
Laboratoire de l’Informatique du Paralĺelisme

École Normale Suṕerieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Optimizing the translation out-of-SSA with
renaming constraints

F. Rastello
F. de Ferrìere
C. Guillon

August 2005

Research Report No 2005-34

École Normale Suṕerieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresséelectronique :lip@ens-lyon.fr

Optimizing the translation out-of-SSA with renaming
constraints

F. Rastello
F. de Ferrìere
C. Guillon

August 2005

Abstract
Static Single Assignment form is an intermediate representation that usesφ
instructions to merge values at each confluent point of the control flow graph.
φ instructions are not machine instructions and must be renamed back to
move instructions when translating out of SSA form. Without a coalescing
algorithm, the out of SSA translation generates manymove instructions.
Leung and George [8] use a SSA form for programs represented as native
machine instructions, including the use of machine dedicated registers. For
this purpose, they handle renaming constraints thanks to a pinning mechanism.
Pinningφ arguments and their corresponding definition to a common resource
is also a very attractive technique for coalescing variables. In this paper,
extending this idea, we propose a method to reduce theφ-related copies during
the out of SSA translation, thanks to a pinning-based coalescing algorithm
that is aware of renaming constraints. This report provides also a discussion
about the formulation of this problem, its complexity and its motivations.
We implemented our algorithm in the STMicroelectronics Linear Assembly
Optimizer [5]. Our experiments show interesting results when comparing to
the existing approaches of Leung and George [8], Sreedhar et al. [11], and
Appel and George for register coalescing [7].

Keywords: Static Single Assignment, Coalescing, NP-complete, K-COLORABILITY, Machine
code level, register allocation

Résuḿe
La forme SSA est une représentation interḿediaire de compilateur qui
utilise des fonctions virtuellesφ pour fusionner les valeurs̀a chaque point
de confluence du graphe de contrôle. Les fonctionsφ n’existant pas physi-
quement, elles doivent̂etre remplaćees par des instructionsmove lors de la
translation en code machine. Sans coalesceur, la translation hors-SSA géǹere
beaucoup demove.
Dans cet article, nous proposons une extention de l’algorithme de Leung et
George [8] qui effectue la minimisation de ces instructions de copie. Leung
et al. proposent un algorithme de translation d’une forme SSA pour du code
assembleur, mais non optimisé pour le remplacement des instructionsφ. Par
contre, ils utilisent la notion d’épinglage pour représenter les contraintes de
renommage.
Notre id́ee est d’utiliser cette notion d’épinglage afin de contraindre le renom-
mage des arguments desφ pour faire du coalescing. C’est une formulation
du probl̀eme de coalescing nońequivalente au problème initial toujours
consid́eŕe comme ouvert dans la littérature [8, 10]. Nous prouvons ńeanmoins
la NP-compĺetude de notre formulation, une conséquence de la preuveétant la
NP-compĺetude du probl̀eme initial en la taille de la plus grande fonctionφ.
Enfin, nous avons implément́e notre algorithme dans le LAO [5], optimiseur
d’assembleur lińeaire. La comparaison avec différentes approches possibles
fournit de nombreux ŕesultats int́eressants. Nous avons aussi essayé, à l’aide
d’exemples faitsà la main, d’expliquer les avantages et limitations des
diff érentes approches.

Mots-clés: forme SSA, fusion de variables, NP-complétude, K-COLORABLE, code assembleur,
allocation de registres

2

Optimizing the translation out-of-SSA with renaming constraints 1

1 Introduction

Static Single AssignmentThe Static Single Assignment (SSA) form is an intermediate representation
widely used in modern compilers. SSA comes in many flavors, the one we use is theprunedSSA
form [4]. In SSA form, each variable name, or virtual register, corresponds to a scalar value and each
variable is defined only once in the program text. Because of this single assignment property, the SSA
form containsφ instructions that are introduced to merge variables that come from different incoming
edges at a confluent point of the control flow graph. Theseφ instructions have no direct corresponding
hardware instructions, thus a translation out of SSA must be performed. This transformation replaces
φ instructions withmove instructions and some of the variables with dedicated ones when necessary.
This replacement must be performed carefully whenever transformations such as copy propagation
have been done while in SSA form. Moreover, a naive approach for the out of SSA translation
generates a large number ofmove instructions. This paper1 addresses the problem of minimizing
the number of generated copies during this translation phase.

x0 = 0

x2 = φ(x0, x1)
a = A[i]
b = B[i]

c = φ(c1, c2)
x1 = x2 + c

(a ≥ b)

c2 = bc1 = a

(a < b)

y = −x1

x = 0
for i = 1 to n

a = A[i]
b = B[i]
if (a < b)
then c = a
else c = b
x = x + c

y = −x

Initial code Corresponding SSA form

Figure 1:Example of code in non-SSA form and its corresponding SSA form without the loop counter
represented

Previous Work Cytron et al. [4] proposed a simple algorithm that first replaces aφ instruction
by copies into the predecessor blocks, then relies on Chaitin’s coalescing algorithm [3] to reduce
the number of copies. Briggs et al. [1] found two correctness problems in this algorithm, namely
the swap problem and the lost copy problem, and proposed solutions to these. Sreedhar et al. [11]
proposed an algorithm that avoids the need for Chaitin’s coalescing algorithm and that can eliminate
moremove instructions than the previous algorithms. Leung and George [8] proposed an out-of-SSA
algorithm for an SSA representation at the machine code level. Machine code level representations
addrenaming constraintsdue to ABI (Application Binary Interface) rules on calls, special purpose
ABI defined registers, and restrictions imposed on register operands.

1Many thanks to Alain Darte, Stephen Clarke, Daniel Grund and the reviewers of CGO for very helpful comments on
the presentation of this report.

2 F. Rastello and F. de Ferrière and C. Guillon

Context of the study Our study of out-of-SSA algorithms was needed for the development of the
STMicroelectronics Linear Assembly Optimizer (LAO) tool. LAO converts a program written in the
Linear Assembly Input (LAI) language into the final assembly language that is suitable for assembly,
linking, and execution. The LAI language is a superset of the target assembly language. It allows
symbolic register names to be freely used. It includes a number of transformations such as induc-
tion variable optimization, redundancy elimination, and optimizations based on range propagation, in
an SSA intermediate representation. It includes scheduling techniques based on software pipelining
and superblock scheduling, and uses arepeated coalescing[5] register allocator, which is an im-
provement over theiterated register coalescingfrom George and Appel [7]. The LAO tool targets
the ST120 processor, a DSP processor with full predication, 16-bit packed arithmetic instructions,
multiply-accumulate instructions and a few 2-operands instructions such as addressing mode with
auto-modification of base pointer.

Because of these particular features, an out-of-SSA algorithm aware of renaming constraints was
needed. In fact, delaying renaming constraints after the out-of-SSA phase would result in additional
move instructions (see Section5), along with possible infeasibilities and complications. We modi-
fied an out-of-SSA algorithm from Leung and George to handle renaming constraints and reduce the
number ofmove instructions due to the replacement ofφ instructions.

Layout of this paper The paper is organized as follows. Section2 states our problem and gives a brief
description of Leung and George’s algorithm. In Section3, we present our solution to the problem of
register coalescing during the out-of-SSA phase. Section4 discusses, through several examples, how
our algorithm compares to others. In Section5, we present results that show the effectiveness of our
solution on a set of benchmarks, and we finally conclude. This paper contains also two appendicesA
andB devoted respectively to the refinement of Leung’s algorithm and to the NP-completeness proof
of the pinning based coalescing problem.

2 Problem statement and Leung and George’s algorithm

Our goal is to handle renaming constraints and coalescing opportunities during the out of SSA transla-
tion. For that, we distinguishdedicated registers(such asR0or SP, the stack pointer) from general-
purpose registers that we assume in an unlimited number (we call themvirtual registers orvariables).
We use a pinning mechanism, in much the same way as in Leung and George’s algorithm [8], so as to
enforce the use of these dedicated registers and to favor coalescing. Then, constraints on the number
of general-purpose registers are handled later, in the register allocation phase.

2.1 Pinning mechanism

An operand is thetextual useof a variable, either as a write (definition of the variable) or as a read
(use in an instruction). Aresource is either a physical register or a variable.Resource pinningor
simply pinning is a pre-coloring of operands to resources. We callvariable pinning the pinning of
the (unique) definition of a variable. Due to the semantics ofφ instructions, all arguments (i.e. use
operands) of aφ instruction are pinned to the same resource as the variable defined (i.e. def operand)
by theφ.

On the ST120 processor, as in Leung and George’s algorithm, we have to handle Instruction Set
Architecture (ISA) register renaming constraints and Application Binary Interface (ABI) function
parameter passing rules. Figure2, expressed in SSA pseudo assembly code, gives an example of such
constraints. In this example and in the rest of this paper, the notationX ↑R is used to mark that the

Optimizing the translation out-of-SSA with renaming constraints 3

operandX is pinned to the resourceR. When the use of a variable is pinned to a different resource
than its definition, amove instruction has to be inserted between the resource of the definition and the
resource of the use. Pinning the variable to the same resource as its uses has the effect of coalescing
these resources (i.e., it deletes themove).

Original code:

.inputC, P
loadA, @P++

loadB, @P++
callD = f(A,B)
E = C +D
K = 0x00A12BFA

F = E −K
.outputF

SSA pinned code: Comments:

S0 : .inputC↑R0, P↑P0 InputsC andP must be inR0andP0at the entry.

S1 :
{

loadA, @P
autoaddQ↑Q, P↑Q, 1

The second def. ofP is renamed asQ in SSA, butP
andQ must use the same resource for autoadd, e.g.,Q.

S2 : loadB, @Q
S3 : f D↑R0,A↑R0,B↑R1 Parameters must be inR0andR1. Result must be inR0.
S4 : addE, C,D
S5 : makeL, 0x00A1
S6 : moreK↑K , L↑K , 0x2BFA OperandsK & L must use the same resource, e.g.,K.
S7 : subF , E,K
S8 : .outputF↑R0 OutputF must be inR0.

Figure 2:Example of code with renaming constraints: function parameter passing rules (statements
S0, S3, andS8) and 2-operand instruction constraints (statementsS1 andS6).

2.2 Correct pinning

Figure3 gives an example of renaming constraints that will result in an incorrect code. On the left of
Figure3, the renaming constraint is that all variables renamed from the dedicated registerSP(Stack
Pointer) must be renamed back toSP, due to ABI constraints. On the right, after replacement of the
φ instructions, the code is incorrect. Such problem mainly occurs after optimizations on dedicated
registers: SSA optimizations such as copy propagation or redundancy elimination must be careful to
maintain a semantically correct SSA code when dealing with dedicated-register constraints. More
details on correctness problems related to dedicated registers are given in AppendixA.

y1 = . . .
x1 = . . .

y1 = . . .
x1 = . . .

parallel copies: SP = . . .

[Code after Leung and]

sp3↑SP = φ(sp1, y1)
· · · = sp3 · · · = SP

řřřř
SP = y1
SP = x1

sp4↑SP = φ(x1, sp2)
· · · = sp4 · · · = SP

[Initial pinned code] [George’s reconstruction]

sp1↑SP = . . . sp2↑SP = . . .

SP = . . .

Figure 3:A too constrained pinning can lead to an incorrect code as for the parallel copies here.

Cases of incorrect pinning are given in Figure5. In this figure, Case 1 and Case 2 are correct if
and only ifx andy are the same variable. This is because two different values cannot be pinned to a
unique resource if both of them must be available at the entry point of an instruction (Case 2) or at the
exit point of an instruction (Case 1). A similar case onφ instructions is given in Case 3: the set ofφ
instructions at a block entry has a parallel semantics, therefore two differentφ definitions in the same
block cannot be pinned to the same resource. On the other hand, on most architectures, Case 4 is a
correct pinning. But, the corresponding scheme on aφ instruction (Case 5) is forbidden whens 6= r:
this is because allφ arguments are implicitly pinned to the resource theφ result is pinned to. The

4 F. Rastello and F. de Ferrière and C. Guillon

motivation for these semantics is given in AppendixA. Finally, Case 6 corresponds to a more subtle
incorrect pinning, similar to the problem stressed in Figure3.

return R0
R0 = x′3

y2 = y1 + K

x4↑R0= g(x3↑R0, y2↑R1)

y1↑R1= φ(y0, x2)

return x3↑R0

[Resulting out-of-SSA code][Initial pinned SSA code]

R0 = g(R0, R1)

R0 += 1

x′3 = R0
y2 = R1 + K
R1 = y2

x2↑R0= x0↑R0 +1

x3↑R0= φ(x0, y0)

řřřř
R0 = R1
R1 = R0

input R0, R1input x0↑R0, y0↑R1

[Before mark phase] [After rename phase]

Figure 4:Transformation of already pinned SSA code by Leung and George’s algorithm.

y1 = · · ·
x1 = · · ·

L1 :

Case 5:x↑r= φ(· · · y↑s · · ·)Case 1:(x↑r, y↑r) = instr(...)

Case 2:... = instr(x↑r, y↑r)

Case 3:

řřřř
x↑r= φ(...)
y↑r= φ(...)

Case 4:x↑r= instr(y↑r)

Case 6:

x↑r= (x1, · · ·)y↑r= (· · · , y1)

Figure 5:All but Case 4 are incorrect pinning.

2.3 Leung and George’s algorithm

Leung and George’s algorithm is decomposed into three consecutive phases: thecollect phase col-
lects information about renaming constraints; themarkphase collects information about the conflicts
generated by renaming; thereconstructphase performs renaming, inserts copies when necessary and
replacesφ instructions.

Pinning occurs during the collect phase, and then the out of SSA translation relies on the mark and
reconstruct phases. Figure4 illustrates the transformations performed during those last two phases:

• x3 is pinned toR0 on its definition. But, on the path to its use in thereturn, x4 is also pinned
to R0 on the call tog. We say thatx3 is killed , and arepair copy to a new variablex′3 is
introduced.

• The use ofx3 in the call tog is pinned toR0, while x3 is already available inR0 due to a
prior pinning on theφ instruction. The algorithm is careful not to introduce a redundantmove
instruction in this case.

• The copiesR0 = R1; R1 = R0 are performedin parallel in the algorithm, so as to avoid the
so-called swap problem. To sequentialize the code, intermediate variables may be used and the
copies may be reordered, resulting in the codet = R1; R1 = R0; R0 = t in this example.

Optimizing the translation out-of-SSA with renaming constraints 5

Now, consider thenon-pinned variabley2 of Figure4 and its use in the definition ofx4. The use is
pinned to a resource, R1, andy2 could have been coalesced toR1 without creating any interference.
The main limitation of Leung and George’s algorithm is its inability to do so. The same weakness
shows up onφ arguments, as illustrated by Figure6(a): on aφ instructionX = φ(x0, . . . , xn), each
operandxi is implicitly pinned toX, while the definition of eachxi may not. Our pinning-based
coalescing is an extension to the pinning mechanism whose goal is to overcome this limitation.

2.4 Theφ coalescing problem

As opposed to the pinning due to ABI constraints, which is applied to a textual use of an SSA variable,
the pinning related to coalescing is applied only to variable definitions (variable pinning). Figure6
illustrates how this pinning mechanism can play the role of a coalescing phase by preventing the re-
construction phase of Leung and George’s algorithm from insertingmove instructions: in Figure6(b),
x1 andx2 were pinned tox to eliminate thesemove instructions; however, this pinning creates an
interference, which results in a repairmove x′ = x along with amove x = x′ on the replacement of
theφ instruction; in Figure6(c), to avoid the interference, onlyx2 was pinned tox, resulting in only
onemove instruction.

(b) Final code if x, x1

the virtual resource x
x2 are pinned to

x1 = exp1
x2 = exp2

x = φ(x1, x2)

Initial SSA form

x = exp1

x = exp2

x’=x
conflict
savex

restorex x = x′

x2 = exp2

x1 = exp1

x = x1 x = x2

x = exp2

x1 = exp1
x2 pinned to x

x = x1

x2 in x

no copy needed

(c) Final code if
x and x2 are pinned

to the virtual resource x

(a) Final code if nothing pinned

Figure 6:Inability of Leung and George’s algorithm to coalescex = x1 andx = x2 instructions (a) ;
a worst (b) and a better (c) solution using variable pinning ofx1 andx2.

Therefore, we will only look for a variable pinning that does not introduce any new interference.
In this case, for aφ instructionX = φ(x0, . . . , xn), we say that the gain forφ is the number of
indicesi such that the variablexi is pinned to the same resource asX. Hence, ourφ coalescing
problem consists of finding a variable pinning, with no new interference (i.e., without changing
the number of variables for which a repair move is needed), that maximizes the total gain,
taking into account all φ instructions in the program.

Algorithm 1 Main phases of our algorithm.
Program pinning(CFG Program P)
foreach basic block B in P, in an inner to outer loop traversal

Initial G=Create affinity graph(B)
PrePruned G=Graph InitialPruning(Initial G)
Final G=BipartiteGraph pruning(PrePruned G)
PrunedGraph pinning(Final G)

6 F. Rastello and F. de Ferrière and C. Guillon

3 Our solution

Theφ coalescing problem we just formulated is NP-complete (see AppendixB for details). Instead
of trying to minimize the gain for allφ instructions together, our solution relies on a sequence of local
optimizations, each one limited to the gain for allφ instructions defined at a confluence point of the
program. These confluence points are traversed based on an inner to outer loop traversal, so as to
optimize in priority the most frequently executed blocks. The skeleton of our approach is given in
Algorithm 1.

Let us first describe the general ideas of our solution, before entering the details. For an SSA
variable y, we definey = Resourcedef(y) asr if the definition of y is pinned tor, or y otherwise.
Also, for simplicity, we identify the notion of resource with the set of variables pinned to it. For a given
basic block, we create what we call anaffinity graph . Vertices represent resources; edges represent
potential copies between variables that can be coalesced if pinned to the same resource. Edges are
weighted to take into account interferences between SSA variables; then the graph is pruned (deleting
in priority edges with large weights) until, in each resulting connected component, none of the vertices
interfere: they can now be all pinned to the same resource. The rest of this section is devoted to
the precise description of our algorithm. A pseudo code is given in Algorithm2 on page17. The
consecutive steps of this algorithm are applied on the example of Figure8.

3.1 The initial affinity graph

For a given basic block, the affinity graph is an undirected graph where each vertex represents either
a variable or its corresponding resource (if already pinned): two variables that are pinned to the same
resource are collapsed into the same vertex. Then, for eachφ instructionX = φ(x1, . . . , xn) at the
entry of the basic block, there is an affinity edge, for eachi, 0 ≤ i ≤ n, between the vertex that
containsX and the vertex that containsxi.

3.2 Interferences between variables

We define below four classes of interferences that can occur when pinning two operands of aφ instruc-
tion to the same resource. We differentiate simple interferences from strong interferences: a strong
interference generates an incorrect pinning. On the other hand, a simple interference can always be
repaired despite the fact that the repair might generate additional copies. The goal is then to minimize
the number of simple interferences and to avoid all strong interferences. The reader may find useful
to refer, for each class, to Figure7.

[Class 1]Consider two variablesx andy. If there exists a point in the control flow graph where
bothx andy are alive, thenx andy interfere. Moreover, considering the definitions ofx andy, one
dominates the other (this is a property of the SSA form). If the definition ofx dominates the definition
of y, we say that thedefinition ofx is killed byy. The consequence is that pinning the definitions ofx
andy to a common resource would result in a repair ofx (as in Leung and George’s technique).

[Class 2]Consider aφ instructiony = φ(. . . , z, . . .) in basic blockB. LetC be the block where
the argumentz comes from; textually, the use ofz appears in blockB (and is implicitly pinned to
y), but semantically, it takes place at the end of basic blockC (this is where amove instruction, if
needed, would be placed). Ifx 6= z andx is live-out of blockC, thenx and the use ofz interfere and
we say thatthe definition ofx is killed byy. Note our definition ofliveness: aφ instruction does not
occur where it textually appears, but at the end of each predecessor basic block instead. Hence, if not

Optimizing the translation out-of-SSA with renaming constraints 7

used by another instruction,z would be treated as dead at the exit of blockC and at the entry of block
B.

[Class 3]Consider two variablesx andy, both defined byφ instructions, but not necessarily in
the same basic block. Some of their respective arguments (for examplexi andyj) may interfere in a
common predecessor blockB. In this case, we say thatthe definitions ofx andy strongly interfere:
indeed, as explained in Section2.2, pinning those two definitions together is incorrect.

[Class 4] Considerφ instructionsy = φ(y1, . . . , yn) andz = φ(y1, . . . , yn), in the same basic
block and with the same arguments. Because of Leung and George’s repairing implementation, they
cannot be considered as identical and we need to consider that they strongly interfere. Notice that a
redundancy elimination algorithm should have eliminated this case before. Note that, by definition of
Classes 3 and 4, all variables defined byφ instructions in the same basic block strongly interfere.

Also, we consider thatvariables pinned to two different physical registersstrongly interfere.

y kills x
[Class 1] [Class 2]

y kills x

y = φ(y1, y2)
z = φ(y1, y2)

x strongly interferes withy
y strongly interferes withz

[Classes 3 & 4]

x = . . .
y =

x2 6= y1

. . .

x = . . .
z 6= x

y = φ(., z)
. . . = x

x = φ(., x2)

Figure 7:Different kind of interferences between variables.

x2

class1

class2

x1

X2

x1

X2 0

A = {x1, X2}

X1 = φ(x2, x1)
X3 = φ(x2, x3)

X1
x2

x3

X3
0

0

0

{x1, X2} = A

A = {x1, X2, X1}
B = {x3, x2, X3}

X1
x2

x3

X3
0

class1class3
1

2

1 {x1, X2} = AInitial G=PrePruned G: A = . . .
B = . . .

{x1 is in A, x2 in B}

. . .

. . .

Step 1: coalescing ofL1:

x1↑A= . . .
x2↑B= . . .

x3↑B= . . .

X2↑A= φ(x1, x2) X1↑A= φ(x2, x1)
X3↑B= φ(x2, x3)

Initial G:

PrePruned G=Final G:

Resources:

x2 = . . .

. . .

. . .

x3 = . . .

L2:

x1↑A= . . .

X2↑A= φ(x1, x2)

Resources:

Final G:

Step 2 (final): coalescing ofL2:

Pinned SSA code after step 1:Initial SSA code: Pinned SSA code after step 2:

Final code:

x2 = . . .

. . .

x1 = . . .

X2 = φ(x1, x2)

. . .

x3 = . . .

X1 = φ(x2, x1)
X3 = φ(x2, x3)

L1:

B = . . .
A = B

. . .

{x2 is in A}{x3 is in B}

{X2 is in A} {X1 is in A, X3 in B}

Figure 8: Program pinning on an example. Control-flow graphes are represented for code, with
control-flow edges between basic blocks represented with solid black arrows. Affinity graphes are
represented for step 1 and 2, with affinity edges represented as dashed gray lines, annotated with a
weight, and with interferences edges represented as full gray lines, annotated with the class of the
interference.

8 F. Rastello and F. de Ferrière and C. Guillon

3.3 Interferences between resources

After the initial pinning (taking into account renaming constraints), a resource cannot contain two
variables that strongly interfere. However, simple interferences are possible; they will be solved by
Leung and George’s repairing technique. During our iterative pinning process, we keep merging more
and more resources, but we make sure not to create any new interference. We say that two resources
A = {x1, . . . , xn} andB = {y1, . . . , ym} interfere if pinning all the variables{x1, . . . , xn} and
{y1, . . . , ym} together creates either anewsimple interference, or a strong interference, i.e., if there
existxi andyj that interfere. This check is done by the procedureResource interfere; it uses the
procedureResource killed that gives, within a given resource, all the variables already killed by
another variable.Resource killed is given in aformaldescription, but obviously the information can
be maintained and updated after each merge.

3.4 Pruning the affinity graph

The pruning phase is based on the interference analysis between resources. More formally, the op-
timization problem can be stated as follows. LetG = (V,EAffinity) be the graph obtained from
Create affinity graph (as explained in Section3.1): the setV is the set of vertices labeled by re-
sources andEAffinity is the set of affinity edges between vertices. The goal is to prune (edge deletion)
the graphG intoG′ = (V,Epinned) such that:

Condition 1: the cardinality ofEpinned is maximized;
Condition 2: for each pair of resources(v1, v2) ∈ V 2 in the same connected component ofG′,

v1 andv2 do not interfere, i.e.,Resource interfere(v1, v2) = false.
In other words, the graphG is pruned into connected components such that the total number of

deleted edges fromEAffinity is minimized and no two resources within the same connected component
interfere.

First, because ofCondition 2, all edges(v1, v2) in EAffinity such thatv1 andv2 interfere need
to be removed fromG. The obtained graphPrePruned G is bipartite. Indeed, let{Xi}1≤i≤m, with
Xi = φ(xi,1, . . . , xi,n), be the set ofφ instructions of the current basic blockB. There are two kinds of
vertices inG, the vertices for the definitionsVDEFS = {Resourcedef(Xi)}1≤i≤m and the other ones,
for the arguments not already inVDEFS , VARGS = {Resourcedef(xi,j)}1≤i≤m, 1≤j≤n \ VDEFS . By
construction, there is no affinity edge between two elements ofVARGS . Also, because elements of
VDEFS strongly interfere together, there remains no edge between two elements ofVDEFS . Thus,G
is indeed bipartite.

Unfortunately, even for a bipartite affinity graph, the pruning phase is NP-complete in the number
of φ instructions (see AppendixB). Therefore, we use a heuristic algorithm based on a greedy pruning
of edges, where edges with large weights are chosen first. The weight of an edge(x, y) is the number
of neighbors ofx (resp.y) that interfere withy (resp.x). This has the effect of first deleting edges
that are more likely to disconnect more interfering vertices (see details in the procedureBipartite-
Graph pruning). Note that, in the particular case of a uniqueφ instruction, this is identical to the
“Process the unresolved resources ” of the algorithm of Sreedhar et al. [11].

3.5 Merging the connected components

Once the affinity graph has been pruned, the resources of each connected component can be merged.
We choose a reference resource in this connected component, either the physical resource if it exists
(in this case, it is unique since two physical resources always interfere), or any resource otherwise. We
change all pinnings to a resource of this component into a pinning to the reference resource. Finally,

Optimizing the translation out-of-SSA with renaming constraints 9

we pin each variable (i.e., its definition) in the component to this reference resource. The correctness
of this phase is insured by the absence of any strong interference inside the new merged resource. A
formal description of the algorithm is given by the procedurePrunedGraph pinning. In practice,
the update of pinning need be performed only once, just before the mark phase, so requiring only one
traversal of the control flow graph. Also note that the interference graph can be built incrementally
at each call toResource interfere and updated at each resource merge, using a simple vertex-merge
operation: hence, as opposed to the merge operation used in the iterated register coalescing algo-
rithm [7] where interferences have to be recomputed at each iteration, here each vertex represents a
SSA variable and merging is a simple edge union.

We point out that, after this phase, our algorithm relies on the mark and reconstruct phases of Le-
ung and George’s algorithm. But we use several refinements, whose details are given in AppendixA.

4 Theoretical discussion

We now compare our algorithm with previous approaches, through hand crafted examples.

4.1 Our algorithm versus register coalescing

The out-of-SSA algorithm of Briggs et al. [1] relies on a Chaitin-style register coalescing to remove
move instructions produced by the out of SSA translation. ABI constraints for a machine code level
intermediate representation can be handled after the out of SSA translation by insertion ofmove
instructions at procedure entry and exit, around function calls, and before 2-operand instructions.
However, several reasons favor combined processing of coalescing and ABI renaming during the out-
of-SSA phase:

[CC1] SSA is a higher level representation that allows a more accurate definition of interferences.
For example (see Figure9), it allows partial coalescing, i.e., the coalescing of a subset of the variable
definitions.

R0 = f3
r3 = R0
R0 = w

{z is in R0}
· · · = R0

R0 = f2R0 = f1R0 = f1
z = R0

R0 = f2
z = R0

· · · = z

R0 = f3

· · · = r · · · = r3

[Initial code] [Partially coalesced code]

z = w

Figure 9: Because the physical registerR0 and z interfere, [Initial code] cannot be coalesced by
Chaitin’s register coalescing; even if the three definitions ofR0 are constrained to be done onR0 (and
then even in SSA “R0” and “z” interfere), the pinning mechanism allowsz andR0 to be coalesced,
we say partially.

[CC2] The classical coalescing algorithm is greedy, so it may block further coalescings. Instead,
for each merging point of the control flow graph, our algorithm optimizestogetherthe set of coalescing
opportunities for the set ofφ instructions of this point.

[CC3] The main motivation of Leung and George’s algorithm is that ABI constraints introduce
many additionalmove instructions. Some of these will be deleted by a dead code algorithm, but
most of them will have to be coalesced. An important point of our method is the reduction of the
overall complexity of the out-of-SSA renaming and coalescing phases: as explained in Section3.5,

10 F. Rastello and F. de Ferrière and C. Guillon

the complexity of the coalescings performed under the SSA representation benefits from the static
single definition property.

4.2 Our algorithm versus the algorithm of Sreedhar et al.

The technique of Sreedhar et al. [11] consists in first translating the SSA form into CSSA (Conven-
tional SSA) form. In CSSA, it is correct to replace all variable names that are part of a commonφ
instruction by a common name, then to remove allφ instructions. To go from SSA to CSSA however,
we may create new variables and insertmove instructions to eliminateφ variable interferences that
would otherwise result in an incorrect program after renaming. Sreedhar et al. propose three algo-
rithms to convert to CSSA form. We only consider the third one, which uses the interference graph
and some liveness information to minimize the number of generatedmove instructions. Figures10-12
illustrate some differences between the technique of Sreedhar et al. and ours.

[CS1] Sreedhar et al. optimize separately the replacement of eachφ instruction. Our algorithm
considers all theφ instructions of a given block to be optimized together. This can lead to a better
solution as shown in Figure10.

x = f1

y = f2

x = f1

z = f3

[Initial SSA] [Our solution][Sreedhar et al.]
[Solution of]

S1 : X = φ(x, y)
S2 : Y = φ(z, y)

Y = f3

X = x
Y = X Y = f3 X = Y

X = f1

Y = f2X = f2

Figure 10:Sreedhar et al. treatS1 andS2 in sequence: forS1, {x, y} interfere soX = x is inserted
and{y,X} are regrouped in the resourceX; for S2, {z,X} interfere soY = X is inserted and
Y = {z, Y }.

y2 = x2

input x2, y2

X = x2

x2 = X

X = y2

{x3 is in X}
{y3 is in y2}

input x1, y1

S1 : x2 = φ(x1, x3)
S2 : y2 = φ(y1, y3)

S3 : x3 = φ(x2, y2)
S4 : y3 = φ(y2, x2)

input x1, y1

t = y1

y1 = x1

x1 = t

· · · = f(x3, y3) · · · = f(x2, y2) · · · = f(x1, y1)

[Initial SSA] [Sreedhar et al.] [Our solution]

Figure 11:The superiority of using parallel copies. For the solution of Sreedhar et al. we suppose
S1, S2, S3 andS4 were treated in this order.

Optimizing the translation out-of-SSA with renaming constraints 11

[CS2] Sreedhar et al. processiterativelymodify the initial SSA code by splitting variables. By do-
ing so, information on interferences becomes scattered and harder to use. Thanks to pinning, through-
out the process we are always reasoning on the initial SSA code. In particular, as illustrated by
Figure11, we can take advantage of the parallel copies placement.

[CS3] Finally, because our SSA representation is at machine level, we need to take into account
ABI constraints. Figure12 shows an example where we make a better choice of which variables to
coalesce by taking the ABI constraints into account.

b0 = f1

b1 = φ(b0, B)
b2 = b1 + 1 (autoadd)
a = · · · a = · · ·

B = f1B = f1

{b1 is in B}
b2 = B + 1 (autoadd)
B = · · ·

{a is in B}L1 : L2 : B = b2 B = a

[Our solution]

B = φ(a, b2)

[Initial SSA] [Sreedhar et al.]

B+ = 1

Figure 12:{a, b2} interfere: without the ABI constraints information, adding themove on blockL1

or L2 is equivalent. Sreedhar et al. may make the wrong choice: treating the ABI afterward would
replace the autoadd intoB = B+1 ; b2 = B (because{B, b2} interfere) resulting in one moremove.

4.3 Limitations

Below are several points that expose the limitations of our approach:

[LIM1] Our algorithm is based on Leung and George’s algorithm that decides the place where
move instructions are inserted. Also, we use an approximation of the cost of an interference compared
to the gain of a pinning. Hence, even if we could provide an optimal solution to our formulation of
the problem, this solution would not necessarily be an optimal solution for the minimization ofmove
instructions.

[LIM2] As explained in Section2.3, the main limitation of Leung and George’s algorithm is that,
when the use of a variable is pinned to a resource, it does not try to coalesce its definition with this
resource. This can be avoided by using a pre-pass to pin the variable definitions. But, as illustrated by
Figure13, repairing variables that are introduced during Leung and George’s repairing phase cannot
be handled this way.

[LIM3] As explained in AppendixB, ourφ coalescing problem is NP-complete. Note also that a
simple extension of the proof shows the NP-completeness of the problem of minimizing the number
of move instructions.

[LIM4] Finally, in the case of strong register pressure, the problem becomes different: coalescing
(or splitting) variables has a strong impact on the colorability of the interference graph during the
register allocator phase (e.g. [9]). But this goes out of the scope of this paper.

12 F. Rastello and F. de Ferrière and C. Guillon

R0 = x′
· · · = f(R0)

x↑x= φ(x0, x1)

x1↑x= x + 1

· · · = f(x↑R0)

x0↑x= . . .

[Initial SSA code]

x′ = x (repair)
x = x + 1

x = . . .

[Our solution]

x = x + 1
R0 = x (repair)

· · · = f(R0)

x = . . .

[Optimal solution]

Figure 13:Limitation of Leung and George’s repairing process: the repairing variablex′ is not coa-
lesced with further uses.

5 Results

We conducted our experiments on several benchmarks represented in LAI code. Since the LAI lan-
guage supports predicated instructions, the LAO tool uses a special form of SSA, namedψ-SSA [13],
which introducesψ instructions to represent predicated code under SSA. In brief,ψ instructions in-
troduce constraints similar to 2-operands constraints, and are handled in our algorithm in a special
pass where they are converted into a “ψ-conventional” SSA form. This does not change the results
presented in this section.

In the following, VALcc1andVALcc2refer to the same set of C functions compiled into LAI
code with two different ST120 C compilers. This set includes about 40 small functions with some
basic digital signal processing kernels, integer Discrete Cosine Transform, sorting, searching, and
string searching algorithms. The benchmarksexample1-8are small examples written in LAI code
specifically for the experiment.LAI Large is a set of larger functions, most of which come from the
efr 5.1.0 vocoder from the ETSI [6]. Finally, SPECintrefers to the SPEC CINT2000 benchmark [12].

To show the superiority of our approach, we have implemented the following algorithms:
[Leung] The algorithm of Leung and George contains the collect, and the mark-reconstruct (say

out-of-pinned-SSA) phases. For some reasons given further, the collect phase has been split into
three parts, namelypinningSP (collect constraints related to the dedicated registerSP), pinningABI

(collect remaining renaming constraints) andpinningφ (our algorithm). Each of these pinning phases
can be activated or not, independently.

[Sreedhar] The algorithm of Sreedhar et al. has been implemented with an additional pass,
namelypinningCSSA. The pinningCSSA phase pins all the operands of aφ to a same resource, and
allows the out-of-pinned-SSA phase to be used as an out-of-CSSA algorithm.

[NaiveABI] is an algorithm that adds when necessarymove instructions locally around renaming
constrained instructions. This pass can be used when the pinningABI pass has not been activated.

[Coalescing]Finally, we have implemented a repeated register coalescer [5]. As for the iterated
register coalescer it is a conservative coalescer when used during the register allocation phase. But,
outside of the register allocation context like here, it is an aggressive coalescing that does not take
care of the colorability of the interference graph.

As already mentioned in Section2.2, coalescing variables constrained by a dedicated register
like the SPregister can generate incorrect code. Similarly, splitting the SSA web of such variables
poses some problems. Hence, it was not possible to ignore those renaming constraints during the
out-of-SSA phase and to treat them afterwards. That explains the differentiation we made between
pinningSP and pinningABI passes: we choose to always execute pinningSP. Also, we tried to modify
the algorithm of Sreedhar et al. to supportSP registerconstraints. However, our implementation still
performs some illegal variable splitting on some codes: the final non-SSA code contains fewermove

Optimizing the translation out-of-SSA with renaming constraints 13

instructions, but is incorrect. Such cases mainly occurred with SPECint, and thusthe SPECint figures
for the experiments including the algorithm of Sreedhar et al. must be taken only as an optimistic
approximation of the number ofmove instructions.

E
xp

er
im

en
ts

S
re

ed
ha

r

pi
nn

in
g C

S
S

A

pi
nn

in
g S

P

pi
nn

in
g A

B
I

pi
nn

in
g

φ

ou
t-

of
-p

in
ne

d-
S

S
A

N
ai

ve
A

B
I

C
oa

le
sc

in
g

Lφ+C • • • •
C • • •

Ta
bl

e
2

Sφ+C • • • • •
Lφ, ABI+C • • • • •

Sφ+LABI+C • • • • • •
LABI+C • • • •

Ta
bl

e
3

C • • • •
Lφ,ABI • • • •

Sφ • • • • •

Ta
bl

e
4

LABI • • •

Table 1:Details of implemented versions

Tables2-5 compares the number of resultingmove instructions on the different out-of-SSA algo-
rithms detailed in Table1. In particular, we illustrate here comparisons[CC1-3] and[CS1-3]exposed
in Section4. In the tables, values with + or - are always relative to the first column of the table.

Comparison without ABI constraints Table2 compares different approaches when renaming con-
straints are ignored. As explained above only non-SP register related constraints, which we improperly
call ABI constraints, could be ignored in practice. ColumnsSφ+C vsLφ+C illustrate points[CS1-2].
Columns C vsLφ+C illustrate points[CC1-2]. Point[CC1] is also illustrated bySφ+C vs C. In those
experiments, our algorithm is better or equal in all cases, except for the SPECint benchmark with
the algorithm of Sreedhar et al.. ButSφ+C are optimistic results as explained before. It shows the
superiority of our approach in the absence of ABI constraints.

benchmark Lφ + C C Sφ+C

VALcc1 193 +59 +3
VALcc2 170 +44 +13

example1-8 14 +3 +3
LAI Large 438 +44 +48
SPECint 6803 +3135 -59

Table 2:Comparison ofmove instruction count with no ABI constraint.

Comparison with renaming constraints Table3 shows the variation in the number ofmove in-
structions of various out-of-SSA register coalescing algorithms, when all renaming constraints are
taken into account. Comparison ofSφ+LABI+C andLABI+C vsLφ,ABI+C confirms points[CS3].
Column C shows the importance of treating the ABI with the algorithm of Leung et al.: manymove
instructions could not be removed by the dead code and aggressive coalescing phases. Our algorithm
leads to lessmove instructions in all cases which shows the superiority of our approach with renaming
constraints.

14 F. Rastello and F. de Ferrière and C. Guillon

benchmark Lφ,ABI+C Sφ+LABI+C LABI+C C

VALcc1 242 +7 +3 +386
VALcc2 220 +15 +29 +449

example1-8 15 +3 +3 +18
LAI Large 1085 +26 +62 +634
SPECint 23930 +413 +482 +38623

Table 3:Comparison ofmove instruction count with renaming constraints.

Compilation time Repeated register coalescing is an expensive optimization phase in terms of time
and space; its complexity is proportional to the number ofmove instructions in the program. Almost
all coalescings are handled by our algorithm during the out of SSA translation. As explained in [2]
the creation and the maintenance of the interference graph is highly simplified under the SSA form.
Hence, as mentioned in Point[CC3], the moremove instructions are handled at the SSA level, the
lower is the compilation time for the overall coalescing. Table4 gives an evaluation of the number of
move instructions that would remain after the out-of-SSA phase if only naive techniques were applied
for theφ replacement (which we denoteφ moves) and for the renaming constraints treatment (which
we improperly call ABImoves). Hence, it gives an evaluation of the cost of running a repeated register
coalescing after one simple SSA rename back phase. We did not provide timing figures for the overall
out-of-SSA and register coalescing phase for the different experiments because our implementation is
too experimental and not optimized enough to give usable results.

benchmark Lφ,ABI Sφ LABI

ABI moves φ moves
VALcc1 277 +593 +690
VALcc2 245 +926 +749

example1-8 16 +38 +34
LAI Large 1447 +4543 +6161
SPECint 36882 +249481 +260095

Table 4:Comparison ofmove instruction count before the repeated register coalescing phase.

Variations on our algorithm Table5 compares small variations in the implementation of our algo-

rithm. The base column reportsweighted movecount, wheremove instructions are given a weight
equal to5d, d being the nesting level, i.e. depth, of the loop themove belongs to.5d is an arbitrary

benchmark base depth opt pess
VALcc1 1109 +1 +4 +1484
VALcc2 877 +1 +8 +1716

example1-8 32 +0 +0 +4
LAI Large 17594 +60 +7 +22116
SPECint 1652065 -1798 +7258 +3038712

Table 5:Weighted count ofmove instructions on variants of our algorithm.

Optimizing the translation out-of-SSA with renaming constraints 15

weight that corresponds to a static approximation where each loop would contain 5 iterations.
Our first variation (depth) is based on the simple remark that in our initial implementation we

prioritized theφ instructions according to their depth, instead of the depth of themove instructions
they will generate. For this variation, we use a newCreate affinity graph procedure (Algorithm3)
with a depth constraint that callsProgram pinning with decreasing depth. This leads to a very
small improvement on SPECint and a small degradation for LAILarge. This result confirms the
observation we made that affinity and interference graphs are not complex enough to motivate a global
optimization scheme.

Our second (opt) and third (pess) variations use relaxed definitions of interferences, respectively
optimisticandpessimistic(Algorithm 4). It is interesting to note that optimistic interferences only
incur a relatively small increase in the number ofmove instructions while significantly reducing the
complexity of the computation of the interference graph.

6 Conclusion

This paper presents a pinning-based solution to the problem of register coalescing during the out-
of-SSA translation phase. We explain and demonstrate why consideringφ instruction replacement
and renaming constraints together results in an improved coalescing of variables, thus reducing the
number ofmove instructions before instruction scheduling and register allocation. We show the
superiority of our approach both in terms of compile time and number of copies compared to solutions
composed of existing algorithms (Sreedhar et al., Leung and George, Briggs et al., repeated register
coalescing). These experiments also show that the affinity and interference graphs are usually quite
simple, which means that a global optimization scheme would bring very little improvement over our
local approach. Finally, we implemented some small variations of our algorithm, and observed that
an optimistic implementation of interferences still provides good results with a significant reduction
in the complexity of the computation of the interference graph. During this work, we also improved
slightly the mark and reconstruct phases of Leung and George’s algorithm, which we rely on.

References

[1] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical improvements to the con-
struction and destruction of static single assignment form.Software – Practice and Experience,
28(8):859–881, July 1998.

[2] Z. Budimlic, K. Cooper, T. Harvey, K. Kennedy, T. Oberg, and S. Reeves. Fast copy coa-
lescing and live-range identification. InSIGPLAN International Conference on Programming
Languages Design and Implementation, pages 25–32. ACM Press, June 2002.

[3] G. J. Chaitin. Register allocation & spilling via graph coloring. InProceedings of the 1982
SIGPLAN symposium on Compiler construction, pages 98–101, 1982.

[4] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing static
single assignment form and the control dependence graph.ACM Transactions on Programming
Languages and Systems, 13(4):451 – 490, 1991.

[5] B. Dupont de Dinechin, F. de Ferrière, C. Guillon, and A. Stoutchinin. Code generator optimiza-
tions for the ST120 DSP-MCU core. InInternational Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, pages 93 – 103, 2000.

16 F. Rastello and F. de Ferrière and C. Guillon

[6] European Telecommunications Standards Institute (ETSI). GSM technical activity, SMG11
(speech) working group. Available athttp://www.etsi.org .

[7] L. George and A. W. Appel. Iterated register coalescing.ACM Transactions on Programming
Languages and Systems, 18(3), May 1996.

[8] A. L. Leung and L. George. Static single assignment form for machine code. InSIGPLAN
International Conference on Programming Languages Design and Implementation, pages 204 –
214, 1999.

[9] J. Park and S.-M. Moon. Optimistic register coalescing. InIEEE International Conference on
Parallel Architectures and Compilation Techniques, pages 196–204, 1998.

[10] M. Sassa, T. Nakaya, M. Kohama, T. Fukukoa, and M. Takahashi. Static Single Assignment
form in the COINS compiler infrastructure.

[11] V. Sreedhar, R. Ju, D. Gillies, and V. Santhanam. Translating out of static single assignment
form. In Static Analysis Symposium, Italy, pages 194 – 204, 1999.

[12] Standard Performance Evaluation Corporation (SPEC). SPEC CINT2000 benchmarks. Avail-
able athttp://www.spec.org/cpu2000/CINT2000/ .

[13] A. Stoutchinin and F. de Ferrière. Efficient static single assignment form for predication. In
34th annual ACM/IEEE international symposium on Microarchitecture, pages 172–181. IEEE
Computer Society, 2001.

[14] Y. Wu and J. R. Larus. Static branch frequency and program profile analysis. InMICRO –
International Symposium on Microarchitecture, pages 1–11, New York, NY, USA, 1994. ACM
Press.

Optimizing the translation out-of-SSA with renaming constraints 17

Algorithm 2 Formal description of our algorithm.
Create affinity graph(CFG Node current node)
(E, V) = (∅, ∅)
for each X = φ(x1, . . . , xn) of current node
V = V

⋃{Resource def(X)}
for each x ∈ {x1, . . . , xn}
V = V

⋃{Resource def(x)}
e = (Resource def(X),Resource def(x))
if (e 6∈ E) multiplicity(e)=0
E = E

⋃{e}, multiplicity(e)++
return G = (E, V)

Graph InitialPruning(Graph (V,E))
foreach (x1, x2) ∈ E,

if (Resource interfere(x1, x2))
E−= (x1, x2)

return (V,E)

BipartiteGraph pruning(Bipartite Multi Graph (V,E))
{ Evaluates the weight for each edge }
for all e ∈ E, weight(e)=0
for all ((x, x1), (x, x2)) ∈ E2 such that x1 6= x2

if Resource interfere(x1, x2)
weight((x, x1))+=multiplicity((x, x2))
weight((x, x2))+=multiplicity((x, x1))

{Prunes in decreasing weight order
and update the weight}

while weight(ep)> 0
let ep = (X,x) such that
∀e ∈ E, weight(ep)≥weight(e)

do
E−= ep

for all e = (X, y) ∈ E
weight(e)−=multiplicity(ep)

for all e = (Y, x) ∈ E
weight(e)−=multiplicity(ep)

return (V,E)

PrunedGraph pinning(Graph G, Program P)
foreach V ∈ {connected components of G}

let u =
⋃

v∈V v

let w =
{
vi if vi ∈ V is a physical resource
u otherwise

foreach (OP) d1, · · · = instr(a1, . . .) ∈ P
foreach di such that di ∈ u

pin di to w in (OP)
foreach ai↑r such that r ∈ V

replace r by w

Variable kills(Variable a, Variable b)
if the definition of b dominates those of a

and a and b interfere
return true {Case 1}

if a is defined as a = φ(a1 : B1, . . . , an : Bn)
for i = 1 to n

if b is live out of Bi and b 6= ai

return true {Case 2}
return false

Variable stronglyInterfere(Variable a, Variable b)
if a and b are defined by φ instructions

let a : Ba = φ(a1 : Ba,1, . . . , an : Ba,n)
let b : Bb = φ(b1 : Bb,1, . . . , bm : Bb,m)
if Ba = Bb return true {Case 4}
for i = 1 to n

if Ba,i is a predecessor of Bb

let Ba,i = Bb,j

if ai 6= bj return true {Case 3}
return false

else if a and b are defined in the same instruction
let (· · · a · · · b · · ·) = instr(· · ·)
return true

return false

Resourcekilled(ResourceA)
let A = {a1, . . . , an}
killed withinA =
{ai ∈ A|∃aj ∈ A, Variable kills(aj , ai)}

return killed withinA

Resourceinterfere(ResourceA, ResourceB)
let A = {a1, . . . , an}
let B = {b1, . . . , bm}
let killed withinA = Resource killed(A)
let killed withinB = Resource killed(B)
if A and B are physical resources

if A 6= B return true
for all (a, b) ∈ A×B

if a 6∈ killed withinA and Variable kills(b, a)
return true

if b 6∈ killed withinB and Variable kills(a, b)
return true

if Variable stronglyInterfere(a, b)
return true

return false

18 F. Rastello and F. de Ferrière and C. Guillon

Algorithm 3 Construction of initial affinity graph with a depth constraint.
Create affinity graph(CFG Node current node,

Integer depth)
(E, V) = (∅, ∅)
for each X = φ(x1, . . . , xn) of current node
V = V

⋃{Resource def(X)}
for each x ∈ {x1, . . . , xn}

let Node x: x = . . .
if depth(Node x)6=depth

continue
V = V

⋃{Resource def(x)}
e = (Resource def(X),Resource def(x))
if (e 6∈ E) multiplicity(e)=0
E = E

⋃{e}, multiplicity(e)++
return G = (E, V)

Algorithm 4 Optimistic and pessimistic definition of interferences.
Variable kills optimistic(Variable a, Variable b)
let Node a: (Def a) a = . . .
let Node b: (Def b) b = . . .
if (a 6= b) and (Def b dominates Def a) and

(b ∈ liveout(Node a))
return true {Case 1}

if a is defined as a = φ(a1 : B1, . . . , an : Bn)
for i = 1 to n

if b is live out of Bi and b 6= ai

return true {Case 2}
return false

Variable kills pessimistic(Variablea, Variable b)
let Node a: (Def a) a = . . .
let Node b: (Def b) b = . . .
if (a 6= b) and (Def b dominates Def a) and

((b ∈ livein(Node a)) or (Node a = Node b))
return true {Case 1}

if a is defined as a = φ(a1 : B1, . . . , an : Bn)
for i = 1 to n

if b is live out of Bi and b 6= ai

return true {Case 2}
return false

Optimizing the translation out-of-SSA with renaming constraints 19

Appendix A: Limitations and refinement of Leung’s algorithm
Once pinning has been performed, our algorithm relies on Leung’smark and reconstructalgo-

rithms to restore the code into non-SSA form. Critical edges are subject to a particular treatment in
Leung’s algorithm. But as illustrated by Figure14, the solution is not robust enough when dealing
with aggressive pinning. The goal of this appendix is to propose a clearest semantic forφ functions,
and to modify Leung’s algorithm accordingly.

x1 ← expr1

r ← expr2

r1 ←

← r4

← r2r4 ← φ(r1, x1)

Original code SSA code with copies folded
ri are pinned tor

Leung’s solution to replace
φ-functions is incorrect:

the inserted copy kills the previous
definition ofr.

x← expr1

r ← expr2

y ← r
r ← x

← r ← y

x1 ← expr1

r2 ← expr2 r ← x

← r ← r

r ←r ←

Figure 14:Theφ-function replacement conflict problem

To begin with, let us consider aφ definitionB : y = φ(. . .). The semantic used by Leung
et al. is that this definition is distributed over each predecessor ofB. Hence, in a certain sense
multiple definitions ofY coexist and therefore may conflict. Because conflicts for simple variables
(not resources) are not taken into account in Leung’s algorithm, the lost copy problem has a special
treatment that corresponds to the lines below the“(*fix problem related to critical edge*)”. Here, the
copycp3 := cp3

⋃{w ← z} is incorrect (probably a typo) and it is difficult to fix to obtain a correct
and efficient code. Instead, that whenever the definition ofy is not pinned to any resource, we propose
to create a virtual resourcey and to pin this definition to it. This fix takes place in theCOLLECT
procedure.

Another consequence of Leung’sφ function semantic is that whenevery has to be repaired, the
repairing copies are also distributed over each predecessors ofB. Hence conflicts can occur and those
repairing copies cannot be used furtherB (which explains the need to introduce another repairing copy
w). Because we found no a priori motivation to do so, we propose to place the repairing copy ofy just
after its definition instead. Hence, our new semantic of a givenB : y↑r= φ(x1 : B1, . . . , xn : Bn)
(wherey is always pinned to a resourcer) definition is the following:

• at the end of each blockBi, there is a new virtual instruction that defines no variable but that
usesxi↑r.

• at the beginning of the blockB, theφ instruction contains no use arguments, but definesy↑r.

• all the “virtual uses” of the end of each block have a parallel semantic i.e. are considered all
together.

The consequence is a simplification of the code: whenever instructions of a block have to be
traversed thenφ functions definitions, normal instructions uses, normal instructions definitions andφ
functions uses (of each successors) are considered consecutively.

20 F. Rastello and F. de Ferrière and C. Guillon

The refined code is given below, modified code is written using the. sign.
Finally, we would like to outline the problem with dedicated register pinning. Indeed, we could

find in Leung’s collect phase the code “if y was renamed from some dedicated register r during
SSA construction then must def [y] = r...”. As illustrated by Figure15 copy-folding performed
on dedicated register definition can lead to an incorrect pinning. Because of its non local property,
this inconsistency is not trivial to detect while doing the optimization. Freezing optimizations when
dealing with dedicated registers is a solution to this problem. On the other hand the semantic is not
necessarily strict enough to justify such a decision and pinning may be performed correctly while be-
ing aware of this specific semantic. Hence because dedicated registers related pinning that is semantic
aware can be very complex, we have intentionally removed this part from the COLLECT procedure
and delegated it to a previous pinning phase.

← r

r ←

r ← x

← r

y ←
x←
r ← y

r ← r ←y1 ←
x1 ←

r1 ←

← r3 ← r4

r4 = φ(x1, r2)

r2 ← r ←

← r ← r

y1 ←
x1 ←

řřřř
r ← y1

r ← x1

parallel copies:

Original code SSA form after
copy folding and

dead-code elimination (incorrect parallel copies)

r3 = φ(r1, y1)

Code generated by the reconstruction
algorithm of Leung and George

Figure 15:Theparallel-copies conflict problemis generated by a too constrained pinning

Optimizing the translation out-of-SSA with renaming constraints 21

procedure COLLECT
initialize all entries of must def and must use to ⊥
R := ∅
for b ∈ basic blocks do

for i ∈ φ-functions in b do
let i ≡ y ← φ(x1 . . . xn)

. if pinned def(i, 1)

. then let r be the dedicated register required

. else letr = y

must def [y] = r
R := R∪{r}

for i ∈ non-φ-functions in b do
let i ≡ y1 . . . ym ← op(x1 . . . xn)
for j := 1 to m do

if pinned def(i, j) then
let r be the dedicated register required
must def [yj] := r
R := R∪{r}

for j := 1 to n do
if pinned use(i, j) then

let r be the dedicated register required
must use[i][j] := r
R := R∪{r}

procedure MARKINIT
for b ∈ basic blocks do
for r ∈ R do

sites[r] := ∅
for r ∈ R do

last[b][r] := >
phi[b][r] := >

for i ∈ φ-functions in block b do
let i ≡ y ← φ(x1 . . . xn)
if must def [y] = r 6= ⊥ then

phi[b][r] = last[b][r] = y
sites[r] := sites[r] ∪ {b}

for i ∈ normal instructions in block b do
let i ≡ y1 . . . ym ← op(x1 . . . xn)
for j := 1 to n do

if must use[i][j] = r 6= ⊥ then
last[b][r] := xj

sites[r] := sites[r] ∪ {b}
for j := 1 to m do

if must def [yj] = r 6= ⊥ then
last[b][r] := yj

sites[r] := sites[r] ∪ {b}
. for b’ ∈ succcfg(b) do
. let b be the jth predecessor of b′

. for i ∈ φ-functions in b′ do

. let r ≡ must def [y]

. last[b][r] = xj

. sites[r] := sites[r] ∪ {b}

procedure MARK
MARKINIT()
for r ∈ R do

repair name[r] = ⊥
repair sites[r] = ∅

for b ∈ basic blocks do
for r ∈ R do

avail[r] := avin[b][r]
for i ∈ normal instructions in b do

let i ≡ y1 . . . ym ← op(x1 . . . xn)
for j := 1 to n do USE(i, j, xj)
for j := 1 to m do DEFINE(yj)

for b’ ∈ succcfg(b) do
let b be the jth predecessor of b′

for i ∈ φ-functions in b′ do
let i ≡ y ← φ(. . . xj . . .)
USE(i, j, xk)

avout[b][r] =
{
x if last[b][r] = x 6= >
avin[b][r] otherwise

procedure USE(i, j, x)
in place[i][j] = false
if must use[i][j] 6= ⊥ and avail[must use[i][j]] = x then

in place[i][j] = true
return

if must def [x] 6= ⊥ and avail[must def [x]] 6= x then
if repair name[x] = ⊥ then

repair name[x] := a new SSA name
repair sites[x] := repair sites[x] ∪ {i}

if must use[i][j] 6= ⊥ then
avail[must use[i][j]] := x

procedure DEFINE(x)
if must def [x] 6= ⊥ then avail[must def [x]] := x

avin[b][r] =

⊥ if b is the entry
x if phi[i][r] = x 6= top⋂

b′∈predcfg(b) avout[b
′][r]if b ∈ DF+(sites[r])

avout[idom(b)][r] otherwise

22 F. Rastello and F. de Ferrière and C. Guillon

procedure LOOKUP(i, x)
if stacks[x] is empty then

if must def [x] 6= ⊥ then
return must def [x]

else return x
else

let (y, sites) = top(stacks[x])
if i ∈ sites then return y
else ifmust def [x] 6= ⊥ then return must def [x]
else return x

procedure RENAME USE(i, j, x, copies)
let y = LOOKUP(i, x)
let r = must use[i][j]
if in place[i][j] then

rewrite the jth input operand of i to r
else ifr 6= ⊥ then

copies := copies ∪ {r ← y}
rewrite the jth input operand of i to r

else
rewrite the jth input operand of i to y

return copies

procedure RENAME DEF(i, j, y, copies)
let r = if must def [y] = ⊥ then y elsemust def [y]
rewrite the jth output operand y to r
if repair name[y] = tmp 6= ⊥ then

push (tmp, repair sites[y]) onto stacks[y]
copies := copies ∪ {tmp← r}

return copies

procedure RECONSTRUCT(b)
for i ∈ φ-functions in b do

let i ≡ y ← φ(x1 . . . xn)
. cp4 = ∅
. cp4 = RENAME DEF (i, 1, y, cp4)
. insert parallel copies cp4 after i
for i ∈ normal instructions in b do

(* rewrite instructions *)
let i ≡ y1 . . . ym ← op(x1 . . . xn)
cp1 := ∅
for j := 1 to n do

cp1 := RENAME USE(i, j, xj , cp1)
insert parallel copies cp1 before i
cp2 := ∅
for j := 1 to m do

cp2 := RENAME DEF (i, j, yj , cp2)
insert parallel copies cp2 after i
cp3 := ∅

(* compute φ-copies *)
for b’ ∈ succcfg(b) do

let b be the kth predecessor of b′

for i ∈ φ-functions in b′ do
let i ≡ y ← φ(x1 . . . xk . . . xn)

. for j := 1 to n do

. cp3 := RENAME USE(i, j, xj , cp3)
insert parallel copies cp3 at the end of block b
for b’ ∈ succdom(b) do

RECONSTRUCT(b′)
Restore stacks[] to its state

at the beginning of this call

Optimizing the translation out-of-SSA with renaming constraints 23

Appendix B: NP-completeness results
This appendix is devoted to the proof ofLOCAL PINNING NP-completeness. Also, because

this proof can be extended to the global problemGLOBAL PINNING the corresponding proof is
provided. Remark that the result is valid with or without renaming constraints. For simplicity, proofs
are made without renaming constraints. Also, additional remarks concerning the coalescing problem
complexity in its general form are provided.

We start with a few definitions.

Definition 1 (GLOBAL PINNING) Consider a SSA programP containing no initial pinning and a
set ofφ definitionsXi = φ(xi,1, · · · , xi,ni). Let us denote byDEFS = {X1, · · · , Xn}, ARGSi =
{xi,1, · · · , xi,ni},ARGS =

⋃
iARGSi andV = DEFS ∪ARGS.

Find a partitioning ofV into disjoint setsR1, · · · , Rm such that

(CK):
⋃

v∈V
Resource killed({v}) =

⋃

1≤j≤m

Resource killed(Rj) (no more killed variable)

(CS): ∀1 ≤ j ≤ m, ∀(x, y) ∈ R2
j ,¬Variable stronglyInterfere(x,y) (no strong interference)

(CM): card

 ⋃

1≤i≤n

DEFS ×ARGSi

 ∩

 ⋃

1≤i≤m

R2
i

 is maximized

Definition 2 (LOCAL PINNING) Consider a programP with some pinning already performed and
a set ofφ definitionsXi = φ(xi,1, · · · , xi,ni) within the same blockB. Let us denote byDEFS =
{X1, · · · , Xn}, ARGSi = {xi,1, · · · , xi,ni}, ARGS =

⋃
iARGSi, V = DEFS ∪ ARGS andx

the set of variables pinned to the same resource thanx ∈ V. Find a partitioning of the set of resources
V into disjoint setsR1, · · · , Rm such that

⋃

v∈V
Resource killed(v) =

⋃

1≤j≤m

Resource killed(
⋃
Rj) (no more killed variable)

∀1 ≤ j ≤ m,∀(x, y) ∈
(⋃

Rj

)2
,¬Variable stronglyInterfere(x,y) (no strong interference)

card

 ⋃

1≤i≤n

DEFS ×ARGSi

 ∩

 ⋃

1≤i≤m

(⋃
Ri

)2

 is maximized

Theorem 1 GLOBAL PINNING is NP-complete in the size ofφ functions.

24 F. Rastello and F. de Ferrière and C. Guillon

Proof of Theorem1 We prove the theorem using the polynomial reduction toMAXIMUM -INDEPENDENT-
SET. Hence, let us consider a graphG = (V,E) whereV = {x1, . . . , xn}. We aim to find a
maximum independent setI ⊂ V i.e.

{
cardI is maximum
for each(xi, xj) ∈ I2, (xi, xj) 6∈ E

Let us build the corresponding instance ofGLOBAL PINNING :

• For allxi ∈ V, consider a blockBi which contains a definition ofxi

• For all (xi, xj) ∈ E consider

1. two blocksBiij andBjij with predecessorBi and resp.Bj. A third blockBij with
predecessorsBiij andBjij .

2. a definitionajij in blockBiij and a definitionaiij in blockBjij

3. two φ functions in blockBij :
Ciij = φ(xi, aiij)
Cjij = φ(ajij , xj)

• A blockB, with predecessorsB1, . . . , Bn, which contains the instruction
X = φ(x1, . . . , xn)

For this program,

• there is an affinity betweenX and allxi; for each(xi, xj) ∈ E there are affinities betweenCiij
andxi and betweenCiij andaiij

• interferences are between all coupleaiij andxj and between all coupleCiij andCjij .

[Initial Graph for]
[MAX -INDEPENDANT-SET]

[Corresponding program for]
[GLOBAL -PINNING]

[Corresponding affinities]
[and interferences inG′]

Affinity edge
Interference edge

x1

x2

x3

X = φ(x1, x2, x3)
B :

C112 = φ(x1, a112)
C212 = φ(a212, x2)

B1 :

x1 = . . .

a212 = . . .

B12 :

B2 :
x3 = . . .

B3 :

a223 = . . .

x2 = . . .

a112 = . . . a323 = . . .

B112 : B212 : B223 : B323 :

C323 = φ(a323, x3)
C223 = φ(x2, a223)

B23 :

x1

x3

C112

a112

C223

a223

C323

a323

x2

C212

a212

X

Figure 16: Reduction for the NP-completeness proof ofGLOBAL PINNING : G′ contains|Ea| =
4 ∗ |E|+ |V | = 11 affinity edges.

Optimizing the translation out-of-SSA with renaming constraints 25

On this program,GLOBAL PINNING can be seen as follow: find a correct coloring of the affinity-
interference graph (G′ = (V ′, Ea, Ei)) that maximizes the number of affinity edges (dashed edges:
Ea) between two vertices of the same color. A coloring is correct whenever there is no interference
(full edges:Ei) between two vertices of the same color. To each color corresponds a resource. This
new graphG′ contains four affinity edges for each edge of the initial graphG (4|E| on the whole),
and one affinity edge for each vertex ofG (|V | on the whole). See Figure16 for a simple example.
Consider an optimal solution toGLOBAL PINNING with X the resource containingX. I = X

⋂
V

is the set of vertices ofG that have the same color thanX. Let (xi, xj) ∈ E and consider the
corresponding four affinity edges. As illustrated by Figure17 if xi andxj are inI (so they get the
same color), from those four affinity edges only a maximum of two can be satisfied. Hence, the cost
of this solution can be bounded by

Ĉ(I) ≤ |I|+ 4|E| −
∑

(xi,xj)∈E
T

I2

2

Now, consider a solution whereI is an independent set and all otherxi have different colors, then by
coloring remaining vertices as illustrated in Figure17 the upper bound|I|+ 4|E| is reached. Hence,
the solution is optimal if and only ifI is a maximum independent set. ¥

[of Figure 16]

[Optimal solution for the exemple][Affinity edges related to (xi, xj) ∈ E]

xj

Cjij

ajij

aiij

Ciij

xi

xj

Cjij

ajij

aiij

Ciij

xi

x1

C112

a112

C223

a223

C323

a323

x2

C212

a212

X

x3

if xi and xj have the same color
at most two affinities can be satisfied

if xi and xj do not have the same color
The 4 affinities can be satisfied

Figure 17:I is an independent set.

Theorem 2 LOCAL PINNING is NP-complete.

Proof of Theorem2 The proof uses the same reduction than forGLOBAL PINNING : for a given graph
G = (V,E) we consider the same program and suppose that blocksBij have already been performed.
Block B remains. At this stage we havexi = {Ciij , xi, aiij} for all i andX = {X}. Hence,
(xi, xj) ∈ E if and only if xi interfere withxj. So, the optimal partitioning of{X,x1, . . . , xn}
provides withX

⋂
V an independent set forG. ¥

26 F. Rastello and F. de Ferrière and C. Guillon

The M AX -COALESCE problem is NP-complete To finish with, let us define formally the coa-
lescing problem (MAX -COALESCE): consider a program with virtual variables and move instructions
between some of those variables. To get a stronger result, consider that this program has been obtained
by a basic out-of-SSA translation i.e. no coalescing have been performed during this reconstruction
phase. Consider the corresponding interference graph, and affinity graph: two variables interfere2

if they cannot be assigned to a common resource; two variables share an affinity if they are move
related. Interferences are represented using full edges and affinities are represented using dashed
edges. Affinity edges can be weighted to reflect the number of related move instructions and branch
frequency prediction (e.g. [14]). To simplify the discussion, we consider that all blocks have an equal
execution frequency, but the results given below are correct even if execution frequencies are taken
into account.

Now, the coalescing problem consists on coloring correctly this graph using an unbounded number
of colors. A correct coloring is a coloring such that two variables with the same color do not interfere.
Variables within the same color-set are said to be coalesced. Each move instruction between two
coalesced variables can be removed. The goal is to maximize the number of such move instructions,
which exactly corresponds to maximizing the weighted number of dashed edges between coalesced
variables. As illustrated by Figure18, the previous NP-completeness proof can be easily modified to
prove the NP-completeness ofMAX -COALESCEproblem.

[Corresponding affinities]
[and interferences inG′]

[Initial Graph for]
[MAX -INDEPENDANT-SET]

[Corresponding out-out-of SSA]
[program for M AX -COALESCE]

Affinity edge
Interference edge

a223 = . . .

C223 = a223

C323 = x3

x1

x2

x3

a212 = . . .

C112 = x1

C212 = a212

a112 = . . .

C112 = a112

C212 = x2

a323 = . . .

C223 = x2

C323 = a323

B :

B112 : B212 : B223 : B323 :

x1

x3

C112

a112

C223

a223

C323

a323

x2

C212

a212

X
B12 :

B1 : B2 : B3 :

x1 = . . .

X = x1

x2 = . . .

X = x2

x3 = . . .

X = x3

B23 :

Figure 18:Reduction for the NP-completeness proof ofMAX -COALESCE: the corresponding affin-
ity/interference graph is similar to the one obtained for the NP-completeness proof ofGLOBAL PIN-
NING .

The M IN -M OVE problem is NP-complete One can wonder if the complexity comes from the out-
of-SSA algorithm itself, from the place of move instructions that replaceφ functions. In particular one
can imagine performing code-motion and live-range splitting in order to get an even better result in
term of number of move instructions. We name this problemM IN-MOVE. Unfortunately, the previous
example with a similar reasoning also leads to the NP-completeness of theM IN-MOVE problem.

2Remark that on our interference modelX andx1 of Figure18 do not interfere simply because they share the same
value whereas on some classical definitions they do. This can be easily overcomed by splitting edges betweenxi andX

