
HAL Id: hal-02102220
https://hal-lara.archives-ouvertes.fr/hal-02102220v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Radix Floating-Point Division Algorithms for
Embedded VLIW Integer Processors

Claude-Pierre Jeannerod, Saurabh-Kumar Raina, Arnaud Tisserand

To cite this version:
Claude-Pierre Jeannerod, Saurabh-Kumar Raina, Arnaud Tisserand. High-Radix Floating-Point Di-
vision Algorithms for Embedded VLIW Integer Processors. [Research Report] LIP RR-2005-39, Lab-
oratoire de l’informatique du parallélisme. 2005, 2+11p. �hal-02102220�

https://hal-lara.archives-ouvertes.fr/hal-02102220v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

High-Radix Floating-Point Division Algorithms
for Embedded VLIW Integer Processors

Claude-Pierre Jeannerod,
Saurabh-Kumar Raina,
Arnaud Tisserand

September 2005

Research Report No 2005-39

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

High-Radix Floating-Point Division Algorithms
for Embedded VLIW Integer Processors

Claude-Pierre Jeannerod,
Saurabh-Kumar Raina,

Arnaud Tisserand

September 2005

Abstract
This paper presents floating-point division algorithms and implementations for
embedded VLIW integer processors. On those processors, there is no hardware
floating-point unit, for cost reasons. But, for portability and/or accuracy rea-
sons, a software FP emulation layer is sometime useful. Here, we focus on
high-radix digit-recurrence algorithms for FP division on integer VLIW pro-
cessors such as the ST200 from STMicroelectronics.

Keywords: Computer arithmetic, floating-point arithmetic, high-radix division algorithm, integer
processor, VLIW processor.

Résumé
Ce papier présente quelques algorithmes de division flottante et leur implan-
tation pour des processeurs embarqués entiers de type VLIW. De tels pro-
cesseurs ne possèdent pas d’unité flottante matérielle mais, pour des raisons de
portabilité et/ou de précision, disposer d’une bibliothèque flottante est parfois
utile. On se concentre ici sur les algorithmes par addition/décalage, en grande
base ; les processeurs visés sont ceux de la famille ST200 de STMicroelectron-
ics.

Mots-clés: Arithmétique des ordinateurs, arithmétique virgule flottante, algorithme de division en
grande base, processeur entier, processeur VLIW.

High-Radix Floating-Point Division Algorithms for Embedded VLIW Integer Processors 1

1 Introduction

The implementation of fast floating-point (FP) division is not a trivial task [4, 6]. A study from
Oberman and Flynn [8] shows that even if the number of issued division instructions is low (around
3% for SPEC benchmarks), the total duration of the division computation cannot be neglected (up to
40% of the time in arithmetic units).

General purpose processors allow fast FP division thanks to a dedicated unit based on the SRT
algorithm or Newton-Raphson’s algorithm using the FMA (fused multiply and add) of the FP unit(s).
Even when a software solution, such as Newton-Raphson’s algorithm, is used, there is some minimal
hardware support for those algorithms (e.g., seed tables, see [2]). The main division algorithms and
implementations used in general purpose processors can be found in a complete survey [9].

Most special purpose or embedded processors for digital signal processing, image processing and
digital control rely oninteger or fixed-point processors, for cost reasons (small area). When imple-
menting algorithms dealing with real numbers on such processors, one has to introduce some scaling
operations in the target program, in order to keep accurate computations [7]. The insertion of scaling
operations is complicated due to the wide range of real numbers required in many applications and it
depends on the algorithm and data. Furthermore, scaling is time consuming at both the application
and design levels. Of course, there is no such problem with FP arithmetic.

Furthermore, circuits in these application fields seldom integrate dedicated division units. But in
order to avoid slow software routines, manufacturers sometimes insert a division step instruction in
the ALU (arithmetic and logic unit). Most of the time, this instruction is one step of the non-restoring
division algorithm (radix-2). Then a completen-bit division is done usingn steps of this instruction.
One goal of this work is to show that some other fast division algorithms may be well suited for the
native integer (or fixed-point) hardware support of embedded processors.

In this paper, we focus on pure software division implementation based on high-radix SRT (from
the initials of Sweeney, Robertson, Tocher) algorithms. We investigate the implementations of these
algorithms on processors with rectangular multipliers (e.g.,16×32 → 32), more or less long latencies
for the multiplication unit and parallel functional units (multipliers and ALU).

This work is part of FLIP (floating-point library for integer processor) which is a C library for the
software support of single precision FP arithmetic on processors without FP hardware units such as
VLIW (Very Long Instruction Word) or DSP (Digital Signal Processing) processor cores for embedded
applications. Our current target is the ST200 processor from STMicroelectronics [5].

The paper is organized as follows. Section2 presents definitions and notations. Section3 recalls
the basic algorithms used for software division. Section4 presents the standard SRT algorithms (with
radix r = {2, 4, 16}) and their impementations on the ST200 processor. The implementation of the
high-radix algorithm on the ST200 processor and its comparison to other algorithms are presented in
Section5. In Section6, we briefly present the FLIP library and the target ST200 procesor architecture.

2 Definitions and notations

In this paper we follow the definitions and notations of [4]. The division operation is defined by

x = q × d + rem

and
|rem| < |d| × ulp and sign(rem) = sign(x),

2 Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand

wherex is thedividend, d thedivisor, q thequotient, and optionallyrem theremainder. In our case,
we have0 ≤ x < d andd ∈ [1, 2). Henceq ∈ [0, 1). Theunit in the last place is ulp = r−n for the
radix-r representation ofn-digit fractional quotients. In the following, we will use radix-2 or radix-2k

representations,k ∈ {1, 2}. The valuew[j] denotes the partial remainder or the residual obtained at
stepj. The quotient afterj steps isq[j] =

∑j
i=1 qir

−i and the final quotient isq = q[n].

3 Basic Software Division

Digit-recurrence algorithms produce a fixed number of quotient bits at each iteration [3, 4] where
every iteration produces one quotient digit (one or more quotient bits), most significant quotient digits
first. Such algorithms are similar to the “paper-and-pencil” method. It is well known that the choice of
radix and quotient digit set influences the overall latency of the algorithm [4]. Roughly, increasing the
radix decreases the number of iterations required for the same quotient precision. Unfortunately, as
the radix increases, every iteration becomes more complicated and the overall latency is not reduced
as expected. Additionally, it becomes impractical to generate the required divisor multiples for higher
radices. The two basic digit-recurrence algorithms are therestoring and thenon-restoring algorithms.
Those algorithms only rely on very simple radix-2 iterations, i.e., one bit of the quotient is produced
at each iteration. They are often used in software implementations for low performance applications.

3.1 Restoring Algorithm

The restoring algorithm uses radixr = 2 with quotient digit set{0, 1}. At each iteration, the algorithm
subtracts the divisord from the previous partial remainderw[j − 1] multiplied byr (line4 in Fig. 1).
The quotient digit selection function is derived by comparing the residuals at each step with the divisor
multiples (here 0 ord). If the result is strictly less than0, the previous value should be restored (line
9 in Fig. 1). Usually, this restoration is not performed using an addition, but by selecting the value
2w[j − 1] instead ofw[j], which requires the use of an additional register or conditional execution.

1 w[0] ←− x
2 f o r j from 1 to n do
3 w[j] ←− 2 × w[j − 1]
4 w[j] ←− w[j] − d
5 i f w[j] ≥ 0 then
6 qj ←− 1
7 e l s e
8 qj ←− 0
9 w[j] ←− w[j] + d

Figure 1: Restoring division algorithm

3.2 Non-Restoring Algorithm

Nonrestoring division [4] is an improved version of the restoring method in the sense that it completely
avoids the restoration step by combining restoration additions with the next recurrence, thus, reducing
the overall latency. Moreover, it uses the quotient digit set{−1,+1} to perform directly the recurrence

High-Radix Floating-Point Division Algorithms for Embedded VLIW Integer Processors 3

with the selection function

qj =

{
1 if w[j − 1] ≥ 0,
−1 if w[j − 1] < 0.

The nonrestoring division algorithm presented in Fig.2allows the same small amount of computations
at each iteration. The conversion of the quotient from the digit set{−1, 1} to the standard set{0, 1}
can be doneon the fly by using a simple algorithm (see [4, p. 256]). An extra step enusres a positive
final remainder by adding the divisor and consequently modifying the quotient.

1 w[0] ←− x
2 f o r j from 1 to n do
3 w[j] ←− 2 × w[j − 1]
4 i f w[j] ≥ 0 then
5 w[j] ←− w[j] − d
6 qj ←− 1
7 e l s e
8 w[j] ←− w[j] + d
9 qj ←− −1

Figure 2: Non-restoring division algorithm

The nonrestoring algorithm requiresn shifts andn additions/subtractions to obtain an digit quo-
tient, and is therefore faster than the restoring one (see [3, p. 180]).

4 SRT Division Algorithms for Integer Processors

The SRT algorithm, like other digit-recurrence algorithms, is similar to the “paper-and-pencil” method
in the sense that it iteratively computes the digits of the quotient. In radixr and forj ≥ 1, the jth
iteration of the SRT algorithm is

w[j] ←− r × w[j − 1] − qj × d,

wherew[0] = x. As before, the main problem is to determine the new quotient digitqj at each
iteration. However, unlike the restoring and non-restoring algorithms of Sec.3, all SRT methods use
a redundant quotient digit set so as to speed up the computation ofqj. More precisely, comparing the
partial remainder to all the divisor multiples can offset or possibly diminish all of the performance
gained by increasing the radix. To avoid this, redundancy is introduced in the set of possible quotient
digits: in radixr, qj can be chosen among more thanr values [3, p. 10]. This allows to simplify the
quotient digit selection function in the sense that comparisons are now done withlimited precision
constants only.

In hardware, the implementation is done using a table addressed by a few most significant bits of
the divisord and the partial remainderw[j]. The partial remainder is represented using a redundant
notation to speedup the subtraction ofqj+1 × d from r × w[j]. Hardware SRT dividers are typically
of low complexity, utilize small area, but have relatively large latencies. A complete book is devoted
to digit-recurrence algorithms [3] but mainly for hardware implementations.

In software, which is our case here, tables for quotient digit selection should not be used in order
to avoid cache misses. Furthermore, a redundant number system is not useful for the partial remainder.

4 Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand

All the algorithms presented in this paper are tuned to the IEEE 754 standard for binary floating-
point arithmetic [1] in single precision. Hencex and d are 24-bit significands represented in the
normalized floating-point format, that is, they both lie in the range[1, 2).

The implementations we describe below apply only to the significands of the input operands,
since the final exponent and sign of the result can be computed easily. Also, since SRT division
algorithms use a redundant quotient digit set, it is customary to restrict the range of the divisord so
thatd ∈ [1/2, 1). Consequently, the dividendx should be scaled accordingly so thatx ∈ (0, d). Both
scalings are easily done by shifting. In the rest of the paper, we thus assume thatx ∈ (0, d) and
d ∈ [1/2, 1). The goal of FP division is to compute a normalized quotient of24 bits, and one extra
bit (guard bit) for rounding. But sometimes, depending on the algorithm, the precision of the quotient
must be extended to one or more bits, which requires one or more extra iterations (see Sec.4.2).

In Sec.4.1, we recall the quotient digit selection function that is classically used for the radix-2
SRT. In Sec.4.2, we focus on radix-4 SRT and show how in this case the classical selection function
can be optimized for our target architecture. In Sec.4.3, we recall the basic high-radix SRT division
algorithm and the prescaling method.

4.1 Radix-2 SRT division algorithm

In the nonrestoring algorithm, an addition or a subtraction is always performed, whetherqj = −1
or qj = 1. Radix-2 SRT division (Fig.3) uses a redundant quotient digit set{−1, 0, 1} and selects
qj = 0 that replaces some additions/subtractions by simple shifts. This algorithm uses the iteration

w[j] ←− 2w[j − 1] − qj × d,

and the selection function

qj =

+1 if w[j − 1] ≥ 1/2,

0 if −1/2 ≤ w[j − 1] < 1/2,

−1 if w[j − 1] < −1/2.

Notice first that this selection function doesnot depend ond; also, when the partial remainder lies
in [−1/2, 1/2) then0 is selected and thus no operation is performed. Again, as in the non restoring
algorithm, the conversion of the quotient from the redundant digit set{−1, 0, 1} to the standard digit
set{0, 1} can be doneon the fly by using a simple algorithm (see [4, p. 256]). Ifw[n] < 0, the divisor
is added to it and the last bit of the quotient is modified accordingly in order to ensure a positive final
remainder.

4.2 Radix-4 SRT division algorithm

This SRT algorithm uses radixr = 4 and thus retires two bits of the quotient at each iteration. The
number of iterations is typically divided by two but, at each iteration, selecting the quotient digit is
now more complicated. Unlike for radix-2, the selection function for radix4 does not solely depend
on constants but also on the divisord. Since the selection function depends on a few bits of the divisor
too, partial remainders are compared to the selection constants corresponding to each interval of the
divisor. Fig.5 shows the positive half of the P-D diagram1 for the radix-4 SRT algorithm with quotient
digit set{−2, . . . , 2}. This diagram helps to choose the selection constants for each interval in two

1P = Partial remainder, D = Divisor [4, p. 283]

High-Radix Floating-Point Division Algorithms for Embedded VLIW Integer Processors 5

1 w[0] ←− x
2 f o r j from 1 to n do
3 w[j] ←− 2 × w[j − 1]
4 i f w[j] ≥ 1/2 then
5 w[j] ←− w[j] − d
6 qj ←− 1
7 e l s e
8 i f w[j] < −1/2 then
9 w[j] ←− w[j] + d

10 qj ←− −1
11 e l s e
12 qj ←− 0

Figure 3: Radix-2 SRT division algorithm

overlap regions. In the radix-4 case, two possibilities exist for the redundant digit set. This set is
either{−2, . . . , 2} (in which case it is calledminimally redundant), or {−3, . . . , 3} (in which case it
is calledmaximally redundant). The latter has greater redundancy and thus reduces the complexity and
latency of the selection function, while the former reduces the number of divisor multiples used for
comparisons. The fact that the less redundant set provides smaller overlap regions (see Fig.5) forces
to examine the partial remainderw[j] and the divisord with greater accuracy and hence increases the
number of comparisons. Moreover, the partial remainderw[j] must be bounded by|w[j]| ≤ 2/3d
in case of a minimally redundant set [3, p. 11]. So it is necessary to scale the first partial remainder
w[0] = x to the proper range. Consequently, this scaling requires the quotient to be computed with
two extra bits of precision, which in turn needs an extra iteration [3, p. 41].

In general, the range of the divisor is determined first, and then a particular set of selection con-
stants is chosen depending on this interval. This determination requires up to three comparisons in
the case of the digit set{−2, . . . , 2} and at most one in the case of{−3, . . . , 3}. It turns out that, for
our target architecture, these comparisons increase the latency significantly and should be avoided as
much as possible. Therefore we suggest below a comparison-free alternative for computing the two
selection constants, says1 ands2, corresponding to the digit set{−2, . . . , 2}. (Note that, when using
{−3, . . . , 3}, there are now three selection constants but they can be obtained with exactly the same
approach.) Writing�∗� for the usual floor function of a real number∗ and recalling thatd has the
form d = 0.1d2d3d4 · · · dn with di ∈ {0, 1}, we defines1 ands2 as the following functions ofd:

s1 =
3
4

+
1
2
d2 +

1
4
d3 +

1
8
d4 − t,

where

t =
1
8

⌊
d +

3
16

⌋
,

and

s2 =
1
4

+
1
8
d2.

For a givend, the valuess1 ands2 can thus be obtained without any comparison withd. Additionally,
by definition oft, one has

t =

{
0 if d ∈ [

1
2 , 13

16

)
,

1 if d ∈ [
13
16 , 1

)
,

6 Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand

1 w[0] ←− x
2 t ←− �d + 3/16� × 2−3

where d = 0.1d2d3d4 · · · dn

3 s1 ←− 3/4 + 2−1d2 + 2−2d3 + 2−3d4 − t
4 s2 ←− 1/4 + d2/8
5 n ←− �n/2� + 1
6 f o r j from 1 to n do
7 w[j] ←− 4 × w[j − 1]
8 i f w[j] ≥ 0 then
9 i f w[j] ≥ s1 then

10 w[j] ←− w[j] − 2 × d
11 qj ←− 2
12 e l s e
13 i f w[j] ≥ s2 then
14 w[j] ←− w[j] − d
15 qj ←− 1
16 e l s e
17 qj ←− 0
18 e l s e
19 i f w[j] ≤ −s1 then
20 w[j] ←− w[j] + 2 × d
21 qj ←− −2
22 e l s e
23 i f w[j] ≤ −s2 then
24 w[j] ←− w[j] + d
25 qj ←− −1
26 e l s e
27 qj ←− 0

Figure 4: Radix-4 SRT division algorithm with digit set{−2, . . . , 2} for single precision (n = 24)

and one may check thats1 is exactly the “staircase” that belongs to the upper overlap region of the
P-D diagram in Fig.5. Similarly, the “staircase” in the lower overlap region is defined bys2.

We remark that the value oft actually depends only on0.1d2d3d4. However, in our software
context, getting these particular bits would require one more logical operation (mask). Computingt
with the wholed is thus more efficient.

A radix-4 SRT implementation using the selection constantss1 ands2 is given in Fig.4.
The same kind of selection function has been used for the digit set{−3, . . . , 3}. But, as can seen

in Table1, using{−2, . . . , 2} results in a faster implementation. This is due to the fact that there are
fewer divisor multiples.

4.3 Standard High-Radix Algorithm

The idea of the high-radix algorithm is to use a higher radix and to select a fixed number of most
significant bits of the shifted partial remainder as the quotient digit. In the previous algorithms in
Sec.4.1 and4.2, the approach of selecting the quotient digit by selection constants is complicated

High-Radix Floating-Point Division Algorithms for Embedded VLIW Integer Processors 7

Infeasible region (w[j] < d)

8d/3

5d/3

O
ve

rla
p

0.1000 0.1010 d

0.001

0.000

0.010

0.011

0.101

0.110

0.111

1.000

1.001

1.010

1.011

1.100

1.101

1.110

1.111

4w[j]

2

0.1110

O
ve

rla
p

2

1

0

2

2

2

2 2

2

1

1

1

1 1

1 1

1

1 1

1 1 1

1 1 1 1

0 0 0

0 0 0 00 or 1 0 or 1

0 or 10 or 10 or 10 or 1

1 or 2

1 or 2

1 or 2

1 or 2

4d/3

2d/3

d/3

0.1100

0.100

3
4

14
16

13
16

Figure 5: Radix-4 SRT division with quotient digit set{−2, . . . , 2}: P-D diagram

due to the large range of the divisor. So, the complexity of the selection function can be reduced by
restricting the range of the divisor. Since the overlap is larger when close tod = 1, it is convenient to
restrict the divisor to a range close to 1. This range restriction can be done byprescaling the divisor.
Moreover, to preserve the value of the quotient, the dividend has to be prescaled too. Since the range
of the divisor is now small, a selection function that is independent of the divisor can be implemented.
Prescaling consists here in multiplying bothx andd by a valueM such that the productM × d is
very close to1. In general purpose processors such as the Itanium processor [2] a right value forM is
looked up in a table. But here we shall defineM asp(d) wherep(d) is a polynomial that approximates
1/d over [1, 2). Now, the productM × x is very close to the quotientq and therefore a fixed number,
saym, of most significant bits ofMx can be used as the first quotient digit. OnceM is known, we
takew[0] = M × x, r = 2m and we perform as before iterations like

w[j] ←− r × w[j − 1] − qj × d.

Sincer = 2m is potentially much larger than2 or even4 (typically 8 ≤ m ≤ 16, due to the availability
of 16 × 32 → 32 multipliers), each iteration is called ahigh-radix iteration.

For example, letM = p(d) wherep(d) is the polynomial of degree1 given by

p(d) = 1.457106781 − 1
2
× d.

This gives1− 2−m < M × d < 1 + 2−m with m = 4 and thus we taker = 24 = 16. Hence, starting
with w[0] = M , the full quotientq in single precision is obtained after at most7 high-radix iterations.

8 Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand

Remark that, unlike the previous SRT algorithms, the productqj × d is not computed in a shift-
and-add fashion anymore but via a full multiplication. For such multiplications, sincem ≤ 16 it is
enough to use the rectangular multipliers16 × 32 → 32 available on our target architetcure. Finally,
quotient-digit selection can be done in a standard way byrounding the shifted partial remainder [3,
p. 109].

5 High-Radix SRT for VLIW Integer Processors

Here we study SRT in radixr = 29 = 512 and show how to implement it efficiently on our tar-
get VLIW architecture. As usual for high-radix SRT, we proceed in two stages: first, prescaling via
polynomial approximation and then performing a small number (in fact, only2) of high-radix iter-
ations. For each stage, we further explain optimizations that are specific to the architectures under
consideration.

5.1 Prescaling via degree3 polynomials

In order to compute an approximationM of 1/d up to9 bits of accuracy, we use the following two
polynomialsu(d) andv(d) of degree3:

u(d) = (−0.4354185d + 2.1661051) d2 − 4.0136915d + 3.2828333,
v(d) = (−0.1099684d + 0.7678062) d2 − 2.0034469d + 2.3153857. (1)

We takeM = u(d) for 1 ≤ d < 3/2 andM = v(d) for 3/2 ≤ d < 2. Since the two ranges used
here are now twice as small as[1, 2), this allows to have relatively low degree polynomials and yet the
desired accuracy of9 bits.

We can exploit the parallelism of the target processor as follows. The comparison ofd to 3/2 and
the evaluation of both polynomials are started simultaneously. Once we know the result of the com-
parison, we finish the evaluation of only the corresponding polynomial. Therefore, the comparison to
3/2 does not increase the latency.

Note further that these polynomials of degree3 are not evaluated with the classical Horner scheme,
but by using the value ofd2 instead, as can be seen in (1). Again, two linear terms can be evaluated in
parallel.

5.2 Radix-512 SRT iterations

Using the prescaling of Sec.5.1we set the first partial remainderw[0] to the valuex×M and perform
only two iterations in radix29 = 512:

w[j] ←− 512 × w[j − 1] − qj × d, j = 1, 2.

The corresponding algorithm is described in Fig.6.
The quotientq is now given byq = 0.q1q2q3 where eachqi is a9 bit digit. Also, the multiplication

qj ×d is done with anintrinsic function (called __st200mulhhs) which performs signed multiplication
16 × 32 → 32 where the result consists of the32 most significant bits.

For rounding, we use the ROUND function defined as ROUND(y) = �y + 2−1�.
Finally, the remainder is computed asx − q × d wherex andd are the initial arguments and

not their prescaled counterparts. Sinceq has24 bits and one guard bit, we have to perform25 × 24
multiplication. On our target architecture, this rather long multiplication is done by performing four

High-Radix Floating-Point Division Algorithms for Embedded VLIW Integer Processors 9

16× 32 → 32 multiplications on smaller arguments after splitting. As for the subtracting,q × d from
x, this is performed on the24 most significant bits only.

The speed achieved with this implementation of high-radix SRT is shown in Table1. It turns out
to be faster than all other implementations. In particular, it is more than twice faster than the imple-
mentation of the basic restoring algorithm and almost three times faster than the division available
from the native STMicroelectronics library.

Table1 reports the timing in number of bundles (one bundle corresponds to four operations started
at one cycle), to compare the different division methods. This is the value of the average case timing
(i.e., no special values and no over/under-flow). In our evaluation we have not considered the influence
of denormal numbers on the library. Also, all the results have been computed with the rounding mode
set to round-to-nearest even. Table1 also reports the code size (in32-bit words).

Table 1: Computation time and code size of the different division algorithms.

Division time code
algorithms (# bundle) size

Original (STMicroelectronics) 171 784

Restoring 134 676
Nonrestoring 117 792
radix-2 SRT 131 820
radix-4 SRT with{−2, . . . , 2} 125 716
radix-4 SRT with{−3, . . . , 3} 155 628
High-radix SRT 60 840

6 FLIP Library and ST200 processor

This work is a part of FLIP (floating-point library for integer processor), a C library developed in
the Arénaire team [10]. This library provides the five basic operations: addition, subtraction, mul-
tiplication, division and square-root for the single-precision IEEE 754 FP format [1]. This library

1 i f d < 3/2 then
2 M ←− u(d)
3 e l s e
4 M ←− v(d)
5 d ←− d × M
6 w[0] ←− x × M
7 q1 ← ROUND(512 × w[0])
8 w[1] ← 512 × w[0] − q1 × d
9 q2 ← ROUND(512 × w[1])

10 w[2] ← 512 × w[1] − q2 × d
11 q3 ← ROUND(512 × w[2])

Figure 6: High-radix SRT division algorithm

10 Claude-Pierre Jeannerod, Saurabh-Kumar Raina and Arnaud Tisserand

also provides some running modes with relaxed characteristics: no denormal numbers or restricted
rounding modes for instance. This library has been developed and validated within a collaboration
with STMicroelectronics. The library has been targeted to the VLIW (very long instruction word)
processor cores of the ST200 family from STMicroelectronics.

The processor of this family is a four issue VLIW processor and is significantly simpler and
smaller than an equivalent four issue super-scalar processor. The compiler is key to generate, schedule
and bundle operations, removing the need to add complex hardware to achieve the same results. Fig.7
displays the basic organization of a ST200 processor. Processors of the ST200 family execute up to
4 ALU operations per cycle, with a maximum of one control operation (goto, jump, call, return),
one memory operation (load, store, prefetch) and two multiply operations per cycle. All arithmetic
instructions operate on integer values, with operands belonging either to the General Register file
(64 × 32-bit), or the Branch Register file (8 × 1-bit). The multiply instructions are restricted to
16×32-bit on the target core. In order to reduce the use of conditional branches, the ST200 processor
also provides conditional selection instructions. Almost all operation latencies are 1 cycle, meaning
that the result of an operation can be used in the nextbundle. Some instructions have a 3-cycle latency
(load, multiply, compare to branch) or in one case a 4-cycle latency (load link register LR to call).

7 Conclusion

In this paper, we have presented an implementation of a fast division algorithm for single preci-
son IEEE floating-point arithmetic for processors without FP hardware units such as VLIW or DSP
processor cores for the embedded applications. This algorithm has been optimized and tested on
STMicroelectronics processors of the ST200 family.

The performances of the new division have been compared to those of the original library. The
conclusions of the simulatons done with this architecture are.

• The new division algorithm is close to 3 times faster than the original one.

• The code size of the individual operations is up to 7% larger. But for complete applications,
this increase is limited to less than 1%. So, the instructions cache performances should not be
changed.

We aim at extending this algorithm to other highly common algebraic operations such as1/x,
1/
√

x, or 1/
√

x2 + y2.

Acknowledgments

This research was supported by the FrenchRégion Rhône-Alpes within the “Arithmétique Flottante
pour circuits DSP” project. The authors would like to thank Christophe Monat from STMicroelec-
tronics for his valuable support with the ST200 environment and Jean-Michel Muller for fruitful dis-
cussions.

References

[1] American National Standards Institute and Institute of Electrical and Electronics Engineers.
IEEE standard for binary floating-point arithmetic.ANSI/IEEE Standard, Std 754-1985, 1985.

High-Radix Floating-Point Division Algorithms for Embedded VLIW Integer Processors 11

Control

8BR
(1bit)

IPU
Exception

Control
16x32
Mult

16x32
Mult

DPU

Prefetch
buffer

4 set
D$

32KB
Store

Load

Unit
64

GPR
(32b)

File
Reg

32KB
I$

Branch Br RegFile
ALU ALU ALU ALU

P
re−D

ecode

Cluster0 Cluster

Unit

Reg’s

Figure 7: The ST200 VLIW processor architecture.

[2] M. Cornea, P. T. P. Tang, and J. Harrison.Scientific Computing on Itanium-based Systems. Intel
Press, 2002.

[3] M. D. Ercegovac and T. Lang.Division and Square-Root Algorithms: Digit-Recurrence Algo-
rithms and Implementations. Kluwer Academic, 1994.

[4] M. D. Ercegovac and T. Lang.Digital Arithmetic. Morgan Kaufmann, 2003.

[5] P. Faraboschi, G. Brown, J. A. Fisher, G.Desoli, and F. Homewood. LX: a technology platform
for customizable VLIW embedded processing. In27th Annual International Symposium on
Computer Architecture – ISCA’00, June 2000.

[6] M. J. Flynn and S. F. Oberman.Advanced Computer Arithmetic Design. Wiley-Interscience,
2001.

[7] D. Menard and O. Sentieys. Automatic evaluation of the accuracy of fixed-point algorithms. In
Design, Automation and Test in Europe (DATE), pages 529–537, 2002.

[8] S. F. Oberman and M. J. Flynn. Design issues in division and other floating-point operations.
IEEE Transactions on Computers, 46(2):154–161, February 1997.

[9] S. F. Oberman and M. J. Flynn. Division algorithms and implementations.IEEE Transactions
on Computers, 46(8):833–854, August 1997.

[10] Arénaire project/team (computer arithmetic).http://www.ens-lyon.fr/Arenaire/.

	1 Introduction
	2 Definitions and notations
	3 Basic Software Division
	3.1 Restoring Algorithm
	3.2 Non-Restoring Algorithm

	4 SRT Division Algorithms for Integer Processors
	4.1 Radix-2 SRT division algorithm
	4.2 Radix-4 SRT division algorithm
	4.3 Standard High-Radix Algorithm

	5 High-Radix SRT for VLIW Integer Processors
	5.1 Prescaling via degree 3 polynomials
	5.2 Radix-512 SRT iterations

	6 FLIP Library and ST200 processor
	7 Conclusion

