N
N

N

HAL

open science

Optimizing the translation out-of-SSA with renaming
constraints
Fabrice Rastello, F. de Ferriere, Christophe Guillon

» To cite this version:

Fabrice Rastello, F. de Ferriere, Christophe Guillon. Optimizing the translation out-of-SSA with re-
naming constraints. [Research Report] LIP RR-2005-34, Laboratoire de I'informatique du parallélisme.

2005, 24+26p. hal-02102190

HAL Id: hal-02102190
https://hal-lara.archives-ouvertes.fr /hal-02102190
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102190
https://hal.archives-ouvertes.fr

Laboratoire de I'Informatique du Paralélisme

(®)
% Ecole Normale Sugrieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL 5668

Optimizing the translation out-of-SSA with
renaming constraints

F. Rastello
F. de Ferrére August 2005
C. Guillon

Research ReportN2005-34

Ecole Normale Sugerieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07, France
Télephone : +33(0)4.72.72.80.37
Telécopieur : +33(0)4.72.72.80.80
Adressetlectronique lip@ens-lyon.fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Optimizing the translation out-of-SSA with renaming
constraints

F. Rastello
F. de Ferrere
C. Guillon

August 2005

Abstract
Static Single Assignment form is an intermediate representation thaipuses
instructions to merge values at each confluent point of the control flow graph.
¢ instructions are not machine instructions and must be renamed back to
move instructions when translating out of SSA form. Without a coalescing
algorithm, the out of SSA translation generates mamyve instructions.
Leung and George8] use a SSA form for programs represented as native
machine instructions, including the use of machine dedicated registers. For
this purpose, they handle renaming constraints thanks to a pinning mechanism.
Pinning¢ arguments and their corresponding definition to a common resource
is also a very attractive technique for coalescing variables. In this paper,
extending this idea, we propose a method to reduce-ttedated copies during
the out of SSA translation, thanks to a pinning-based coalescing algorithm
that is aware of renaming constraints. This report provides also a discussion
about the formulation of this problem, its complexity and its motivations.
We implemented our algorithm in the STMicroelectronics Linear Assembly
Optimizer p]. Our experiments show interesting results when comparing to
the existing approaches of Leung and Georgje $reedhar et al.1[1], and
Appel and George for register coalescifg [

Keywords: Static Single Assignment, Coalescing, NP-complete, K-COLORABILITY, Machine
code level, register allocation

Résune
La forme SSA est une regsentation interédiaire de compilateur qui
utilise des fonctions virtuelles pour fusionner les valeurd chaque point
de confluence du graphe de cahé: Les fonctionsy n'existant pas physi-
guement, elles doiveréitre remplagées par des instructiomsove lors de la
translation en code machine. Sans coalesceur, la translation horsépSg g
beaucoup denove.
Dans cet article, nous proposons une extention de I'algorithme de Leung et
George 8] qui effectue la minimisation de ces instructions de copie. Leung
et al. proposent un algorithme de translation d’'une forme SSA pour du code
assembleur, mais non optirgipour le remplacement des instructiansPar
contre, ils utilisent la notion &pinglage pour regsenter les contraintes de
renommage.
Notre icee est d'utiliser cette notion &pinglage afin de contraindre le renom-
mage des arguments despour faire du coalescing. C’est une formulation
du probkme de coalescing noéquivalente au probme initial toujours
consicerée comme ouvert dans la Ettature 8, 10]. Nous prouvons @nmoins
la NP-compétude de notre formulation, une cé@agience de la preuvant la
NP-compétude du prodme initial en la taille de la plus grande fonction
Enfin, nous avons impmené notre algorithme dans le LA®], optimiseur
d’assembleur liaire. La comparaison avec @fentes approches possibles
fournit de nombreuxésultats inéressants. Nous avons aussi eésay’'aide
d’exemples faitsa la main, d’expliquer les avantages et limitations des
différentes approches.

Mots-cles: forme SSA, fusion de variables, NP-coraplde, K-COLORABLE, code assembleur,
allocation de registres

Optimizing the translation out-of-SSA with renaming constraints 1

1 Introduction

Static Single AssignmentThe Static Single Assignment (SSA) form is an intermediate representation
widely used in modern compilers. SSA comes in many flavors, the one we useprutiel SSA

form [4]. In SSA form, each variable name, or virtual register, corresponds to a scalar value and each
variable is defined only once in the program text. Because of this single assignment property, the SSA
form containsp instructions that are introduced to merge variables that come from different incoming
edges at a confluent point of the control flow graph. Thesestructions have no direct corresponding
hardware instructions, thus a translation out of SSA must be performed. This transformation replaces
¢ instructions withmove instructions and some of the variables with dedicated ones when necessary.
This replacement must be performed carefully whenever transformations such as copy propagation
have been done while in SSA form. Moreover, a naive approach for the out of SSA translation
generates a large number mbve instructions. This paper addresses the problem of minimizing

the number of generated copies during this translation phase.

z=0

fori=1ton
a = Ali]
b = BJi]
if (a <)
thenc=a
elsec="b
r=x+c

y=—x

Initial code Corresponding SSA form

Figure 1:Example of code in non-SSA form and its corresponding SSA form without the loop counter
represented

Previous Work Cytron et al. fi] proposed a simple algorithm that first replaces anstruction

by copies into the predecessor blocks, then relies on Chaitin’s coalescing algasjthonréduce

the number of copies. Briggs et all][found two correctness problems in this algorithm, namely

the swap problem and the lost copy problem, and proposed solutions to these. Sreedhardlet al. [
proposed an algorithm that avoids the need for Chaitin’s coalescing algorithm and that can eliminate
moremove instructions than the previous algorithms. Leung and Ged@jgarposed an out-of-SSA
algorithm for an SSA representation at the machine code level. Machine code level representations
addrenaming constraintsdue to ABI (Application Binary Interface) rules on calls, special purpose
ABI defined registers, and restrictions imposed on register operands.

IMany thanks to Alain Darte, Stephen Clarke, Daniel Grund and the reviewers of CGO for very helpful comments on
the presentation of this report.

2 F. Rastello and F. de Fegrie and C. Guillon

Context of the study Our study of out-of-SSA algorithms was needed for the development of the
STMicroelectronics Linear Assembly Optimizer (LAO) tool. LAO converts a program written in the
Linear Assembly Input (LAI) language into the final assembly language that is suitable for assembly,
linking, and execution. The LAI language is a superset of the target assembly language. It allows
symbolic register names to be freely used. It includes a number of transformations such as induc-
tion variable optimization, redundancy elimination, and optimizations based on range propagation, in
an SSA intermediate representation. It includes scheduling techniques based on software pipelining
and superblock scheduling, and usesepeated coalescinfp] register allocator, which is an im-
provement over th@erated register coalescinffom George and Appel7]. The LAO tool targets

the ST120 processor, a DSP processor with full predication, 16-bit packed arithmetic instructions,
multiply-accumulate instructions and a few 2-operands instructions such as addressing mode with
auto-modification of base pointer.

Because of these particular features, an out-of-SSA algorithm aware of renaming constraints was
needed. In fact, delaying renaming constraints after the out-of-SSA phase would result in additional
move instructions (see Sectids), along with possible infeasibilities and complications. We modi-
fied an out-of-SSA algorithm from Leung and George to handle renaming constraints and reduce the
number ofmove instructions due to the replacementgoinstructions.

Layout of this paper The paper is organized as follows. Sectistates our problem and gives a brief
description of Leung and George’s algorithm. In SecBpwe present our solution to the problem of
register coalescing during the out-of-SSA phase. Sedtidiscusses, through several examples, how
our algorithm compares to others. In Sectigmwe present results that show the effectiveness of our
solution on a set of benchmarks, and we finally conclude. This paper contains also two app&ndices
andB devoted respectively to the refinement of Leung'’s algorithm and to the NP-completeness proof
of the pinning based coalescing problem.

2 Problem statement and Leung and George'’s algorithm

Our goal is to handle renaming constraints and coalescing opportunities during the out of SSA transla-
tion. For that, we distinguistedicated registers(such aR0or SP, the stack pointer) from general-
purpose registers that we assume in an unlimited number (we callinieia registers or variables).

We use a pinning mechanism, in much the same way as in Leung and George’s algéfigomap to

enforce the use of these dedicated registers and to favor coalescing. Then, constraints on the number
of general-purpose registers are handled later, in the register allocation phase.

2.1 Pinning mechanism

An operand is thetextual useof a variable, either as a write (definition of the variable) or as a read
(use in an instruction). Aesourceis either a physical register or a variablResource pinningor

simply pinning is a pre-coloring of operands to resources. We zaliable pinning the pinning of

the (unique) definition of a variable. Due to the semanticg ofstructions, all arguments (i.e. use
operands) of & instruction are pinned to the same resource as the variable defined (i.e. def operand)
by the.

On the ST120 processor, as in Leung and George’s algorithm, we have to handle Instruction Set
Architecture (ISA) register renaming constraints and Application Binary Interface (ABI) function
parameter passing rules. Figixeexpressed in SSA pseudo assembly code, gives an example of such
constraints. In this example and in the rest of this paper, the notatithis used to mark that the

Optimizing the translation out-of-SSA with renaming constraints 3

operandX is pinned to the resourck. When the use of a variable is pinned to a different resource
than its definition, anove instruction has to be inserted between the resource of the definition and the
resource of the use. Pinning the variable to the same resource as its uses has the effect of coalescing
these resources (i.e., it deletes theve).

Original code: SSA pinned code: Comments:
inputC, P So : .inputC1F0, p1ro InputsC and P must be inROandPO at the entry.
load A, @P++ g - load A, @P The second def. aP is renamed ag) in SSA, butP

! autoaddl1?, P19, 1 and@ must use the same resource for autoadd, €.9.,

load B, @P++ Sy :load B, @Q
cal D= f(A,B) S3:_f D770 AR B1RY Parameters must be ROandR1 Result must be iRQ.
E=C+D Sy:addE,C, D
K = 0x00A12BFASS5 : makeL, 0x00A1

S : more K15, L1, 0x2BFA Operandg & L must use the same resource, efg.,
F=F-K Sy :subF, E, K
.output# Sg @ .outputF'1 10 OutputF' must be inRO.

Figure 2: Example of code with renaming constraints: function parameter passing rules (statements
So, S3, andSg) and 2-operand instruction constraints (statem&niand.Sg).

2.2 Correct pinning

Figure3 gives an example of renaming constraints that will result in an incorrect code. On the left of
Figure3, the renaming constraint is that all variables renamed from the dedicated r&i¢ttack
Pointer) must be renamed back3®&, due to ABI constraints. On the right, after replacement of the

¢ instructions, the code is incorrect. Such problem mainly occurs after optimizations on dedicated
registers: SSA optimizations such as copy propagation or redundancy elimination must be careful to
maintain a semantically correct SSA code when dealing with dedicated-register constraints. More
details on correctness problems related to dedicated registers are given in Appendix

SPITSP SPZTSP . y1 =...
o e paraIIeI coples SP — ...
SP =y
\ SP =z,
sp31F = ¢(SP1 Y1) SP4TSP— $(z1, sp2)
= sp3 s = Spy4
[Code after Leung and]
[Initial pinned code] [George’s reconstruction]

Figure 3:A too constrained pinning can lead to an incorrect code as for the parallel copies here.

Cases of incorrect pinning are given in Figéreln this figure, Case 1 and Case 2 are correct if
and only ifx andy are the same variable. This is because two different values cannot be pinned to a
unique resource if both of them must be available at the entry point of an instruction (Case 2) or at the
exit point of an instruction (Case 1). A similar cased@imnstructions is given in Case 3: the setgof
instructions at a block entry has a parallel semantics, therefore two difiedgfinitions in the same
block cannot be pinned to the same resource. On the other hand, on most architectures, Case 4 is a
correct pinning. But, the corresponding scheme gritastruction (Case 5) is forbidden when# r:
this is because alb arguments are implicitly pinned to the resource ¢heesult is pinned to. The

4 F. Rastello and F. de Fegrie and C. Guillon

motivation for these semantics is given in AppendixFinally, Case 6 corresponds to a more subtle
incorrect pinning, similar to the problem stressed in Figiire

input o 770, o 174 input RO, R1
\
22 10= 2o 170 41 RO+=1
RO = R1
R1 = RO

13TRT: #(z0,Yo)
y11T = ¢(yo, z2)

wg = RO
y2 =y1 + K y2 = R1+ K
Rl = y2
2a1 0= g(23 1%, y211) RO = g(RO, R1)
+ RO =z
return z3 1% return RO
[Initial pinned SSA code] [Resulting out-of-SSA code]
[Before mark phase] [After rename phase]

Figure 4:Transformation of already pinned SSA code by Leung and George’s algorithm.

Case 1:(z1",y1") = instr(...) Case 5:x1"= ¢(---y1% --+)
Case 2:... = instr(z1", y1")
Case 6:
.ozT= () Li: y1=
Case 3: yiT= é(...) \ /961\=\
Case 4:z]"= instr(y]") yI™= (- ,y1) 21"= (21,)

Figure 5:All but Case 4 are incorrect pinning.

2.3 Leung and George’s algorithm

Leung and George’s algorithm is decomposed into three consecutive phaseslléhtphase col-
lects information about renaming constraints; tim@rk phase collects information about the conflicts
generated by renaming; tiheconstruciphase performs renaming, inserts copies when necessary and
replacesp instructions.

Pinning occurs during the collect phase, and then the out of SSA translation relies on the mark and
reconstruct phases. Figutéllustrates the transformations performed during those last two phases:

e 13 is pinned toR0 on its definition. But, on the path to its use in tlegurn, x4 is also pinned
to RO on the call tog. We say thatcs is killed, and arepair copy to a new variabler’ is
introduced.

e The use ofrs in the call tog is pinned toR0, while z3 is already available irR0 due to a
prior pinning on thep instruction. The algorithm is careful not to introduce a redundante
instruction in this case.

e The copiesk0 = R1; R1 = RO are performedn parallel in the algorithm, so as to avoid the
so-called swap problem. To sequentialize the code, intermediate variables may be used and the
copies may be reordered, resulting in the code R1; R1 = R0; RO = t in this example.

Optimizing the translation out-of-SSA with renaming constraints 5

Now, consider th@on-pinned variableg, of Figure4 and its use in the definition af;. The use is
pinned to a resourceR1, andy, could have been coalescedRge without creating any interference.
The main limitation of Leung and George’s algorithm is its inability to do so. The same weakness
shows up onp arguments, as illustrated by Figusé): on a¢ instructionX = ¢(x, ..., z,), each
operandz; is implicitly pinned to X, while the definition of eacl; may not. Our pinning-based
coalescing is an extension to the pinning mechanism whose goal is to overcome this limitation.

2.4 The¢ coalescing problem

As opposed to the pinning due to ABI constraints, which is applied to a textual use of an SSA variable,
the pinning related to coalescing is applied only to variable definitisasable pinning. Figure6
illustrates how this pinning mechanism can play the role of a coalescing phase by preventing the re-
construction phase of Leung and George’s algorithm from insemiogge instructions: in Figuré&(b),

x1 andx, were pinned tar to eliminate thesenove instructions; however, this pinning creates an
interference, which results in a repaiove ' = z along with amove x = z’ on the replacement of

the ¢ instruction; in Figures(c), to avoid the interference, only, was pinned tac, resulting in only
onemove instruction.

T = exp1 1 = exrpl
xr2 = exp2 T2 = exrp2

r=x1] T =ux2

-~
z = $(z1,22)
Initial SSA form (a) Final code if nothing pinned
T = exp1 xr1 = exp1
se}ye,z_,@ X'=X T = exp2 < -z pinned to x
conf\lictoﬁ—m = expo ‘/\\ ch inx
restoréi“x — T =21 ~fo copy needed
Nl
(b) Final code if z, 1 (c) Final code if
xo are pinned to z and x2 are pinned
the virtual resource x to the virtual resource =

Figure 6:Inability of Leung and George’s algorithm to coalesce: z; andx = z- instructions (a) ;
a worst (b) and a better (c) solution using variable pinning,0dndz-.

Therefore, we will only look for a variable pinning that does not introduce any new interference.
In this case, for a instructionX = ¢(xo,...,x,), We say that the gain fop is the number of
indicesi such that the variable; is pinned to the same resource &s Hence, ourp coalescing
problem consists of finding a variable pinning, with no new interference (i.e., without changing
the number of variables for which a repair move is needed), that maximizes the total gain,
taking into account all ¢ instructions in the program.

Algorithm 1 Main phases of our algorithm.

Program _pinning(CFG_Program P)

foreach basic block B in P, in an inner to outer loop traversal
Initial_G=Create _affinity_graph(B)
PrePruned_G=Graph_InitialPruning(Initial_G)
Final_G=BipartiteGraph_pruning(PrePruned_G)
PrunedGraph_pinning(Final_G)

6 F. Rastello and F. de Fegrie and C. Guillon

3 Our solution

The ¢ coalescing problem we just formulated is NP-complete (see Appdhilix details). Instead
of trying to minimize the gain for alp instructions together, our solution relies on a sequence of local
optimizations, each one limited to the gain for @linstructions defined at a confluence point of the
program. These confluence points are traversed based on an inner to outer loop traversal, so as to
optimize in priority the most frequently executed blocks. The skeleton of our approach is given in
Algorithm 1.

Let us first describe the general ideas of our solution, before entering the details. For an SSA
variable y, we defing = Resourcedef(y) asr if the definition of y is pinned tor, or y otherwise
Also, for simplicity, we identify the notion of resource with the set of variables pinned to it. For a given
basic block, we create what we call affinity graph . Vertices represent resources; edges represent
potential copies between variables that can be coalesced if pinned to the same resource. Edges are
weighted to take into account interferences between SSA variables; then the graph is pruned (deleting
in priority edges with large weights) until, in each resulting connected component, none of the vertices
interfere: they can now be all pinned to the same resource. The rest of this section is devoted to
the precise description of our algorithm. A pseudo code is given in Algoritton pagel7. The
consecutive steps of this algorithm are applied on the example of Régure

3.1 The initial affinity graph

For a given basic block, the affinity graph is an undirected graph where each vertex represents either
a variable or its corresponding resource (if already pinned): two variables that are pinned to the same
resource are collapsed into the same vertex. Then, for @ams$tructionX = ¢(z1,...,z,) at the

entry of the basic block, there is an affinity edge, for egoh < i < n, between the vertex that
containsX and the vertex that contains.

3.2 Interferences between variables

We define below four classes of interferences that can occur when pinning two operagdastfac-

tion to the same resource. We differentiate simple interferences from strong interferences: a strong

interference generates an incorrect pinning. On the other hand, a simple interference can always be
repaired despite the fact that the repair might generate additional copies. The goal is then to minimize

the number of simple interferences and to avoid all strong interferences. The reader may find useful

to refer, for each class, to Figure

[Class 1] Consider two variables andy. If there exists a point in the control flow graph where
bothx andy are alive, therx andy interfere. Moreover, considering the definitionswondy, one
dominates the other (this is a property of the SSA form). If the definitianddminates the definition
of y, we say that thdefinition ofz is killed byy. The consequence is that pinning the definitions of
andy to a common resource would result in a repait:dhs in Leung and George’s technique).

[Class 2]Consider & instructiony = ¢(.. ., z,...) in basic blockB. LetC be the block where
the argument comes from; textually, the use efappears in blockB3 (and is implicitly pinned to
y), but semantically, it takes place at the end of basic bl@dfthis is where anove instruction, if
needed, would be placed).4f+# =z andz is live-out of blockC, thenz and the use of interfere and
we say thathe definition ofz is killed byy. Note our definition ofiveness a ¢ instruction does not
occur where it textually appears, but at the end of each predecessor basic block instead. Hence, if not

Optimizing the translation out-of-SSA with renaming constraints 7

used by another instructionwould be treated as dead at the exit of blda¢knd at the entry of block
B.

[Class 3]Consider two variables andy, both defined by instructions, but not necessarily in
the same basic block. Some of their respective arguments (for examahely;) may interfere in a
common predecessor blogk In this case, we say th#lte definitions of andy strongly interfere:
indeed, as explained in Secti@r?, pinning those two definitions together is incorrect.

[Class 4] Considerg instructionsy = ¢(y1,...,y,) andz = ¢(y1,...,yn), in the same basic
block and with the same arguments. Because of Leung and George's repairing implementation, they
cannot be considered as identical and we need to consider that they strongly interfere. Notice that a
redundancy elimination algorithm should have eliminated this case before. Note that, by definition of
Classes 3 and 4, all variables defineddopstructions in the same basic block strongly interfere.

Also, we consider thatariables pinned to two different physical registeteongly interfere.

x ; .. T2 £ Y1
z x
y=...
: -\ z=¢(,22) y=(y1,y2)
y:d)(’z)\‘ Z:¢(y13y2)
T x strongly interferes withy
y kills y kills z y strongly interferes with
[Class 1] [Class 2] [Classes 3 & 4]

Figure 7:Different kind of interferences between variables.

Initial SSA code: Pinned SSA codAe after step 1: Pinned SSA c/g)de after step 2:
Ty =... T115= ... T T4= ...
I i\ T i\ IzTi\
/\ T3 =... /\ T3 =... /\ z31E=
Li[X2 = 0(@1,22) X; = (wz, 01 Xol4= (@, @) Ly [x, = (w2, 1) XoT4= ¢(21,22) x, 14— ¢ (z2, 1)
X3 = ¢(xa, x3 X3 = ¢(x2,73) X318= ¢(a2, x3)
Step 1: coalescing of_1: Step 2 (final): coalescing of_s: . ;
Initial_.G=PrePruned_G: B 1 _{z1,Xo} = AFInaI code: A=
Initial_G: - X1 5l B=...
nitial X» <o ’fclassl clas;i /2’ 1:4:2 class1 {z1isin A, z3 in B}
classz %2 : T - x3 \\
PrePruned_G=Final_G: 21 |Final.G: < - 0 -- '{?11 Xo}=A A=B S
o7 e 1 {z2isin A} =
X2 770 o T2 2z3isin B
2 Xls e) A \ {3 }
Resources: A= {z1, X2} 0 ~z3 s
Resources: A={z1,X0, X1} \\
B = {z3,x2, X3} {XzisinA} {Xi;isinA, X3in B}

Figure 8: Program_pinning on an example. Control-flow graphes are represented for code, with
control-flow edges between basic blocks represented with solid black arrows. Affinity graphes are
represented for step 1 and 2, with affinity edges represented as dashed gray lines, annotated with a
weight, and with interferences edges represented as full gray lines, annotated with the class of the
interference.

8 F. Rastello and F. de Fegrie and C. Guillon

3.3 Interferences between resources

After the initial pinning (taking into account renaming constraints), a resource cannot contain two
variables that strongly interfere. However, simple interferences are possible; they will be solved by
Leung and George’s repairing technigue. During our iterative pinning process, we keep merging more
and more resources, but we make sure not to create any new interference. We say that two resources
A= {xy,...,z,} and B = {y1,...,yn} interfere if pinning all the variable$z,,...,z,} and
{y1,...,ym} together creates eithemewsimple interference, or a strong interference, i.e., if there
existx; andy; that interfere. This check is done by the procedResource_interfere; it uses the
procedureResource killed that gives, within a given resource, all the variables already killed by
another variableResource killed is given in aformal description, but obviously the information can

be maintained and updated after each merge.

3.4 Pruning the affinity graph

The pruning phase is based on the interference analysis between resources. More formally, the op-
timization problem can be stated as follows. l@t= (V, Eamnity) be the graph obtained from
Create_affinity_graph (as explained in Sectio8.1): the setV is the set of vertices labeled by re-
sources andamnity IS the set of affinity edges between vertices. The goal is to prune (edge deletion)
the graphG into G’ = (V, Epinnea) Such that:

Condition 1: the cardinality ofE,i,neq IS maximized,

Condition 2: for each pair of resourcg®;,v2) € V2 in the same connected componentf
v1 andwvs do not interfere, i.eResource_interfere(vy, vy) = false.

In other words, the grap&' is pruned into connected components such that the total number of
deleted edges fromyAmnity IS Minimized and no two resources within the same connected component
interfere.

First, because o€ondition 2, all edges(vy,v2) in Eagmnity SUCh thatv; and v, interfere need
to be removed frond7. The obtained grapRrePruned_G is bipartite. Indeed, lefX;}1<;<m,, with
Xi = ¢(xi, ..., xin), bethe set op instructions of the current basic bloék There are two kinds of
vertices inG, the vertices for the definitiogp prs = {Resourcedef(X;) }1<i<» and the other ones,
for the arguments not already Wprrs, Varas = {Resourcadef(z; ;) bi<i<m, 1<j<n \ VDEFS. BY
construction, there is no affinity edge between two elemenig,af;s. Also, because elements of
Vpers strongly interfere together, there remains no edge between two eleménig pf. Thus,G
is indeed bipartite.

Unfortunately, even for a bipartite affinity graph, the pruning phase is NP-complete in the number
of ¢ instructions (see AppendR). Therefore, we use a heuristic algorithm based on a greedy pruning
of edges, where edges with large weights are chosen first. The weight of afwegdyes the number
of neighbors ofr (resp. y) that interfere withy (resp. z). This has the effect of first deleting edges
that are more likely to disconnect more interfering vertices (see details in the pro&igaréte-
Graph_pruning). Note that, in the particular case of a uniquénstruction, this is identical to the
“Process the unresolved resources " of the algorithm of Sreedhar et alL]].

3.5 Merging the connected components

Once the affinity graph has been pruned, the resources of each connected component can be merged.
We choose a reference resource in this connected component, either the physical resource if it exists
(in this case, itis unique since two physical resources always interfere), or any resource otherwise. We
change all pinnings to a resource of this component into a pinning to the reference resource. Finally,

Optimizing the translation out-of-SSA with renaming constraints 9

we pin each variable (i.e., its definition) in the component to this reference resource. The correctness
of this phase is insured by the absence of any strong interference inside the new merged resource. A
formal description of the algorithm is given by the procedBranedGraph_pinning. In practice,
the update of pinning need be performed only once, just before the mark phase, so requiring only one
traversal of the control flow graph. Also note that the interference graph can be built incrementally
at each call tdResource_interfere and updated at each resource merge, using a simple vertex-merge
operation: hence, as opposed to the merge operation used in the iterated register coalescing algo-
rithm [7] where interferences have to be recomputed at each iteration, here each vertex represents a
SSA variable and merging is a simple edge union.

We point out that, after this phase, our algorithm relies on the mark and reconstruct phases of Le-
ung and George’s algorithm. But we use several refinements, whose details are given in Appendix

4 Theoretical discussion

We now compare our algorithm with previous approaches, through hand crafted examples.

4.1 Our algorithm versus register coalescing

The out-of-SSA algorithm of Briggs et all][relies on a Chaitin-style register coalescing to remove
move instructions produced by the out of SSA translation. ABI constraints for a machine code level
intermediate representation can be handled after the out of SSA translation by insentimveof
instructions at procedure entry and exit, around function calls, and before 2-operand instructions.
However, several reasons favor combined processing of coalescing and ABI renaming during the out-
of-SSA phase:

[CC1] SSAis a higher level representation that allows a more accurate definition of interferences.
For example (see Figu®, it allows partial coalescing, i.e., the coalescing of a subset of the variable
definitions.

RO=f1 RO=f2 RO=f3 RO=f1 RO=fs RO=f3

z=R0 z=R0 r3 = RO
\l ‘/Z \ \L ‘/Ro\i ’
\ {zisin RO}
[Initial code] [Partially coalesced code]

Figure 9: Because the physical regist®0 and = interfere, [Initial code] cannot be coalesced by
Chaitin’s register coalescing; even if the three definitionR@fre constrained to be done &0 (and
then even in SSAR0” and “z” interfere), the pinning mechanism allowsand R0 to be coalesced,
we say patrtially.

[CC2] The classical coalescing algorithm is greedy, so it may block further coalescings. Instead,
for each merging point of the control flow graph, our algorithm optimiagstherthe set of coalescing
opportunities for the set af instructions of this point.

[CC3] The main motivation of Leung and George’s algorithm is that ABI constraints introduce
many additionalmove instructions. Some of these will be deleted by a dead code algorithm, but
most of them will have to be coalesced. An important point of our method is the reduction of the
overall complexity of the out-of-SSA renaming and coalescing phases: as explained in Segtion

10 F. Rastello and F. de Fegrie and C. Guillon

the complexity of the coalescings performed under the SSA representation benefits from the static
single definition property.

4.2 Our algorithm versus the algorithm of Sreedhar et al.

The technique of Sreedhar et al1] consists in first translating the SSA form into CSS2ofiven-

tional SSAform. In CSSA, it is correct to replace all variable names that are part of a congmon
instruction by a common name, then to removesdtistructions. To go from SSA to CSSA however,

we may create new variables and ingadve instructions to eliminate variable interferences that
would otherwise result in an incorrect program after renaming. Sreedhar et al. propose three algo-
rithms to convert to CSSA form. We only consider the third one, which uses the interference graph
and some liveness information to minimize the number of genemate® instructions. Figure$0-12
illustrate some differences between the technique of Sreedhar et al. and ours.

[CS1] Sreedhar et al. optimize separately the replacement of gatstruction. Our algorithm
considers all the instructions of a given block to be optimized together. This can lead to a better
solution as shown in Figur&0.

= f1 x=fi X=f
Y= X =fa Y=Ff
Py fh Y=XY=f X=VY

St X:qbéx,y)
S2 Y = (z,y)

[Solution of]
[Initial SSA] [Sreedhar et al.] [Our solution]

Figure 10:Sreedhar et al. treat; and S, in sequence: fof, {z,y} interfere saX = z is inserted

and{y, X'} are regrouped in the resourcg, for Sy, {z, X} interfere soY = X is inserted and
Y={zY}

input z1, y1 input 2, Y2 input 1, y1

S1 X = ¢($1,$3)
S2 1 y2 = ¢(y1,93)

b

Ss : x3 = (w2, y2)
Sa:ys = ¢(y2,x2)

l\
X:yz

Y2 = X2

{zsisin X}
{ysisinys}
T2 =

= f(xs,y3) = flz2,92) = flz1,51)
[Initial SSA] [Sreedhar et al.] [Our solution]

Figure 11: The superiority of using parallel copies. For the solution of Sreedhar et al. we suppose
S1, 52, S3 and S, were treated in this order.

Optimizing the translation out-of-SSA with renaming constraints 11

[CS2] Sreedhar et al. procesesrativelymodify the initial SSA code by splitting variables. By do-
ing so, information on interferences becomes scattered and harder to use. Thanks to pinning, through-
out the process we are always reasoning on the initial SSA code. In particular, as illustrated by
Figurell, we can take advantage of the parallel copies placement.

[CS3] Finally, because our SSA representation is at machine level, we need to take into account
ABI constraints. Figurel2 shows an example where we make a better choice of which variables to
coalesce by taking the ABI constraints into account.

bo = f1 B=fi B=f1

{b1 isin B}
ba = B + 1 (autoadd) B+ =1
:\ a:.\
{aisinB} B =bs B=a

'

[Initial SSA] [Sreedhar et al.] [Our solution]

Figure 12:{a, b2} interfere: without the ABI constraints information, adding theve on block L,
or L, is equivalent. Sreedhar et al. may make the wrong choice: treating the ABI afterward would
replace the autoadd int® = B+ 1 ; b, = B (becausd B, b, } interfere) resulting in one moraove.

4.3 Limitations

Below are several points that expose the limitations of our approach:

[LIM1] Our algorithm is based on Leung and George’s algorithm that decides the place where
move instructions are inserted. Also, we use an approximation of the cost of an interference compared
to the gain of a pinning. Hence, even if we could provide an optimal solution to our formulation of
the problem, this solution would not necessarily be an optimal solution for the minimizatioowef
instructions.

[LIM2] As explained in Sectiof.3, the main limitation of Leung and George’s algorithm is that,
when the use of a variable is pinned to a resource, it does not try to coalesce its definition with this
resource. This can be avoided by using a pre-pass to pin the variable definitions. But, as illustrated by
Figure13, repairing variables that are introduced during Leung and George’s repairing phase cannot
be handled this way.

[LIM3] As explained in Appendi®B, our ¢ coalescing problem is NP-complete. Note also that a
simple extension of the proof shows the NP-completeness of the problem of minimizing the number
of move instructions.

[LIM4] Finally, in the case of strong register pressure, the problem becomes different: coalescing
(or splitting) variables has a strong impact on the colorability of the interference graph during the
register allocator phase (e.§]). But this goes out of the scope of this paper.

12 F. Rastello and F. de Fegrie and C. Guillon

'

zo%=...

z1%= ¢(zo, 1)

z/ = z (repair) RO = z (repair)
1=z +1 r=x+1 r=x+1
RO =<2’
o= f(x1F0) ... = f(RO0) - = f(RO)
[Initial SSA code] [Our solution] [Optimal solution]

Figure 13:Limitation of Leung and George’s repairing process: the repairing varighenot coa-
lesced with further uses.

5 Results

We conducted our experiments on several benchmarks represented in LAl code. Since the LAI lan-
guage supports predicated instructions, the LAO tool uses a special form of SSA, ned%A[13],

which introduces) instructions to represent predicated code under SSA. In hfigfstructions in-
troduce constraints similar to 2-operands constraints, and are handled in our algorithm in a special
pass where they are converted intoyaconventional” SSA form. This does not change the results
presented in this section.

In the following, VALccland VALcc2refer to the same set of C functions compiled into LAI
code with two different ST120 C compilers. This set includes about 40 small functions with some
basic digital signal processing kernels, integer Discrete Cosine Transform, sorting, searching, and
string searching algorithms. The benchmagkamplel-8re small examples written in LAI code
specifically for the experiment.Al_Largeis a set of larger functions, most of which come from the
efr 5.1.0 vocoder from the ETS#]. Finally, SPECintrefers to the SPEC CINT2000 benchmatk]|

To show the superiority of our approach, we have implemented the following algorithms:

[Leung] The algorithm of Leung and George contains the collect, and the mark-reconstruct (say
out-of-pinned-SSA phases. For some reasons given further, the collect phase has been split into
three parts, namelginningsp (collect constraints related to the dedicated regiS#r pinningag,

(collect remaining renaming constraints) gndning, (our algorithm). Each of these pinning phases
can be activated or not, independently.

[Sreedhar] The algorithm of Sreedhar et al. has been implemented with an additional pass,
namelypinningcssa. The pinningssa phase pins all the operands ofpao a same resource, and
allows the out-of-pinned-SSA phase to be used as an out-of-CSSA algorithm.

[Naiveag;] is an algorithm that adds when necessawve instructions locally around renaming
constrained instructions. This pass can be used when the piapipgss has not been activated.

[Coalescing]Finally, we have implemented a repeated register coaleSteA§ for the iterated
register coalescer it is a conservative coalescer when used during the register allocation phase. But,
outside of the register allocation context like here, it is an aggressive coalescing that does not take
care of the colorability of the interference graph.

As already mentioned in Sectidh2, coalescing variables constrained by a dedicated register
like the SPregister can generate incorrect code. Similarly, splitting the SSA web of such variables
poses some problems. Hence, it was not possible to ignore those renaming constraints during the
out-of-SSA phase and to treat them afterwards. That explains the differentiation we made between
pinningsp and pinningg, passes: we choose to always execute pinginglso, we tried to modify
the algorithm of Sreedhar et al. to suppBR registeiconstraints. However, our implementation still
performs some illegal variable splitting on some codes: the final non-SSA code containgievesr

Optimizing the translation out-of-SSA with renaming constraints 13

instructions, but is incorrect. Such cases mainly occurred with SPECint, anthth88ECint figures
for the experiments including the algorithm of Sreedhar et al. must be taken only as an optimistic
approximation of the number afiove instructions.

Sreedhar
pinningcssa
pinningap;

e | pinning 4
Naiveag,

‘ ~
©-
Q EL) Experiments

Table2

Sp+C
Ly, ABI+C

]

3
n
+
h
hS
o]
~
+
(@]
[]
[]
[]

Lapr+C
C

Ly ABI
Sy | @)
LaBr

e e o o0 o o Coalescing

© o 0/ 00 0/ 0 @ o pinningsp
e o o/0 0 0 o0 o o out-of-pinned-SSA

Table4 [Table

Table 1:Details of implemented versions

Tables2-5 compares the number of resultimgve instructions on the different out-of-SSA algo-
rithms detailed in Tablé. In particular, we illustrate here comparisq@<1-3] and[CS1-3] exposed
in Sectiond4. In the tables, values with + or - are always relative to the first column of the table.

Comparison without ABI constraints Table2 compares different approaches when renaming con-
straints are ignored. As explained above only non-SP register related constraints, which we improperly
call ABI constraints, could be ignored in practice. ColunsisC' vs Ly+C illustrate pointCS1-2].
Columns C ve.,+C illustrate point§CC1-2]. Point[CC1] is also illustrated by, +C vs C. In those
experiments, our algorithm is better or equal in all cases, except for the SPECint benchmark with
the algorithm of Sreedhar et al.. Bf}+C are optimistic results as explained before. It shows the
superiority of our approach in the absence of ABI constraints.

benchmark| L, +C C S4+C

VALccl 193 +59 +3

VALcc2 170 +44 +13
examplel-8 14 +3 +3
LAl _Large | 438 +44 | +48

SPECint 6803 | +3135| -59

Table 2:Comparison omove instruction count with no ABI constraint.

Comparison with renaming constraints Table 3 shows the variation in the number ofove in-
structions of various out-of-SSA register coalescing algorithms, when all renaming constraints are
taken into account. Comparison 8§+L 4p;+C and L op;+C vs Ly 4pr+C confirms point§CS3].

Column C shows the importance of treating the ABI with the algorithm of Leung et al.: mang
instructions could not be removed by the dead code and aggressive coalescing phases. Our algorithm
leads to lessnove instructions in all cases which shows the superiority of our approach with renaming
constraints.

14 F. Rastello and F. de Fegrie and C. Guillon

benchmark L@’ABI'FC S¢+LABI+C Lapi+C C

VALccl 242 +7 +3 +386

VALcc2 220 +15 +29 +449
examplel-8 15 +3 +3 +18
LAl _Large 1085 +26 +62 +634

SPECint 23930 +413 +482 |+38623

Table 3:Comparison ofmove instruction count with renaming constraints.

Compilation time Repeated register coalescing is an expensive optimization phase in terms of time
and space; its complexity is proportional to the numbeanofe instructions in the program. Almost

all coalescings are handled by our algorithm during the out of SSA translation. As explairigd in [
the creation and the maintenance of the interference graph is highly simplified under the SSA form.
Hence, as mentioned in Poif@C3], the moremove instructions are handled at the SSA level, the
lower is the compilation time for the overall coalescing. Tabtgves an evaluation of the number of
move instructions that would remain after the out-of-SSA phase if only naive techniques were applied
for the ¢ replacement (which we denogemoves) and for the renaming constraints treatment (which

we improperly call ABImoves). Hence, it gives an evaluation of the cost of running a repeated register
coalescing after one simple SSA rename back phase. We did not provide timing figures for the overall
out-of-SSA and register coalescing phase for the different experiments because our implementation is
too experimental and not optimized enough to give usable results.

benchmark L¢,ABI S¢ Lagr
ABI moves | ¢ moves
VAlLccl 277 +593 +690
VALcc2 245 +926 +749
examplel-8 16 +38 +34
LAl Large | 1447 +4543 +6161
SPECint | 36882 +249481 | +260095

Table 4:Comparison omove instruction count before the repeated register coalescing phase.

Variations on our algorithm Table5 compares small variations in the implementation of our algo-

rithm. The base column repornigeighted moveount, wheremove instructions are given a weight
equal to5¢, d being the nesting level, i.e. depth, of the loop theve belongs to.5¢ is an arbitrary

benchmark| base | depth| opt pess
VALccl 1109 +1 +4 +1484
VALcc2 877 +1 +8 +1716

examplel-8 32 +0 +0 +4

LAl Large | 17594 | +60 +7 +22116
SPECint | 1652065| -1798 | +7258 | +3038712

Table 5:Weighted count omove instructions on variants of our algorithm.

Optimizing the translation out-of-SSA with renaming constraints 15

weight that corresponds to a static approximation where each loop would contain 5 iterations.

Our first variation @epth is based on the simple remark that in our initial implementation we
prioritized the¢ instructions according to their depth, instead of the depth ofribee instructions
they will generate. For this variation, we use a néreate _affinity_graph procedure (Algorithn8)
with a depth constraint that calRrogram_pinning with decreasing depth. This leads to a very
small improvement on SPECint and a small degradation for_L#&ie. This result confirms the
observation we made that affinity and interference graphs are not complex enough to motivate a global
optimization scheme.

Our seconddpt) and third pes3 variations use relaxed definitions of interferences, respectively
optimisticand pessimistiqAlgorithm 4). It is interesting to note that optimistic interferences only
incur a relatively small increase in the numbemodve instructions while significantly reducing the
complexity of the computation of the interference graph.

6 Conclusion

This paper presents a pinning-based solution to the problem of register coalescing during the out-
of-SSA translation phase. We explain and demonstrate why considgiimgfruction replacement

and renaming constraints together results in an improved coalescing of variables, thus reducing the
number ofmove instructions before instruction scheduling and register allocation. We show the
superiority of our approach both in terms of compile time and number of copies compared to solutions
composed of existing algorithms (Sreedhar et al., Leung and George, Briggs et al., repeated register
coalescing). These experiments also show that the affinity and interference graphs are usually quite
simple, which means that a global optimization scheme would bring very little improvement over our
local approach. Finally, we implemented some small variations of our algorithm, and observed that
an optimistic implementation of interferences still provides good results with a significant reduction
in the complexity of the computation of the interference graph. During this work, we also improved
slightly the mark and reconstruct phases of Leung and George’s algorithm, which we rely on.

References

[1] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical improvements to the con-
struction and destruction of static single assignment f@oftware — Practice and Experience
28(8):859-881, July 1998.

[2] Z. Budimlic, K. Cooper, T. Harvey, K. Kennedy, T. Oberg, and S. Reeves. Fast copy coa-
lescing and live-range identification. BIGPLAN International Conference on Programming
Languages Design and Implementatipages 25-32. ACM Press, June 2002.

[3] G. J. Chaitin. Register allocation & spilling via graph coloring. Rroceedings of the 1982
SIGPLAN symposium on Compiler constructipages 98—-101, 1982.

[4] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing static
single assignment form and the control dependence gr&BM Transactions on Programming
Languages and Systems3(4):451 — 490, 1991.

[5] B. Dupontde Dinechin, F. de Fegrie, C. Guillon, and A. Stoutchinin. Code generator optimiza-
tions for the ST120 DSP-MCU core. International Conference on Compilers, Architecture,
and Synthesis for Embedded Systgmages 93 — 103, 2000.

16 F. Rastello and F. de Fegrie and C. Guillon

[6] European Telecommunications Standards Institute (ETSI). GSM technical activity, SMG11
(speech) working group. Available hattp://www.etsi.org

[7] L. George and A. W. Appel. lterated register coalesciA@M Transactions on Programming
Languages and Systens8(3), May 1996.

[8] A. L. Leung and L. George. Static single assignment form for machine cod&IGRLAN
International Conference on Programming Languages Design and Implemeniadiges 204 —
214, 1999.

[9] J. Park and S.-M. Moon. Optimistic register coalescinglBBE International Conference on
Parallel Architectures and Compilation Techniqupages 196—204, 1998.

[10] M. Sassa, T. Nakaya, M. Kohama, T. Fukukoa, and M. Takahashi. Static Single Assignment
form in the COINS compiler infrastructure.

[11] V. Sreedhar, R. Ju, D. Gillies, and V. Santhanam. Translating out of static single assignment
form. In Static Analysis Symposium, ltajjages 194 — 204, 1999.

[12] Standard Performance Evaluation Corporation (SPEC). SPEC CINT2000 benchmarks. Avail-
able athttp://www.spec.org/cpu2000/CINT2000/

[13] A. Stoutchinin and F. de Fegnie. Efficient static single assignment form for predication. In
34th annual ACM/IEEE international symposium on Microarchitectpages 172-181. IEEE
Computer Society, 2001.

[14] Y. Wu and J. R. Larus. Static branch frequency and program profile analysislIlARO —
International Symposium on Microarchitectugages 1-11, New York, NY, USA, 1994. ACM
Press.

Optimizing the translation out-of-SSA with renaming constraints 17

Algorithm 2 Formal description of our algorithm.

Create_affinity _graph(CFG_Node current.node)
(BE,V) = ((Z), @)
for each X = ¢(xy,...,x,) of current_node
V =V |J{Resource_def(X)}
foreach z € {z1,...,z,}
V =V |J{Resource_def(x)}
e = (Resource_def(X), Resource_def(x))
if (e ¢ E) multiplicity(e)=0
E = EJ{e}, multiplicity(e)++
return G = (E,V)

Graph_InitialPruning(Graph (V, E))
foreach (z1,2;) € E,
if (Resource_interfere(x, z2))
E—= (21, 15)
return (V, E)

BipartiteGraph _pruning(Bipartite ~Multi Graph (V, E))
{ Evaluates the weight for each edge }
for all e € E, weight(e)=0
for all ((@,z1), (x,22)) € E? such that z; # x5
if Resource_interfere(zy, x2)
weight((x, z1))+=multiplicity((z, z2))
weight((z, 22))+=multiplicity((z, z1))
{Prunes in decreasing weight order
and update the weight}
while weight(e,)> 0
let e, = (X, x) such that
Ve € E, weight(e,)>weight(e)
do
E—=e,
foralle = (X,y) € E
weight(e)—=multiplicity(e,)
foralle=(Y,z) e £
weight(e)—=multiplicity(e,)
return (V, E)

PrunedGraph_pinning(Graph G, Program P)
foreach V' € {connected components of G}
let u= U'UEV v
v, ifv; € Vis a physical resource
u otherwise
foreach (OP)d,,--- =instr(ay,...) € P
foreach d; such thatd; € u
pin d; to w in (OP)
foreach a;7" such thatr € V
replace r by w

let w =

Variable kills(Variable a, Variable b)
if the definition of b dominates those of a
and a and b interfere
return true {Case 1}
if a is defined as a = ¢(ay : By, ...
fori=1ton
if b is live out of B; and b # a;
return true {Case 2}
return false

, Gp - Bn)

Variable _stronglyInterfere(Variable «, Variable b)
if a and b are defined by ¢ instructions
leta: By, = ¢(a1: By1,..-,an : Bap)
letb: By = (]5(1)1 : Bb,la ey byt Bb,m)
if B, = By, return true {Case 4}
fori=1ton
if B, ; is a predecessor of B,
let Ba,i = Bb’j
if a; # b, return true {Case 3}
return false
else if « and b are defined in the same instruction
let (Clb) — instr(...)
return true
return false

Resourcekilled(Resource A)
let A={a1,...,an}
killed_withinA =
{a; € A|Fa; € A, Variable kills(a;, a;)}
return killed_withinA

Resourceinterfere(Resource A, ResourceB)
let A={ay,...,an}
let B={b1,...,bn}
let killed withinA = Resource killed(A)
let killed_withinB = Resource_killed(B)
if A and B are physical resources
if A = B return true
for all (a,b) € Ax B
if a & killed_withinA and Variable Kills(b, a)
return true
if b & killed_withinB and Variable_kills(a, b)
return true
if Variable_stronglyInterfere(a, b)
return true
return false

18

F. Rastello and F. de Fegrie and C. Guillon

Algorithm 3 Construction of initial affinity graph with a depth constraint.

Create_affinity _graph(CFG_Node current_.node,
Integer depth)
(Ev V) = ((bv (D)
for each X = ¢(x4,...,x,) of current_node
V =V |J{Resource_def(X)}

foreach z € {z1,...,2,}
let Node_z: x = ...
if depth(Node_x)-£depth
continue

V =V |J{Resource_def(z)}
e = (Resource_def(X), Resource_def(x))
if (e ¢ E) multiplicity(e)=0
E = E|J{e}, multiplicity(e)++
return G = (E,V)

Algorithm 4 Optimistic and pessimistic definition of interferences.

Variable kills _optimistic(Variable «, Variable b)
let Node_a: (Defa) a = ...
let Node_b: (Defb) b=...
if (a # b) and (Def_b dominates Def_a) and

(b € liveout(Node_a))

return true {Case 1}
if a is defined as a = ¢(a; : By, ..

fori=1ton

if b is live out of B; and b # a;
return true {Case 2}

return false

Bn)

LGy

Variable _kills _pessimistic(Variablea, Variable b)
let Node_a: (Defa) a = ...
let Node_ b: (Defb)b=...
if (a # b) and (Def_-b dominates Def_a) and
((b € livein(Node_a)) or (Node_a = Node_b))
return true {Case 1}
if a is defined as a = ¢(a; : By, ..
fori=1ton
if b is live out of B; and b # a;
return true {Case 2}
return false

Sy Ay

B n)

Optimizing the translation out-of-SSA with renaming constraints 19

Appendix A: Limitations and refinement of Leung’s algorithm

Once pinning has been performed, our algorithm relies on Leungik andreconstructalgo-
rithms to restore the code into non-SSA form. Critical edges are subject to a particular treatment in
Leung’s algorithm. But as illustrated by Figuid, the solution is not robust enough when dealing
with aggressive pinning. The goal of this appendix is to propose a clearest semaitiuifations,
and to modify Leung’s algorithm accordingly.

T < expry

T <— exrpra Tl < exrpri

Y1 T1 < EXTPr1 T < expra
T — T<— X T2 < exrpra r «— X

Ve

ra = ¢(ri, @) — 72

— T4
Original code SSA code with copies folded Leung’s solution to replace
r; are pinned tor ¢-functions is incorrect:

the inserted copy kills the previous
definition ofr.

Figure 14:The ¢-function replacement conflict problem

To begin with, let us consider @ definiton B : y = ¢(...). The semantic used by Leung
et al. is that this definition is distributed over each predecessds.oHence, in a certain sense
multiple definitions ofY” coexist and therefore may conflict. Because conflicts for simple variables
(not resources) are not taken into account in Leung’s algorithm, the lost copy problem has a special
treatment that corresponds to the lines below'¢Hiex problem related to critical edge*)”. Here, the
copycps := cps | J{w < z} is incorrect (probably a typo) and it is difficult to fix to obtain a correct
and efficient code. Instead, that whenever the definitignishot pinned to any resource, we propose
to create a virtual resourgeand to pin this definition to it. This fix takes place in t86OLLECT
procedure. a

Another consequence of Leungsfunction semantic is that whenevgihas to be repaired, the
repairing copies are also distributed over each predecessBrsHénce conflicts can occur and those
repairing copies cannot be used furtigfwhich explains the need to introduce another repairing copy
w). Because we found no a priori motivation to do so, we propose to place the repairing gopgof
after its definition instead. Hence, our new semantic of a gweny1"= ¢(x1 : By,...,zy, : By)
(wherey is always pinned to a resouregdefinition is the following:

e at the end of each block;, there is a new virtual instruction that defines no variable but that
usesr;1".
e at the beginning of the blocR, the ¢ instruction contains no use arguments, but defijjés

o all the “virtual uses” of the end of each block have a parallel semantic i.e. are considered all
together.

The consequence is a simplification of the code: whenever instructions of a block have to be
traversed theg functions definitions, normal instructions uses, normal instructions definitiong and
functions uses (of each successors) are considered consecutively.

20 F. Rastello and F. de Fegrie and C. Guillon

The refined code is given below, modified code is written usingtsign.

Finally, we would like to outline the problem with dedicated register pinning. Indeed, we could
find in Leung’s collect phase the codé {j was renamed from some dedicated register r during
SSA construction then must_def[y] = r...”. As illustrated by Figurel5 copy-folding performed
on dedicated register definition can lead to an incorrect pinning. Because of its non local property,
this inconsistency is not trivial to detect while doing the optimization. Freezing optimizations when
dealing with dedicated registers is a solution to this problem. On the other hand the semantic is not
necessarily strict enough to justify such a decision and pinning may be performed correctly while be-
ing aware of this specific semantic. Hence because dedicated registers related pinning that is semantic
aware can be very complex, we have intentionally removed this part from the COLLECT procedure
and delegated it to a previous pinning phase.

Y1 —
T «—)
e Y — roe— ey e ry — r Pparallel copies:,.
€T €Tl — r<—1u
rT—y T — 1
T X
\J \ \J \J
—7 —7r r3 = ¢(r1,y1) ra = ¢(x1,72) —7r —7r
«— T3 — T4
Original code SSA form after Code generated by the reconstruction
copy folding and algorithm of Leung and George
dead-code elimination (incorrect parallel copies)

Figure 15:Theparallel-copies conflict problens generated by a too constrained pinning

Optimizing the translation out-of-SSA with renaming constraints 21

procedure COLLECT

initialize all entries of must_def and must_use to L

R:=0
for b € basic blocks do
for i € ¢-functions in b do
leti =y — ¢(z1...20)
> if pinned_def(i, 1)

procedure MARKINIT
for b € basic blocks do

for r € Rdo
sites[r] :== 0
for r € Rdo
last[b][r] :=T
philb][r] =T

> then let » be the dedicated register required for i € ¢-functions in block b do

> else letr =y leti=y «— ¢(z1...2n)
must_defly] = r if must_defly] =r # L then
R := RU{r} phib][r] = last[b][r] =y

for i € non-¢-functions in b do
leti =yi...ym < op(z1...20)
for j:==1tomdo
if pinned_def (i, j) then

let » be the dedicated register required

must_defly;] :==r
R := RuU{r}
for j:=1tondo
if pinned_use(i, j) then

let r be the dedicated register required

sites[r] := sites[r] U {b}
for i € normal instructions in block b do
leti=y1...Ym <— op(z1...2y,)
for j:=1tondo
if must_use[i][j] =r # L then
last[b][r] := x;
sites|r] := sites[r] U {b}
for j:=1tom do
if must_defly;] =r # L then
last[b][r] := y;

must_useli][j] :=r sites[r] := sites[r| U {b}
R := Ru{r} > for b’ € succcrq(b) do
> let b be the jth predecessor of ¥’
> for i € ¢-functions in b’ do
> let r = must_de fy]
> last[b][r] = z;
> sites[r] := sites[r] U {b}
procedure USE(3, j,)
EJKEGSI“EMARK in_placeli][j] = false
forre R d(()) if must_use[i][j] # L and avail[must_use[i][j]] = = then

repair_namelr] = L
repair_sites[r] = ()
for b € basic blocks do
forre Rdo
availr] := avin[b][r]
for i € normal instructions in b do
leti =y1...ym < op(x1...20)
for j:=1tondo USE(s,j,x;)
for j:=1to m do DEFINE(y;)
for b’ € succeyq(b) do
let b be the jth predecessor of v’
for i € ¢-functions in b’ do
leti=y—o(...x;...)
USE(i, j, xx)

avout[b][r] = {

avin[b][r] otherwise

xzif last[b|[r] =z # T

in_place[i][j] = true
return
if must_def|z] # L and avail[must_def[z]] # = then
if repair_name[x] = L then
repair_namelz] := a new SSA name
repair_sites[z] := repair_sites[z] U {i}
if must_use[i][j] # L then
availlmust_useli][j]] := =

procedure DEFINE(z)
if must_def[z] # L then avail[must_def[z]] := x

avin[b][r] =
L if bis the entry
x if phili][r] = x # top
ﬂb'epredcfg(b) avout|V][r]if b € DF* (sites[r])
avout[idom(b)][r] otherwise

22

F. Rastello and F. de Fegrie and C. Guillon

procedure LOOKUP (7,)
if stacks|x] is empty then
if must_def[z] # L then
return must_de f[x]
else return x
else
let (y, sites) = top(stacks|z])
if ¢ € sites then return y
else ifmust_def[z] # L then return must_de f|z]
else return x

procedure RENAME_USE(3, j, , copies)
let y = LOOKUP(%, =)
let r = must_useli|[j
if in_placeli][j] then

rewrite the jth input operand of i to r
else ifr # L then

copies := copies U {r — y}

rewrite the jth input operand of i to r
else

rewrite the jth input operand of i to y
return copies

procedure RENAME_DEF(i, j, y, copies)
let r = if must_def[y] = L theny elsemust_def|y]
rewrite the jth output operand y to r
if repair_namely] = tmp # L then
push (tmp, repair_sites[y]) onto stacks[y]
copies := copies U {tmp «— r}
return copies

procedure RECONSTRUCT (b)
for i € ¢-functions in b do

>
>
>

leti =y «— ¢(x1...25)

cpa =10

c¢ps = RENAME _DEF(i,1,y,cpa)
insert parallel copies cp, after 4

for i € normal instructions in b do

(* rewrite instructions *)
leti=y1...ym — op(x1...2n)
cp1 =10
for j:=1ton do

cp1 == RENAME_USE(i,j,xj,cp1)
insert parallel copies cp, before i
cp2 =0
for j:=1tom do

cp2 := RENAME_DEF(i,7,y;,cp2)

insert parallel copies cp. after i
cp3 =1

(* compute ¢-copies *)
for b’ € succeyrq(b) do

>
>

let b be the kth predecessor of v’
for i € ¢-functions in " do
leti=y—¢(x1...2k...20)
for j:=1tondo
cps := RENAME_USE(i, j,x;,cps)

insert parallel copies cps at the end of block b
for b’ € succdom (b) do

RECONSTRUCT (%)
Restore stacks]] to its state
at the beginning of this call

Optimizing the translation out-of-SSA with renaming constraints 23

Appendix B: NP-completeness results

This appendix is devoted to the proof bbcAL PINNING NP-completeness. Also, because
this proof can be extended to the global probl@unoBaL PINNING the corresponding proof is
provided. Remark that the result is valid with or without renaming constraints. For simplicity, proofs
are made without renaming constraints. Also, additional remarks concerning the coalescing problem
complexity in its general form are provided.

We start with a few definitions.

Definition 1 (GLOBAL PINNING) Consider a SSA prograr? containing no initial pinning and a
set of¢ definitionsX; = ¢(x; 1, - ,zipn,). Letus denote bPEFS = {X;, -, X}, ARGS; =
{:Ei,la s ,xi,m}, ARGS = Uz ARGS; andV = DEFS U ARGS.

Find a partitioning ofV into disjoint setsRy, - - - , R,,, such that

(CK): | J Resource killed({v}) = | J Resourcekilled(R;) (nomore killed variable)

veEY 1<j<m

(CS): V1 <j<m,V(x,y) € R?, —Variable_stronglyInterfere(x,y) (no strong interference)

is maximized

(CM): card{(U DEFSXARGSZ») m(U Rg)

1<i<n 1<i<m

Definition 2 (LocAL PINNING) Consider a programP with some pinning already performed and
a set of¢ definitionsX; = ¢(x;1,- - , i) Within the same blocks. Let us denote bp EF'S =
{Xl, cee ,Xn}, ARGS; = {:L‘Z'J, cee 71:7;7”1}’ ARGS = Uz ARGS;,V = DEFS U ARGS andz
the set of variables pinned to the same resource than). Find a partitioning of the set of resources
V into disjoint setsRy, - - - , R,,, such that

|J Resource killed(v) = |] Resourcekilled(| JR;) (no more killed variable)

veY 1<j<m

V1 <j<m,V(z,y) (UR) , "Variable_stronglyinterfere(x,y) (no strong interference)

card{(U DEFS x ARGSZ-) N (U (UR1>2) is maximized

1<i<n 1<i<m

Theorem 1 GLOBAL PINNING is NP-complete in the size gffunctions.

24 F. Rastello and F. de Fegrie and C. Guillon

Proof of Theorem1 We prove the theorem using the polynomial reductioMxiMUM -INDEPENDENF
SET. Hence, let us consider a gragh = (V, E) whereV = {z1,...,zn}. We aim to find a
maximum independent sétC V i.e.

card/ is maximum
for each(wi, zj) € I?, (vi,zj) ¢ E

Let us build the corresponding instance@foOBAL PINNING :
e Forallzi €V, consider a blockBi which contains a definition aofi
e Forall(zi,zj) € E consider

1. two blocks Bi;; and Bj;; with predecessoBi and resp. Bj. A third block B;; with
predecessorBi;; andBj;;.

2. adefinitionaj;; in block Bi;; and a definitiorui;; in block Bj;;

o Cii; = ¢(xi, aizj)

3. two ¢ functions in blockB;;: | " T

¢ YT Chiy = dlajiz,)

e A block B, with predecessorB1, . .., Bn, which contains the instruction
X =¢(x1,...,2n)

For this program,

e there is an affinity betweeN and allzi; for each(xi, zj) € E there are affinities betweeT; ;
andzi and betweeidi;; andai;;

o interferences are between all coupig; andzj and between all coupl€’i;; andC';;.

- - - - Affinity edge
B2: Interference edge
.. 2 =...
zl -
B112\\ B2is ; B2) \
a 12 \\ \\
z1 ‘a212=...Ha112:..“ ‘a323:... . Clio \
\ \
B : Bag : Chz X !
x2 Cliz = ¢(z1,al12) 223 = ¢(x2, a223) it ° X
C212 = ¢(a212,x2) C323 = ¢(a323,3) a3a3 \ |
\ \ I
x3 Y C223 /
\ 7
B: ' Cdas = S
X = ¢(al,22,23) | / a223 a
e B
[Initial Graph for] [Corresponding program for] [Corresponding affinities]
[MAX-INDEPENDANT-SET] [GLOBAL-PINNING] [and interferences inG’]

Figure 16: Reduction for the NP-completeness proof GfOBAL PINNING : G’ contains|E,| =
4« |E| + |V] = 11 affinity edges.

Optimizing the translation out-of-SSA with renaming constraints 25

On this programGLOBAL PINNING can be seen as follow: find a correct coloring of the affinity-
interference graph@’ = (V’, E,, E;)) that maximizes the number of affinity edges (dashed edges:
E,) between two vertices of the same color. A coloring is correct whenever there is no interference
(full edges: E;) between two vertices of the same color. To each color corresponds a resource. This
new graphG’ contains four affinity edges for each edge of the initial gré&pft| E/| on the whole),
and one affinity edge for each vertex@f(|V'| on the whole). See Figurks for a simple example.
Consider an optimal solution B8LOBAL PINNING with X the resource containiny. 7 = XV
is the set of vertices ofs that have the same color than. Let (zi,zj) € E and consider the
corresponding four affinity edges. As illustrated by Figlivef i andxj are inI (so they get the
same color), from those four affinity edges only a maximum of two can be satisfied. Hence, the cost
of this solution can be bounded by

CI) < [|+4E -) 2
(zi,xzg)EE N T?

Now, consider a solution wheteis an independent set and all othérhave different colors, then by
coloring remaining vertices as illustrated in Figdréthe upper boungll | + 4| E| is reached. Hence,
the solution is optimal if and only if is a maximum independent set. |

if x4 and zj have the same color
at most two affinities can be satisfied

if ¢ and zj do not have the same color
The 4 affinities can be satisfied

[Affinity edges related to (zi, zj) € E] [Optimal solution for the exemple]
[of Figure 16]

Figure 17:1 is an independent set.

Theorem 2 LocAL PINNING is NP-complete.

Proof of Theorem2 The proof uses the same reduction tharGepBAL PINNING : for a given graph
G = (V, E) we consider the same program and suppose that biBgksave already been performed.
Block B remains. At this stage we hawe = {Ci;;,xi,ai;;} for all s and X = {X}. Hence,
(zi,xzj) € E if and only if zi interfere withzj. So, the optimal partitioning of X, z1,...,zn}
provides withX () V' an independent set for. |

26 F. Rastello and F. de Fegrie and C. Guillon

The MAX-COALESCE problem is NP-complete To finish with, let us define formally the coa-
lescing problemN1aXx-COALESCE): consider a program with virtual variables and move instructions
between some of those variables. To get a stronger result, consider that this program has been obtained
by a basic out-of-SSA translation i.e. no coalescing have been performed during this reconstruction
phase. Consider the corresponding interference graph, and affinity graph: two variables iAterfere

if they cannot be assigned to a common resource; two variables share an affinity if they are move
related. Interferences are represented using full edges and affinities are represented using dashed
edges. Affinity edges can be weighted to reflect the number of related move instructions and branch
frequency prediction (e.g1f]). To simplify the discussion, we consider that all blocks have an equal
execution frequency, but the results given below are correct even if execution frequencies are taken
into account.

Now, the coalescing problem consists on coloring correctly this graph using an unbounded number
of colors. A correct coloring is a coloring such that two variables with the same color do not interfere.
Variables within the same color-set are said to be coalesced. Each move instruction between two
coalesced variables can be removed. The goal is to maximize the number of such move instructions,
which exactly corresponds to maximizing the weighted number of dashed edges between coalesced
variables. As illustrated by Figurs, the previous NP-completeness proof can be easily modified to
prove the NP-completenessMfax -COALESCE problem.

Bl: B2: B3: - - - - Affinity edge
zl=... 2= ... 3 =... Interference edge
X =zl X =22 X =23

Bllg\ B219 :/ B2s3 : B3a3 : /

a219 = ... aliog = ... ad23 = ... a2o3 = ...
Clio = x1 Cli2 = alig ||[C223 = x2 C223 = a293
C212 = a212]IC212 = 22 C323 = a323] |C323 = 23

b NS
]

x1

x2

x3

[Initial Graph for] [Corresponding out-out-of SSA] [Corresponding affinities]
[MAX-INDEPENDANT-SET] [program for M Ax-COALESCE] [and interferences inG’]

Figure 18:Reduction for the NP-completeness proof\dAx -COALESCE the corresponding affin-
ity/interference graph is similar to the one obtained for the NP-completeness prGabaaL PIN-
NING .

The MIN-MoVE problem is NP-complete One can wonder if the complexity comes from the out-
of-SSA algorithm itself, from the place of move instructions that repéaftenctions. In particular one

can imagine performing code-motion and live-range splitting in order to get an even better result in
term of number of move instructions. We name this probMm-MovE. Unfortunately, the previous
example with a similar reasoning also leads to the NP-completenessdiithd&1 ovE problem.

2Remark that on our interference mod€élandz1 of Figure 18 do not interfere simply because they share the same
value whereas on some classical definitions they do. This can be easily overcomed by splitting edgesihetng&n

