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. We show that they essentially can be reduced to two computer algebra techniques, minimal basis computations and matrix fraction expansion/reconstruction, and to polynomial matrix multiplication. Such reductions eventually imply that all these problems can be solved in about the same amount of time as polynomial matrix multiplication (up to logarithmic factors and the size of the output).

Introduction

We aim at drawing attention to today's asymptotically fastest known algorithms for computing with polynomial matrices. In particular, we shall focus on the following problems: compute the rank, a right or left nullspace, the determinant, the inverse and a column-or row-reduced form of a given polynomial matrix. Polynomial matrices are quite common in the analysis of multivariable linear systems and Kailath's treatise Linear Systems [START_REF] Kailath | Linear Systems[END_REF] is a good illustration of this.

Recently, algorithms have been designed [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF][START_REF] Storjohann | High-order lifting and integrality certification[END_REF][START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF] that allow to compute solutions to these problems in essentially the same amount of time as when multiplying two polynomial matrices together. More precisely, given a field K-for example the complex numbers, the rationals or a finite field-and given a polynomial matrix A ∈ K[x] n×n whose entries have degree in x bounded by d, these algorithms allow to compute rank A, ker A, det A and to row-reduce A in O˜(n ω d) operations in K, and to compute A -1 when A is generic in O˜(n 3 d) operations in K. Here, O˜(n ω d) is the best known asymptotic bound for multiplying two matrices in K[x] n×n of degree d [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF][START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF], where 2 ≤ ω < 2.376 is the exponent of matrix multiplication over K [4, Chapter 15]. Using schoolbook matrix multiplication, we have ω = 3 and the bound O˜(n ω d) becomes O˜(n 3 d). Furthermore, the soft-O notation O˜simply indicates some missing logarithmic factors of the form α(log n) β (log d) γ for three positive real numbers α, β, γ. By achieving the complexity estimate O˜(n ω d), these algorithms improve upon all the complexity estimates that were known previously.

In this paper, evidence is given that the key tools for such improvements are:

• Minimal bases of K[x]-modules;

• Expansion/reconstruction of polynomial matrix fractions.

The former has the same flavour as in [START_REF] Forney | Minimal bases of rational vector spaces, with applications to multivariable linear systems[END_REF] while for the fractions we heavily rely on the concepts in [START_REF] Kailath | Linear Systems[END_REF]Chapter 6]. Two kinds of minimal bases, namely approximant bases and nullspace bases, are studied in Section 2. There we will see that such bases are small enough to be computed fast, that is, in O˜(n ω d) operations in K. Polynomial matrix fractions are matrices F ∈ K(x) n×n , where K(x) is the field of rational functions over K. By expansion of F , we thus mean a power series expansion

F = ∞ i=0 F i x i ∈ K[[x]
] n×n and by reconstruction of F we mean a left or right quotient of polynomial matrices like F = A -1 B or F = BA -1 . It turns out that all we need is truncated expansions and reconstructed quotients of rather low degree, both of which can be computed fast as seen in Section 3. The key idea here is that an approximant of sufficiently high order-with respect to the input problem-may lead to an exact solution over K[x]. This is well-known in computer algebra, at least for scalar rational functions [7, §5.7], but as far we know the extension to the matrix case is more recent [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF][START_REF] Storjohann | High-order lifting and integrality certification[END_REF][START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF].

Minimal bases and matrix fractions are interesting not only because they can be computed fast, but also-and, perhaps, mainly-because computing a minimal basis and expanding/reconstructing a matrix fraction are problems to which we can reduce all other problems like rank, left nullspace, determinant, generic inverse and row-reduced form. The goal of Section 4 is precisely to show this: there the above problems are thus seen as applications of the techniques studied in Sections 2 and 3.

If we assume given an O˜(n ω d) algorithm for multiplying two n by n polynomial matrices of degree d, combining the reductions of Section 4 with the cost estimates of Sections 2 and 3 then yields O˜(n ω d) solutions to all our problems under consideration. Of course, we could have introduced a cost function MM(n, d) for polynomial matrix multiplication and derived more precise complexity estimates for each of the problems, in terms of (functions of) MM(n, d). However, we prefer for this paper to stick to the more readable O˜(n ω d) bound, which already gives a good sense of the link with polynomial matrix multiplication.

A first task remaining would be to relax the regularity assumptions made for inversion (the input should be generic and of dimensions a power of two, see Section 4.1) and for row-reduction (the input should be non-singular, see Section 4.3). But even these "generic" situations are enough for our purpose here of showing how to rely on minimal bases and matrix fraction expansions/reconstructions. Also, recently, other problems on polynomial matrices than those treated in this paper have been shown to have about the same complexity as polynomial matrix multiplication. An example is the problem of computing the Smith normal form and thus also the determinant, whose solution in [START_REF] Storjohann | High-order lifting and integrality certification[END_REF] gives us Theorem 3.1. However-and this is the second task remaining-, the list of problems that can be solved in about the same number of operations as for polynomial matrix multiplication still has to be augmented. The question is particularly interesting for the problem of computing the characteristic polynomial and the Frobenius normal form, for which the best known solutions [START_REF] Kaltofen | On computing determinants without divisions[END_REF][START_REF] Kaltofen | On the complexity of computing determinants[END_REF] have cost O˜(n 2.7 d) still greater than O˜(n ω d).

Notation and basic reminders. Here and hereafter log denotes the logarithm in base two and I n the n by n identity matrix. For a matrix A over K[x], we denote its value at x = 0 by A(0). For d ∈ N and a matrix F over K[[x]], F ≡ 0 mod x d means that each entry of F is a multiple of x d , and F mod x d means that we truncate F into a polynomial matrix where only powers in x strictly less than d appear. By size of a polynomial matrix over K[x] we mean the number of elements of K that are necessary to represent it. For example, M ∈ K[x] n×m of degree d has size at most nm(d + 1) = O(nmd). A polynomial matrix is said to be non-singular when it is square and when its determinant is a non identically zero polynomial. Two matrices A, R ∈ K[x] n×n are unimodularly left equivalent when there exists U ∈ K[x] n×n such that det U is a non-zero constant-that is, U is unimodular-and when U A = R.

Minimal approximant bases and minimal nullspace bases

Our solutions for solving a class of polynomial matrix problems in about the same number of operations in K as for multiplying two polynomial matrices will fundamentally rely on computing minimal bases of K[x]-modules. The target complexity estimate O˜(n ω d) is reached since the bases we use are small, with size O(n 2 d) is most cases, and may be computed fast (see Theorem 2.2 below).

Definition 2.1 Let M be a K[x]-submodule of K[x] n of dimension D. A basis N 1 , . . . , N D ∈ K[x] n of M with degrees δ 1 ≤ • • • ≤ δ D is called a minimal basis if any other basis of M with degrees d 1 ≤ • • • ≤ d D satisfies d i ≥ δ i for 1 ≤ i ≤ D. The degrees δ i are called the minimal indices of M.
In applications to multivariable systems, this definition follows the study of minimal polynomial bases of vector spaces in [START_REF] Forney | Minimal bases of rational vector spaces, with applications to multivariable linear systems[END_REF]. The two important examples of such bases that we use in this paper are minimal approximant bases and minimal nullspace bases. The approximant bases are defined from a power series matrix F over K[[x]], the nullspace bases are computed as special approximant bases from a polynomial matrix F = A over K[x].

Minimal approximant bases

Given a formal power series F ∈ K[[x]] n×n and an order d ∈ N, we take for M the set of all approximants for F of order d:

M = {v ∈ K[x] 1×n : vF ≡ 0 mod x d }.
The minimal bases of M are called minimal approximant bases for F of order d. Since M has dimension n, such bases form non-singular n × n polynomial matrices. These polynomial matrices further have degree up to d and their size is thus of the order of n 2 d.

Theorem 2.2 [8]. Let F ∈ K[[x]] n×n and d ∈ N. A minimal approximant basis for F of order d can be computed in O˜(n ω d) operations in K.
Our notion of minimal approximant bases is directly inspired by [START_REF] Beckermann | A uniform approach for the fast computation of matrix-type Padé approximants[END_REF] with some adaptations for fully reflecting the polynomial matrix point of view. The cost estimate of Theorem 2.2 is a matrix polynomial generalization of the recursive Knuth/Schönhage half-gcd algorithm for scalar polynomials [START_REF] Knuth | The analysis of algorithms[END_REF][START_REF] Schönhage | Schnelle Berechnung von Kettenbruchenwicklungen[END_REF] (see also [7, §11.1]), that takes into account fast polynomial matrix multiplication.

For a matrix A over K[x], we denote by d i its ith row degree, that is, the highest degree of all the entries of the ith row of A. The row leading matrix of A is the constant matrix whose ith row consists of the coefficients of x d i in the ith row of A. We recall from [10, §6.3.2] that a full row rank A is row-reduced when its row leading matrix also has full rank. As a consequence of their minimality, minimal approximant bases have the following properties, which will be used in Section 2.2 when specializing approximants for power series matrices to approximants for polynomial matrices.

Property 2.3 Let N be a minimal approximant basis for F of order d. Then,

i. N is row-reduced; ii. If v ∈ M has degree at most d, then there is a unique u ∈ K[x] 1×n such that v = uN .
Furthermore, N has at least one row of degree at most d.

Property i above is a consequence of the minimality of the basis [10, Theorem 6.5-10]. Property ii is the fact that the rows of N form a basis, together with the predictable degree property [10, Theorem 6.3-13].

Minimal nullspace bases

Given a polynomial matrix A ∈ K[x] n×n of rank r, we now take 

M = {v ∈ K[x] 1×n : vA = 0}. This is a K[x]-submodule of K[x] n of dimension n -r.
κ = max{1 ≤ i ≤ n -r : δ i ≤ δ}.
A corresponding family of κ linearly independent vectors of degrees δ 1 , • • • , δ κ is a family of minimal nullspace vectors of degree at most δ. The theorem below says that if F = A is a polynomial matrix then any minimal approximant basis for A of sufficiently high order actually contains a family of minimal nullspace vectors for A.

Theorem 2.4 Let A ∈ K[x] n×n be of degree d. Let N be a minimal approximant basis for A of order δ + d + 1. Then exactly κ rows of N have degree at most δ; these rows are in the (left) nullspace of A and their degrees are the Kronecker indices δ 1 , . . . , δ κ .

Proof. A row v of N of degree bounded by δ satisfies vA ≡ 0 mod x δ+d+1 , and using deg vA ≤ δ + d, vA = 0. Let k be the number of such v s in N , from the definition of κ and since N is non-singular, k ≤ κ. We now verify that k ≥ κ. We consider κ linearly independent vectors v i of degrees δ i in the nullspace of A. From Property 2.3 we have v 1 = u 1 M and deduce that one row of N has degree bounded by δ 1 . Now, if N has i -1 rows of degrees bounded by δ 1 , . . . , δ i-1 , then the same reasoning with v i as for v 1 shows that N has a row of degree bounded by δ i , linearly independent with respect to the first i -1 chosen ones. It follows that k ≥ κ rows of N have degrees bounded by δ 1 , . . . , δ κ , and are in the nullspace of A. Hence k = κ, and we conclude using Definition 2.1 and the minimality of the δ i 's.

For some applications, a shifted degree may be introduced (see [START_REF] Beckermann | Normal forms for general polynomial matrices[END_REF] and the references therein), and some aspects of Theorem 2.4 may be generalized accordingly (see [START_REF] Beckermann | Normal forms for general polynomial matrices[END_REF]Theorem 4.2] or [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]Lemma 6.3]).

Notice that if the Kronecker indices of A are all bounded by d then an entire minimal nullspace basis for A can already be computed fast: by Theorem 2.4, it suffices to compute a minimal approximant basis for A of order 2d + 1 and, by Theorem 2.2, this computation can be done in time O˜(n ω d).

However, in the general case of unbalanced degrees, computing a nullspace basis fast is much less immediate and the method we shall give in Section 4.4 relies on the complexity result given below in Theorem 2.5. The cost given here is the one of a randomized algorithm of the Las Vegas kind-always correct, probably fast. The algorithm outputs correct minimal vectors in time O˜(n ω d) with good probability, say greater than 1/2, otherwise returns failure (a correct result will be obtained after repetition).

Theorem 2.5 [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]. Let A ∈ K[x] (n+m)×n with m ≤ n be of full column rank and degree bounded by d.

If δ ∈ N satisfies δm = O(nd), (1) 
then a family of minimal nullspace vectors of degree at most δ can be computed by a randomized Las Vegas (certified) algorithm in O˜(n ω d) operations in K.

Note that the cost estimate O˜(n ω d) relies on the compromise (1) between the minimal nullspace vector degree bound δ and the row dimension of matrix A. For example, when m = 1 one can compute a nullspace vector of degree as large as O(nd), whereas when m = n one may compute up to n nullspace vectors of degree O(d). Random values are introduced essentially through a random compression matrix P ∈ K[x] n×m that allows to compute minimal vectors more efficiently using the matrix AP ∈ K[x] (n+m)×m rather than directly from A ∈ K[x] (n+m)×m (see [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]Proposition 5.4]).

Matrix fraction expansion and reconstruction

Matrix fraction expansion and reconstruction will be key tools especially for the row reduction and the nullspace problems. Fraction reconstruction is a useful tool in computer algebra (e.g. see [7, §5.7] for scalar polynomials), that is directly connected to coprime factorization (see below, and [10, Chapter 6] or [START_REF] Oarǎ | Minimal degree coprime factorization of rational matrices[END_REF] and the references therein). For a polynomial matrix A that is non-singular at x = 0 and a polynomial matrix B, the techniques of [START_REF] Storjohann | High-order lifting and integrality certification[END_REF]Proposition 17] reduce the computation of parts of the power series expansion

A -1 B = ∞ i=0 F i x i
to polynomial matrix multiplication. By parts of the expansion, we mean a given number of consecutive matrix coefficients F i . This is summarized in the following theorem.

Theorem 3.1 [START_REF] Storjohann | High-order lifting and integrality certification[END_REF]. Let A ∈ K[x] n×n with A(0) non-singular, and B ∈ K[x] n×m . Assume that A and B have degree bounded by d and let h ∈ N be such that h

= O(nd). If δ ∈ N satisfies δm = O(nd), (2) 
then the δ coefficients F h , F h+1 , . . . , F h+δ-1 ∈ K n×m of the expansion of A -1 B at x = 0 can be computed in O˜(n ω d) operations in K.

Similarly to Theorem 2.5, the cost estimate O˜(n ω d) relies on the compromise (2) between approximation order δ and the column dimension of matrix B. For instance, for a vector B = b ∈ K[x] n×1 and h = 0, one can expand A -1 b up to order O(nd), whereas with B = I n and h = 0, one gets the expansion of A -1 up to order O(d). In Section 4.3, we shall use this result with B = I n and h = (n -1)d + 1 in order to get a high-order slice of length O(nd) of the expansion of A -1 .

Notice also that the regularity assumption det A(0) = 0 in Theorem 3.1 is not restrictive. Indeed, it can be satisfied with high probability using random shifts, thus yielding randomized algorithms for any A(0). Typically, with a randomly chosen x 0 ∈ K, we shift x in the input like x ← x + x 0 to get a regular input at zero and, at the end of the computation, we shift x back like x ← x -x 0 to recover the result (see [START_REF] Storjohann | High-order lifting and integrality certification[END_REF][START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF][START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]).

A rational matrix H ∈ K(x) n×m is strictly proper if lim x→∞ H(x) = 0 ∈ K n×m . In most applications, difficulties arise when A -1 ∈ K(x) n×n is not strictly proper. However, one can define another fraction that is always strictly proper and shares some invariants with A -1 . Before seeing this, we first need to recall some facts about greatest common divisors of two polynomial matrices.

Definition 3.2 A (left) matrix gcd of A ∈ K[x] n×n and B ∈ K[x] n×m is any full column rank polynomial matrix G such that [G 0]U = [A B] with U unimodular over K[x].
Definition 3.2 is for instance from [START_REF] Kailath | Linear Systems[END_REF]. If [A B] has full row rank then all the gcd's of A and B are non-singular and equivalent with respect to multiplication on the right by any unimodular matrix in K[x] n×n (see [START_REF] Kailath | Linear Systems[END_REF]). A non-singular A ∈ K[x] n×n is said to be (left) coprime with B ∈ K[x] n×m if any gcd of A and B is unimodular (the gcd may be chosen as being the identity matrix I n ). Similar definitions hold for rights gcd's and right coprimeness. Theorem 3.3 [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF]. Let A ∈ K[x] n×n of degree bounded by d, with A(0) non-singular. For A -1 = ∞ i=0 F i x i and h > (n -1)d, let H ∈ K(x) n×n be given by H = ∞ i=0 F h+i x i . Then H = A -1 (AH) = (HA)A -1 is strictly proper, and AH and HA are polynomial matrices that are respectively left and right coprime with A.

Proof. Let B = AH. By definition of H we have I n = A(A -1 mod x h )+x h B which in [START_REF] Storjohann | High-order lifting and integrality certification[END_REF] is [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF] on the left with B and T respectively set to I n and A. It follows that B is a polynomial matrix. On the other hand,

H = A -1 B is strictly proper because A -1 B = x -h A -1 -x -h (A -1 mod x h ) and h > (n -1)d ≥ deg A * where A * is the adjoint matrix of A. For establishing coprimeness we use [A x h B] I n (A -1 mod x h ) 0 I n 0 I n I n -A = [I n 0], (3) 
and the fact that if G is a left gcd of A and B it satisfies

[G 0]U = [A B] (4) 
with U unimodular. Identities (3) and (4) give that their exists a polynomial matrix V such that [G 0]V = [I n 0], hence a polynomial matrix W such that GW = I n . Since G is a polynomial matrix this implies that G is unimodular, and A and B are left coprime. With B = HA, one could show similary right coprimeness.

For our application in Section 4.3, we will need only the first, say δ, coefficients of the expansion of H as in Theorem 3.3. These coefficients thus correspond to a slice of order h and length δ of the expansion of A -1 and, to recover them, we shall use Theorem 3.1 with B = I n .

Matrix power series expansion will be used in conjunction with matrix (irreducible) fraction reconstruction or, equivalently, (coprime) factorization. We show below that minimal approximant bases are appropriate tools for solving these problems. Definition 3.4 A (left) factorization of degree δ of a rational matrix H ∈ K(x) n×n is a representation H = V -1 U with U and V two polynomial matrices of degree bounded by δ. This factorization is said to be coprime when U and V are (left) coprime.

A similar definition holds on the right. Hence, given H ∈ K(x) n×n , the reconstruction or factorization problem is to recover U and V over K[x] such that V -1 U = H. If H is defined at x = 0 and given by its formal expansion

F ∈ K[[x]] n×n , this problem reduces to computing a suitable [U V ] ∈ K[x] n×2n such that U V -I n F = 0.
Theorem 3.5 Let H ∈ K(x) n×n be strictly proper, with expansion

F ∈ K[[x]] n×n at x = 0.
Assume that H admits a right factorization of degree δ R and a left factorization of degree δ L .

Let N ∈ K[x] 2n×2n be a minimal approximant basis for [-I n F T ] T of order δ L + δ R + 1. Then exactly n rows of N have degree bounded by δ L ; these rows form a matrix

[U V ] ∈ K[x] n×2n such that V -1 U is a left coprime factorization of H, with V row-reduced.
Proof. Let BA -1 be a right factorization of H of degree δ R and T -1 S be a left factorization of H degree δ L . Since [-I n F T ] T A = [-A T B T ] T , N is also a minimal approximant basis of the latter matrix whose rank is n. Using [S T ][-A T B T ] T = 0, with the threshold δ = δ L we have κ = n. (See before Theorem 2.4 for a definition of κ.) Hence, applying Theorem 2.4 to [-A T B T ] T (augmented on the right with n zero columns) with δ = δ L and d = δ R , we know that exactly n rows of N have degree bounded by δ L and are in the nullspace of [-A T B T ] T . We denote the corresponding matrix by [U V ]. The matrix V is non-singular, for otherwise there would be a non-zero vector v such that vV = 0. This would imply vV B = vU A = 0, hence either vU = 0 or wA = 0 for w = vU = 0, and would contradict either that rank[U V ] = n or that A is non-singular. Therefore, V -1 U is a left factorization of H.

This factorization must further be left coprime. Indeed, non-coprimeness would imply that U and V have a non-trivial left gcd, that is, there exists a polynomial matrix G such that U = GU , V = GU and deg(det G) > 0. Then [GU GV ] would be a submatrix of the minimal approximant basis, which would contradict its irreducibility in [10, Theorem 6.5-10] by considering a zero of det G. In addition, the fact that [U V ] as a submatrix of N is row-reduced (see Property 2.3), implies that V is row-reduced. Indeed, since H = V -1 U is strictly proper, the row degrees of U are strictly smaller than those of V [10, Lemma 6.3-10], and the row leading matrix of [U V ] has the form [0 L] where L is the row leading matrix of V , which is then non-singular.

As an immediate consequence of Theorem 3.5 and Theorem 2.2, coprime factorizations can be computed fast when the input matrix fractions admit left and right factorizations of degree O(d). This corollary, given below, will be applied in Section 4.3 to the particular matrix fraction of Theorem 3.3. Given the first δ L + δ R + 1 coefficients of the expansion of H at x = 0, one can compute a left coprime factorization of H in O˜(n ω d) operations in K.

Applications

In this section, we show how the techniques presented in Sections 2 and 3 can be used to solve the following problems asymptotically fast:

• Inv n,d : given a non-singular A ∈ K[x] n×n of degree d, compute A -1 . • Det n,d : given A ∈ K[x] n×n of degree d, compute det A. • RowRed n,d : given A ∈ K[x] n×n of degree d, compute a row-reduced form of A.
• Nullspace n,d : given A ∈ K[x] n×n of degree d, compute the rank r of A and a full rank N ∈ K[x] (n-r)×n such that N A = 0.

• Factor n,d : given a right factorization of degree d of H ∈ K(x) n×n , compute a left factorization of H.

Our approach here is to reduce each of the above five problems to (collections of) the problems below, for which O˜(n ω d) solutions are known:

• MatMul n,d : given A, B ∈ K[x] n×n of degree d, compute the product AB.
→ for solutions in time O˜(n ω d) see [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF], [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF]. Assuming that n is a power of two and given a problem P n,d or P m,δ such as any of those just introduced, we define the collections of problems we shall rely on as

•
P * n,d := solve O(2 i ) problems P n/2 i ,2 i d 0≤i<log n . (5) 
Such collections can be solved at about the same cost as polynomial matrix multiplication, as shown below. Here subscripts n, d and m, δ should be added to P and P * depending on the underlying problem. Proof. This an immediate consequence of ( 5) and of the bound O˜(n ω d) on the cost of each of these four problems. n,d )

Polynomial matrix inversion (Inv

Given A ∈ K[x] n×n non-singular of degree d, the problem is to compute A -1 ∈ K(x) n×n .
Assuming that A is generic and that n is a power of two, we recall from [START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF] how Inv Notice that when A is not generic or when n is not a power of two, a Las Vegas O˜(n ω d) solution to Det n,d can be obtained using the Smith normal form algorithm in [START_REF] Storjohann | High-order lifting and integrality certification[END_REF].

Row reduction (RowRed n,d )

Given A ∈ K[x] n×n of degree d, the problem is to compute R ∈ K[x] n×n that is row-reduced and unimodularly left equivalent to A.

We assume here that A(0) is non-singular. Recall from Section 2.1 and [10, §6.3.2] that R = A is a row-reduced form of A when R is row-reduced and R = U A for some unimodular polynomial matrix U . The solution in [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF] works by expansion/reconstruction of the matrix fraction H as in Theorem 3.3 with h = (n -1)d + 1.

First, we expand H up to order 2d + 1. This is done by solving MatFracExp n,2d+1 once, taking B = I n and h = (n -1)d + 1 = O(nd). From Theorem 3.3 we know that H is a strictly proper matrix fraction which admits left and right factorizations A -1 (AH) and (HA)A -1 . Strict properness further implies that the degrees of both AH and HA must be less than the degree of A [10, Lemma 6.3-10], and are thus bounded by d as well. Therefore, these left and right factorizations of H are factorizations of degree d and, using Theorem 3.5, we can reconstruct H from its expansion up to order 2d + 1 as H = R -1 S. This reconstruction corresponds to solving problem MatFracRec n,d once. On one hand, we know by Theorem 3.5 that R is row-reduced. On the other hand, A -1 (AH) and R -1 S are coprime factorizations of the same fraction, which implies that there exists a unimodular U such that U A = R [10, Theorem 6. 

Small nullspace computation (Nullspace n,d )

Given A ∈ K[x] n×n of degree d, the problem is to compute the rank r of A, and N ∈ K[x] (n-r)×n of rank n -r such that N A = 0.

As already seen, a solution in the restrictive (e.g. generic) case when all minimal vectors have degrees in O(d) is provided by a solution to PartialNullSpace n,d . In the general case the row degrees in a nullspace basis of A may be unbalanced, they range between 0 and nd [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]Theorem 3.3]. Previously known methods, whose cost is essentially driven by the highest Kronecker index, do not seem to allow the target complexity estimate O˜(n ω d) (see for instance [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]Section 2]).

Our solution in [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF] first reduces the general nullspace problem to the full column rank case via randomization. This consists in evaluating the rank r of A at a random x = x 0 , then in compressing A to a full column rank matrix. We also derive a particular strategy when n r. Consequently, for a simplified explanation here, we now assume that A has full column rank n and dimensions (n + m) × n with m = O(n).

The algorithm then works in i steps with 1 ≤ i ≤ log n. At step i we compute a set of about m/2 i nullspace vectors of degrees less that δ = 2 i d. These vectors are obtained from log n solutions to PartialNullSpace m,δ for nullspace vectors of bounded degree δ = 2 i d, and involving matrices of decreasing dimensions n + m/2 i . Hence we essentially have a reduction to PartialNullSpace * m,δ . We may point out that the proof of Theorem 2.5 for the cost of the partial nullspace itself relies on solutions to MatFracExp m,δ , and MatFracRec m,δ . Nullspace vectors are computed using a matrix fraction expansion /reconstruction scheme.

The appropriate instances for PartialNullSpace m/2 i ,2 i d , 1 ≤ i ≤ log n, are built as submatrices of the input matrix A. Our choices for these submatrices ensure the linear independency of the successive computed sets of nullspace vectors. The algorithm hence outputs a union of a logarithmic number of sets of linearly independent nullspace vectors. Each set, corresponding to an instance of PartialNullSpace m/2 i ,2 i d , is a family of minimal vectors for a submatrix of A. The minimality is not preserved in general with respect to A, however we prove that small degree vectors are obtained [START_REF] Storjohann | Computing the rank and a small nullspace basis of a polynomial matrix[END_REF]Proposition 7.1].

This reduction of NullSpace n,d to PartialNullSpace * m,δ and to MatMul * n,d for additional matrix multiplications establishes that a solution matrix N such that N A = 0 can be computed in O˜(n ω d) operations in K by a randomized Las Vegas (certified) algorithm.

Factorization (Factor n,d )

Given a right factorization BA -1 of degree d of H ∈ K(x) n×n , the problem is to compute polynomial matrices U and V such that V -1 U = H. Corollary 3.6, together with the expansion of H = BA -1 , provides a solution to FracMatRec n,d if H admits factorizations of degree d on both sides. The solution of the general case, we mean for an arbitrary left side factorization, induces several difficulties for dealing with unbalanced row degrees. These difficulties are bypassed using the techniques of Section 4.4.

By considering the polynomial matrix [-A T B T ] and solving Nullspace 2n,d we get U and V such that

[U V ] -A B = 0.
Arguments similar to those used in the proof of Theorem 3.5 lead to the fact that V is non-singular. Hence a solution V -1 U to the factorization problem is computed in O˜(n ω d) operations in K. Note that since a solution to Nullspace 2n,d may not be minimal, the factorization V -1 U may not be coprime.

  Its bases are called minimal nullspace bases for A and form full rank (n -r) × n polynomial matrices. The minimal indices δ 1 ≤ • • • ≤ δ n-r (see Definition 2.1) are called the (left) Kronecker indices of A [10, §6.5.4]. For any given degree threshold δ, we further define

Corollary 3 . 6

 36 Let H ∈ K(x) n×n be as in Theorem 3.5 with δ L = O(d) and δ R = O(d).

•

  PartialNullSpace m,δ : given δ = O(nd/m) with n, d fixed, and given A ∈ K[x] (n+m)×n of degree d, compute the minimal nullspace vectors of A of degree at most δ. → solved in time O˜(n ω d) by Theorem 2.5. • MatFracExp m,δ : given δ = O(nd/m) with n, d, h fixed such that h = O(nd), and given A ∈ K[x] n×n , B ∈ K[x] n×m of degree d with A(0) non-singular, compute the δ coefficients F h , F h+1 , . . . , F h+δ-1 of the expansion of A -1 B at x = 0. → solved in time O˜(n ω d) by Theorem 3.1. MatFracRec n,d : given δ L , δ R = O(d) and the first δ L +δ R +1 coefficients of the expansion at x = 0 of H ∈ K(x) n×n as in Theorem 3.5, compute a left coprime factorization of H with row-reduced denominator. → solved in time O˜(n ω d) by Corollary 3.6.

Lemma 4 . 1

 41 For all P ∈ {MatMul, PartialNullSpace, MatFracExp, MatFracRec}, one can solve P * in O˜(n ω d) operations in K.

  n,d reduces to PartialNullSpace * n,d plus some polynomial matrix multiplications. The algorithm in [9, p.75] essentially consists in computing in log n steps a non-singular matrix U ∈ K[x] n×n and a diagonal matrix B ∈ K[x] n×n such that U A = B. (6) Hence, computing b 1,1 by performing these log n steps reduces to solving PartialNullSpace * n,d and MatMul * n,d . By Lemma 4.1, this gives a solution to Det n,d in O˜(n ω d) operations in K.

  5-4]. It follows that R is indeed a row-reduced form of A. By Lemma 4.1, this reduction to MatFracExp n,2d+1 and MatFracRec n,d gives a solution to RowRed n,d in O˜(n ω d) operations in K.

The inverse of A is then recovered as A -1 = B -1 U . The first step is as follows. Let A = [A L A R ] where A L , A R ∈ K[x] n×n/2 and let N , N ∈ K[x] n/2×n be minimal nullspace bases for, respectively, A L , A R . This gives the first block-elimination step towards the diagonalization of A:

When A is generic of degree d, it turns out that all the minimal indices of both N and N are equal to d [9, Fact 1] and that N A L and N A R are n/2 × n/2 polynomial matrices of degree exactly 2d on which we iterate. We show in [START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF] that the property "dimension × degree = nd" generically carries from one iteration to the other: at step i, starting from 2 i-1 blocks of dimensions (n/2 i-1 ) × (n/2 i-1 ) and degree 2 i-1 d, we compute 2 i-1 pairs (N

) and whose minimal indices are all equal to 2 i-1 d. Let (U, B) = (I n , A) before the first step. Step i also requires to update the matrix transform as

Because of the special block-structure of the polynomial matrices involved, it can be shown that these updates reduce to solving

Overall, the log n block-diagonalization steps thus reduce to PartialNullSpace * n,d and to

By Lemma 4.1 and (8), we therefore obtain a solution to Inv n,d in O˜(n 3 d) operations in K.

Since by Cramer's rule each entry of A -1 has the form p/(det A) where p ∈ K[x] may have degree at large as (n -1)d, the size of A -1 is of the order of n 3 d. The above inversion algorithm, defined for A generic and n a power of two, is therefore nearly optimal.

Determinant computation (Det n,d )

We assume here that A is generic with n is a power of two, and we use the inversion algorithm of Section 4.1. It has been shown in [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF] that the diagonal entries of the diagonal matrix B in (6) are constant multiples of det A. Since det A(0) is generically non-zero, we have

The problem Det n,d thus reduces essentially to computing the determinant of the constant matrix A(0) and to the computation of, say, b 1,1 . It is well-known that over K computing the determinant reduces to matrix multiplication [START_REF] Bürgisser | Algebraic Complexity Theory[END_REF]Section 16.4] (that is, Det n,0 reduces to MatMul n,0 using our notations). Concerning b 1,1 , we perform log n steps as for inversion but, since b 1,1 is the upper-left corner of B, we use instead of (7) the simpler step

As in [START_REF] Zur Gathen | Modern Computer Algebra[END_REF], N is a minimal nullspace basis for A R .

Step i now consists in computing a single minimal nullspace basis of dimensions (n/2 i ) × (n/2 i-1 ) and minimal indices 2 i-1 d, and then in multiplying this basis with the left half of an n/2 i by n/2 i block of degree 2 i-1 d, as in [START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF].