
HAL Id: hal-02102237
https://hal-lara.archives-ouvertes.fr/hal-02102237v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A fully distributed scheme to run a network into a small
world

Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar, Nicolas Schabanel

To cite this version:
Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar, Nicolas Schabanel. A fully distributed scheme
to run a network into a small world. [Research Report] LIP RR-2006-03, Laboratoire de l’informatique
du parallélisme. 2006, 2+13p. �hal-02102237�

https://hal-lara.archives-ouvertes.fr/hal-02102237v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

A fully distributed scheme to turn a
network into a small world

Philippe Duchon
Nicolas Hanusse
Emmanuelle Lebhar
Nicolas Schabanel

Janvier 2006

Research Report No 2006-03

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

A fully distributed scheme to turn a network into a small world

Philippe Duchon
Nicolas Hanusse

Emmanuelle Lebhar
Nicolas Schabanel

Janvier 2006

Abstract

We investigate the problem of efficiently preprocessing a large network, in a
fully distributed manner, so that the resulting network is a navigable small
world. Namely, if the network has bounded growth, by adding a single entry in
a distributed manner to each routing table (using O(n) rounds and O(polylog n)
space), we obtain a network in which the greedy routing algorithm computes
paths of polylogarithmic expected length between any pair of nodes. A bounded
growth graph is a graph of constant expansion rate, i.e. the number of nodes
within distance 2r from a given node is at most a constant times the number of
nodes within distance r. These graphs are considered as a relevant framework
for real networks as Peer-to-peer networks where our scheme could be used
to considerably improve the routing speed over time. We also extends our
algorithm to graphs of polylogarithmic expansion rate. Recent small world
models provide augmentation processes of large graph classes into navigable
small worlds via the addition of new random links to each node. However,
the computation of the required random links distribution kept these processes
unrealistic for large decentralized networks. Our algorithm, based on a careful
sampling of a set of leader nodes, bypasses these limitations.

Keywords: Distributed algorithms, navigable small world, routing algorithms, bounded growth.
Résumé

Nous abordons le problème de l’augmentation d’un graphe en un petit monde
navigable de façon efficace et distribuée. Précisément, nous montrons que si
la métrique du graphe considéré est à croissance bornée, en ajoutant un seul
arc (aléatoire) par noeud, on obtient un graphe où l’algorithme de routage
glouton calcule des chemins de longueur d’espérance polylogarithmique en la
taille du graphe, entre toutes les paires de sommets. Cette opération se fait
de façon distribuée, en O(n) rondes avec une mémoire polylogarithmique. Les
métriques à croissances bornées sont les métriques telles que la taille d’une
boule de rayon 2r est au plus une constante fois la taille de la boule de
même centre et de rayon r. Elles sont actuellement considérées comme un
cadre réaliste pour les grands réseaux décentralisés, comme les réseaux pair-à-
pair. Les modèles de petits mondes proposés récemment donnent des proces-
sus d’augmentation de graphes en petits mondes navigables, par l’ajout d’arcs
aléatoires supplémentaires. Toutefois, le calcul de la distribution de ces nou-
veaux liens aléatoire nécessite, grossièrement, la connaissance de la totalité de la
métrique, rendant ces processus d’augmentations non réalistes pour un grand
réseau distribué. En utilisant un échantillonnage aléatoire des sommets bien
choisi, notre algorithme d’augmentation parvient à dépasser ces limitations.

Mots-clés: Algorithmes distribués, petits mondes navigables, algorithmes de routage, croissance
bornée

1 Introduction

In this paper, we investigate the problem of efficiently preprocessing a large network, in a fully
distributed manner, so that the resulting network is a navigable small world. Namely, by adding a single
entry to each routing table, we obtain a network in which the greedy routing algorithm computes paths
of polylogarithmic expected length between any pair of nodes. This problem arises as an application of
recent investigations on the small world phenomenon in real interaction networks (e.g. social networks,
or Peer-to-peer networks). The observation of the small world phenomenon in such networks consists in
the combination of a low diameter and the ability, for each node, to discover short paths without the
global knowledge of other nodes connections. This corresponds to the popular notion of the six degrees
of separation, exhibited by the seminal experiment of the psychologist Milgram in social networks [17].
With the development of large decentralized networks, the understanding of the underlying causes of the
small world phenomenon finds an area of promising applications.

The first graph model that reproduces the small world navigability was proposed by Kleinberg in
2000 [13] and consists in a 2-dimensional regular grid augmented by a constant number of random
long-range links per node, distributed according to the 2-harmonic distribution. Kleinberg shows that,
with the only knowledge of the grid, the greedy routing, which chooses the closest node to the target
among its neighbor in each step, computes paths of polylogarithmic expected length between any two
nodes. Further investigations pointed out the general characteristics of these models, by extending it
to d-dimensional tori [3], suggesting a more general model. Recently, several augmentation processes
have been proposed for larger graph classes [7, 19, 6] ; results are summarized in Figure 1. The greedy
routing considered in these augmented graphs, only requires the knowledge, at each node, of its neighbors
and of an oracle that, given two nodes, determines which one is the closest to some target node in the
graph before augmentation. Thus, such processes shrink a network of high diameter into a network where
greedy routing achieves polylogarithmic path lengths, by adding new links to each node. This application
becomes of high interest when the augmentation process requires the addition of only one new link per
node, which consists simply in the addition of one entry to the routing table in a virtual network.
Formally, we tackle the following problem :

Problem 1 Given a network, in which there exists an oracle answering the query ”d(u,w) ≥ d(v,w) ?”
in constant time, design an efficient decentralized algorithm, which adds 1 link per node, so that the
greedy routing algorithm computes a path of polylogarithmic expected length between any pair of nodes,
in the augmented graph.

The hypothesis of such an oracle is realistic for many kinds of networks. Grids with discrete coordinates,
hypercubes, Delaunay graphs and Yao graphs (also called Θ-graph) provide this oracle with their own
node labeling ; the greedy routing has been well studied in these topologies [4]. Moreover, such an oracle
can also be built through a preprocessing of the network. For instance, low cost sophisticated techniques,
based on spanners [21], or distance-labeling [9], enable to compute quickly the exact and an approximate
distance between nodes. Another approach consists in constructing compact routing tables (see [10, 21, 1]
for results about arbitrary graphs). For bounded growth graphs [2] or bounded doubling dimension graphs
[19], routing tables of polylogarithmic size can be designed at each node so that the routing path lengths
are almost optimal (up to a factor 1 + ε of the shortest path).

Shrinking the diameter and the routing path length of a network is an important task for several
distributed efficient network constructions. Peer-to-peer networks are of special interest in this framework.
Recent peer-to-peer overlay networks [18, 8, 16, 20] aim at directly designing a network guaranteeing a
fast routing. However, dynamically maintaining a precise topology can be difficult. In a more general
setting, one starts from an arbitrary topology, this is the case of unstructured peer-to-peer networks [5].
In this context, peers could broadcast a message to start an augmentation process to turn the network
into a navigable small world, along the specifications of Problem 1.

The key of the small world augmentation processes given in [7, 19, 6], is that the random distribution
of the new links fits the underlying graph so as to create shortcuts at all distance scales. However, as
these link distributions depend on the graph structure properties, their computation roughly requires
the exact knowledge of all the graph connections. In this paper, we propose a fully distributed algorithm
which uses a random sampling of the graph to bypass this requirement of a centralized computation.

1

Ref. Underlying structure Out-degree Expected path length Scheme

[7] Treewidth k 1 O(k log k log2 n)
[14] Group structure1 O(log2 n) O(log2 n) Centralized

[19] 2α doubling dimension2 O(2O(α) log n log ∆) O(log n) description

[6] b-moderate growth3 1 O((log n)5/2+2b)

this paper O(1) expansion rate 1 O((log n)2) Decentralized

this paper O((log n)β) expansion rate 1 O((log n)6β+2) Decentralized

Fig. 1 – Small world augmentation processes.

1.1 Model and main result

In the following, we refer to the set of nodes within distance r from some node u as the ball of
center u and radius r, denoted by Bu(r) ; we denote by bu(r) its cardinality. A network is said to have
an expansion rate C(n) if there exists an uniform function C(n) such that, for any node u and any
radius r > 0, bu(2r) ≤ C(n)bu(r). In this paper, we consider unweighted networks of polylogarithmic
expansion rate. We describe our results for networks of bounded growth, that are networks of constant
expansion rate, and show that they still hold, with degraded performances, with a polylogarithmic
expansion rate. Bounded growth networks have been studied recently in the area of object locations as
a good representation of real graphs such as the Internet or peer-to-peer networks [12]. We say that an
algorithm is a small world augmentation process if it consists in the addition of new random links to each
node, so that there exists a decentralized algorithm that computes a path of polylogarithmic expected
length between any pair of nodes in the resulting augmented network. A long range contact of a node
is a new neighbor after the augmentation. We design a small world augmentation process, inspired from
the random link distribution given in [19]. To bypass the centralized computations of ball sizes required
to compute the new links in [19], we use a multi-layers sample scheme of the network, which is in charge
of the link computations of other nodes. Moreover, our augmentation process only requires the addition
of one long range contact per node.

Our distributed scheme applies to synchronized networks, i.e. a global clock is known by all the nodes,
and, at each pulse of the clock, each node is allowed to run an action. The period of time between two
pulses is called a round. We assume that nodes communicate by message-passing. Let ∆ the maximal
degree of the network. In the ∆-port model, a node can send, during each round, a constant number of
messages to its neighbors. We assume that nodes are equipped by unique identifiers, and that each node
knows the identifiers of its neighbors. The existence of an oracle fitting Problem 1 specifications is self-
contained in the assumption that routing tables of the nodes enable to answer the distance comparison
queries. We assume that each node has the knowledge of the size n of the network4, and of the identifiers
of its neighbors. The amount of memory per node is thus at least Ω(∆ log n) bits. The major criteria to
evaluate the efficiency of distributed algorithms are the time complexity (number of rounds), the message
complexity (total number of messages), and the amount of memory required per node, or per message.
We do not take into account the time complexity due to the local computations between each round
(these are O(∆)-time long and dominated by node-to-node communications).

The following Theorem is our main result. To our knowledge, this is the first fully distributed algorithm
to augment any graph of bounded, or polylogarithmic, expansion rate into a small world, via the addition
of one link per node.

Theorem 1 Any synchronized n-node network of bounded growth, of diameter D, and maximum degree
∆, can be turned into a small world via the addition of one link per node,

– in O(n) rounds, with an expected number of messages O(nD log n), and requiring O(∆ log n logD)
memory size with high probability ;

1A group structure is a framework which includes metrics of polynomial ball growth and hierarchies.
2A metric has 2α doubling dimension if each ball of radius 2r can be covered by 2α balls of radius r. ∆ is the aspect

ratio of the metric,i.e. the ratio of the largest distance over the smallest one.
3A graph has b-moderate growth if the ratio of a ball of radius 2r is at most O(logb r) times the size of the ball of radius

r and of same center, and the size of a sphere of radius r is at most 1/r times the size of the ball of same center and same
radius.

4If the hypothesis is too restrictive, preprocesses can be used to obtain an approximation of n, see e.g. [11].

2

– or in O(D) rounds, with an expected number of messages O(n log n log D) and requiring O(n) bits
of memory in each node with high probability.

In the augmented network, the greedy routing algorithm computes paths of expected length
O (log D log δ + log n) between any pair of nodes at mutual distance δ in the original network.

Moreover, our process can be easily extended to produce any desired degree distribution, as long as one
node has at least one new link with constant probability.

In [15] Liben-Nowell et al. recently experimentally demonstrated that, in a social network, the distri-
bution of friendships that do not depend on the geography fits the inverse ball size distribution, which
is close to the long range contact distribution produced by our small world process. In terms of social
networks, our small world augmentation process offers the first decentralized scheme to turn a network
into a small world. It may thus be a new perspective in the understanding of the creation of shortcuts
which gives rise to the small world phenomenon in a social network.

1.2 Outline of the paper

Sections 2 and 3 focus on bounded growth networks, polylogarithmic expansion rate networks are
treated in section 4. Section 2 gives a high level description of our augmentation process which includes
a random sampling and a random choice of new links based on the sample. We show that the random
sampling succeeds w.h.p., and that, under this condition, the greedy routing algorithm computes paths
of polylogarithmic expected length in the augmented network. Section 3 provides the distributed imple-
mentations of both sampling and link choices processes, and analyzes the total cost under both high and
low memory settings.

In all the following, we consider a network G = (V, E) of expansion rate c, diameter D and maximum
degree ∆. We will use the abbreviations w.h.p. standing for with high probability and u.a.r. standing for
uniformly at random.

2 Sampling-based small world algorithm

One of the main issues with the recent small world processes given in the literature [14, 19, 7, 6] is that
they require the complete knowledge of the underlying graph. More precisely, to compute the random
link distribution, [7] requires to compute a tree decomposition and [14, 19, 6] require the size of all balls
centered at any given node. In [6], the ball sizes centered on each node u are used to choose randomly the
length � of the random link to be drawn from u : � is chosen with probability proportional to 1/bu(�) ;
the long-range contact of u is then picked u.a.r. among the nodes at distance exactly � from u. In [19],
each node u chooses log n long range contacts, each u.a.r. in each ball Bu(2j), for 1 ≤ j ≤ �log D�. The
principle of our scheme is to avoid the computation of all ball sizes for all nodes in the network, in such
a way that each node only explores O(log n) nodes in the network on expectation.

2.1 Our random augmentation process

Description of the small world algorithm (Algorithm 1). The basic idea is that each node u
will not compute its long range contact by itself but will only choose a random length scale � = 2i, by
picking i u.a.r. in {�log(2c logn)�, . . . , �log D�}, and asks another node v, at distance ≤ � from u, to
pick u.a.r. u’s long range contact in its own ball Bv(3�). Such a node v is called the ith level leader for
u. Only the ith level leaders will have to explore their ball of radius 3 · 2i ; all other nodes will refer to
them to compute their long range contact. On the one hand, ith level leaders should not be too far from
each other so that each node is close enough to one of them to guarantee that this approximation is
sufficiently precise. On the other hand, each ith level leader v will explore bv(3 · 2i) nodes, and we must
guarantee that the expected number of nodes visited by each nodes remains polylogarithmic. We will
write Si to describe the set of the ith level leaders. The selection of the ith level leader is completed by
the Sample algorithm detailed next. We first analyze the algorithm, its decentralized implementation
will be described in section 3.

Lemma 1 The probability that the sampling fails during step 1 of Algorithm 1 is less than log n/n.

3

Algorithme 1 Sampling-based small world algorithm

In our scheme, the ith level leaders are in charge of drawing long range contacts at distance O(2i).

1. Let k0 = �log(2c logn)�. For all i ∈ {k0, . . . , �log D�}, each node u is chosen to be an ith level
leader with probability 2c log(n)/bu(2i) independently ; this step is achieved by running for all
i ∈ {k0, . . . , �log D�} the Sample(u, i) algorithm (Algorithm 2) in parallel for all node u ∈ V .

2. Then, each ith level leader informs all nodes at distance ≤ 2i that it is their ith level leader (ties
are arbitrarily broken).

3. If there exists a node u that did not get an ith leader for some i, go to step 1 (we say that the
sampling phase failed).

4. Each ith level leader explores its ball of radius 3 · 2i.

5. Each node u in the network then picks u.a.r. i ∈ {k0, . . . , �log D�} and asks a long range contact
request to its ith level leader v ; v picks then u’s long range contact, L(u), u.a.r. in its ball Bv(3·2i).

Proof. Consider a node u and let i ∈ {�log(2c log n)�, . . . , �log D�}. The probability that a node v
belongs to Si is 2c logn/bv(2i). By inclusion, any node v in Bu(2i) satisfies : bv(2i) ≤ bu(2i+1). From
the bounded growth, we have bu(2i+1) ≤ c bu(2i). The probability that no node of Si lies into Bu(2i) is
then less than : (

1 − 2c logn

c bu(2i)

)bu(2i)

≤ 1
n2

.

From the union bound, the probability that it happens for at least one level i is then less than log D/n2

(since there are less than log D levels). Finally, from the union bound again, the probability that this
failure happens for at least one node is less than log D/n ≤ log n/n, the result follows. �

iiith level leaders selection (Algorithm 2). Algorithm Sample(u, i) decides parsimoniously whether
u is an ith level leader and, once run over all nodes u, ensures that w.h.p. all nodes v are at distance
≤ 2i from some ith level leader (Lemme 1). The procedure explores bigger and bigger balls around
each node. Each call to Sample(u, i) launches the successive explorations of the balls of increasing sizes
Bu(2k0), . . . ,Bu(2i). If u survives all exploration trials, it explores the ball Bu(3 · 2i) that will be used
later to pick u.a.r. the long range contacts.

Lemma 2 For all i ∈ {k0, . . . , �log D�}, and for every node u ∈ V , Pr{u ∈ Si} = (2c logn)/bu(2i).

Proof. Let i ∈ {k0, . . . , �log D�} and u ∈ V . The node u is inserted in Si (the set of the ith level
leaders) if and only if it succeeded all the probabilistic trials up to k = i. u survives to the first trial with
probability 2c logn/bu(2k0). It will then survive to next one with probability bu(2k0)/bu(2k0+1), etc. The

Algorithme 2 Sample(u, i)
Algorithm Sample(u, i) proceeds by successive flooding phases of increasing radii.

k0 := �log(2c log n)�. k := k0 + 1.
Explore Bu(2k0).
Die with probability 1 − 2c logn/bu(2k0).
tant que u is alive and k ≤ i faire

Explore Bu(2k).
Die with probability 1 − bu(2k−1)/bu(2k).
k := k + 1.

fin tant que
si u is alive alors

u is a ith level leader.
fin si

4

node u is alive at the end of the process if it has succeeded all independent trials unto the value k = i,
i.e., with total probability :

2c logn

bu(2k0)
× bu(2k0)

bu(2k0+1)
× · · · × bu(2i−1)

bu(2i)
=

2c logn

bu(2i)
.

�

Guessing the expansion rate. Note that the knowledge of the exact value of the expansion rate c
is not required to run Sample nor Sampling-based small world algorithms. Indeed, one can start
with c = 1 and if the sampling fails, then rerun the algorithm with c := 2c until the sampling succeeds.
By Lemma 1 w.h.p., only �log c� runs are required before success. We will thus now assume that the
expansion rate c is known.

2.2 Greedy routing analysis in the augmented graph

We now assume that the sampling succeeds. We show that the resulting augmented graph is a
navigable small world by showing that greedy routing computes path of polylogarithmic expected length
between any pair of nodes. We first lower bound the probability that a node v is the long range contact,
L(u), of a given node u in terms of the distance d(u,v) in the original graph. This lemma is the key to
prove the polylogarithmic upper bound on the greedy routing path length (Theorem 2).

Lemma 3 For all v �= u in V such that d(u,v) ≥ 2c logn, Pr{L(u) = v} ≥ 1
c2 log D

1
bu(d(u,v))

.

Proof. Since d(u,v) ≥ 2c logn, let i ∈ {k0, . . . , �log D�} such that 2i ≤ d(u,v) < 2i+1. Observe that
d(v, leaderu(i)) ≤ 3 · 2i by the triangle inequality. The probability that L(u) = v is thus greater than
the probability that u has chosen the level i and that v has been chosen uniformly among the nodes
of Bleaderu(i)(3 · 2i). The level i is chosen with probability at least 1/ logD. Since, by definition of the
ith level leader, d(u, leaderu(i)) ≤ 2i, we have bleaderu(i)(3 · 2i) ≤ bu(4 · 2i) ≤ bu(4d(u,v)). By bounded
growth, bu(4d(u,v)) ≤ c2bu(d(u,v)). The result follows. �

Theorem 2 Greedy routing computes, in the augmented graph, a path of expected length
O (log D log δ + log n), between any pair of nodes at mutual distance δ in the original graph.

Proof. Let s and t the source and target, at mutual distance δ. Divide the execution of the greedy
algorithm into log δ phases : the algorithm is in phase j, 1 ≤ j ≤ �log δ�, as long as the current distance
to t (in the original graph) belongs to (2j−1, 2j].

Assume the algorithm is in phase j and that u is the current message holder. Assume that j ≥ k0 +2,
any node v in Bt(2j−2) is at distance at least 2j−2 ≥ 2c logn from u. By Lemma 3, any node v in
Bt(2j−2) is the long range contact of u with probability at least 1/(c2 log D · bu(d(u,v))) ; moreover
d(u,v) ≤ 5 · 2j−2. Thus, the long range contact of u belongs to Bt(2j−2) with probability at least :

1
c2 log D

bt(2j−2)
bu(5 · 2j−2)

,

By inclusion, bu(5 · 2j−2) ≤ bt(10 · 2j−2), and by bounded growth hypothesis, bt(10 · 2j−2) ≤ c4bt(2j−2).
The probability to exit phase j is thus at least 1/(c6 log D) at each step during this phase. The expected
number of steps in each phase j ≥ k0 + 2 is then O(log D). As soon as j < k0 + 2, we can simply upper
bound the remaining expected number of steps by 2k0+1 = O(log n). Finally, summing over the �log δ�
phases, the total expected path length is O(log D log δ + log n). �

Note that the proof of Theorem 2 can be lead similarly if we choose to add k long range contact
per node, k being determined by some probability distribution, as long as each node has a constant
probability to have at least one long range contact. Indeed, it suffices to multiply the lower bound given
in Lemma 3 by this constant, and the proof of the theorem is identical.

5

3 Decentralized implementations and performances

The only two steps in Sampling-based small world algorithm that require a careful decentralized
implementation are the exploration step in Sample and the random generation of the long range contacts
(which consists in routing each request to the appropriate leader, picking a random node in the leader’s
ball, and sending the contact back).

3.1 The sampling step

In the sampling step, balls are explored in breadth first search order. In order to simplify the message
passing within each ball, we grow a shortest path tree Tu,i during the exploration. The tree structure
is maintained by storing in each explored node its parent and children (ties are arbitrarily broken). If
u dies at trial k, Tu,i spans the ball Bu(2k). If u survives all exploration trials, u informs all nodes in
Bu(2i), using tree structure Tu,i, that it is their ith level leader ; Tu,i spans then the ball Bu(3 · 2i) and
u requests each of its children to compute and store recursively the size of their subtree in Tu,i. These
sizes will be used later to pick a node u.a.r. in Bu(3 · 2i) upon request.

The next lemma tighten our sampling analysis by showing that the set of leaders is sparse enough.
This will be useful in our implementations analysis.

Lemma 4 W.h.p., any node u belongs to O(log n log D) trees {Tv,i}v∈V,i≤log D.

Proof. Let u ∈ V and k ≥ k0. For any node v, , and j ≥ k, the probability that v explores, during the
selection of the ith leader, at least upto the radius 2k is 2c logn/bv(2k).Let Xv,j be the random variable
equals to 1 if v explores a radius at least 2k during the selection of the ith leader, and 0 otherwise. Thus
E[Xv,j] = 2c log n/bv(2k), if j ≥ k and 0 otherwise.

u belongs to all trees rooted in v ∈ Bu(2k) that have explored unto the radius 2k. For all nodes v ∈
Bu(2k), we have bv(2k) ≤ bu(2k+1) ≤ c bu(2k) by the bounded growth. Moreover, bv(2k) ≥ bv(2k+1)/c
by the bounded growth. Thus, for all nodes v in Bu(2k), E[Xv,j] ∈ [(2 log n)/bu(2k), 2c2 log n/bu(2k)].
Let X =

∑
v∈Bu(2k)

∑
j Xv,j, we have E[

∑
j Xv,j] ∈ [2 log n, 2c2 log n log D] by linearity of expectation.

Since variables Xv,j are independent, we can use a Chernoff bound to upper bound the probability that
their sum is greater than 4E[X] :

Pr{X > 4E[X]} ≤ [
1
e
(e/4)4]E[X] ≤ 1

e2 log n
≤ 1

n2
.

Thus, with probability greater than 1 − 1/n2, there are less than O(log n log D) trees rooted in Bu(2k)
that traverses u. Note that we can conduct the same argument at all scale k ≤ log D. From the union
bound, the probability that there exists a ball Bu(2k), with more than log n trees that traverses u is less
than log D/n2. Thus, there are less than O(log n(log D)) trees that traverses u with probability greater
than 1− log D/n2. Applying once more the union bound yields that this is true for all nodes u ∈ V with
probability greater than 1 − log D/n.�

Proposition 1 The sampling step in Sample-based small world (Algorithm 1) requires O(D)
rounds, the exchange of O(n∆ log n(log D)2) messages on expectation, and O(∆ log n log D) memory
size in each node w.h.p..

Proof. The number of rounds that requires Sample(u, i) is at most 6 · 2i + 1 in the case where the
exploration succeeds and reach the radius 3 · 2i, because messages have to go down to the leaves along
the radius 3 · 2i, and then then sent back to the root. A given node u executes Sample(u, i) for i from
k0 to �log D�, which thus requires at most O(D) rounds. Since the executions are run in parallel, the
total number of rounds is O(D).

In Sample(u, i), each inner node of the tree exploration sends at most ∆ messages at most three
times. With probability 2c logn/bu(2k), the tree exploration ends at radius 2k and contains bu(2k) nodes,
yielding a number of messages O(∆bu(2k)). The expected number of messages of for the level i is then
O(i∆), and O(∆(log D)2) for the total execution on the node u. By linearity of expectation, the total
number of messages O(n∆(log D)2) in expectation.

6

As for the memory, a node u has to store enough information for the execution of a DFS on each
tree that traverses it during the execution of Sample on all nodes and all levels. This requires a memory
size O(∆) for each tree. From lemma 4, any node is traversed by at most O(log n log D) trees w.h.p., the
result follows. �

3.2 The long range contact request steps

During this step, each node u chooses u.a.r. i ∈ {k0, . . . , �logD�} and requests a long range contact
to its ith level leader. We propose two implementations depending on the memory available at the nodes.

Large memory setting. In this first implementation, we aim at minimizing the overall number of
messages though the network, assuming that a large memory is available in the nodes. The requests
addressed to each ith level leader u flow synchronously from leaves to u along Tu,i. Each inner node
merges the requests received from its children into a single message, and forwards it to its parent with its
own request (if needed). Once u has received all its requests (after 2i rounds), say x requests, u picks x
integers q1, . . . , qx u.a.r. in {1, . . . , bu(3·2i)}, and launches the prefix searches in Tu,i for the q1th, . . . , qxth
nodes v1, . . . ,vx (using the subtree sizes stored in each inner node). The long range contacts v1, . . . ,vx

are then sent back to the leader (using the same merging scheme as before) and then to their destination
(using either the oracle or the rank of the destination in the prefix order in Tu,i as above) .

Proposition 2 The large memory request scheme requires : O(D) rounds, O(n log n logD) messages in
expectation and a memory size O(n).

Proof. In this scheme, sample nodes of level �log D� may have to record up to n requests of links in
the worst case where every node have chosen the �log D�-th level, and then requires a linear memory
size for these nodes.

The number of rounds required to execute the long-range link request phase is at most four times
the number of rounds required by the largest DFS, i.e. O(D).

Concerning the number of messages, each tree Ts,i rooted at a ith level leader s produces at most
3bsi(2i) messages. To count the number of messages, one can consider that each sample node of level i in-
duces at most 3bsi(2i) messages, and the other nodes do not induce messages. The overall expected number
of messages through the execution is then less than

∑
u∈V

∑�log D�
i=k0+2 3bu(2i) Pr{u ∈ Si}= O(n log n log D).

�

Low memory setting. In the previous scheme, nodes of high levels are the bottlenecks of the network,
and the amount of memory they require can be unrealistic for some applications. Note first that a
polylogarithmic memory size for every node cannot be achieved if the number of rounds is o(n). Indeed,
assume the process runs in R rounds, even if requests to the leaders are properly scheduled, there
is at least one round for which a sample node of the highest level may receive a link request from
n/R nodes. In order to match an amount of memory of size O(loga n), at any node, for some constant
a > 0, R has then to be of order Ω(n/ loga n). We present here an alternative implementation of the
long range contacts request phase, which achieves the augmentation process in O(n) rounds with only
polylogarithmic memory size for all nodes w.h.p..

In fact, the long range contacts requests within a leader tree can be scheduled in such a way that
there is at most one new request per round received by the leader. Each ith leader node u creates a
token OKu,i that traverses Bu(2i) along the tree Tu,i, i.e., at each round, the token is forwarded to
the next node in prefix order. Whenever a node v receives the token, it sends its long range contact
request to its parent Tu,i (if needed). Any node receiving a long range contact request for u forwards it
to its parent in Tu,i. Whenever u receives a long range contact request, it chooses a random integer x
in {1, . . . , bu(3 · 2i)}, launches a prefix search for the corresponding node vx in Bu(3 · 2i) along Tu,i. vx

stores all nodes that want itself as a long range contact. When token OKu,i is back to u, u creates a
new token GOu,i that traverses Bu(3 · 2i) in prefix order along Tu,i. Whenever a node v receives the new
token, it answers to each of its stored requests one by one at each round until no request are left, and
then forwards the token to next node in prefix order. This schedule is illustrated in Figure 2.

7

Leader

REQ

REQ

REQ

REQ

Token

Request

Fig. 2 – Illustration of long range contact requests schedulling in the low memory setting.

This algorithm guarantees that, in Tu,i, the number of messages simultaneously sent by a node is at
most a constant. From Lemma 4, any node belongs to at most O(log n log D) such trees, w.h.p., one can
then allow a node to merge O(log n log D) potential messages into one message for the same neighbor,
at no extra cost.

The following lemma guarantees that the number of requests stored in a node before being sent back
to a leader is at most O(log n), and thus fits our low memory setting. This lemma relies on a standard
probability urn result, since picking of long range contacts consists in picking independently random
numbers in a set of numbers.

Lemma 5 A node v is chosen as the long-range contact of at most 8c2 log n nodes with high probability.

Proof. Let v a node. Let Xask(v) the random variable which states for the number of nodes that
choose v as their long-range contact, in the whole network. Denote such nodes as asking nodes. The
total number of asking nodes is the sum of the number of asking nodes in each tree Tu,i such that
δ(u,v) ≤ 3 · 2i, and u is a ith level leader. We are going to use an extra random variable X�

ask(v) which
stochastically dominates Xask(v). We consider the virtual setting where, for each node u and each level
i, all the nodes w in Bu(2i) prick two numbers uniformly at random : one between k0 + 2 and �log D�,
and the other one between 1 and bu(3 · 2i). Given a node u and a level i, we denote by �u,i,w, for all
w ∈ Bu(2i), the random variable which is equal to 1 if u is a ith level leader and w has picked the couple
of numbers (i, vu,i), vu,i being the rank of v in the prefix order search in Bu(3 · 2i) (for instance). Then,
the random variable X�

ask(v) defined by :

X�
ask(v) =

�log D�∑
i=k0+2

∑
u∈Bv(3·2i)

∑
w∈Bu(2i)

�u,i,w,

stochastically dominates Xask(v). Indeed, in the real framework, a node chooses its long-range contact
through a single leader, while in our virtual setting, by making all nodes pick a couple of numbers, we
artificially increase the probability to pick the number vu,i, which corresponds to picking the node v
uniformly at random.

Note that :
Pr{�u,i,w = 1} =

2c logn

bu(2i)
1

�log D� − k0 − 1
1

bu(3 · 2i)
.

By the way, for all u ∈ Bv(3 · 2i), bv(6 · 2i)/c ≤ bu(3 · 2i) ≤ bv(6 · 2i), by inclusion and bounded growth.

8

Consequently, by linearity of expectation,

2c log n
bv(3 · 2i)
bv(6 · 2i)

≤ E[X�
ask(v)] ≤ 2c2 log n

bv(3 · 2i)
bv(6 · 2i)

,

that is : E[X�
ask(v)] ∈ [2 logn, 2c2 log n], by using the moderate growth. Since the indicative variables are

bounded and independent, we can use a Chernoff bound :

Pr{X�
ask(v) > 4E[X�

ask(v)]} ≤ [
1
e
(e/4)4]E[X�

ask(v)] ≤ 1
e2 log n

≤ 1
n2

.

Thus, node v has to record less than 8c2 log n asking nodes with a probability greater than 1 − 1/n2,
since X�

ask(v) stochastically dominates Xask(v). By the union bound over all nodes v, each node has to
record at most 8c2 log n asking nodes with high probability (greater than 1 − 1/n). �

Lemma 6 Let u be a ith level leader. For any round of the low memory request scheme, every node
v ∈ Tu,i sends or receives at most 3 messages in Tu,i.

Proof. Message passing is organized by means of the tokens OKu,i and GOu,i, which are located in at
most one node The knowledge of message OKu,i indicates that the current node is allowed to immediately
send or forward its request towards u in the next rounds.

Let v and w two nodes in Tu,i and assume that w receives the message OKu,i before v. If w is an
ancestor of v in Tu,i, w will be allowed to send its request before v and the two requests cannot be
located in the same node. As soon as OKu,i and the link requests are no more located in the same node
z, it means that the message OKu,i visits a new subtree of Tu,i and that any node of this subtree has
z as ancestor. The request forwarded by z cannot be caught up with a link request coming from this
subtree.

As long as the token OKu,i is not back to u, the long range contact request of a node w can be
decomposed into two steps : (1) the routing toward the leader , and (2) the routing from u to a random
node vx. Since u receives at most one request per round, and as the routing tasks are done along shortest
paths, every node of Tu,i receives at most one request per round from its parent. Finally, each node of
Tu,i receives an overall of at most 3 messages per round. The same analysis holds for the way back of
the long-range contacts, with the use of token GOu,i. �

Proposition 3 The low memory request scheme requires at most 4n rounds, O(∆ log n log D) memory
size in all nodes w.h.p., and O(nD log n) messages on expectation.

Proof. The number of rounds required by the new implementation is the time needed to schedule the
requests. This algorithm is based upon a DFS traversal. For a tree Tu,i, the traversal is done in bu(2i)
rounds and the first phase of the link requests are done within bu(2i) + 2i rounds, which is at most
2bu(2i). As for the second phase, we have to add the extra delay due to the number of nodes of Tu,i

that have chosen u as their leader. This phase is done in at most 2bu(3 · 2i) + 2bu(2i) rounds, and the
scheduling is achieved within 4n rounds for any node u and any level i.

We now deal with the total number of messages. Since a token makes twice a DFS traversal, there are
2bu(3 · 2i) messages dedicated to the token. The number of requests from Tu(2i) that are sent to u is at
most bu(2i). Each request produces at most 4 ·3 ·2i messages. To count the number of messages, one can
consider that each ith leader node of level i induces at most O(2ibu(2i)) messages, and the other nodes
do not induce messages. Let v ∈ V . The probability that v is a ith level leader is 2c logn/bv(2i), the
expected number of messages per node is thus

∑
i≤�log D� O(2i log n)) = O(D log n), yielding an expected

overall number of messages O(nD log n).
Concerning the memory size, from Lemma 4, each node requires O(∆ log n log D) to store all the

information for the trees that traverse it. From Lemma 5, the memory required to store the requests
before sending them is at most 8c2 log n requests w.h.p., the result follows. �

9

4 Polylogarithmic expansion rate

In this section, we extend our distributed small world algorithm to networks of polylogarithmic ex-
pansion rate O((log n)β), β ≥ 0. For a network of expansion rate c(log n)β , c > 0, β ≥ 0, the only
important change consists in setting the value of k0 to �log(2c(log n)β+1�, and the initial trial proba-
bility of Sample(u, i) to 2c(log n)β+1/bu(2k0). The probability of success of the sample remains then
unchanged. Since the value of k0 is required to run the algorithm Sample, one could think that the
knowledge of the exact constants c, β is required. However, since Sample succeeds w.h.p., one can guess
the values of c and β as follows : start with c = 1, and β = 0 ; restart with c := 2c, until c ≥ log n ; then,
restart with β := 1 and β := β + 1, until the sampling phase succeeds. This guarantees, that within
O(log log n) executions, the sample succeeds, and the error on the true constant β cannot be larger than
O(1).

The following theorem states our extended results to networks of polylogarithmic expansion rates.

Theorem 3 Any synchronized n-node network of expansion rate O((log n)β), diameter D, and maximum
degree ∆, can be turned into a small world via the addition of one link per node,

– in O(n) rounds, with an expected number of messages O(nD(log n)β+1), and requiring
O(∆(log n)3β+1) memory size with high probability ;

– or in O(D) rounds, with an expected number of messages O(n(log n)β+1(log D)3) and requiring
O(n) bits of memory in each node with high probability.

In the augmented network, the greedy routing algorithm computes paths of expected length
O

(
(log D)6β log δ + (log n)β+1

)
between any pair of nodes at mutual distance δ in the original network.

Using the low memory scheme, any synchronized n-node network, of expansion rate O((log n)β) and
diameter D, can be turned into a small world in at most 7n rounds, requiring O(∆(log n)3β+2 log D) bits
of memory in each node w.h.p., and with O(nD) messages on expectation.

The proof of Theorem 3 is similar to the proof of Theorem 1, however, the expansion rate plays
an important role in the variations of the main functions of the process (sample density, path length,
memory required) and requires a precise new analysis.

From now, we consider a graph G = (V, E) of expansion rate c(log n)β .
The next two lemma guarantee that the sampling phase has an analogous behaviour in a polylog-

arithmic expansion rate network than in a bounded growth network. This new analysis of the random
sampling provides us the dependencies of the constants in terms of the expansion rate exponent β.

Lemma 7 For all i ∈ {�log(2c(log n)β+1)� + 2, . . . , �log D�}, we have, for all node u ∈ V ,
Pr{u ∈ Si} = (2c(log n)β+1)/bu(2i).

Proof. Setting k0 = �log(2c(log n)β+1)� suffices to prove the result : the proof is the identical to
Lemma 2 proof. �

Lemma 8 The probability that each node u has a ith level leader for all levels i ∈ {�log(2c(log n)β+1)�+
2, . . . , �log D�} is greater than 1 − log n

n .

Proof. Consider a node u and let i ∈ {�log(2c(log n)β+1)� + 2, . . . , �log D�}. From Lemma 7, the
probability that a node v belongs to Si is 2c(log n)β+1/bv(2i). By inclusion, any node v in Bu(2i)
satisfies : bv(2i) ≤ bu(2i+1). From the given expansion rate, we have bu(2i+1) ≤ c(log n)βbu(2i). The
probability that no node of Si lies in Bu(2i) is thus less than :

(
1 − 2 log n

bu(2i)

)bu(2i)

≤ 1
n2

.

By the union bound, since there are n nodes and less than �log D� levels, the probability that this failure
happens for at least one node is less than log D/n ≤ log n/n, the result follows. �

Lemmas 7 and 8 enable us to analyze the greedy routing in the augmented network, and thus to
prove its navigable small world status.

10

Theorem 4 In any network of n nodes and of expansion rate O((log n)β), augmented by our small
world algorithm, the greedy algorithm computes, between any pair of nodes at mutual distance δ, a path
of expected length O

(
(log n)6β log D log δ

)
.

Proof. Let s and t the source and target, at mutual distance δ. Divide the execution of the greedy
algorithm into log m phases : the algorithm is in phase j while the current distance to t belongs to
(2j−1, 2j], for all j ∈ {1, logm}.

Assume the algorithm is in phase j and u is the current message holder. From lemma 10, for any node
v at distance less than 2j−1 from t, and at distance X ≥ 2c(logn)β+1 from u, Pr{L(u) = v} is greater
than : 1/(c2(log n)2β+1 log D · bu(X)). Note that, while j > k0 + 1, the distance hypothesis are satisfied
for all nodes v in Bt(2j−2). Assume now j > j0. For all nodes v in Bt(2j−2), we have X ≤ 5 · 2j−2. From
the union bound on nodes of Bt(2j−2), we obtain :

Pr{L(u) ∈ Bt(2j−2)} ≥ 1
c2(log n)2β

1
log D

bt(2j−2)
bu(5 · 2j−2)

,

By inclusion, bu(5 · 2j−2) ≤ bt(10 · 2j−2), and from the given expansion rate, bt(10 · 2j−2) ≤
c4(log n)4βbt(2j−2). The probability to end the jth phase of the execution is thus greater than :
1/(c6(log n)6β log D) in each node during this phase. The expected number of steps in each phase j > j0
is then less than

(
c6(log n)6β

)
log D. As soon as j ≤ j0, we can simply lower bound the remaining ex-

pected number of steps by 2j0 . Finally, summing over the log δ phases, the total expected path length is
less than : O

(
(log n)β+1

)
+ O

(
(log D)6β log δ

)
. �

It remains to analyze the consequences of the polylogarithmic expansion rate in terms of memory
space and number of messages in the large and low memory settings of our algorithm. Note that the two
implementation described in section 3 are unchanged, we only study the changes in performances.

Lemma 9 W.h.p, each node u belongs to O((log n)3β+1) trees T rooted in sample nodes.

Proof. Trees T to which u belongs are all the trees rooted in samples nodes of level i that
belong to Bu(2i+1), for all levels i. Consider a node v ∈ Bu(2i+1). From Lemma 7, Pr{v ∈
Si} = 2c(log n)β+1/bv(2i). Since v ∈ Bu(2i+1), by inclusion, we have bv(2i) ≤ bu(2i+2) ≤
c(log n)βbu(2i+1). From the expansion rate, bv(2i) ≥ bv(2i+2)/(c2(log n)2β) ≥ bu(2i+1)/(c2(log n)2β).
For each node v in Bu(2i+1), let Xv the random variable equals to 1 if v ∈ Si, and 0 otherwise,
and let X =

∑
v∈Bu(2i+1) Xv. From the above discussion, for all v in Bu(2i+1), E[Xv] belongs to

[2 logn/bu(2i+1), 2c3(log n)3β+1/bu(2i+1)]. Thus E[X] ∈ [2 log n, 2c3(log n)3β+1]. Since variables Xv are
independent, we can use Chernoff bound to upper bound the probability that X is greater than 4E[X],
we get :

Pr{X > 4E[X]} ≤ [
1
e
(e/4)4]E[X] ≤ 1

e2 log n
≤ 1

n2
.

Since Pr{X > 4E[X]} ≥ Pr{X > 8c3(log n)3β+1}, with probability greater than 1− 1/n2, u is traversed
by at most 8c3(log n)3β+1 trees rooted in sample nodes of level i. By the union bound, it occurs for all
levels i with probability greater than 1− logD/n2, which gives a number of trees O((log n)3β+1). By the
union bound again, this occurs for all nodes u with probability greater than 1 − log n/n. �

Lemma 10 For all v �= u in V such that d(u,v) ≥ 2c(logn)β+1, the probability that v is the long range
contact of u is greater than

1
c2(log n)2β+1 log D

1
bu(d(u,v))

.

Proof. It suffices to replace the factor c2 by c2(log n)β in Lemma 3 proof. �

Lemma 11 The expected overall number of messages induced by the algorithm Sample is
O

(
n(log n)β+1(log D)3

)
.

11

Proof. Compared to the bounded growth networks version, the probability of being a ith level node is
simply multiplied by O((log n)β+1), the result is immediate. �

Lemma 12 W.h.p., the memory required by algorithm Sample in each node is O
(
∆(log n)3β+1 log D

)
.

Proof. A node u has to store enough information for the execution of a DFS on each tree Tr that
traverses it during the execution of Sample on r, which is O(∆) for each tree. From lemma 9, w.h.p.,
there are at most O((log n)3β+1 log D) such trees for each node u, the result follows. �

We are now able to state our extended results in the high memory scheme.

Proposition 4 The high memory scheme requires O(D) rounds, O(n(log n)β+1(log D)3) messages and
a memory size O(n).

Proof. In this scheme, sample nodes of level �log D� may have to record up to n requests of links in
the worst case where every node have chosen the �log D�-th level, and then requires a linear memory
size for these nodes. The time required to execute the long-range link request phase is at most four times
the time required by the largest DFS, i.e. O(D). As for the number of messages, each tree Tsi rooted
in a sample node of level i induces at most 3bsi(2i) messages. To count the number of messages, one
can consider that each sample node of level i induces at most 3bsi(2

i) messages, and the other nodes
do not induce messages. We deduce the overall expected number of messages through the execution :∑

u∈V

∑log D
i=k0+2 3bu(2i) Pr{u ∈ Si}, which is O(n(log n)β+1 log D), and is dominated by the number of

messages due to Sample. �

To complete the proof of Theorem 3, we need to analyse the schedulling part of the low memory
setting.

Proof of Theorem 3. Proposition 4 partially proves the Theorem. to complete the proof, we study
the low memory setting.

The only real change concerns the addition of the scheduling. However, this algorithm is based upon
a DFS traversal. For a tree Tr, the traversal is done in |Tr| rounds and the first phase of the link requests
are done within |Tr| plus the height of Tr rounds, which is at most 2|Tr|. As for the second phase, we
have to add the extra delay due to the number of nodes of Tr that have chosen r as their leader. This
phase is done in at most 3|Tr| rounds, and the scheduling is done within 5|Tr| ≤ 5n rounds for any r.

We now deal with the total number of messages. Since a token makes twice a DFS traversal, there are
2bu(3 · 2i) messages dedicated to the token. The number of requests from Tu(2i) that are sent to u is at
most bu(2i). Each request produces at most 4 ·3 ·2i messages. To count the number of messages, one can
consider that each ith leader node of level i induces at most O(2ibu(2i)) messages, and the other nodes
do not induce messages. Let v ∈ V . The probability that v is a ith level leader is 2c(log n)β+1/bv(2i), the
expected number of messages per node is thus

∑
i≤�log D� O(2i)(log n)β+1) = O(D(log n)β+1), yielding

an expected overall number of messages O(nD(log n)β+1).
Concerning the memory size, from Lemma 9, each nodes can store all the informations on trees that

traverse it with a memory of size O(∆(log n)3β+1). The memory required to store the requests before
sending them is dominated by this latter memory size. �

5 Conclusion

We have introduced a fully distributed scheme which augments graphs of low expansion into navigable
small world via the addition of one single link to each nodes. This scheme can be used in distributed
virtual networks such as Peer-to-peer networks, where the addition of one link per node corresponds to the
addition of one entry in each routing table. Our analysis focused on graphs of constant or polylogarithmic
expansion rate, it can be extended to higher expansion rates, however, the performances will degrade.

An interesting extension of this work would be to capture the minimal dynamical mechanisms un-
derlying the navigable small world property, and to separate it from the structural properties of the
graph. Indeed, it is still an open question to determine whether any graph class can be augmented into
a navigable small world.

12

Références

[1] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup. Compact name-
independent routing with minimum stretch. In 16th Annual ACM Symposium on Parallel Algorithms
and Architecture (SPAA), pages 20–24, 2004.

[2] Ittai Abraham and Dahlia Malkhi. Name independent routing for growth bounded networks. In
17th Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA), pages 49–55, jul
2005.

[3] L. Barrière, P. Fraigniaud, E. Kranakis, and D. Krizanc. Efficient routing in networks with long
range contacts. In Proceedings of 15th International Symposium on Distributed Computing (DISC
’01), volume 2180, pages 270–284, 2001.

[4] P. Bose and P. Morin. Online routing in triangulations. SIAM J. Comput., 33(4) :937–951, 2004.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet : A distributed anonymous informa-
tion storage and retrieval system. In Proceedings of Designing Privacy Enhancing Technologies :
Workshop on Design Issues in Anonymity and Unobservability, pages 46–66, July 2000.

[6] P. Duchon, N. Hanusse, E. Lebhar, and N. Schabanel. Could any graph be turned into a small
world ? Theoretical Computer Science, 2005.

[7] P. Fraigniaud. Greedy routing in tree-decomposed graphs : a new perspective on the small-world
phenomenon. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA), 2005.
To appear.

[8] P. Fraigniaud and P. Gauron. Brief announcement : an overview of the content-addressable network
d2b. In Proceedings of the ACM 22st Symposium on Principles of Distributed Computing (PODC),
page 151, 2003.

[9] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 210–219, 2001.

[10] Cyril Gavoille and David Peleg. Compact and localized distributed data structures. Journal of
Distributed Computing, 16 :111–120, May 2003. PODC 20-Year Special Issue.

[11] K. Horowitz and D. Malkhi. Estimating network size from local information. Inf. Process. Lett.,
88(5) :237–243, 2003.

[12] D. R. Karger and Matthias Ruhl. Finding nearest-neighbors in growth-restricted metrics. In Pro-
ceedings of the 34th annual ACM symposium on Theory of computing (STOC), pages 741–750,
2002.

[13] J. Kleinberg. The Small-World Phenomenon : An Algorithmic Perspective. In Proceedings of the
32nd ACM Symposium on Theory of Computing (STOC), pages 163–170, 2000.

[14] J. Kleinberg. Small-world phenomena and the dynamics of information. In Advances in Neural
Information Processing Systems (NIPS) 14, 2002.

[15] D. Liben-Nowell, J.Novak, R. Kumar, R. Raghavan, and A. Tomkins. Geographic routing in social
networks. Proceedings of the National Academy of Science of the USA, 102(33) :11623–11628, 2005.

[16] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy : a scalable and dynamic emulation of the butterfly.
In Proceedings of the ACM 21st Symposium on Principles of Distributed Computing (PODC), pages
183–192, 2002.

[17] S. Milgram. The small world problem. Psychology Today, 61(1), 1967.

[18] A. Rowstron and P. Druschel. Pastry : Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In IFIP/ACM Int. Conf. on Distr. Syst. Platf., pages 329–350, 2001.

[19] A. Slivkins. Distance estimation and object location via rings of neighbors. In Proceedings of the
24th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2005. To appear.

[20] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord : A scalable
peer-to-peer lookup service for internet applications. In SIGCOMM, pages 149–160, 2001.

[21] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1) :1–24, 2005.

13

