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Abstract
We present the asymptotically fastest known algorithms for some basic
problems on univariate polynomial matrices: rank, nullspace, determi-
nant, generic inverse, reduced form [8, 9, 16, 17]. We show that they
essentially can be reduced to two computer algebra techniques, minimal
basis computations and matrix fraction expansion/reconstruction, and
to polynomial matrix multiplication. Such reductions eventually imply
that all these problems can be solved in about the same amount of time
as polynomial matrix multiplication (up to logarithmic factors and the
size of the output).

Keywords: Linear algebra, polynomial matrix, matrix rank, matrix determinant,
nullspace basis, matrix inversion, matrix reduced form.

Résumé
Cet article présente les algorithmes actuellement les plus rapides asymp-
totiquement pour effectuer certaines opérations de base sur les matrices
polynomiales : calcul du rang, d’une base du noyau, du déterminant, de
l’inverse générique, d’une forme réduite [8, 9, 16, 17]. On montre que
ces problèmes se ramènent essentiellement à deux techniques, le calcul
de bases minimales et le développement et la reconstruction de fractions
de matrices polynomiales, ainsi qu’au produit de matrices polynomiales.
Ces réductions impliquent pour ces problèmes l’existence d’algorithmes
de résolution dont le coût est de l’ordre de celui du produit de matrices
polynomiales (à la taille de la sortie et aux facteurs logarithmiques près).

Mots-clés: Algèbre linéaire, matrice polynomiale, rang, déterminant, base du noyau,
inversion, forme réduite.
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1 Introduction

We aim at drawing attention to today’s asymptotically fastest known algorithms for com-
puting with polynomial matrices. In particular, we shall focus on the following problems:
compute the rank, a right or left nullspace, the determinant, the inverse and a column- or
row-reduced form of a given polynomial matrix. Polynomial matrices are quite common in the
analysis of multivariable linear systems and Kailath’s treatise Linear Systems [10] is a good
illustration of this.

Recently, algorithms have been designed [8, 9, 16, 17] that allow to compute solutions to
these problems in essentially the same amount of time as when multiplying two polynomial
matrices together. More precisely, given a field K—for example the complex numbers, the
rationals or a finite field—and given a polynomial matrix A ∈ K[x]n×n whose entries have
degree in x bounded by d, these algorithms allow to compute rankA, kerA, det A and to
row-reduce A in O (̃nωd) operations in K, and to compute A−1 when A is generic in O (̃n3d)
operations in K. Here, O (̃nωd) is the best known asymptotic bound for multiplying two
matrices in K[x]n×n of degree d [5, 3], where 2 ≤ ω < 2.376 is the exponent of matrix
multiplication over K [4, Chapter 15]. Using schoolbook matrix multiplication, we have
ω = 3 and the bound O (̃nωd) becomes O (̃n3d). Furthermore, the soft-O notation O˜ simply
indicates some missing logarithmic factors of the form α(log n)β(log d)γ for three positive real
numbers α, β, γ. By achieving the complexity estimate O (̃nωd), these algorithms improve
upon all the complexity estimates that were known previously.

In this paper, evidence is given that the key tools for such improvements are:

• Minimal bases of K[x]-modules;

• Expansion/reconstruction of polynomial matrix fractions.

The former has the same flavour as in [6] while for the fractions we heavily rely on the
concepts in [10, Chapter 6]. Two kinds of minimal bases, namely approximant bases and
nullspace bases, are studied in Section 2. There we will see that such bases are small enough
to be computed fast, that is, in O (̃nωd) operations in K. Polynomial matrix fractions are
matrices F ∈ K(x)n×n, where K(x) is the field of rational functions over K. By expansion of
F , we thus mean a power series expansion F =

∑∞
i=0 Fix

i ∈ K[[x]]n×n and by reconstruction
of F we mean a left or right quotient of polynomial matrices like F = A−1B or F = BA−1.
It turns out that all we need is truncated expansions and reconstructed quotients of rather
low degree, both of which can be computed fast as seen in Section 3. The key idea here is
that an approximant of sufficiently high order—with respect to the input problem—may lead
to an exact solution over K[x]. This is well-known in computer algebra, at least for scalar
rational functions [7, §5.7], but as far we know the extension to the matrix case is more
recent [8, 9, 16, 17].

Minimal bases and matrix fractions are interesting not only because they can be com-
puted fast, but also—and, perhaps, mainly—because computing a minimal basis and expand-
ing/reconstructing a matrix fraction are problems to which we can reduce all other problems
like rank, left nullspace, determinant, generic inverse and row-reduced form. The goal of Sec-
tion 4 is precisely to show this: there the above problems are thus seen as applications of the
techniques studied in Sections 2 and 3.

If we assume given an O (̃nωd) algorithm for multiplying two n by n polynomial matrices
of degree d, combining the reductions of Section 4 with the cost estimates of Sections 2
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and 3 then yields O (̃nωd) solutions to all our problems under consideration. Of course, we
could have introduced a cost function MM(n, d) for polynomial matrix multiplication and
derived more precise complexity estimates for each of the problems, in terms of (functions of)
MM(n, d). However, we prefer for this paper to stick to the more readable O (̃nωd) bound,
which already gives a good sense of the link with polynomial matrix multiplication.

A first task remaining would be to relax the regularity assumptions made for inversion
(the input should be generic and of dimensions a power of two, see Section 4.1) and for
row-reduction (the input should be non-singular, see Section 4.3). But even these “generic”
situations are enough for our purpose here of showing how to rely on minimal bases and
matrix fraction expansions/reconstructions.

Also, recently, other problems on polynomial matrices than those treated in this paper
have been shown to have about the same complexity as polynomial matrix multiplication.
An example is the problem of computing the Smith normal form and thus also the deter-
minant, whose solution in [16] gives us Theorem 3.1. However—and this is the second task
remaining—, the list of problems that can be solved in about the same number of operations
as for polynomial matrix multiplication still has to be augmented. The question is particu-
larly interesting for the problem of computing the characteristic polynomial and the Frobenius
normal form, for which the best known solutions [11, 12] have cost O (̃n2.7d) still greater than
O (̃nωd).

Notation and basic reminders. Here and hereafter log denotes the logarithm in base two
and In the n by n identity matrix. For a matrix A over K[x], we denote its value at x = 0
by A(0). For d ∈ N and a matrix F over K[[x]], F ≡ 0 mod xd means that each entry of
F is a multiple of xd, and F mod xd means that we truncate F into a polynomial matrix
where only powers in x strictly less than d appear. By size of a polynomial matrix over
K[x] we mean the number of elements of K that are necessary to represent it. For example,
M ∈ K[x]n×m of degree d has size at most nm(d + 1) = O(nmd). A polynomial matrix is
said to be non-singular when it is square and when its determinant is a non identically zero
polynomial. Two matrices A,R ∈ K[x]n×n are unimodularly left equivalent when there exists
U ∈ K[x]n×n such that detU is a non-zero constant—that is, U is unimodular— and when
UA = R.

2 Minimal approximant bases and minimal nullspace bases

Our solutions for solving a class of polynomial matrix problems in about the same number
of operations in K as for multiplying two polynomial matrices will fundamentally rely on
computing minimal bases of K[x]-modules. The target complexity estimate O (̃nωd) is reached
since the bases we use are small, with size O(n2d) is most cases, and may be computed fast
(see Theorem 2.2 below).

Definition 2.1 Let M be a K[x]-submodule of K[x]n of dimension D. A basis N1, . . . , ND ∈
K[x]n of M with degrees δ1 ≤ · · · ≤ δD is called a minimal basis if any other basis of M with
degrees d1 ≤ · · · ≤ dD satisfies di ≥ δi for 1 ≤ i ≤ D. The degrees δi are called the minimal
indices of M.

In applications to multivariable systems, this definition follows the study of minimal poly-
nomial bases of vector spaces in [6]. The two important examples of such bases that we use
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in this paper are minimal approximant bases and minimal nullspace bases. The approximant
bases are defined from a power series matrix F over K[[x]], the nullspace bases are computed
as special approximant bases from a polynomial matrix F = A over K[x].

2.1 Minimal approximant bases

Given a formal power series F ∈ K[[x]]n×n and an order d ∈ N, we take for M the set of all
approximants for F of order d:

M = {v ∈ K[x]1×n : vF ≡ 0 mod xd}.

The minimal bases of M are called minimal approximant bases for F of order d. Since M
has dimension n, such bases form non-singular n× n polynomial matrices. These polynomial
matrices further have degree up to d and their size is thus of the order of n2d.

Theorem 2.2 [8]. Let F ∈ K[[x]]n×n and d ∈ N. A minimal approximant basis for F of
order d can be computed in O (̃nωd) operations in K.

Our notion of minimal approximant bases is directly inspired by [1] with some adaptations
for fully reflecting the polynomial matrix point of view. The cost estimate of Theorem 2.2
is a matrix polynomial generalization of the recursive Knuth/Schönhage half-gcd algorithm
for scalar polynomials [13, 15] (see also [7, §11.1]), that takes into account fast polynomial
matrix multiplication.

For a matrix A over K[x], we denote by di its ith row degree, that is, the highest degree
of all the entries of the ith row of A. The row leading matrix of A is the constant matrix
whose ith row consists of the coefficients of xdi in the ith row of A. We recall from [10, §6.3.2]
that a full row rank A is row-reduced when its row leading matrix also has full rank. As a
consequence of their minimality, minimal approximant bases have the following properties,
which will be used in Section 2.2 when specializing approximants for power series matrices to
approximants for polynomial matrices.

Property 2.3 Let N be a minimal approximant basis for F of order d. Then,
i. N is row-reduced;
ii. If v ∈ M has degree at most d, then there is a unique u ∈ K[x]1×n such that v = uN .

Furthermore, N has at least one row of degree at most d.

Property i above is a consequence of the minimality of the basis [10, Theorem 6.5-10].
Property ii is the fact that the rows of N form a basis, together with the predictable degree
property [10, Theorem 6.3-13].

2.2 Minimal nullspace bases

Given a polynomial matrix A ∈ K[x]n×n of rank r, we now take

M = {v ∈ K[x]1×n : vA = 0}.

This is a K[x]-submodule of K[x]n of dimension n− r. Its bases are called minimal nullspace
bases for A and form full rank (n − r) × n polynomial matrices. The minimal indices δ1 ≤
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· · · ≤ δn−r (see Definition 2.1) are called the (left) Kronecker indices of A [10, §6.5.4]. For
any given degree threshold δ, we further define

κ = max{1 ≤ i ≤ n− r : δi ≤ δ}.

A corresponding family of κ linearly independent vectors of degrees δ1, · · · , δκ is a family
of minimal nullspace vectors of degree at most δ. The theorem below says that if F = A
is a polynomial matrix then any minimal approximant basis for A of sufficiently high order
actually contains a family of minimal nullspace vectors for A.

Theorem 2.4 Let A ∈ K[x]n×n be of degree d. Let N be a minimal approximant basis for A
of order δ + d + 1. Then exactly κ rows of N have degree at most δ; these rows are in the
(left) nullspace of A and their degrees are the Kronecker indices δ1, . . . , δκ.

Proof. A row v of N of degree bounded by δ satisfies vA ≡ 0 mod xδ+d+1, and using
deg vA ≤ δ + d, vA = 0. Let k be the number of such v′s in N , from the definition of κ and
since N is non-singular, k ≤ κ. We now verify that k ≥ κ. We consider κ linearly independent
vectors vi of degrees δi in the nullspace of A. From Property 2.3 we have v1 = u1M and deduce
that one row of N has degree bounded by δ1. Now, if N has i − 1 rows of degrees bounded
by δ1, . . . , δi−1, then the same reasoning with vi as for v1 shows that N has a row of degree
bounded by δi, linearly independent with respect to the first i−1 chosen ones. It follows that
k ≥ κ rows of N have degrees bounded by δ1, . . . , δκ, and are in the nullspace of A. Hence
k = κ, and we conclude using Definition 2.1 and the minimality of the δi’s.

For some applications, a shifted degree may be introduced (see [2] and the references therein),
and some aspects of Theorem 2.4 may be generalized accordingly (see [2, Theorem 4.2] or [17,
Lemma 6.3]).

Notice that if the Kronecker indices of A are all bounded by d then an entire minimal
nullspace basis for A can already be computed fast: by Theorem 2.4, it suffices to compute a
minimal approximant basis for A of order 2d + 1 and, by Theorem 2.2, this computation can
be done in time O (̃nωd).

However, in the general case of unbalanced degrees, computing a nullspace basis fast is
much less immediate and the method we shall give in Section 4.4 relies on the complexity
result given below in Theorem 2.5. The cost given here is the one of a randomized algorithm
of the Las Vegas kind—always correct, probably fast. The algorithm outputs correct minimal
vectors in time O (̃nωd) with good probability, say greater than 1/2, otherwise returns failure
(a correct result will be obtained after repetition).

Theorem 2.5 [17]. Let A ∈ K[x](n+m)×n with m ≤ n be of full column rank and degree
bounded by d. If δ ∈ N satisfies

δm = O(nd), (1)

then a family of minimal nullspace vectors of degree at most δ can be computed by a randomized
Las Vegas (certified) algorithm in O (̃nωd) operations in K.

Note that the cost estimate O (̃nωd) relies on the compromise (1) between the minimal
nullspace vector degree bound δ and the row dimension of matrix A. For example, when
m = 1 one can compute a nullspace vector of degree as large as O(nd), whereas when m = n
one may compute up to n nullspace vectors of degree O(d). Random values are introduced
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essentially through a random compression matrix P ∈ K[x]n×m that allows to compute min-
imal vectors more efficiently using the matrix AP ∈ K[x](n+m)×m rather than directly from
A ∈ K[x](n+m)×m (see [17, Proposition 5.4]).

3 Matrix fraction expansion and reconstruction

Matrix fraction expansion and reconstruction will be key tools especially for the row reduction
and the nullspace problems. Fraction reconstruction is a useful tool in computer algebra (e.g.
see [7, §5.7] for scalar polynomials), that is directly connected to coprime factorization (see
below, and [10, Chapter 6] or [14] and the references therein).

For a polynomial matrix A that is non-singular at x = 0 and a polynomial matrix B,
the techniques of [16, Proposition 17] reduce the computation of parts of the power series
expansion

A−1B =
∞∑
i=0

Fix
i

to polynomial matrix multiplication. By parts of the expansion, we mean a given number of
consecutive matrix coefficients Fi. This is summarized in the following theorem.

Theorem 3.1 [16]. Let A ∈ K[x]n×n with A(0) non-singular, and B ∈ K[x]n×m. Assume
that A and B have degree bounded by d and let h ∈ N be such that h = O(nd). If δ ∈ N
satisfies

δm = O(nd), (2)

then the δ coefficients Fh, Fh+1, . . . , Fh+δ−1 ∈ Kn×m of the expansion of A−1B at x = 0 can
be computed in O (̃nωd) operations in K.

Similarly to Theorem 2.5, the cost estimate O (̃nωd) relies on the compromise (2) between
approximation order δ and the column dimension of matrix B. For instance, for a vector
B = b ∈ K[x]n×1 and h = 0, one can expand A−1b up to order O(nd), whereas with B = In

and h = 0, one gets the expansion of A−1 up to order O(d). In Section 4.3, we shall use this
result with B = In and h = (n− 1)d + 1 in order to get a high-order slice of length O(nd) of
the expansion of A−1.

Notice also that the regularity assumption detA(0) 6= 0 in Theorem 3.1 is not restrictive.
Indeed, it can be satisfied with high probability using random shifts, thus yielding randomized
algorithms for any A(0). Typically, with a randomly chosen x0 ∈ K, we shift x in the input
like x← x + x0 to get a regular input at zero and, at the end of the computation, we shift x
back like x← x− x0 to recover the result (see [16, 8, 17]).

A rational matrix H ∈ K(x)n×m is strictly proper if limx→∞H(x) = 0 ∈ Kn×m. In most
applications, difficulties arise when A−1 ∈ K(x)n×n is not strictly proper. However, one can
define another fraction that is always strictly proper and shares some invariants with A−1.
Before seeing this, we first need to recall some facts about greatest common divisors of two
polynomial matrices.

Definition 3.2 A (left) matrix gcd of A ∈ K[x]n×n and B ∈ K[x]n×m is any full column rank
polynomial matrix G such that [G 0]U = [A B] with U unimodular over K[x].
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Definition 3.2 is for instance from [10, Lemma 6.3-3]. If [A B] has full row rank then all the
gcd’s of A and B are non-singular and equivalent with respect to multiplication on the right
by any unimodular matrix in K[x]n×n (see [10, Lemma 6.3-4]). A non-singular A ∈ K[x]n×n

is said to be (left) coprime with B ∈ K[x]n×m if any gcd of A and B is unimodular (the gcd
may be chosen as being the identity matrix In). Similar definitions hold for rights gcd’s and
right coprimeness.

Theorem 3.3 [8]. Let A ∈ K[x]n×n of degree bounded by d, with A(0) non-singular. For
A−1 =

∑∞
i=0 Fix

i and h > (n − 1)d, let H ∈ K(x)n×n be given by H =
∑∞

i=0 Fh+ix
i. Then

H = A−1(AH) = (HA)A−1 is strictly proper, and AH and HA are polynomial matrices that
are respectively left and right coprime with A.

Proof. Let B = AH. By definition of H we have In = A(A−1 mod xh)+xhB which in [16]
is (17) on the left with B and T respectively set to In and A. It follows that B is a polynomial
matrix. On the other hand, H = A−1B is strictly proper because A−1B = x−hA−1−x−h(A−1

mod xh) and h > (n − 1)d ≥ deg A∗ where A∗ is the adjoint matrix of A. For establishing
coprimeness we use

[A xhB]
[

In (A−1 mod xh)
0 In

] [
0 In

In −A

]
= [In 0], (3)

and the fact that if G is a left gcd of A and B it satisfies

[G 0]U = [A B] (4)

with U unimodular. Identities (3) and (4) give that their exists a polynomial matrix V such
that [G 0]V = [In 0], hence a polynomial matrix W such that GW = In. Since G is a
polynomial matrix this implies that G is unimodular, and A and B are left coprime. With
B = HA, one could show similary right coprimeness.

For our application in Section 4.3, we will need only the first, say δ, coefficients of the
expansion of H as in Theorem 3.3. These coefficients thus correspond to a slice of order h
and length δ of the expansion of A−1 and, to recover them, we shall use Theorem 3.1 with
B = In.

Matrix power series expansion will be used in conjunction with matrix (irreducible) frac-
tion reconstruction or, equivalently, (coprime) factorization. We show below that minimal
approximant bases are appropriate tools for solving these problems.

Definition 3.4 A (left) factorization of degree δ of a rational matrix H ∈ K(x)n×n is a
representation H = V −1U with U and V two polynomial matrices of degree bounded by δ.
This factorization is said to be coprime when U and V are (left) coprime.

A similar definition holds on the right. Hence, given H ∈ K(x)n×n, the reconstruction or
factorization problem is to recover U and V over K[x] such that V −1U = H. If H is defined
at x = 0 and given by its formal expansion F ∈ K[[x]]n×n, this problem reduces to computing
a suitable [U V ] ∈ K[x]n×2n such that

[
U V

][ −In

F

]
= 0.
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Theorem 3.5 Let H ∈ K(x)n×n be strictly proper, with expansion F ∈ K[[x]]n×n at x = 0.
Assume that H admits a right factorization of degree δR and a left factorization of degree δL.
Let N ∈ K[x]2n×2n be a minimal approximant basis for [−In F T ]T of order δL +δR +1. Then
exactly n rows of N have degree bounded by δL; these rows form a matrix [U V ] ∈ K[x]n×2n

such that V −1U is a left coprime factorization of H, with V row-reduced.

Proof. Let BA−1 be a right factorization of H of degree δR and T−1S be a left factorization
of H degree δL. Since [−In F T ]T A = [−AT BT ]T , N is also a minimal approximant basis
of the latter matrix whose rank is n. Using [S T ][−AT BT ]T = 0, with the threshold
δ = δL we have κ = n. (See before Theorem 2.4 for a definition of κ.) Hence, applying
Theorem 2.4 to [−AT BT ]T (augmented on the right with n zero columns) with δ = δL

and d = δR, we know that exactly n rows of N have degree bounded by δL and are in the
nullspace of [−AT BT ]T . We denote the corresponding matrix by [U V ]. The matrix V
is non-singular, for otherwise there would be a non-zero vector v such that vV = 0. This
would imply vV B = vUA = 0, hence either vU = 0 or wA = 0 for w = vU 6= 0, and would
contradict either that rank[U V ] = n or that A is non-singular. Therefore, V −1U is a left
factorization of H.

This factorization must further be left coprime. Indeed, non-coprimeness would imply
that U and V have a non-trivial left gcd, that is, there exists a polynomial matrix G such
that U = GU ′, V = GU ′ and deg(detG) > 0. Then [GU ′ GV ′] would be a submatrix of the
minimal approximant basis, which would contradict its irreducibility in [10, Theorem 6.5-10]
by considering a zero of detG. In addition, the fact that [U V ] as a submatrix of N is
row-reduced (see Property 2.3), implies that V is row-reduced. Indeed, since H = V −1U is
strictly proper, the row degrees of U are strictly smaller than those of V [10, Lemma 6.3-10],
and the row leading matrix of [U V ] has the form [0 L] where L is the row leading matrix
of V , which is then non-singular.

As an immediate consequence of Theorem 3.5 and Theorem 2.2, coprime factorizations
can be computed fast when the input matrix fractions admit left and right factorizations of
degree O(d). This corollary, given below, will be applied in Section 4.3 to the particular
matrix fraction of Theorem 3.3.

Corollary 3.6 Let H ∈ K(x)n×n be as in Theorem 3.5 with δL = O(d) and δR = O(d).
Given the first δL + δR + 1 coefficients of the expansion of H at x = 0, one can compute a
left coprime factorization of H in O (̃nωd) operations in K.

4 Applications

In this section, we show how the techniques presented in Sections 2 and 3 can be used to solve
the following problems asymptotically fast:

• Invn,d: given a non-singular A ∈ K[x]n×n of degree d, compute A−1.

• Detn,d: given A ∈ K[x]n×n of degree d, compute det A.

• RowRedn,d: given A ∈ K[x]n×n of degree d, compute a row-reduced form of A.

• Nullspacen,d: given A ∈ K[x]n×n of degree d, compute the rank r of A and a full rank
N ∈ K[x](n−r)×n such that NA = 0.
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• Factorn,d: given a right factorization of degree d of H ∈ K(x)n×n, compute a left factor-
ization of H.

Our approach here is to reduce each of the above five problems to (collections of) the problems
below, for which O (̃nωd) solutions are known:

• MatMuln,d: given A,B ∈ K[x]n×n of degree d, compute the product AB.

↪→ for solutions in time O (̃nωd) see [5], [3].

• PartialNullSpacem,δ: given δ = O(nd/m) with n, d fixed, and given A ∈ K[x](n+m)×n of
degree d, compute the minimal nullspace vectors of A of degree at most δ.

↪→ solved in time O (̃nωd) by Theorem 2.5.

• MatFracExpm,δ: given δ = O(nd/m) with n, d, h fixed such that h = O(nd), and given
A ∈ K[x]n×n, B ∈ K[x]n×m of degree d with A(0) non-singular, compute the δ coefficients
Fh, Fh+1, . . . , Fh+δ−1 of the expansion of A−1B at x = 0.

↪→ solved in time O (̃nωd) by Theorem 3.1.

• MatFracRecn,d: given δL, δR = O(d) and the first δL+δR+1 coefficients of the expansion
at x = 0 of H ∈ K(x)n×n as in Theorem 3.5, compute a left coprime factorization of H
with row-reduced denominator.

↪→ solved in time O (̃nωd) by Corollary 3.6.

Assuming that n is a power of two and given a problem Pn,d or Pm,δ such as any of those just
introduced, we define the collections of problems we shall rely on as

P∗n,d :=
{
solve O(2i) problems Pn/2i,2id

}
0≤i<log n

. (5)

Such collections can be solved at about the same cost as polynomial matrix multiplication,
as shown below. Here subscripts n, d and m, δ should be added to P and P∗ depending on
the underlying problem.

Lemma 4.1 For all P ∈ {MatMul,PartialNullSpace,MatFracExp,MatFracRec}, one can solve
P∗ in O (̃nωd) operations in K.

Proof. This an immediate consequence of (5) and of the bound O (̃nωd) on the cost of
each of these four problems.

4.1 Polynomial matrix inversion (Invn,d)

Given A ∈ K[x]n×n non-singular of degree d, the problem is to compute A−1 ∈ K(x)n×n.

Assuming that A is generic and that n is a power of two, we recall from [9] how Invn,d

reduces to PartialNullSpace∗n,d plus some polynomial matrix multiplications. The algorithm
in [9, p.75] essentially consists in computing in log n steps a non-singular matrix U ∈ K[x]n×n

and a diagonal matrix B ∈ K[x]n×n such that

UA = B. (6)
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The inverse of A is then recovered as A−1 = B−1U . The first step is as follows. Let A =
[AL AR] where AL, AR ∈ K[x]n×n/2 and let N,N ∈ K[x]n/2×n be minimal nullspace bases for,
respectively, AL, AR. This gives the first block-elimination step towards the diagonalization
of A:

A =
[

AL AR

]
→ NA =

[
N
N

][
AL AR

]
=

[
NAL

NAR

]
. (7)

When A is generic of degree d, it turns out that all the minimal indices of both N and N are
equal to d [9, Fact 1] and that NAL and NAR are n/2× n/2 polynomial matrices of degree
exactly 2d on which we iterate.

We show in [9] that the property “dimension × degree = nd” generically carries from one
iteration to the other: at step i, starting from 2i−1 blocks of dimensions (n/2i−1)× (n/2i−1)
and degree 2i−1d, we compute 2i−1 pairs (N (j)

i , N
(j)
i ) of minimal nullspace bases of dimensions

(n/2i)×(n/2i−1) and whose minimal indices are all equal to 2i−1d. Let (U,B) = (In, A) before
the first step. Step i also requires to update the matrix transform as U ← diag[N (j)

i ]j × U

and the right hand side as B ← diag(N (j)
i )j×B. Because of the special block-structure of the

polynomial matrices involved, it can be shown that these updates reduce to solving O(22i)
problems MatMuln/2i−1,2i−1d.

Overall, the log n block-diagonalization steps thus reduce to PartialNullSpace∗n,d and to{
solve O(22i) problems MatMuln/2i,2id

}
0≤i<log n

. (8)

By Lemma 4.1 and (8), we therefore obtain a solution to Invn,d in O (̃n3d) operations in K.
Since by Cramer’s rule each entry of A−1 has the form p/(detA) where p ∈ K[x] may

have degree at large as (n − 1)d, the size of A−1 is of the order of n3d. The above inversion
algorithm, defined for A generic and n a power of two, is therefore nearly optimal.

4.2 Determinant computation (Detn,d)

Given A ∈ K[x]n×n of degree d, the problem is to compute det A ∈ K[x].

We assume here that A is generic with n is a power of two, and we use the inversion
algorithm of Section 4.1. It has been shown in [8] that the diagonal entries of the diagonal
matrix B in (6) are constant multiples of detA. Since detA(0) is generically non-zero, we
have

det A =
det A(0)
bi,i(0)

bi,i for all 1 ≤ i ≤ n.

The problem Detn,d thus reduces essentially to computing the determinant of the constant
matrix A(0) and to the computation of, say, b1,1. It is well-known that over K computing
the determinant reduces to matrix multiplication [4, Section 16.4] (that is, Detn,0 reduces to
MatMuln,0 using our notations). Concerning b1,1, we perform log n steps as for inversion but,
since b1,1 is the upper-left corner of B, we use instead of (7) the simpler step

A =
[

AL AR

]
→ NAL. (9)

As in (7), N is a minimal nullspace basis for AR. Step i now consists in computing a single
minimal nullspace basis of dimensions (n/2i)× (n/2i−1) and minimal indices 2i−1d, and then
in multiplying this basis with the left half of an n/2i by n/2i block of degree 2i−1d, as in (9).
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Hence, computing b1,1 by performing these log n steps reduces to solving PartialNullSpace∗n,d

and MatMul∗n,d. By Lemma 4.1, this gives a solution to Detn,d in O (̃nωd) operations in K.
Notice that when A is not generic or when n is not a power of two, a Las Vegas O (̃nωd)

solution to Detn,d can be obtained using the Smith normal form algorithm in [16].

4.3 Row reduction (RowRedn,d)

Given A ∈ K[x]n×n of degree d, the problem is to compute R ∈ K[x]n×n that is row-reduced
and unimodularly left equivalent to A.

We assume here that A(0) is non-singular. Recall from Section 2.1 and [10, §6.3.2] that
R = A is a row-reduced form of A when R is row-reduced and R = UA for some unimodular
polynomial matrix U . The solution in [8] works by expansion/reconstruction of the matrix
fraction H as in Theorem 3.3 with h = (n− 1)d + 1.

First, we expand H up to order 2d + 1. This is done by solving MatFracExpn,2d+1 once,
taking B = In and h = (n−1)d+1 = O(nd). From Theorem 3.3 we know that H is a strictly
proper matrix fraction which admits left and right factorizations A−1(AH) and (HA)A−1.
Strict properness further implies that the degrees of both AH and HA must be less than
the degree of A [10, Lemma 6.3-10], and are thus bounded by d as well. Therefore, these
left and right factorizations of H are factorizations of degree d and, using Theorem 3.5, we
can reconstruct H from its expansion up to order 2d + 1 as H = R−1S. This reconstruction
corresponds to solving problem MatFracRecn,d once. On one hand, we know by Theorem 3.5
that R is row-reduced. On the other hand, A−1(AH) and R−1S are coprime factorizations
of the same fraction, which implies that there exists a unimodular U such that UA = R [10,
Theorem 6.5-4]. It follows that R is indeed a row-reduced form of A. By Lemma 4.1, this
reduction to MatFracExpn,2d+1 and MatFracRecn,d gives a solution to RowRedn,d in O (̃nωd)
operations in K.

4.4 Small nullspace computation (Nullspacen,d)

Given A ∈ K[x]n×n of degree d, the problem is to compute the rank r of A, and N ∈ K[x](n−r)×n

of rank n− r such that NA = 0.

As already seen, a solution in the restrictive (e.g. generic) case when all minimal vectors
have degrees in O(d) is provided by a solution to PartialNullSpacen,d. In the general case
the row degrees in a nullspace basis of A may be unbalanced, they range between 0 and
nd [17, Theorem 3.3]. Previously known methods, whose cost is essentially driven by the
highest Kronecker index, do not seem to allow the target complexity estimate O (̃nωd) (see
for instance [17, Section 2]).

Our solution in [17] first reduces the general nullspace problem to the full column rank
case via randomization. This consists in evaluating the rank r of A at a random x = x0,
then in compressing A to a full column rank matrix. We also derive a particular strategy
when n� r. Consequently, for a simplified explanation here, we now assume that A has full
column rank n and dimensions (n + m)× n with m = O(n).

The algorithm then works in i steps with 1 ≤ i ≤ log n. At step i we compute a set of
about m/2i nullspace vectors of degrees less that δ = 2id. These vectors are obtained from
log n solutions to PartialNullSpacem,δ for nullspace vectors of bounded degree δ = 2id, and
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involving matrices of decreasing dimensions n + m/2i. Hence we essentially have a reduction
to PartialNullSpace∗m,δ. We may point out that the proof of Theorem 2.5 for the cost of the
partial nullspace itself relies on solutions to MatFracExpm,δ, and MatFracRecm,δ. Nullspace
vectors are computed using a matrix fraction expansion /reconstruction scheme.

The appropriate instances for PartialNullSpacem/2i,2id, 1 ≤ i ≤ log n, are built as submatri-
ces of the input matrix A. Our choices for these submatrices ensure the linear independency
of the successive computed sets of nullspace vectors. The algorithm hence outputs a union of a
logarithmic number of sets of linearly independent nullspace vectors. Each set, corresponding
to an instance of PartialNullSpacem/2i,2id, is a family of minimal vectors for a submatrix of A.
The minimality is not preserved in general with respect to A, however we prove that small
degree vectors are obtained [17, Proposition 7.1].

This reduction of NullSpacen,d to PartialNullSpace∗m,δ and to MatMul∗n,d for additional ma-
trix multiplications establishes that a solution matrix N such that NA = 0 can be computed
in O (̃nωd) operations in K by a randomized Las Vegas (certified) algorithm.

4.5 Factorization (Factorn,d)

Given a right factorization BA−1 of degree d of H ∈ K(x)n×n, the problem is to compute
polynomial matrices U and V such that V −1U = H.

Corollary 3.6, together with the expansion of H = BA−1, provides a solution to FracMatRecn,d

if H admits factorizations of degree d on both sides. The solution of the general case, we mean
for an arbitrary left side factorization, induces several difficulties for dealing with unbalanced
row degrees. These difficulties are bypassed using the techniques of Section 4.4.

By considering the polynomial matrix [−AT BT ] and solving Nullspace2n,d we get U and
V such that

[U V ]
[
−A
B

]
= 0.

Arguments similar to those used in the proof of Theorem 3.5 lead to the fact that V is
non-singular. Hence a solution V −1U to the factorization problem is computed in O (̃nωd)
operations in K. Note that since a solution to Nullspace2n,d may not be minimal, the factor-
ization V −1U may not be coprime.
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