
HAL Id: hal-02102240
https://hal-lara.archives-ouvertes.fr/hal-02102240v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding a vector orthogonal to roughly half a collection
of vectors

Pierre Charbit, Emmanuel Jeandel, Pascal Koiran, Sylvain Perifel, Stefan
Thomasse

To cite this version:
Pierre Charbit, Emmanuel Jeandel, Pascal Koiran, Sylvain Perifel, Stefan Thomasse. Finding a vector
orthogonal to roughly half a collection of vectors. [Research Report] LIP RR-2006-05, Laboratoire de
l’informatique du parallélisme. 2006, 2+11p. �hal-02102240�

https://hal-lara.archives-ouvertes.fr/hal-02102240v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Finding a Vector Orthogonal to Roughly

Half a Collection of Vectors

Pierre Charbit
Emmanuel Jeandel
Pascal Koiran
Sylvain Perifel
Stephan Thomasse

January 2006

Rapport de recherche No 2006-05

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Finding a Vector Orthogonal to Roughly

Half a Collection of Vectors

Pierre Charbit
Emmanuel Jeandel

Pascal Koiran
Sylvain Perifel

Stephan Thomasse

January 2006

Abstract

Dimitri Grigoriev has shown that for any family of N vectors in the d-
dimensional linear space E = (F2)d, there exists a vector in E which is
orthogonal to at least N/3 and at most 2N/3 vectors of the family. We
show that the range [N/3, 2N/3] can be replaced by the much smaller range
[N/2 − √

N/2, N/2 +
√

N/2] and we give an efficient, deterministic parallel
algorithm which finds a vector achieving this bound. The optimality of the
bound is also investigated.

Keywords: Algebraic complexity, decision trees, parallel algorithms, derandomization.

Résumé

Dimitri Grigoriev a montré que pour toute famille de N vecteurs de l’es-
pace vectoriel E = (F2)d de dimension d sur le corps à deux éléments, il ex-
iste un vecteur de E orthogonal à au moins N/3 et au plus 2N/3 vecteurs
de la famille. Nous montrons que l’intervalle [N/3, 2N/3] peut être réduit à
[N/2 −√

N/2, N/2 +
√

N/2], étudions l’optimalité de cette borne, et donnons
un algorithme parallèle déterministe efficace pour trouver un vecteur dans cet
intervalle.

Mots-clés: Complexité algébrique, arbres de décision, algorithmes parallèles, dérandomization.

1 Introduction

Dimitri Grigoriev [6] has shown that the point location problem1 in arrangements of m algebraic
hypersurfaces of degree D in R

n can be solved by topological decision trees of depth O(n log(mD)).
In topogical decision trees [13, 15] nodes are labelled by arbitrary polynomials, i.e., the cost of their
evaluation is ignored. The key ingredient in his nonconstructive proof is the following combinatorial
lemma. Let F2 be the two-element field. For any family of N vectors in the d-dimensional linear space
E = (F2)d, there exists a vector in E which is orthogonal to at least N/3 and at most 2N/3 vectors of the
family. Orthogonality is defined with respect to the F2-valued “inner product” u.v =

∑d
i=1 uivi (strictly

speaking, this is of course not a “honest” inner product since for instance a vector can be orthogonal to
itself).

In order to explore the constructive aspects of Grigoriev’s point location theorem it is useful to have a
constructive version of this combinatorial lemma. Here one main goal is to obtain new transfer theorems
for algebraic versions of the P vs. NP problem. It is well known that the point location problem in
arrangements of hyperplanes can be solved efficiently by linear decision trees [8, 9, 10]. This was the
main technical tool in the proof that the P vs. NP problem for the real numbers with addition and order
is equivalent to the classical problem [4, 5]. As suggested in [4] and [7], a better understanding of point
location in arrangements of hypersurfaces will make it possible to obtain transfer theorems for a richer
model of computation in which multiplication is allowed (precise statements and proofs will be provided
in a separate paper). The goals of the present paper are to improve Grigoriev’s lemma and to give
a constructive version of it. Namely, we show that the range [N/3, 2N/3] can be replaced by the much
smaller range [N/2−√

N/2, N/2+
√

N/2] and we give an efficient, deterministic parallel algorithm which
finds a vector achieving this bound. Our algorithm is logspace uniform NC, i.e., it can be implemented
by a family of logspace uniform boolean circuits of polynomial size and polylogarithmic depth.

Organization of the paper

Grigoriev’s lemma is stated in [6] and at the beginning of this introduction in the language of linear
algebra. There is an equivalent formulation in a purely set-theoretic language. Namely, we are given a
set F of N distinct subsets of a finite set X . The goal is to find a subset F of X such that roughly
|F|/2 elements of F have an intersection with F of even cardinality. This set-theoretic point of view is
developed in section 2. In section 2.1 we give a probabilistic proof of the combinatorial lemma which
yields the improved range [N/2−√

N/2, N/2+
√

N/2]. Moreover, we show that a random subset F ⊆ X
will fall in the slightly bigger range [N/2 −√

N, N/2 +
√

N] with probability at least 3/4, so there is a
quite simple randomized algorithm for our problem. We then show that a deterministic algorithm can
be obtained by derandomizing the probabilistic proof of the combinatorial lemma. In section 2.2 we give
another (non-probabilistic) proof of the lemma which achieves the same bound as the probabilistic proof.
The optimality of this bound is discussed in section 2.3, and another deterministic sequential algorithm
based on our second proof is given in section 2.4. We return to the language of linear algebra in section 3
to describe our parallel algorithm. Note that this algorithm relies on elementary facts about extensions
of finite fields. Field extensions seem to be of an intrinsically algebraic nature, so the linear algebraic
point of view seems most appropriate to state and prove the results of that section.

It would be interesting to find out whether the probabilistic proof of section 2.1 can be derandomized
to yield not only an efficient sequential algorithm, but also an efficient parallel algorithm (more on
this at the end of section 2.1). We conclude this introduction with a long quote from [11] : “A natural
approach towards de-randomizing algorithms is to find a method for searching the associated sample Ω
for a good point w with respect to a given input instance I. Given such a point w, the algorithm A(I, w)
is now a deterministic algorithm and it is guaranteed to find a correct solution. The problem faced in
searching the sample space is that it is generally exponential in size. The result of Adleman showing that
RP ⊆ P/poly implies that the sample space Ω associated with a randomized algorithm always contains a
polynomial-sized subspace which has a good point for each possible input instance. However, this result
is highly non-constructive and it appears that it cannot be used to actually de-randomize algorithms.”
Our paper gives an example of a problem for which this “Adlemanian” approach to derandomization is
actually feasible. Indeed, our parallel algorithm constructs a polynomial-size list of “candidate vectors”

1It is misleadingly called “range searching problem” in [4] and [6].

1

which for any set of N input vectors is guaranteed to contain a vector orthogonal to roughly N/2 input
vectors. This list is made up of all vectors in a polynomial-size family of “candidate subspaces” of small
(logarithmic) dimension. Once the list is constructed we only have to solve an exhaustive search problem,
and this can be done quite easily in parallel.

2 The set theoretic point of view

In this section we study the set theoretic formulation of our problem : X is a finite set and F a set of
N nonempty distinct subsets of X . The goal is to find a subset F of X such that the number of elements
of F which have an odd intersection with F is as close as possible to |F|

2 .

2.1 A probabilistic proof

The first natural idea for this problem is to take for F a random subset of X .

Theorem 1 Let X be a finite set and F be a set of N nonempty subsets of X. There is a subset F ⊆ X
such that

−
√

N

2
≤ |{Fi ∈ F : |F ∩ Fi| even}| − N

2
≤

√
N

2
. (1)

Proof. Call F1, . . . , FN the elements of F . We choose a random subset F of X obtained by selecting or
not every element of X with probability 1/2.

Let Yi be the random variable defined by :

Yi = 1 if |F ∩ Fi| is even, and Yi = −1 otherwise.

Therefore we are interested in the random variable

Y =
N∑

i=1

Yi = |{i : |F ∩ Fi| even}| − |{i : |F ∩ Fi| odd}| = 2|{i : |F ∩ Fi| even}| − N.

We want to show that there exists an F for which |Y | ≤ √
N , i.e. Y 2 ≤ N .

First, let us prove that P (Yi = 1) = 1/2. This follows immediately from the facts that every subset F
occurs with same probability and that there are as many odd as even subsets in each Fi. Thus E(Yi) = 0.

Then we prove that the events {Yi = 1} are pairwise2 independent. For this let us consider two
elements F1 and F2 of F . We have to prove that

P (Y1 = 1 ∩ Y2 = 1) = P (Y1 = 1)P (Y2 = 1) = 1/4. (2)

There are three cases :
– F1 and F2 are disjoint. In this case, it is clear that the events are independent.
– F1 ⊆ F2. This case can be reduced to the previous one for F1 and F2 \ F1 and we still have (2).
– The three sets A = F1 \ F2, B = F1 ∩ F2 et C = F2 \ F1 are nonempty. Then Y1 = 1 and Y2 = 1

is equivalent to |A ∩ F | ≡ |B ∩ F | ≡ |C ∩ F | mod 2. But since these three sets are disjoint, we
have a probability 1/8 to be in the case even-even-even and 1/8 to be in the case odd-odd-odd.
Eventually, we also have (2).

Since the events are pairwise independent we have E(YiYj) = E(Yi)E(Yj) = 0 if i �= j. Furthermore,
E(Y 2

i) = 1 so by linearity of the expectation we have

E(Y 2) = E(
N∑

i=1

Y 2
i +

∑
i�=j

YiYj) = N.

Hence there exists F for which Y 2 ≤ N : this is the desired set. �	
2It can be shown that these events are not always 3-wise independent.

2

Remark 1 In the above proof, taking into account the fact that Y 2 = N2 for F = ∅, we obtain E(Y 2|F �=
∅) < N . Thus there exists a set F for which the inequality is strict, i.e. Y 2 < N . In other words, there
exists a set F satisfying the stronger inequality :

−
√

N

2
< |{Fi ∈ F : |F ∩ Fi| even}| − N

2
<

√
N

2
.

Remark 2 The pairwise independence of the Yi enables us to evaluate the variance of Y : V ar(Y) =∑N
i=1 V ar(Yi) = N . By Tchebycheff’s inequality, we have :

P (|Y − E(Y)| > 2
√

N) = P (|Y | > 2
√

N) < V ar(Y)/(2
√

N)2 = 1/4.

This ensures that at least 3/4 of the subsets F fall within the range [N/2 −√
N, N/2 +

√
N], and yields

a trivial randomized algorithm for finding such a set. The deterministic algorithms of Proposition 1,
section 2.4 and section 3 achieve however the better range [N/2 −√

N/2, N/2 +
√

N/2] obtained in the
theorem.

We now show how to derandomize the proof of Theorem 1 by the method of conditional expectations, in
order to obtain a deterministic algorithm. Note that a simpler deterministic algorithm will be presented
in section 2.4.

Proposition 1 The proof of Theorem 1 can be derandomized using the method of conditional expecta-
tions. This yields a polynomial-time deterministic algorithm for finding a set of even intersection with at
least N/2 −√

N/2 and at most N/2 +
√

N/2 of the Fi’s.

Proof. Following the proof of Theorem 1, this amounts to finding a set F for which Y 2 ≤ N . We build
such a set by enumerating the elements of X and deciding in turn for each x ∈ X whether it must belong
to F . Along the way, we keep E(Y 2) bounded above by N , thus giving a guarantee that the final set F
will have the expected property.

At the beginning, we know from the proof of Theorem 1 that E(Y 2) ≤ N . At each subsequent step,
we have already determined for some elements whether they belong to F : let us call C this condition
(for example, C ≡ (x1 ∈ F) ∧ (x2 �∈ F)). By induction hypothesis we have E(Y 2|C) ≤ N . The next step
is to determine whether an element x ∈ X is in F . We have :

E(Y 2|C) = 1/2(E(Y 2|C ∧ (x ∈ F)) + E(Y 2|C ∧ (x �∈ F))).

Therefore there exists a choice c (either c ≡ (x ∈ F) or c ≡ (x �∈ F)) for which E(Y 2|C ∧ c) ≤
E(Y 2|C) ≤ N . We then move on to the next step according to this choice : this will ensure that the
induction hypothesis is satisfied at the next step. At the end of the algorithm, i.e., when every element
x ∈ X has been considered, the set F obtained satisfies E(Y 2|F) ≤ N , and hence the statement of
Theorem 1.

The only remaining point to settle is how to compute E(Y 2|C ∧ (x ∈ F)) and E(Y 2|C ∧ (x �∈ F)) : we
need these values in order to make our choice. More generally, we want to be able to compute E(Y 2|C)
for an arbitrary condition C :

C ≡
∧

x∈A

(x ∈ F) ∧
∧

x∈B

(x �∈ F).

Let Ti be the random variable defined by

Ti = 1 if |(Fi \ (A ∪ B)) ∩ F | is even, and Ti = −1 otherwise.

We have E(Yi|C) = (−1)|Fi∩A|E(Ti).
Note that some sets Fi \ (A∪B) can be equal (even if by assumption the Fi’s are different), and can

even be empty, thus evaluating E(Y 2|C) amounts to computing the expectation of Z2 where Z =
∑

i αiYi

for a set {F1, . . . , Fk} of (possibly empty) subsets of X together with weights α1, . . . , αk ∈ Z. As in the
proof of Theorem 1, the events {Yi = 1} are pairwise independent. Furthermore, if Fi = ∅ then of course
E(Yi) = 1, otherwise E(Yi) = 0. Finally, E(Y 2

i) = 1 for any i. Thus computing E(Z2) is easy, because

E(Z2) = E(
∑

i

α2
i Y

2
i +

∑
i�=j

αiαjYiYj) =
∑

i

α2
i E(Y 2

i) +
∑
i�=j

αiαjE(Yi)E(Yj).

3

This implies that in polynomial time one can compute E(Y 2|C ∧ (x ∈ F)) and E(Y 2|C ∧ (x �∈ F)),
and decide whether x should be taken in F or not. The construction of F thus requires |X | steps,
each computable in polynomial time : the overall deterministic algorithm finds a set with the expected
property in polynomial time. �	

As explained in the introduction, the main goal of section 3 is to obtain a deterministic parallel
algorithm for our problem. It would be interesting to obtain such an algorithm from a different deran-
domization of Theorem 1. The main derandomization method that yields efficient parallel algorithms is
the method of bounded independence, as described for instance in section 15.2 of [1]. At first sight it looks
like this method might be applicable since the proof of Theorem 1 is based on the pairwise independence
of the random variables Yi. Unfortunately, the method is not applicable directly because Yi is defined
only indirectly through the formula

Yi = 1 if |F ∩ Fi| is even, and Yi = −1 otherwise.

One must therefore construct a small sample space not for the Yi but for the random set F . This is
achieved in section 3 through an ad-hoc method.

2.2 A deterministic proof

We want to find a subset F that minimizes the range between |{i : |F ∩ Fi| even}| and |{i : |F ∩
Fi| odd}|. But this means exactly finding F that maximizes the number of pairs {Fi, Fj} with |F ∩Fi| �≡
|F ∩ Fj | mod 2. Indeed, if t denotes |{i : |F ∩ Fi| odd}| − N

2 , the number of such pairs is exactly
(N/2 − t)(N/2 + t) = N2/4 − t2.
The crucial fact is that if F ⊆ X and Fi, Fj are two elements of F :

|F ∩ Fi| �≡ |F ∩ Fj | mod 2 ⇐⇒ |F ∩ (Fi � Fj)| ≡ 1 mod 2.

Thus, finding F that minimizes the range between |{i : |F ∩ Fi| even}| and |{i : |F ∩ Fi| odd}|, is
exactly finding F that maximizes |{(i, j) : |F ∩ (Fi � Fj)| odd}|.

We consider the following bipartite graph (V, E) :

– V = V1 ∪ V2 where V1 = {(i, j) : 1 ≤ i < j ≤ N}, and V2 = P(X) ;

– ((i, j), F) ∈ E iff |F ∩ (Fi � Fj)| odd.

What we are looking for is a vertex of V2 of maximum degree. Let N(x) denote the set of neighbours
of x. We will only need to apply the following lemma for A = V2, as in Lemma 2. However it turns out
that we can characterize in Lemma 1 all the subsets A ⊆ V2 for which the proof still holds (see also
Remark 3 in section 3).

Lemma 1 Let A ⊆ V2 be such that ∅ ∈ A and ∀F, F ′ ∈ A, (F �F ′) ∈ A. Assume moreover that ∀x ∈ V1,
N(x) ∩ A �= ∅. Then

∀x ∈ V1, |N(x) ∩ A| =
|A|
2

.

Proof. Let x ∈ V1. By hypothesis, there exists F ∈ A such that (x, F) is an edge of the graph. And by
the other hypothesis the following map is well-defined,

φ : A −→ A

F ′ �−→ (F � F ′)

and is a bijection of N(x) ∩ A onto A \ N(x) which proves the result. �	
Lemma 2 There exists a subset A ⊆ V2 satisfying the hypothesis of Lemma 1.

Proof. It suffices to take A = V2. �	

Corollary 1 There exists F ∈ V2 such that |N(F)| ≥ |V1|
2

Proof. By Lemma 2, every x ∈ V1 has |N(x)| = |V2|/2 neighbours. By double counting, there exists an
F ∈ V2 satisfying the hypothesis of the lemma. �	

4

Corollary 2 There exists F ⊂ X such that ||{i : |F ∩ Fi| even}| − N
2 | ≤

√
N
2

Proof. Let F be given by Corollary 1. Define t = |{i : |F ∩Fi| odd}|−N
2 . Then |N(F)| = (N

2 +t)(N
2 −t) =

N2

4 − t2 and by hypothesis on F :

N2

4
− t2 ≥ |V1|

2
=

N(N − 1)
4

=
N2 − N

4

which implies |t| ≤
√

N
2 . �	

2.3 Discussion of the bounds

With the help of Theorem 1, we know that it is possible to reach the expected value within a range
of order

√
N . One can wonder whether it is possible to ensure a constant range. The following examples

prove that this is impossible.
Let us consider a set X with n = 4k2 + 1 elements and F be the set of all subsets of X of size 2.

Let N = |F| = n(n − 1)/2. In this context, the problem is to partition X into two parts and count the
number of edges through the cut, which are precisely the sets of F with odd intersection. We want to
find 0 ≤ a ≤ n/2 such that a(n − a) is as close as possible to N/2 = k2(4k2 + 1). But :

(2k2 − k)(2k2 + k + 1) = 4k4 + k2 − k

and
(2k2 − k + 1)(2k2 + k) = 4k4 + k2 + k.

The function a �−→ a(n − a) being increasing on [0, n/2], this proves that these are the two best values
and that the error is at least k, which is of the order of N1/4. It is possible to refine this argument further.
For instance, the consideration of subsets with 3 elements instead of 2 yields the following result.

Proposition 2 Let Fn be the family of subsets of three elements of {1, . . . , n}. There exists a constant
c > 0 such that for infinitely many n, for any subset G of {1, . . . , n},∣∣∣∣|{F ∈ Fn : |F ∩ G| even}| − |Fn|

2

∣∣∣∣ ≥ c|Fn|1/3.

Proof. Let F ⊆ {1, . . . , n} be a subset of cardinal a. The number of elements of Fn whose intersection

with F is of odd cardinality is then a

(
n − a

2

)
+

(
a
3

)
. Therefore, let

f(a) =
a(n − a)(n − a − 1)

2
+

a(a − 1)(a − 2)
6

− n(n − 1)(n − 2)
12

be the difference with |Fn|/2. We aim at showing that f is far from zero on integer values, when n is
well chosen.

The zeros of f are n/2 and n/2 ± √
3n − 2/2. From the variations of f , we see that the integers i

so that |f(i)| is minimal are among the six integers around the zeros. Intuitively, these values should be
maximized if the zeros are far from integers (that is, if they are near half-integers). This requires n to be
odd and

√
3n − 2/2 to be near an integer (i.e. 3n − 2 � 4k2 for some k).

These considerations lead to the choice n = 4k2/3 + 1 where k ≡ 0 mod 3. The integer n is then odd,
so

f(�n/2�) = f(n/2 − 1/2) = n/4 − 1/4

f(�n/2�) = f(n/2 + 1/2) = −n/4 + 1/4

Furthermore, if k ≥ 2 then
√

3n − 2 =
√

4k2 + 1 is at most 1/8 away from 2k, so that

f(�n/2 +
√

3n − 2/2�) = f(n/2 − 1/2 + k)
= f(n/2 − 1/2 +

√
3n − 3/2) = −n/2 + O(

√
n).

Similarly, the other three integers around the zeros have Ω(n) as image. Since the total number N of
subsets of three elements among n is O(n3), the error is at least Ω(N1/3). �	
The same kind of calculations for subsets with 5 elements yields an Ω(|Fn|2/5) lower bound. The best
lower bound that we have obtained is Ω(

√|Fn|/(log |Fn|)1/4). As shown below, this almost optimal lower
bound is achieved by taking for Fn the set of all subsets of size (n − 1)/2.

5

Theorem 2 Let Fn be the family of subsets of (n − 1)/2 elements of {1, . . . , n}, where n is an odd
integer. There exists a constant c > 0 such that for infinitely many n, for any subset G of {1, . . . , n},

∣∣∣∣|{F ∈ Fn : |F ∩ G| even}| − |Fn|
2

∣∣∣∣ ≥ c
√
|Fn|/(log |Fn|)1/4.

Proof. Recall the definition of the binomial coefficient : for x ∈ R and k ∈ N,

(
x

k

)
=

∏k−1
i=0 (x − i)

k!
.

The special case when x is half an integer will be useful. Namely, for n < k − 1 we have

(
n + 1/2

k

)
=

∏k−1
i=0 (n + 1/2 − i)

k!
=

(−1)k−n+1(2n + 1)!(2k − 2n − 3)!
22k−2n!(k − n − 2)!k!

. (3)

Now, let us consider a set X with n = 4k + 1 elements and let F be the set of all subsets of X of size
2k. The number of sets in F that a set Y of cardinal j intersects an even number of times is :

f(j) =
∑

p even

(
j

p

)(
n − j

2k − p

)
.

The total number of sets is

|F| =
(

n

2k

)
=

∑
p

(
j

p

)(
n − j

2k − p

)
,

so that we are interested in the quantity

g(j) = f(j) − |F|
2

=
1
2

∑
p

(−1)p

(
j

p

)(
n − j

2k − p

)
.

Our immediate goal is to prove that

g(j) = −42k

((
(j − 1)/2
2k + 1

)
−

(
j/2

2k + 1

))
. (4)

We start from the following identity ([14], identity 3.42 or [12]) :

∑
p

(−1)p

(
j

p

)(
2m − j

m − p

)
= (−4)m

(
(j − 1)/2

m

)
.

It is not difficult to check that(
j

p

)(
4k + 1 − j

2k − p

)
−

(
j

p − 1

)(
4k + 1 − j

2k − (p − 1)

)
=

(
j

p

)(
4k + 2 − j

2k + 1 − p

)
−

(
j + 1

p

)(
4k + 2 − (j + 1)

2k + 1 − p

)
.

As a consequence,

2
∑

p(−1)p
(

j
p

)(
4k+1−j
2k−p

)
=

∑
p(−1)p

[(
j
p

)(
4k+1−j
2k−p

) − (
j

p−1

)(
4k+1−j

2k−(p−1)

)]
=

∑
p(−1)p

[(
j
p

)(
4k+2−j
2k+1−p

) − (
j+1

p

)(
4k+2−(j+1)

2k+1−p

)]
= (−4)2k+1

((
(j−1)/2
2k+1

) − (
j/2

2k+1

))
,

which proves (4). When j is even, g(j) reduces to

g(j) = −(−4)2k

(
(j − 1)/2
2k + 1

)
.

6

This is a product of half integers. This product is therefore minimal in absolute value when it is
centered around 0, that is when j = 2k or j = 2k + 2. In both cases, we have

|g(j)| = 42k

∣∣∣∣
(

k − 1/2
2k + 1

)∣∣∣∣ .

When j is odd, |g(j)| reduces to

|g(j)| = 42k

(
j/2

2k + 1

)

which is minimal when j = 2k − 1 or j = 2k + 1. The minimum is the same as in the even case. By (3),
the minimal absolute value that g takes is therefore

µ = 42k

∣∣∣∣
(

k − 1/2
2k + 1

)∣∣∣∣ =
(

2k − 1
k

)
∼ 22k−1

√
πk

whereas

|F| =
(

4k + 1
2k

)
∼ 24k+1

√
2πk

.

Hence µ = Ω(
√

|F|/ 4
√

log |F|).
�	

2.4 A simple deterministic polynomial time algorithm

We now present a very simple polynomial algorithm which finds a subset F achieving inequality (1)
from Theorem 1. We work from the point of view described in subsection 2.2 : given the subsets Fi, we
need to find a subset F that has an odd intersection with more than half of the Fi � Fj (considered
as a multiset). Note that these symmetric differences are all nonempty since the Fi are distinct. The
algorithm goes this way.

1. We construct all the sets Fi � Fj and denote by G the multiset obtained.
2. Let x ∈ X . Let G′ be the multiset of all elements of G not containing x.

Apply recursively the algorithm to X \ {x} and G′. Thus we get a subset F ′ of X \ {x} that has
an odd intersection with more than half of the elements of G′. Now there are two cases :
– F ′ has an odd intersection with more than half of the elements of G \ G′. In this case F = F ′ is

a solution to our problem.
– Otherwise, since x belongs to all elements of G \ G′, taking F = F ′ ∪ {x} gives a solution.

3 The linear algebraic point of view

In this section we are concerned with a parallel algorithm for our problem. More precisely, we shall
build a logspace-uniform family of circuits of polylogarithmic depth for our problem. In the meantime we
are led to exhibit another polynomial-time sequential algorithm, which is a first step towards the parallel
one.

We use here techniques of linear algebra, dealing now with 0-1 vectors instead of sets. Let us first
formulate Theorem 1 in these terms.

Corollary 3 Let u1, . . . , uN ∈ E = (F2)d be distinct nonzero vectors. There exists a vector v ∈ E such
that

−
√

N

2
≤ |{1 ≤ i ≤ N : ui.v = 0}| − N

2
≤

√
N

2
.

In what follows, a vector v ∈ E as in the corollary is called “good” for u1, . . . , uN . We now turn to
two algorithms for finding a good vector. As input we have N distinct nonzero vectors u1, . . . , uN of E,
given by their coordinates (hence the size of the input is of order Nd). The output will be a good vector
for u1, . . . , uN . The principle of the algorithms is to restrict the search to a small set V where a suitable
vector v is guaranteed to exist. If this “sample space” is small enough, we will then be able to find the
vector by exhaustive search.

7

3.1 Existence of a small sample space

Lemma 3 Let V be a subspace which is orthogonal to none of the ui − uj (i.e. for all 1 ≤ i < j ≤ N ,
there is v ∈ V so that v.(ui − uj) = 1) and to none of the ui. Then there exists a good vector v ∈ V for
u1, . . . , uN .

Proof. Let v1, . . . , vk be a basis of V . The condition that V is orthogonal to none of the ui − uj implies
that the new vectors u′

i defined by u′
i =

∑k
l=1(ui.vl)vl are pairwise distinct. This is because for all i �= j,

there exists l such that ui.vl �= uj .vl. Moreover, the condition that V is orthogonal to none of the ui

implies that none of the u′
i is equal to zero. In geometric terms, u′

i may be thought of as the projection
onto V .

We now define on V a new product � : V × V → F2 (associated to the basis (v1, . . . , vk)) by the
formula (

∑
l λlvl) � (

∑
l µlvl) =

∑
l λlµl. For this new product, Corollary 3 asserts the existence of

w =
∑

l λlvl which is �-orthogonal to at least N/2 −√
N/2 vectors u′

i and at most N/2 +
√

N/2. But
w�u′

i =
∑

l λlvl �u′
i =

∑
l λl(ui.vl) = w.ui, and thus w is also suitable for E as a whole (with the usual

product on E). �	

Remark 3 The above lemma can also be derived from the set theoretic point of view as a consequence
of Lemma 1. Note in particular that in Lemma 1, the hypothesis on A of stability under symmetric
differences simply means from the linear algebra viewpoint that A is a linear subspace.

We now show that the subspace of Lemma 3 can have small dimension. Recall that E is a vector
space over F2 of dimension d.

Lemma 4 Let U be a subset of E not containing 0. Then there exists a subspace W of E, of dimension
≥ d − log(|U | + 1), which does not intersect U .

Proof. By induction on the dimension d of E. For d = 0, |U | = 0 and the result trivially follows.
Assume d > 0. If |U | = 2d − 1, i.e. U = E \ {0}, we can choose W = {0}. Hence we shall assume

that there exists a nonzero vector w0 in E \ U . Let W0 be the subspace (with two elements) generated
by w0. If |U | ≥ 2d−1 − 1, then W0 suits our needs. Otherwise, E/W0 is a vector space of dimension d− 1
and we can apply the induction hypothesis to the set Ū of the classes of elements of U , which are all
different from zero. This set satisfies |Ū | ≤ |U |, hence there exists a subspace W̄1 of E/W0 of dimension
≥ d − 1 − log(|U | + 1), which does not intersect Ū .

Call W1 the subspace of E of dimension 1 + dim(W̄1), consisting of all elements of all classes of W̄1.
By definition of E/W0, W1 does not intersect U , and is of dimension ≥ d − log(|U | + 1). �	

We now apply Lemma 4 to U = {ui − uj : 1 ≤ i < j ≤ N} ∪ {ui : 1 ≤ i ≤ N} : we have
|U | = N(N + 1)/2. Hence there exists a subspace W of E of dimension at least d− 2 logN that does not
contain any of the ui − uj and of the ui

3. The orthogonal V of W is then of dimension ≤ 2 logN and is
orthogonal to none of the ui − uj and to none of the ui (because V ⊥ = W⊥⊥ = W , as is easily verified).
Note that V contains at most N2 elements.

This gives a polynomial sequential algorithm for finding a good vector (we only sketch it since we
have already described a simpler sequential algorithm in section 2.4) :

1. Find a basis e1, . . . , eb of a subspace W of dimension ≥ d − 2 logN which does not contain any of
the ui − uj and of the ui (for 1 ≤ i < j ≤ N). This is done by induction, taking the quotient space
at each step as in the proof of Lemma 4.

2. Find the orthogonal space V of W . This is done by solving the linear system (ei.x = 0)1≤i≤b.

3. Find a good vector v in V . This is done by exhaustive search.

3.2 A parallel algorithm

As in the sequential algorithm sketched above, we plan to perform an exhaustive search in a small
sample space. The use of Lemma 4 for finding a sample space is unfortunately intrinsically sequential,
since the proof works inductively in a quotient space.

3This follows from the inequality log(N(N + 1)/2 + 1) ≤ 2 log N , which holds true for N ≥ 2. There is no loss of
generality in assuming that N ≥ 2 since any vector v ∈ E will satisfy Corollary 3 for N = 1.

8

In fact, there is no reason to restrict the search to only one subspace : an exhaustive search can also
be performed in polynomially many subspaces of small dimension in parallel. An idea to overcome the
difficulty of using Lemma 4 then consists in the following. At the beginning of the algorithm, we build
a family of subspaces of large dimension W = {W1, . . . , Wk} that is “generic” in the sense that for all
subsets U ⊆ E \ {0} of cardinal N(N + 1)/2, there exists Wl ∈ W for which U ∩ Wl = ∅.

For the particular choice U = {ui − uj : 1 ≤ i < j ≤ N} ∪ {ui : 1 ≤ i ≤ N} we see that at least
one Wl contains none of the ui − uj or of the ui, so by Lemma 3 W⊥

l must contain a good vector. If the
Wl’s are of sufficiently large dimension, W⊥

l has only polynomially many elements and can be searched
efficiently. This yields the following theorem, which is proved in the sequel.

Theorem 3 There is a parallel algorithm which, given two positive integers N and d with N ≤ 2d, builds
in time O(log N + log d log log(dN)) a family F of d2N2(N + 1)2 elements of (F2)d that contains, for
any distinct nonzero vectors u1, . . . , uN ∈ (F2)d, a vector v such that

N/2 −
√

N/2 ≤ |{1 ≤ i ≤ N : ui.v = 0}| ≤ N/2 +
√

N/2.

An exhaustive search in this family can therefore be performed in O(log(dN)) parallel time, enabling
us to find a good vector v on input u1, . . . , uN in polylogarithmic parallel time O(log N+log d log log(dN)).

In section 3.3, we show that a generic family W = {W1, . . . , Wk} for sets U of size N(N + 1)/2
indeed exists and can be built efficiently. Our family is of cardinality k ≤ 2d|U | and each subspace Wl

of dimension at least d − 1 − log(d|U |). The Wl’s will be given as intersection of hyperplanes, so that a
spanning family of W⊥

l is immediately found. In section 3.3, U denotes an arbitrary subset of E \ {0}.
As explained above, a typical choice for U will be {ui − uj : 1 ≤ i < j ≤ N} ∪ {ui : 1 ≤ i ≤ N}.

3.3 A generic family of subspaces

To allow more room, we first work in a field extension of F2. More precisely, we fix an extension
K of degree e > log((d − 1)|U |), so that there are more than (d − 1)|U | elements in K. Note that for
|U | = N(N + 1)/2, a suitable choice is e = �log(dN(N + 1))�. This is the choice which will be made in
section 3.4.

We look at K as F2[X]/(P (X)) where P (X) is an irreducible polynomial of F2[X] of degree e. Thus
the elements of K will be viewed as classes of polynomials modulo P . Once the polynomial P is found,
it is easy to calculate in K, by manipulating polynomials of degree less than e with coefficients in F2

(details will be given in section 3.5).
In Kd, we are able to find |K| hyperplanes so that every set of cardinal |U | has an empty intersection

with at least one of them. For every θ ∈ K, let us indeed consider the hyperplane Hθ of Kd defined by
the equation x1 + θx2 + θ2x3 + · · ·+ θd−1xd = 0. There are |K| > (d− 1)|U | different hyperplanes in this
family (Hθ)θ∈K , and a point a ∈ Kd \ {0} belongs to at most d − 1 distinct hyperplanes : this is due to
the fact that there are at most d − 1 distinct roots of the polynomial P (θ) = a1 + a2θ + · · · + adθ

d−1.
Thus among these hyperplanes, at least one does not intersect U .

To obtain our family over F2 (instead of K), we now consider the trace of Hθ on F
d
2. For (x1, . . . , xd) ∈

F
d
2, the equation of the hyperplane Hθ can be rewritten according to the powers of X :

x1 + θx2 + · · · + θd−1xd ≡
e−1∑
i=0

µi(x1, . . . , xd)X i (mod P)

where the µi are F2-linear combinations of the xj (the coefficient of xj in µi is equal to the X i-coordinate
of θj−1 in the F2-basis 1, X, . . . , Xe−1 of K). The intersection Wθ = Hθ∩F

d
2 is then defined by the system

of equations µi(x) = 0 where i ranges over {0, 1, . . . , e − 1}. It is therefore a subspace of E = (F2)d of
codimension at most e.

This construction yields a family W = {W1, . . . , Wk} of k ≤ 2e subspaces with the expected genericity
property : for all subsets U ⊆ E \{0} of cardinal N(N +1)/2, there exists Wl ∈ W for which U ∩Wl = ∅.
Since e can be taken ≤ 1+log(d|U |)), we get at most 2d|U | subspaces, of dimension at least d−1−log(d|U |)
each. As promised, these subspaces are given as intersections of hyperplanes.

9

3.4 High level description of the algorithm

Let us sum up the main steps of this parallel algorithm. Its implementation and analysis are discussed
in the next section. The input is a set {u1, . . . , uN} of N distinct nonzero vectors of E = (F2)d, and the
output is a vector orthogonal to at least N/2 −√

N/2 and at most N/2 +
√

N/2 of them.
1. Let e = �log(dN(N + 1))�. By enumerating in parallel all the polynomials of F2[X] of degree e,

find an irreducible polynomial P . Let K = F2[X]/(P (X)).
2. Consider the family F of hyperplanes in Kd consisting of the |K| = 2e hyperplanes (Hθ)θ∈K

described in section 3.3. Rewrite the equation of each hyperplane of F as a system of e equations in
F2. This is only a rearrangement of terms. We obtain one subspace Wθ of (F2)d of codimension at
most e for each hyperplane Hθ. As a whole, this generic family thus contains at most 2e subspaces
of (F2)d.

3. Search in parallel in W⊥, for all W in the generic family. A good vector must exist in at least one
of them (note that it is only this third step which actually depends on the input).

As explained in the next section, the execution time of this algorithm is polylogarithmic in the size
dN of the input.

3.5 Implementation and analysis

We need now explain how to perform this procedure quickly in parallel. First, in order to find an
irreducible polynomial P ∈ F2[X] of degree e, we merely enumerate in parallel all polynomials A ∈ F2[X]
of degree e and test their irreducibility. There are 2e ≤ dN(N + 1) such polynomials. The polynomial A
is irreducible if and only if it is not divisible by another non-constant polynomial of degree ≤ e/2. This
yields a straightforward irreducibility test : compute in parallel the division with remainder of A by all
non-constant polynomials B of degree ≤ e/2 and test whether one of the remainders is zero. Finding
P therefore takes parallel time O(e) + T (e), where T (e) is the cost of a division in F2[X]. Hence we
only need to use a division algorithm of parallel complexity O(e). Within that generous time bound we
may even try in parallel all possible quotients Q, and check whether A = BQ. Some parallel division
algorithms are of course much faster (but overcomplicated for the problem at hand), see for instance [3].

We now proceed to the second step of the algorithm, which we begin with a preliminary computation.
Let P be the irreducible polynomial found at the first step, and let K = F2[X]/(P (X)) be the field with
2e elements. We first compute X i mod P for all i ∈ [e, 2(e − 1)]. The first element of this sequence is
obtained immediately from P , and X i+1 mod P can be obtained in constant parallel time from Xe mod P
and X i mod P (basically by a shift of coefficients followed by at most one addition in F2[X]). The whole
sequence can therefore be constructed in time O(e).

At step 2, our main task is to compute θi for all i = 0, . . . , d−1 and all θ ∈ K. By fast exponentiation θi

can be obtained from θ by O(log d) multiplications in K, each of boolean cost O(log e). Indeed, to perform
such a multiplication we multiply two polynomials of degree ≤ e− 1 with coefficients in F2 and take the
remainder modulo P (X). The cost of the multiplication in F2[X] is O(log e), and yields a polynomial of
degree at most 2(e− 1). At the beginning of step 2 we have precomputed a representation modulo P (X)
of all the monomials which can possibly occur in this polynomial. Hence it simply remains to add up at
most e polynomials of degree ≤ e − 1. This can be done in parallel time O(log e). The parallel cost of
generating our generic family of 2e subspaces is therefore O(log d log e), which is O(log d log log dN) The
orthogonal of each subspace Wθ contains at most 2e points since it is of dimension at most e. Altogether,
we have at most (2e)2 points in the union of all orthogonals. Since 2e ≤ dN(N + 1), this yields the
bound d2N2(N + 1)2 of Theorem 3. The additional cost of the explicit enumeration of all those points
is O(log e) since each point is the sum of at most e spanning vectors of some orthogonal.

Finally, we can find a good vector among the d2N2(N + 1)2 candidates in time O(log(dN)) by
exhaustive search. First, we compute in parallel the inner products ui.v for all inputs ui and all candidate
vectors v. This is done in depth O(log d). Then for fixed v, we have to sum over all ui to obtain the number
of i such that ui.v = 1. It is well known that such an iterated addition can be performed in depth O(log N)
(see for instance [2], proof of Theorem 1.7.2). To that sum we substract N/2 and take the absolute value,
so that for every candidate v we have computed ||{1 ≤ i ≤ N : ui.v = 1}| − N/2|. We now have to find the
minimum among the d2N2(N+1)2 values ; this can be done in depth O(log(d2N2(N+1)2)) = O(log(dN))
since computing the minimum is an AC0 problem (see for instance [2], example 6.2.2). Thus the exhaustive
search requires parallel time O(log(dN)) as claimed in Theorem 3.

10

The overall parallel execution time of our algorithm is therefore O(log N + log d log log(dN)), which
proves the theorem.

Remark 4 This parallel algorithm can be implemented by a family of logspace uniform boolean circuits
of polynomial size and polylogarithmic depth since each of the three steps of the algorithm can (note that
there is some redundancy in this statement since a logspace bounded Turing machine can only construct
circuit families of polynomial size).

Remark 5 The circuit depth obtained in Theorem 3 is by no means optimal. We have chosen to describe
the construction of the list of all d2N2(N + 1)2 candidate vectors explicitly as a part of our parallel
algorithm, but if we work with logspace uniform circuits any precomputation requiring only logarithmic
space is allowed. It is not difficult to check that the whole list of candidate vectors can indeed be constructed
in logarithmic space (by a variation on our parallel algorithm). After that one simply has to perform an
exhaustive search, which can be realized in depth O(log dN) as explained above. This shows that our
problem is in logspace uniform NC1 (it can be argued, however, that logspace uniformity is not the right
uniformity condition for NC1 ; see for instance [16], chapter 4). From the space complexity point of view,
our problem is in L since the exhaustive search can be performed in logarithmic space as well.

Références

[1] N. Alon and J. Spencer. The Probabilistic Method (second edition). Wiley Interscience Series in Discrete
Mathematics and Optimization. Wiley, 2000.

[2] P. Clote and E. Kranakis. Boolean Functions and Computation Models. Texts in Theoretical Computer
Science (an EATCS Series). Springer, 2002.

[3] W. Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on Computing, 18(5) :955–976, 1989.

[4] H. Fournier and P. Koiran. Are lower bounds easier over the reals ? In Proc. 30th ACM Symposium on
Theory of Computing, pages 507–513, 1998.

[5] H. Fournier and P. Koiran. Lower bounds are not easier over the reals : Inside PH. In Proc. 27th International
Colloquium on Automata, Languages and Programming, volume 1853 of Lecture Notes in Computer Science,
pages 832–843. Springer, 2000.

[6] D. Grigoriev. Topological complexity of the range searching. Journal of Complexity, 16 :50–53, 2000.

[7] P. Koiran. Circuits versus trees in algebraic complexity. In Proc. STACS 2000, volume 1770 of Lecture Notes
in Computer Science, pages 35–52. Springer-Verlag, 2000.

[8] S. Meiser. Point location in arrangements of hyperplanes. Information and Computation, 106(2) :286–303,
1993.

[9] F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional knapsack problem.
Journal of the ACM, 31(3) :668–676, 1984.

[10] F. Meyer auf der Heide. Fast algorithms for n-dimensional restrictions of hard problems. Journal of the
ACM, 35(3) :740–747, 1988.

[11] R. Motwani, J. Naor, and M. Naor. The probabilistic method yields deterministic parallel algorithms. Journal
of Computer and System Sciences, 49 :478–516, 1994.

[12] John Riordan. Combinatorial Identities. Wiley, New York, 1979.

[13] S. Smale. On the topology of algorithms. I. Journal of Complexity, 3 :81–89, 1987.

[14] Renzo Sprugnoli. Combinatorial Identities. Technical report, Università di Firenze, 2004.

[15] V. A. Vassiliev. On decision trees for orthants. Information Processing Letters, 62(5) :265–268, 1997.

[16] H. Vollmer. Introduction to Circuit Complexity : a Uniform Approach. Texts in Theoretical Computer
Science (an EATCS Series). Springer, 1999.

11

