Indeed, if we know at every step what is
on the left of the segment (only blank cells) and on the right of it, we can apply the rule of
A and compute the states in this area.

3.2.2 Problems Arise in the Right Triangle.

We have seen that it is not really necessary to simulate exactly all of the area in the triangle
right of the previous zone (area 4) since only the vertical left border will be used for the rest
of the computation.

To compute the states in this area, we’ll need both the left and right borders. The left one
should not be a problem since we have seen earlier how to compute it simultaneously with
this one. The right one is a bit harder, and has two parts: the diagonal segment (stair-like in
the figure) and the single point where the segment ends (darker).

The area number 2 (including the diagonal segment) is the set of all cells in the space-
time diagram that are only affected by the # cells of the initial configuration (therefore it’s a
triangle on top of these cells). Because the rule of the automaton is homogeneous, this area
is made of successive horizontal lines of identical states. The state on the bottom line is #,
the state on the next line is q1 = δ(#, #, #), the state of the next is q2 = δ(q1, q1, q1) etc.
Since the number of possible states is finite and that one state depends only on the previous
one, this sequence is ultimately periodic (and only depends on the rule of the automaton, not
on the input configuration). For this reason, the diagonal line that we’ve mentionned earlier
is a well-known (assuming that the rule of A is known a priori) ultimately periodic sequence
of states that will be easily created by A′.

The only important information that cannot be obtained that way is the signal that comes
from the first blank cell and that indicates the end of the red diagonal segment (the dark
point). This point holds information about f(n) that could be important for the computation
of A. Like before the state on this cell is easy to know (the possible states form another pre-
determined ultimately periodic sequence) but the exact space-time location of the point is
harder to know.

Let’s define g(n) = f(n)−n. The dark point (that we’ll name β is at space-time coordinates
(n + g(n)/2, g(n)/2). It is easy to prove, by properties of the maximal traveling speed of
information, that this point cannot be constructed when starting from the initial configuration
w unless g is bounded (which is not a very interesting case). We will now see how we can use
a compression on the space-time diagram of A to solve this problem.
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3.3 Compression of Area 4

3.3.1 Definition of the Compression.

For this section we’ll change the coordinates on the space-time diagram of A so that the origin
is now the leftmost # in the initial configuration (as shown in figure 7). The point β cannot
be constructed by A′, but since g is time-constructible if f(n) ≥ 3n (lemma 1 and proposition
3) the point γ = (g(n)/3, 2g(n)/3) can be constructed if g(n) ≥ 6n (proposition 4, see figure
7 for the construction) meaning that f(n) ≥ 7n. Let’s define the transformation

σ :

{
N

2 → N
2

(x, y) 7→ (2x
3 , y + x

3 )

w

β = ( g(n)
2 , g(n)

2 )

γ = ( g(n)
3 , 2g(n)

3 )

(0, g(n))

new origin

(0, g(n)
3 )

signal of speed 1

signal of speed 1
2

w

β = ( g(n)
2 , g(n)

2 )

(0, g(n))

new origin

Figure 7: The compression of the triangle

The vertical axis is invariant by σ, σ(β) = γ and the image of the diagonal segment (from
figure 6) is a segment of slope 2. Figure 8 illustrates where all the information in the cells of
the space-time diagram of A goes after compression by σ. We see that all cells receive one or
two states from the diagram of A arranged in a very regular pattern (cells in columns of even
index receive 1 state, cells in columns of odd index receive 2 states). In the figure, we’ve only
represented what happens to the triangle that was area 4 in figure 6.

Figure 8: Effect of the compression on the information of each cell
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Now we will see how the automaton can compute the compressed version of area 4, and
therefore compute correctly all states on the vertical line (right side of the dashed line in
figure 6) that are needed for the computation of area 3 (that leads to the solution of P ).

3.3.2 How it works.

We will now assume (until further notice) that the function f is such that f(n) ≥ 7n for
all n. With this hypothesis, the point γ can be marked on the space-time diagram by the
automaton A′.

Moreover the ultimately periodic sequence of states that were on the diagonal segment of
figure 6 can be generated by A′ and placed on the correct cells (the ones on the segment of
slope 2, see figure 8). We have also assumed that A′ knows the states that are next to the
left side of the triangle, computed over the word w simultaneously with the triangle.

The right side of figure 8 illustrates how A′ can compute all states inside the triangle. A
point in the diagram of A can be in one of three different locations in the compressed triangle:
alone in a cell (column of index 3k), or with another state in which case it can be on the “top
left” corner (column of index 3k + 1) or the “bottom right” corner (column of index 3k + 2)
as illustrated in the left part of figure 8.

The first illustration shows how a cell that is “alone” can compute its new state since what
it needs to see (drawn on the figure) is contained in its neighbors. The second illustration
covers the case of a “lower right” point and is slightly more complicated because one of the
states it needs (the leftmost one) is not really on its neighbor, but it was during the previous
step. This means that the cells (at least the ones that have double information after the
compression) need to memorize their old states when they change (they only need to know
one generation in the past so they only need a finite memory). And finally the third illustration
shows what information is needed to compute the new state on an “upper left” point, and we
see that it needs to know the state of the “lower right” point that’s in the same square, but
that’s not a problem since we’ve seen that it can be computed with what it sees (provided
the square that’s under it has memorized its older states).

We have therefore shown that the computation of the triangle after compression can be
made by A′. The compression doesn’t modify the left side so it doesn’t affect the rest of the
computation. Thanks to the compression, we can now mark the point γ (that corresponds to
the point β before compression) and so we can have all the necessary information to “close”
the triangle and compute correctly the upper side, exactly like it’s done by A.

3.4 When f is Too Small

In the previous subsection, the construction of the point γ was essential, and it relied on the
fact that f(n) ≥ 7n. However it is not a problem if f(x) is lower than 7x for some values
of x. Indeed if a problem can be solved in space x 7→ 7x then it can be solved in space
x 7→ x (proposition 6), therefore with our hypothesis that RT = LINSPACE it can be solved
in real-time. So all we have to do is consider an automaton A1 that recognizes P in space f ,
and define the problem

P< = {w ∈ P | the recognition of w by A1 uses less than 7|w| cells}

It is obvious (by definition of space complexity) that for all x such that f(x) ≤ 7x and all
words w of length x, w ∈ P ⇔ w ∈ P<, and P< can be recognized in real-time.
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All we have to do now is use both the automaton A′ that we have defined earlier that will
tell whether a word w is or not in P in time f(|w|) if f(|w|) ≥ 7|w| and the automaton that
recognizes P< in real-time that can answer for all other words.

We have therefore finished the proof of theorem 1 by constructing an automaton (the
product of A′ and the one that recognizes P< for the smaller values of f) that recognizes P
in time f .

4 Consequences in the Turing Case

In this section we will discuss some consequences of theorem 1 concerning Turing models
complexity. For a given function f : N → N, we will denote as DTIME(f) the class of
languages recognizable on a deterministic one-tape Turing machine in time f , and DSPACE(f)
the class of languages recognizable on a deterministic one-tape Turing machine in space f .

Note that, as a consequence of proposition 5, DSPACE(f) = CASPACE(f). In the whole
section, we will only consider deterministic one-tape Turing machines, that we will simply
call Turing machines.

With the straightforward simulation of a Turing machine by a cellular automaton (propo-
sition 5, and [9]), we can easily translate the result of theorem 1 in classical Turing terms.

If RT = LINSPACE then for every space-constructible function f (in the usual Turing
sense since space complexities are the same for CA and Turing machines) every problem P
that is solvable in space f is solvable in time f 2, in other words:

DTIME(f) ⊆ DSPACE(f) ⊆ DTIME(f 2)

Whether there exists or not a function f that contradicts these inclusions is still an open
question. An important consequence of this is that P = PSPACE. Of course, the fact that
RT = LINSPACE implies P = PSPACE is not new since it is an immediate consequence of
the PSPACE-completeness of QSAT, that is known to be in LINSPACE, but the proof we
have here doesn’t require the existence of PSPACE-complete problems.

However, the most interesting consequence of the equality RT = LINSPACE is a very
strong equivalence between the cellular and the Turing computing models obtained with the
use of a theorem by Michael Paterson:

Theorem 2 (Paterson [8]) For every function f : N → N such that ∀x, f(x) ≥ x, we have
DTIME(f2) ⊆ DSPACE(f).

If RT = LINSPACE, then we already know that for every space-constructible function f ,

DSPACE(f) = CASPACE(f) ⊆ CATIME(f) ⊆ DTIME(f 2)

and from the above theorem, we get

CATIME(f) = DTIME(f 2) = DSPACE(f) = CASPACE(f)

We strongly conjecture that these equalities aren’t true in the general case, but again none
of them has been proved false as of today.



14 Victor Poupet

5 Conclusion

In the article we have therefore shown how a result on two specific complexity classes (RT
and LINSPACE) can be extended to a much more general family of classes (all CATIME(f)
and CASPACE(f) for f space-constructible) and to a very strong equivalence between the
computational complexity of one-dimensional cellular automata and one-tape Turing machines
in time and space. Even though this is not sufficient to prove that the two initial classes are
different, it strengthens the conviction that they are, and gives possible new ways to prove it.
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