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Abstract
As FPGAs are increasingly being used for floating-point computing, the fea-
sibility of a library of floating-point elementary functions for FPGAs is dis-
cussed. An initial implementation of such a library contains parameterized
operators for the logarithm and exponential functions. In single precision,
those operators use a small fraction of the FPGA’s resources, have a smaller
latency than their software equivalent on a high-end processor, and provide
about ten times the throughput in pipelined version. Previous work had shown
that FPGAs could use massive parallelism to balance the poor performance
of their basic floating-point operators compared to the equivalent in proces-
sors. As this work shows, when evaluating an elementary function, the flexi-
bility of FPGAs provides much better performance than the processor without
even resorting to parallelism. The presented library is freely available from
http://www.ens-lyon.fr/LIP/Arenaire/.

Keywords: elementary functions, parameterized operators, logarithm, exponential,
floating-point, FPGA, FPLibrary.

Résumé
L’utilisation des FPGA pour des calculs en virgule flottante étant de plus
en plus courante, on peut dès lors envisager la réalisation d’une bibliothèque
de fonctions élémentaires en virgule flottante pour FPGA. La première ver-
sion de cette bibliothèque propose des opérateurs paramétrés pour le loga-
rithme et l’exponentielle. En simple précision, ces opérateurs utilisent une pe-
tite part des ressources du FPGA, présentent une latence inférieure à celle
de leur équivalent logiciel sur un processeur actuel ainsi qu’un débit dix fois
plus élevé grâce à l’utilisation du pipeline. Des travaux précédents ont mon-
tré que les FPGA pouvaient recourir au parallélisme pour pallier aux faibles
performances des opérateurs virgule flottante classiques par rapport aux pro-
cesseurs actuels. Comme le montre ce travail, en ce qui concerne l’évaluation
de fonctions élémentaires, la souplesse des FPGA permet d’atteindre des per-
formances bien meilleures qu’avec un processeur, et ce sans même tirer parti
du parallélisme. La bibliothèque présentée est librement accessible à l’adresse
http://www.ens-lyon.fr/LIP/Arenaire/.

Mots-clés: fonctions élémentaires, opérateurs paramétrés, logarithme, exponentielle, virgule
flottante, FPGA, FPLibrary.

http://www.ens-lyon.fr/LIP/Arenaire/
http://www.ens-lyon.fr/LIP/Arenaire/
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1 Introduction

A recent trend in FPGA computing is the increasing use of floating-point. Many libraries of
floating-point operators for FPGAs now exist [18, 8, 1, 11, 6], typically offering the basic operators
+, −, ×, / and

√
. Published applications include matrix operations, convolutions and filtering.

As FPGA floating-point is typically clocked 10 times slower than the equivalent in contemporary
processors, only massive parallelism (helped by the fact that the precision can match closely
the application’s requirements) allows these applications to be competitive to software equivalent
[13, 5, 10].

More complex floating-point computations on FPGAs will require good implementations of
elementary functions such as logarithm, exponential, trigonometric, etc. These are the next useful
building blocks after the basic operators. This paper describes both the logarithm and exponential
functions, a first attempt to a library of floating-point elementary functions for FPGAs.

Elementary functions are available for virtually all computer systems. There is currently a large
consensus that they should be implemented in software [17]. Even processors offering machine
instructions for such functions (mainly the x86/x87 family) implement them as micro-code. On
such systems, it is easy to design faster software implementations: Software can use large tables
which wouldn’t be economical in hardware [19]. Therefore, no recent instruction set provides
instructions for elementary functions.

Implementing floating-point elementary functions on FPGAs is a very different problem. The
flexibility of the FPGA paradigm allows to use specific algorithms which turn out to be much more
efficient than a processor-based implementation. We show in this paper that a single precision
function consuming a small fraction of FPGA resources has a latency equivalent to that of the
same function in a 2.4 GHz PC, while being fully pipelinable to run at 100 MHz. In other words,
where the basic floating-point operator (+, −, ×, /,

√
) is typically 10 times slower on an FPGA

than its PC equivalent, an elementary function will be more than ten times faster for precisions
up to single precision.

Writing a parameterized elementary function is a completely new challenge: to exploit this
flexibility, one should not use the same algorithms as used for implementing elementary functions
in computer systems [19, 15, 14]. This paper describes an approach to this challenge, which
builds upon previous work dedicated to fixed-point elementary function approximations (see [7]
and references therein).

The authors are aware of only two previous works on floating-point elementary functions for
FPGAs, studying the sine function [16] and studying the exponential function [9]. Both are very
close to a software implementation. As they don’t exploit the flexibility of FPGAs, they are much
less efficient than our approach, as section 4 will show.

Notations

The input and output of our operators will be (3+ wE + wF)-bit floating-point numbers encoded
in the freely available FPLibrary format [6] as follows:

• FX : The wF least significant bits represent the fractional part of the mantissa MX = 1.FX .

• EX : The following wE -bit word is the exponent, biased by E0 = 2wE−1−1.

• SX : The next bit is the sign of X .

• exnX : The two most significant bits of X are internal flags used to deal more easily with
exceptional cases, as shown in Table 1.
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exnX X

00 0
01 (−1)SX ·1.FX ·2EX−E0

10 (−1)SX ·∞
11 NaN (Not a Number)

Table 1: Value of X according to its exception flags exnX .

2 A floating-point logarithm

2.1 Evaluation algorithm

2.1.1 Range reduction

We consider here only the case where X is a valid positive floating-point number (ie. exnX = 01
and SX = 0), otherwise the operator simply returns NaN. We therefore have:

X = 1.FX ·2EX−E0.

If we take R = logX , we obtain:

R = log(1.FX )+(EX −E0) · log2.

In this case, we only have to compute log(1.FX ) with 1.FX ∈ [1,2). The product (EX −E0) · log2
is then added back to obtain the final result.

In order to avoid catastrophic cancellation when adding the two terms, and consequently
maintain low error bounds, we use the following equation to center the output range of the fixed-
point log function around 0:

R =




log(1.FX )+(EX −E0) · log2 when 1.FX ∈ [1,
√

2),

log

(
1.FX

2

)
+(1+EX −E0) · log2 when 1.FX ∈ [

√
2,2).

(1)

We therefore have to compute logM with the input operand M ∈ [
√

2/2,
√

2), which gives a result
in the interval [− log2/2, log2/2).

We also note in the following E = EX −E0 when 1.FX ∈ [1,
√

2), or E = 1+EX −E0 when 1.FX ∈
[
√

2,2).

2.1.2 Fixed-point logarithm

As we are targeting floating-point, we need to compute logM with enough accuracy in order to
guarantee faithful rouding, even after a possible normalization of the result. As logM can be as
close as possible to 0, a straightforward approach would require at least a precision of 2wF bits,
as the normalization could imply a left shift of up to wF bits, and wF bits would still be needed
for the final result.

But one can remark that when M is close to 1, logM is close to M−1. Therefore, a two-step
approach consisting of first computing logM/(M − 1) with a precision of wF + g0 bits and then
multiplying this result by M−1 (which is computed exactly) leads to the targeted accuracy at a
smaller cost.

The function f (M) = logM/(M−1) is then computed by a generic polynomial method [7]. The
order of the considered polynomial obviously depends on the precision wF .

2.1.3 Reconstruction

As the evaluation of f (M) is quite long, we can in parallel compute the sign of the result: If E = 0,
then the sign will be the sign of logM, which is in turn positive if M > 1 and negative if M < 1.
And if E �= 0, as logM ∈ [

√
2/2,

√
2), the sign will be the sign of E · log2, which is the sign of E.
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We can then compute in advance the opposite of E and M − 1 and select them according
to the sign of the result. Therefore, after the summation of the two products E · log2 and Y =
f (M) · (M−1), we obtain Z the absolute value of the result.

The last steps are of course the renormalization and rounding of this result, along with the
handling of all the exceptional cases.

2.2 Architecture

The architecture of the logarithm operator is given on Figure 1. It is a straightforward implemen-
tation of the algorithm presented in Section 2.1. Due to its purely sequential dataflow, it can be
easily pipelined. The values for the two parameters g0 and g1 are discussed in Section 2.3.

wF + g1

1 + wF

1 + wF

1 + wF

wE

2 1 wE wF

3 + wE + wF

3 + wE + wF

X

exnX SX EX FX

1

1 + wF

√
2

E0

f (x) =
log x

x − 1

1

sign

log 2

±1

±1

sign / exception handling

wE + 1

wE

wE + wF + g1

wE + 2wF + g0 + 2

normalize / round

2wF + g0 + 3

wF + g0 + 2

R̃ ≈ log X

E

M

Z

Y

Figure 1: Architecture of the logarithm operator.

Some comments about this architecture:

• Remark that the boundary between the two cases of Equation (1) does not have to be exactly√
2, as both alternatives are valid on the whole of [1,2). This means that the comparison

between the mantissa 1.FX and
√

2 may be performed on a few bits only, saving hardware.
We do not have any longer that M ∈ [

√
2/2,

√
2) and logM ∈ [− log2/2, log2/2), but we use

the smallest approximation to
√

2 that do not increase the bounds of these intervals to the
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next power of two. Thus the savings in this step do not lead to increased hardware on the
subsequent steps.

• The sign of the result is the sign of E when E �= 0. If E = 0, we also need to take into account
the result of the comparison between 1.FX and

√
2.

• The function f (x) is evaluated using the Higher-Order Table-Based Method (HOTBM) pre-
sented in [7]. It involves a piecewise polynomial approximation, with variable accuracy for
the coefficients and where all the terms are computed in parallel.

• The normalization of the fixed-point number Z uses a leading-zero counter, and requires
shifting Z by up to wF bits on the left and up to wE bits on the right.

• Underflow cases are detected by the sign & exception handling unit.

As the tables sizes grow exponentially with the precision, this architecture is well suited for
precisions up to single precision (wF = 23 bits), and slightly more. Area on Virtex circuits will be
given for a range of precision in Section 4.

2.3 Error analysis

In order to guarantee faithful rounding for the final result — ie. an error of less than one unit in
the last place (ulp) of the result — we need to have a constant bound on the relative error of the
fixed-point number Z = logX :

|Z − Z̃|
2�log2 |Z|� < 2−wF−1,

so that when rounding the result mantissa to the nearest, we obtain a total error bound of 2−wF .
We need to consider several cases depending on the value of E:

• When |E| > 3, |Z| > 2 and the predominant error is caused by the discretization error of the
log2 constant, which is multiplied by E.

• When E = 0, on the other hand, the only error is caused by the evaluation of f (M), which
is then scaled in the product f (M) · (M−1). As the multiplicand M−1 is computed exactly,
this product does not entail any other error.

• When |E| = 2 or 3, both the discretization error from log2 and the evaluation error from
f (M) have to be taken into account. However, in this case, we have |Z| > 1. Therefore no
cancellation will occur, and the discretization error will not be amplified by the normalization
of Z.

• When |E| = 1, we have:

0.34<
1
2

log2≤ |Z| ≤ 3
2

log2< 1.04.

In this case, a cancellation of up to 2 bits can occur, which will multiply the log2 discretiza-
tion error by at most 4.

One can then find that using g1 = 3 guard bits for the log2constant and bounding the evaluation
error ε f < 2−wF−3 satisfies all these constraints. The number of guard bits g0 is given by the
evaluation scheme used for f (M), and is typically comprised between 1 and 5 bits.

All these choices have been proven valid by exhaustively testing our operators on a Celoxica
RC-1000 board (with a VirtexE-2000 FPGA) against a double precision software function, for the
whole parameter space defined by wE ∈ [3,8] and wF ∈ [6,23]. This exhaustive testing showed that
the the result was always faithful, and was correctly rounded to nearest in more than 98% of the
cases.
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3 A floating-point exponential

3.1 Evaluation algorithm

3.1.1 Special cases

The exponential function is defined on the set of the reals. However, in this floating-point format,
the smallest representable number is:

Xmin = 21−E0,

and the largest is:

Xmax = (1+
2wF −1

2wF
) ·22wE −2−E0.

The exponential should return zero for all input numbers smaller than log(Xmin), and should
return +∞ for all input numbers larger than log(Xmax). In single precision (wE = 8, wF = 23), for
instance, the set of input numbers on which a computation will take place is [−87.34,88.73]. The
remainder of this section only describes the computation on this interval.

3.1.2 A first algorithm

The straightforward idea to compute the exponential of X is to use the identity:

eX = 2X/ log(2).

Therefore, first compute X/ log(2) as a fixed-point value Y = Yint.Yfrac. The integer part of Y is
then the exponent of the exponential of X , and to get the fraction of eX one needs to compute the
function 2x with the fractional part of Y as input.

This approach poses several problems:

• To be sure of the exponent, one has to compute Y with very good accuracy: A quick error
analysis shows that one needs to use a value of 1

log(2) on more than wE + wF bits, which in

practice means a very large multiplier for the computation of X · 1
log(2) .

• The accurate computation of 2Yfrac will be very expensive as well. Using a table-based method,
it needs a table with at least wF bits of inputs.

The second problem can be solved using a second range reduction, splitting Yfrac into two
subwords:

Yfrac = Y1 +Y2,

where Y1 holds the p most significant bits of Y . One may then use the identity:

2Y1+Y2 = 2Y1 ·2Y2.

But again, we would have a multiplier of size at least wF × (wF − p).

3.1.3 Improved algorithm

A slightly more complicated algorithm, closer to what is typically used in software [12], solves the
previous problems. The main idea is to reduce X to an integer k and a fixed-point number Y such
as:

X ≈ k · log(2)+Y , (2)

and then to use the identity:
eX ≈ 2k · eY .
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The reduction to (k,Y ) is implemented by first computing k ≈ X · 1
log(2) , then computing Y =

X − k · log(2). The computation of eY may use a second range reduction as previously, splitting Y
as:

Y = Y1 +Y2,

where Y1 holds the p most significant bits of Y , then computing:

eY1+Y2 = eY1 · eY2,

where eY1 will be tabulated.
This looks similar to using the naive approach, however it has two main advantages: First, the

computation of k can be approximated, as long as the computation of Y compensates it in such a
way that Equation (2) is accurately implemented. As k is a small integer, this in practice replaces
a large multiplication with two much smaller multiplications, one to compute k, the second to
compute k · log(2). This approximation, however, implies that the final exponent may be k±1: the
result 2k · eY will require a normalization.

Second, computing eY2 is simpler than computing 2Y2, because of the Taylor formula:

eY2 ≈ 1+Y2 +T (Y2),

where T (Y2) ≈ eY2 −1−Y2 will be also tabulated.
This not only reduces a table-based approximation to a much smaller one (as Y2 < 2−p−1 as

will be seen in Section 3.3, it requires about wF −2p input bits instead of wF − p bits), it also
offers the opportunity to save p lines of the final large multiplier by implementing it as:

eY1 · (1+Y2 +T (Y2)) = eY1 + eY1 · (Y2 +T (Y2)).

The relevance of this depends on the target architecture. Obviously, it is relevant to FPGAs
without embedded multipliers. If such multipliers are available (like the 18×18 of some Virtex ar-
chitectures), it is relevant if the size of one of the inputs gets smaller than 18. For instance a 18×24
multiplication followed by one addition may be considered more economical than a 24×24 mul-
tiplication consuming 4 embedded multipliers (see a detailed study of multiplier implementation
on the Virtex family in [2]). Conversely, if the rectangular multiplication consumes 4 embedded
multipliers anway, the addition should also be computed by these multipliers. This is the case for
single precision.

3.1.4 A table-driven method

The previous algorithm involves two tables:

• The first, with p input bits and a few more than wF output bits for eY1, can not be compressed
using table-based methods derived from the bipartite method.

• The second, with about wF −2p input bits and as many output bits, can. As for the logarithm
operator, we use the HOTBM method [7].

Compressed or not, the sizes of these tables grow exponentially with their input size. Just
like the logarithm, this algorithm is therefore well suited for precisions up to (and slightly above)
single precision (wF = 23 bits). Area on Virtex circuits will be given for a range of precision in
Section 4.

For much smaller precisions, of course, simpler approaches will be more effective. For much
larger precisions, like double precision, the algorithm has to be modified. An idea is to repeat the
second range reduction several times, each time replacing p input bits to the tables by one new
p-input-bits table and one almost full-size multiplier. Another solution is to compute ey2 using
a higher degree polynomial, which also increases the multiplier count. A more detailed study
remains to be done.
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3.2 Architecture

The architecture of this operator is given on Figure 2. It is a straightforward implementation of
the algorithm. Obviously this architecture is purely sequential and can be pipelined easily.

2 1 wE wF

exnX SX EX FX

3 + wE + wF

X

1

1 + wF

±1

2 + wF

shift

wE + wF + g Xfix

round

1/ log 2

wE + 1k
wE + wF + g − 1

log 2

2wE + wF + g

wF + g

p wF + g − pY1 Y2

wF + g − 2p

wF + g − 2p + 1

eY2 − Y2 − 1
eY1

wF + g

wF + g − 2p + 1

wF + g − p

wE

E0

wE + 1

wF + g

Y

eY

3 + wE + wF

sign / exception handling

normalize / round

R̃ ≈ eX

underflow
overflow/wE + 4wE + 2

Figure 2: Architecture of the exponential operator.

The architecture has two parameters, p and g. The first essentially drives a tradeoff between
the sizes of the two tables, and its value should be comprised between p = wF/4 and p = wF/3.
The second is a number of guard bits used to contain rounding errors, and will be studied in
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Section 3.3.
Some more comments about this architecture:

• The shift operator shifts the mantissa by the value of the exponent. More specifically, if the
exponent is positive, it shifts to the left by up to wE positions (more would mean overflow).
If the exponent is negative, it shifts to the right by up to wF +g positions. The result is then
truncated to wE +wF +g bits.

• The range check (which verifies if the exponential of the input is representable in the given
format, or if an infinity or a zero should be returned) is performed by the shift and the first
multiplication stages.

• The intermediate value of Xfix has wE + wF + g + 1 bits with a fixed binary point after the
wE +1-th. The computation of Xfix − k · log(2) will cancel the integer part and the first bit of
the fractional part, as shown below in Section 3.3.

• The first two multipliers are constant multipliers, for which a range of optimization tech-
niques may apply [3, 4]. This is currently not exploited.

• This figure shows the final multiplication implemented as a multiplier followed by an adder,
but as shown in Section 3.1.3, depending on the target architecture, it may make more sense
to have one single multiplier instead.

• Final normalization possibly shifts left the mantissa by one bit (as will be shown in 3.3.1),
then rounds the mantissa, then possibly shifts back right by one bit in the rare case when
rounding also changes the exponent. Each shift is associated with an increment/decrement
of the exponent.

Several of these blocks can certainly be the subject of further minor optimizations.

3.3 Error analysis

The goal is to obtain a floating-point operator which guarantees faithful rounding. There are two
aspects to the error analysis. First, the range reduction should be implemented with the minimum
hardware. Second, the whole of the computation should ensure faithful rounding, considering the
method and rounding errors involved.

3.3.1 Range reduction

As k will be the exponent (plus or minus 1) of the final exponential, it fits on a wE +1 machine
word.

If the range reduction step were exact, the value of Y would be in [− log(2)
2 , log(2)

2 ], ensuring that
eY is in [

√
2

2 ,
√

2]. Using less accuracy to compute k, we accept that Y will be in an interval larger
than [− log(2)

2 , log(2)
2 ]. It will make little difference to the architecture to increase these bounds to

the next power of two, which is Y ∈]−1/2,1/2[. One proves easily that this is obtained for all wE

by truncating 1/log(2) to wE +1 bits, and considering only wE +3 bits of Xfix .
This means that we will have eY in [0.6,1.7], so we will sometimes have to normalize the final

result by shifting the mantissa one bit to the right and increasing the exponent by one.

3.3.2 Faithful rounding

The computation of eY involves a range of approximation and rounding errors, and the purpose of
this section is to guarantee faithful rounding with a good percentage of correct rounding.

In the following, the errors will be expressed in terms of units in the last place (ulps) of Y . It
is safe to reason in terms of ulps since all the computations are in fixed point, which makes it easy
to align the binary point of each intermediate value. Here the ulp has the value 2−wF−g. Then we
can make an error expressed this way as small as required by increasing g.
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First, note that the argument reduction is not exact. It entails an error due to:

• the approximation of log(2) to wE +wF +g−1 bits (less than one half-ulp),

• Xfix which is exact if it was shifted left, but was truncated if shifted right (one ulp),

• the truncation of Y to wF +g bits (one ulp).

Thus in the worst case we have lost 5 half-ulps.
Now we consider subsequent computations on Y carrying this error.
The table of eY1 holds an error of at most one half-ulp.
The table of eY2 −Y2−1 is only faithful because it uses the HOTBM compression technique

(error up to one ulp, plus another ulp when truncating Y2 to its most significant part). The
previous error on Y is negligible for this table as its result is scaled by 2−2p−1.

Due to the multiplier, the error due to the second table (2 ulps) added to the error on Y2 (5
half-ulps) may be scaled by the value contained in the first table (less than 1.7). This leads to an
error of less than 8 ulps.

The first addition involves no error, we again lose one half-ulp when rounding the result of the
multiplication, and the second addition adds the half-ulp error from the first table.

Finally the errors sum up to 9 ulps. Besides we have to take into account that we may need to
shift the mantissa left in case of renormalization, so we have to provide one extra bit of accuracy for
that. Altogether, we find that g = 5 guard bits for the intermediate computations ensure faithful
rounding.

A finer error analysis directing slight modifications of the algorithm (replacing some of the
truncations by roundings) could probably reduce g, but would also increase the critical path.

As for the logarithm operator, we implemented a test procedure which compares the result
of this operator on a Celoxica RC-1000 board against a double precision exponential on the host
PC. Exhaustive testing for various precision has confirmed that the result is always faithful, and
correctly rounded to nearest in more than 75% of the cases.

4 Results

We obtained area and delay estimations of our operators for several precisions. These results were
computed using Xilinx ISE and XST 6.3 for a Virtex-II XC2V1000-4 FPGA. They are shown in
Figure 3, and a summary is given in Table 2, in terms of slices and percentage of FPGA occupation
for the area, and in terms of nanoseconds for the latency.

Logarithm Exponential
Precision Multipliers Area Latency Area Latency
(wE ,wF ) (slices % mults) (ns) (slices % mults) (ns)

(3,6) LUT-based 123 (2%) – 34 137 (2%) – 51
18×18 89 (1%) 2 31 68 (1%) 3 47

(5,10) LUT-based 263 (5%) – 42 258 (5%) – 63
18×18 154 (3%) 3 39 135 (2%) 4 57

(6,13) LUT-based 411 (8%) – 48 357 (6%) – 69
18×18 233 (4%) 3 44 194 (3%) 5 65

(7,16) LUT-based 619 (12%) – 57 480 (9%) – 69
18×18 343 (6%) 6 55 271 (5%) 5 68

(8,23) LUT-based 1399 (27%) – 64 948 (18%) – 85
18×18 830 (16%) 9 61 522 (10%) 9 83

Table 2: Synthesis results for the operators on Xilinx Virtex-II.

In order to be as portable as possible, we do not require the use of the specific Virtex-II
embedded 18×18 multipliers. Therefore we present the results obtained with and without those
multipliers in Figure 4.
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Figure 3: Area and latency estimations depending on wE and wF for the combinatorial operators
with LUT-based multipliers.

If most of the results presented here are for the combinatorial version, our operators are also
available as pipelined operators, for a small overhead in area, as shown in Figure 5. The pipeline
depth depends on the parameters wE and wF : between 5 and 11 cycles for the logarithm, and from
10 to 15 cycles for the exponential operator. The pipelined operators are designed to run at 100
MHz on the targeted Virtex-II XC2V1000-4 FPGA.

As a comparison, Table 3 presents the performances for both our operators in single precision,
along with the measured performances for a 2.4 GHz Intel Xeon processor, using the single precision
operators from the GNU glibc (which themselves rely on the micro-coded machine instructions
fyl2x, fyl2xp1 and f2xm1).

2.4 GHz Intel Xeon 100 MHz Virtex-II FPGA
Function Cycles Latency Throughput Cycles Latency Throughput

(ns) (106 op/s) (ns) (106 op/s)

Logarithm 196 82 12 11 64 100
Exponential 308 128 8 15 85 100

Table 3: Performance comparison between Intel Xeon and Virtex-II for single precision.

The only other comparable work we could find in the litterature [9] reports 5564 slices for a
single precision exponential unit which computes exponentials in 74 cycles fully pipelined at 85
MHz on a Virtex-II 4000. Our approach is much more efficient, because our algorithm is designed
from scratch specifically for the FPGA. In contrast, the authors of [9] use an algorithm designed
for microprocessors. In particular, they internally use fully featured floating-point adders and
multipliers everywhere where we only use fixed-point operators.

5 Conclusion and future work

Parameterized floating-point implementations for the logarithm and exponential functions have
been presented. For the 32-bit single precision format, their latency matches that of a Xeon



Parameterized floating-point logarithm and exponential functions for FPGAs 11

wF

area (slices)

LUT-based mults

18 × 18 mults (slices)

18 × 18 mults (mults)

18 × 18 multipliers

2

4

6

8

10

12

6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

1400

(a) Logarithm operator area

wF

area (slices)

LUT-based mults

18 × 18 mults (slices)

18 × 18 mults (mults)

18 × 18 multipliers

6 8 10 12 14 16 18 20 22 24
100

200

300

400

500

600

700

800

900

1000

3

4

5

6

7

8

9

10

11

12

(b) Exponential operator area

LUT-based mults

18 × 18 mults

wF

latency (ns)

6 8 10 12 14 16 18 20 22 24
30

35

40

45

50

55

60

65

(c) Logarithm operator latency

wF

latency (ns)

LUT-based mults

18 × 18 mults

50

55

60

65

70

75

80

85

6 8 10 12 14 16 18 20 22 24

(d) Exponential operator latency

Figure 4: Comparison of area and latency depending on wF (wE = 8), when using LUT-based
multipliers, and when using the embedded 18×18 multipliers.

processor, and their pipelined version provide several times the Xeon throughput. Besides, they
consume a small fraction of the FPGA’s resources.

We should moderate these results by a few remarks. Firstly, our implementations are slightly
less accurate than the Xeon ones, offering faithful rounding only, where the Xeon uses an internal
precision of 80 bits which ensures almost guaranteed correct rounding. Secondly, more recent
instruction sets allow for lower latency for the elementary functions. The Itanium 2, for example,
can evaluate a single precision exponential in about 40 cycles (or 20 ns at 2 GHz), and will
therefore be just twice slower than our pipelined implementation. Thirdly, implementations for
the logarithm or the exponential better optimized for single precision could probably be written
for these recent processors. However the argument of massive parallelism will still apply.

A future research direction, already evoked, is that the current architectures do not scale well
beyond single precision: some of the building blocks have a size exponential in the precision. We
will therefore explore algorithms which work up to double precision, which is the standard in
processors - and soon in FPGAs [5, 10]. We are also investigating other elementary functions to
extend the library.

Another future goal is to study the portability and applicability of these algorithms to ASICs
(Application-Specific Integrated Circuits), where the metrics are very different and offer new trade-
offs which should be investigated. For example, as look-up tables implemented as ROMs can be
very area-efficient in ASIC technology, one could consider increasing the size of the tables in the
HOTBM operator to reduce the overall complexity of the complete operators.

FPLibrary and the operators presented here are available under the GNU Public Licence from
http://www.ens-lyon.fr/LIP/Arenaire/.
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