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Abstract

The Internet aims at providing a wide range of services for a large variety of applica-
tions. Hence, it is highly sensitive to traffic anomalies (e.g., failures, flash crowds,...)
as well as to DoS attacks, which are likely to significantly reduce the Quality of Ser-
vice level. Current intrusion detection systems, specially those based on anomaly
detection, are not providing efficient nor satisfactory solutions for DoS attack track-
ing. This is mainly due to difficulties in distinguishing between strong but legitimate
traffic variations and DoS attack induced changes. The goal of this work is to com-
pare relevant statistical characteristics of regular traffic to those of traffic presenting
anomalies. To do so, we introduce a non Gaussian long memory model and develop
estimators for the corresponding parameters. First, we show that this model rele-
vantly describes Internet traffic for a wide range of aggregation levels, using both a
large set of data taken from public reference repositories (Bellcore, LBL, Auckland,
UNC, CAIDA) and data collected by ourselves. Second, we show that the proposed
model also describes meaningfully traffic with anomalies such as flash crowd and DoS
attacks which we generated and collected. We show that the behaviors of the param-
eters of the model enables us to discriminate between regular and anomalous traffic,
and between flash crowds and DoS attacks. We also derive analytically procedures to
numerically synthesize realizations of stochastic processes with prescribed non Gaus-
sian marginals and long range dependent covariances. This enables us to validate
the relevance and accuracy of our characterization procedures. Finally, we describe
various applications based on the proposed model.

Keywords: Intrusion detection, DoS attack, Flash Crowd, Non Gaussian Long Range

Dependent Process.

Résumé

Internet fourni de multiples services de communication de qualités variées à un très
grand nombre d’applications. C’est pourquoi il est très sensible aux anomalies du trafic
(dysfonctionnement, flash crowds,...) ainsi qu’aux attaques DoS (déni de service) qui
réduisent sensiblement la qualité de service fournie par le réseau. Les mécanismes
actuels de détection d’intrusion, notamment ceux basés sur la recherche d’anoma-
lies, ne parviennent pas à lutter efficacement contre les DoS car il est très difficile
de différencier les variations légitimes de trafic des variations dues à des attaques.
Nous présentons ici une étude statistique de ces différentes variations (légitime et
illégitime), dans le but d’aider les détecteurs d’intrusion à être plus efficace. Pour
cela, nous introduisons un modèle stochastique de trafic basé sur des processus à
longue mémoire non gaussien. Nous montrons que ce modèle parvient à capturer les
caractéristiques statistiques d’ordre 1 et 2 du traffic de manière satisfaisante sur des
traces de trafic classiques (Bellcore, LBL, Auckland, UNC, CAIDA), ainsi que sur des
traces de trafic contenant des anomalies. Nous montrons aussi que les variations des
paramètres de ce modèle permettent de différencier les flash crowds et les attaques
DoS. Nous présentons enfin une méthode pour générer des traces de trafic synthé-
tiques en accord avec le modèle, ce qui nous permet de valider les performances de
nos outils d’analyse.

Mots-clés: Détection d’intrusion, Attaques DoS, Flash Crowd,

Processus à longue mémoire non gaussiens.



1 Introduction

The Internet is on the way of becoming the universal communication network for all kinds of information,
ranging from the simple transfer of binary computer data to the real time transmission of voice, video,
or interactive information. Simultaneously, the Internet is evolving from a single best effort service to a
multi-service network, a major consequence being that it becomes highly sensitive to attacks, specially
denial of services (DoS) and distributed DoS ones (DDoS). Indeed, DoS attacks are responsible for large
changes in traffic characteristics which may in turn significantly reduce the quality of service (QoS) level
perceived by all users of the network. This hence breaks the service level agreement (SLA) at the Internet
service provider (ISP) fault. DoS attacks can then induce financial losses for ISPs.

Reacting against DoS attacks is a difficult task and current intrusion detection systems (IDS), specially
those based on anomaly detection, often fail in detecting them efficiently. This is first because DoS attacks
can take a wide variety of multiple forms so that proposing a common definition is in itself a complex
issue. Second, it is commonly observed that Internet traffic under normal conditions presents per se or
naturally large fluctuations and variations in its throughput at all scales [34], often described in terms
of long memory [13], self-similarity [35], multifractality [15]. This significantly impairs the detection of
anomalies. Third, Internet traffic may exhibit strong, possibly sudden but legitimate variations (flash
crowds, for instance) that may be hard to distinguish from illegitimate ones.
For those reasons, anomaly detection based IDS are often suffering from high false alarm rates, a major
shortcomings for their actual use. The current evolution of the Internet traffic, allowing a larger variety
of traffic and diversity of communication should result in an increase of difficulties in efficient IDS design.

This work, lead in the framework of the METROSEC project, mainly aims at analyzing the impact of
anomalies on traffic statistical characteristics as well as at determining discriminative profile signatures
for traffic containing legitimate (e.g., flash crowds) and illegitimate (e.g., DDoS attacks) anomalies. At
end, it is expected that these findings could serve for improving networking schemes to react against
traffic anomalies and particularly malicious ones.

To do so, we propose the use of non Gaussian long memory stochastic processes to model Internet
traffic. We show experimentally that this model proves versatile enough to provide us with a relevant
statistical description for a large variety of regular traffic as well as for traffic with anomalies, be they
legitimate or not.
We also show that the evolution with respect to the aggregation level of the fitted parameters for the
proposed model enables us to distinguish between traffic with and without anomalies and to classify
them.

• Outline. Section 2 briefly reviews traffic modeling with a detection of anomalies perspective. Section 3
describes the analyzed data which consist both of standard reference traces taken from publicly available
traffic data repositories and of data collected by ourselves. In particular, it explains how DDoS attacks
and flash crowds were conducted by ourselves in a controlled, reproducible and chosen manner as well
as how the corresponding traffic was collected by ourselves. Section 4 introduces the proposed model
and describes the practical analysis procedures. Section 5 presents with details the statistical character-
izations and results obtained on traffic with and without anomalies and proposes some discussions and
interpretations. Section 6 explains an exact method to generate numerical time series whose marginals
and covariances follow that of the observed traffic, and it validates the analysis and modeling procedures
used in the previous section. Section 7 presents applications of the proposed modeling and analysis:
traffic with prescribed statistics generator, traffic prediction and anomaly or attack detection.

2 Traffic Modeling : A Brief Overview

2.1 Traffic without anomalies

• Statistical modeling and network performance. Computer network traffic consists of packets
arrival processes. It has long been recognized that those arrival processes depart from Poisson or renewal
processes, see for instance [37], insofar as the inter-arrival delays are not independent. This can be
modeled using, either non stationary Point processes [24] or stationary Markov modulated Point processes
[3].

Therefore, a general description is in terms of marked point processes {(tl, Al), l = 0, 1, 2, ...} where
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the tl denotes the arrival time stamp of the l-th packet and Al some attributes of the packet (such as
its payload, its application/source/destination ports,...). However, given the huge number of packets
involved in any computer network traffic, this would result in huge data sets.
This is why it is most often preferred to work on byte or packet aggregated count processes, denoted
W∆(k) and X∆(k). They consists of the number of bytes (resp., packets) that lives within the k-th
window of size ∆ > 0, i.e., whose time stamps lie between k∆ ≤ tl < (k+1)∆. It has also been proposed
to model at the connexion or flow level instead of the packet one. In that case, one groups IP packets
with identical standard 5-tuples into connections or given any other definition for more generic flows,
and one models the flow arrival process or, for example, the fluctuation of the number of active flows [4].
In the present work, we remain at the packet level and mainly concentrate on the modeling of X∆(k).
When modeling X∆, one mostly uses stationary processes and it is commonly accepted that marginal
distributions and auto-covariance functions are the two major factors that affect the performance of the
network and hence need to be modeled in priority. Reviews on traffic models can be found in, e.g.,
[31, 35].

• Marginal Distributions. Because X∆(k) is designed from a packet arrival process, it has been
proposed to model its marginal via a Poisson distribution [14]. As X∆(k) is by definition a positive
random variable, other works proposed to describe its marginal with common positive laws such as (one-
sided) exponential, log-normal, Weibull or gamma distributions [31]. In many cases for highly aggregated
data, Gaussian distributions are also used as relevant approximations.

• Covariance Function. After the seminal work reported in [26], it has been commonly accepted
that computer network traffic is characterized by a long memory or long range dependence property
(cf. [7, 40]). Long range dependence (LRD) is usually defined through the fact that the power spectral
density fX∆(ν) of the process behave at the origin as:

fX∆(ν) ∼ C|ν|−2d, |ν| → 0, with 0 < d < 0.5. (1)

Let us recall that the power spectral density is the Fourier transform of the auto-covariance. Long range
dependence in computer network traffic is a central property as it is likely to be responsible for decreases
of the QoS as well as of the performance of the network (see e.g., [43]). Taking it into account precisely is
a necessary condition to perform accurate and relevant network design (buffer size,...) and performance
predictions (delay as a function of utility,...). It is hence crucial that long memory be incorporated in
description models. This rules out the use of processes such as Poisson or Markov processes as well
as some of their declinations, Markov Modulated Poisson Processes for instance [36]. Consequently,
canonical long range dependent processes such as fractional Brownian motion, fractional Gaussian noise
[33] or Fractionally Integrated Auto-Regressive Moving Average (FARIMA) have ben widely used to
describe and/or analyze Internet times series (see [35] and the references therein). It is also interesting
to note that long memory can be incorporated directly into point processes using cluster point process
models, yielding fruitful description of the packet arrival processes as pointed out in [18].

• Higher Orders. Multifractal processes are used to model scaling properties that are not fully cap-
tured by the second statistical order and involve higher ones. The relevance and interest of multifractal
processes for the modeling and analysis of the Internet has been discussed in details in numerous papers
and is still an open issue (see [11, 15, 19, 41, 42, 52]). It turns out that the joint modeling of the first
and second order statistics is in itself already a difficult task. We will show in next sections that it also
provides us with rich enough model to detect and characterize anomalies in traffic. Therefore, in the
present work, we concentrate only on the joint modeling of the first and second statistic orders by means
of non Gaussian long range dependent processes.

• Aggregation Level. A recurrent issue in traffic modeling lies in the choice of the relevant aggregation
level ∆. This is an involved question whose answer mixes up the characteristics of the data themselves,
the goal of the modeling as well as technical issues such as real time, buffer size, computational cost
constraints. Facing this difficulty of choosing a priori ∆, it is of great interest to have at disposal a
statistical model that may be relevant for a large range of values of ∆, a feature we seek in the model
proposed below.
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Data Date T (s) Network(Link) PKT IAT Repository

PAUG 1989-08-29(11:25) 2620 LAN(10BaseT) 1 2.6 ita.ee.lbl.gov/index.html
LBL-TCP-3 1994-01-20(14:10) 7200 WAN(10BaseT) 1.7 4 ita.ee.lbl.gov/index.html
AUCK-IV 2001-04-02(13:00) 10800 WAN(OC3) 9 1.2 wand.cs.waikato.ac.nz/wand/wits
CAIDA 2002-08-14(10:00) 600 Backbone(OC48) 65 0.01 www.caida.org/analysis/workload/oc48/
UNC 2003-04-06(16:00) 3600 WAN(10BaseT) 4.6 0.8 www-dirt.cs.unc.edu/ts/

METROSEC-ref1 2004-12-09(18:30) 5000 LAN(10BaseT) 3.9 1.5 www.laas.fr/METROSEC/
METROSEC-ref2 2004-12-10(02:00) 9000 LAN(10BaseT) 2.1 4.3 www.laas.fr/METROSEC/

METROSEC-DDoS 2004-12-09(20:00) 9000 LAN(10BaseT) 6.9 1.3 www.laas.fr/METROSEC/
METROSEC-FC 2005-04-14(14:30) 1800 LAN(10BaseT) 3.7 0.48 www.laas.fr/METROSEC/

Table 1: Data Description. General parameters of the studied traces. T is the duration is the trace,
in second. PKT is the number of packets in the trace, given in million. IAT is the mean inter-arrival
time, in ms.

2.2 Anomaly Detection

IDS based on anomalies detection generally do not rely on the use of tools involving rich statistical mod-
els. They are mainly based on monitoring simple traffic parameters such as its throughput or packet rate,
and most IDS make use of specific packet sequences known as attack signatures [38]. Essentially, alarms
are raised whenever a threshold is reached [8, 17, 21, 45], yielding a significant number of false positives
[32]. Therefore, they often remain unsatisfactory as they cannot discriminate between legitimate traffic
variations and attacks.
Recently, progresses in traffic modeling obtained in various Internet traffic monitoring projects, signif-
icantly renewed IDS design strategies. Though still at early stages of developments, interesting results
making use of statistical characterizations were published. For instance, Ye proposed in [50] a Markov
model for the temporal behavior of the traffic, that raises alarms whenever the traffic significantly de-
viates from the model. Other authors [22, 51] have shown that DDoS attacks increase correlations in
traffic, and this could provide a robust detection technique. Based on inter-correlation between traffic
across different links, Lakhina et al. proposed a method for detecting network wide anomalies in traffic
matrices [25]. Hussain and co-authors used the spectral density to find out signatures for various attacks
[20]. Similarly, spectral estimation was used for comparing traffic with and without attacks [9]. While
the spectral density exhibits peaks around the Round Trip Time values for normal traffic, such peaks
no longer appear under attacks. This fact can then be used in IDS design. Finally, Li and Lee used the
wavelet technique developed in [47] to compute a so-called energy distribution; it was observed that this
energy distribution presents peaks under attacks that do not exist for regular traffic [27]. The work in
[5] exploits the multiresolution nature of the wavelet decomposition to track and detect traffic anomalies
in a so-called medium range of scales.
A collection of promising works have hence already been published in the field of DDoS attacks [5, 23].
The present work intends to contribute to that area of research by comparing statistical characterizations
obtained first on regular traffic, second on traffic presenting a variety of anomalies including legitimate
ones. A goal at end is to be able to discriminate between legitimate and illegitimate changes in traffic.

(a) (b)
Figure 1: DDoS Attack. (a) Packets and (b) connections per second time series.
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3 Data and Experiments

3.1 Traffic without anomalies

The model and analysis proposed hereafter are first illustrated on traffic presenting a priori no anomaly,
described in details in Table 1. We use both standard data, gathered from most of the major avail-
able Internet traces repositories (Bellcore, LBL, UNC, Auckland Univ, Univ North Carolina, CAIDA),
and time series collected by ourselves within the METROSEC research project. Therefore, we cover a
significant variety of traffic, networks (Local Area Network, Wide Area Network,... and edge networks,
core networks,...) and links, collected over the last 16 years (from 1989 to 2005). On each repository, a
large number of traces are available, we focussed here on one (or a few ones) that are representative of
a collection of others. PAUG corresponds to one of the celebrated early Bellcore Ethernet LAN traces,
over which long range dependence was first evidenced [26]. LBL-TCP-3 is provided by the Lawrence
Berkeley Laboratory and was collected at LAN gateways. Multifractal models were validated for the
first time in computer network traffic on these data [15, 46]. AUCK-IV constitute high precisions
TCP/IP traces gathered at the Internet access point of the University of Auckland over a non saturated
link. We also processed the CAIDA time series, another high time-stamp precision, collected over a
large backbone, kindly made available by CAIDA from their MFN network. UNC corresponds, to our
knowledge, to the most recent publicly available data. The METROSEC data were collected late 2004
and early 2005, on the RENATER1 network using DAG systems [10] deployed in the framework of two
French research projects: METROPOLIS and METROSEC.

3.2 Traffic (or traces) with anomalies

Analyzing standard RENATER traffic, the only illegitimate activity we found is port scanning, but no
DDoS attack. Therefore, we decided to perform both legitimate (Flash Crowds) and illegitimate (DDoS
attacks) anomalies in an accurate and completely controlled manner. For each case, several experiments
were run on RENATER network.

• DDoS Attack. The DDoS attack studied here consists in a distributed UDP flooding attack. It
has been generated from 5 different sites: IUT Mont de Marsan, LIAFA Paris, ENS Lyon, ESSI Nice,
France and the university of Coimbra, Portugal, against the target site, LAAS, Toulouse, France. LAAS
is connected to RENATER thanks to a 100 Mbps Ethernet link which has not been saturated during the
attack. A traffic trace is captured on the LAAS access link. The attack started at 8 pm on December
9th, 2004 and lasted more than 5.30 hours. The basic traffic characteristics are depicted in Figures 2.2(a)
and 2.2(b) which respectively shows the number of flows and packets on the LAAS access link. While
the former remains quite stable, the later presents a significant increase (the packet rate is multiplied by
almost 3 during the attack).

• Flash Crowd (FC). To compare the impact on the traffic characteristics of DDoS attacks to that of
legitimate traffic changes, we created flash crowds on a web server. To make them more realistic, i.e.,
humanly random, we chose not to use an automatic program, but to ask many French academics to browse
the LAAS website (http://www.laas.fr). Results will be presented on the flash crowd performed on April
14th, 2005 which lasted 30 minutes and gathered more than a one hundred participants. Fig. 3.2(a)
shows the number of requests (HTTP GET requests) received by the LAAS web server, distinguishing
between inner and outer requests. One can clearly see that many people started browsing the LAAS
web server at 2.30pm (important increase of the number of hits), but also that many of them did not
participate for the whole 30 minutes. The Figures 3.2(b) and 3.2(c) show respectively the number of
flows and the packet rate on the LAAS access link. As expected, both plots present an increase of
respectively the average number of flows and the average packet rate during the flash crowd. However,
one also notices an important increase of the number of flows and packet rate after the end of the flash
crowd experiment. Fig. 3.2(c) also shows an increase of the average packet rate before the flash crowd
experiment. To understand that increase, we analyzed the different components of the traffic using the
QoSMOS Traffic Designer tool [39] (cf. Fig. 3.2(d)). It reveals that the increase recorded around 2 pm
(i.e., before our experiment) is due to people inside LAAS browsing the web right after lunch. Such
a pattern has been observed systematically on all traces collected on the LAAS access link since then.

1RENATER is the French network for education and research that interconnects academics and some industrial partners.

5



(a) (b)

(c) (d)
Figure 2: Flash Crowd. (a) http requests, (b) connections, (c) packets and (d) distribution of through-
puts per second time series. Fig. (d) follows a top-down approach: the application on top generates the
larger traffic.

The second peak, after the experiment, appears to be due to SMTP traffic. It can be explained in two
ways. First, many researchers at LAAS use webmail. Because the server has been significantly slowed
down during the flash crowd experiment, they had stopped sending e-mails until the web server restarted
to work with satisfactory performance. Second, the grey listing mechanism (used for spam reduction)
delays some e-mails, and sends them all at scheduled door opening. The nearest one occurred at 3.15
pm, just after the end of the flash crowd.

4 Non Gaussian Long Range Dependent Processes

4.1 The Gamma farima model

In the present work, we propose to model the {X∆(k), k ∈ Z} time series for each aggregation level ∆.
Modeling the {W∆(k), k ∈ Z} time series gives equivalent results and we restrict here the discussion for
the sake of clarity. The model is a non Gaussian, long range dependent, stationary process: the Gamma
(marginal) farima (covariance) process. Stationarity is assumed for the model because it is convenient
from a theoretical point of view, and we empirically check during the analysis that the hypothesis is
valid.

• First order Statistics (Marginals): Gamma distribution. Because of the point process nature
of traffic, Poisson and or exponential distributions are expected at small aggregation levels ∆, while
Gaussian laws are at larger ∆s. None of them can satisfactorily model traffic marginals for a wide range
of (small and large) ∆s. From our empirical studies, we found out that a Gamma distribution Γα,β

capture best the marginals of the X∆.
A Γα,β distribution is defined for positive random variables X with

Γα,β(x) =
1

βΓ(α)

(
x

β

)α−1

exp
(
−x
β

)
, (2)

where Γ(u) is the standard Gamma function (see e.g., [14]), depends on two parameters: the shape α
and the scale β. It has mean µ = αβ and variance σ2 = αβ2. Note that the inverse of the shape
parameter, 1/α, acts as an indicator of the distance from a Gaussian law. For instance, skewness and
kurtosis (relative third and fourth moments) behave respectively as 2/

√
α and 3 + 6/α.
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• Second order Statistics (covariance): Long Range Dependence. As explained in Section 2,
because long memory is a crucial property for computer traffic, stochastic processes that intrinsically
incorporate it are suitable for modeling. However, because of the many different network mechanisms
and various source characteristics, short term dependencies are also present and superimposed to this
long memory property. Therefore using the FARIMA process [7] is natural in that it allows both short
and long range dependencies.
A farima(P, d,Q) model is defined via two polynomials of order P and Q and a fractional integration
D−d, of order −1/2 < d < 1/2, as:

X∆(k) =
P∑

p=1

φpX∆(k − p) + D−d(ε(k)−
Q∑

q=1

θqε(k − q)),

where the ε(l) are independent, identically distributed random variables, commonly referred to as inno-
vations, with zero mean and variance σ2

ε . For fractional d, the fractional integrator is read via a formal
power series expansion: D−d =

∑∞
i=0 bi(−d)Bi, where B is the backward operator, Bε(i) = ε(i− 1), and

bi(−d) = Γ(i+ d)/Γ(d)Γ(i+ 1). The Fourier spectrum for this process reads:

fX(ν) = σ2
ε |1− e−i2πν |−2d

|1−
∑Q

q=1 θqe
−iq2πν |2

|1−
∑P

p=1 φpe−ip2πν |2
, (3)

for −1/2 < ν < 1/2. This shows that for d ∈ (0, 1/2), this process is long range dependent.
In this case, the ARMA(P,Q) contribution and the fractional integration of order d account respectively
for short and long range correlations, in an independent and versatile way. The shape polynomials P
and Q can be used to fit the spectrum at high frequencies or, equivalently, fine scales, while d measures
the “strength” of the long memory.
• Comments. For the analysis and the illustrations reported in the present work, we will restrict
ourselves to the use of farima processes with polynomials P and Q of degree at most 1, hereafter labeled
farima(φ, d, θ).
Then, the Γα,β - farima(φ, d, θ) processes involve only 5 parameters that need to be adjusted from the
data. As such they are parsimonious models, a much desired property as far as robust, practical, efficient
real time on-the-fly network monitoring is concerned.
Note however that the specifications of the first and second order statistical properties do not fully
characterize the process, because this model is not Gaussian. Room for further design to adjust other
properties of the traffic remains available in the framework of the model, but this task, difficult to achieve,
is not needed here for the properties of the traffic we intend to capture.

4.2 Analysis

• Stationarity of data. For each aggregation level ∆ independently, the analysis of theX∆ is conducted.
Because for theoretical modeling stationarity of X∆ is assumed, we first perform empirically a consistency
check of analysis and estimation results obtained from adjacent non overlapping sub-blocks. Then, we
analyze only data sets for which stationarity is a reasonable hypothesis. This approach is very close in
spirit to the ones developed in [44, 48]. Then we estimate the parameters of the model for each chosen
∆.
• Gamma parameter estimation. Instead of the usual moment based technique, β̂ = σ̂2/µ̂, α̂ = µ̂/β̂

where µ̂ and σ̂2 consist of the standard sample mean and variance estimators, we use maximum likelihood
based estimates for the parameters α and β [16]. The joint distribution of n i.i.d. Γα,β variables can
be obtained as a product of n terms as in Eq. 2. Derivation of this product with respect to α and β
yields the estimates. It is important to note that the term ML standardly attributed to that method
is here abusively used. Obviously, in our case, the X∆(k) are strongly dependent and hence do not
satisfy the i.i.d. assumption. Section 6is devoted to show empirically from numerical simulations that
this estimation procedure nevertheless provides us with very accurate estimates even when applied to
processes with long range dependence.
• Farima parameter estimation. It is well known that the estimation of the long memory parameter
is a difficult statistical task that received a considerable amount of works and attention (see e.g. [12] for
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a thorough and up-to-date review), and hence, so will the joint estimation of both long and short range
parameters of the farima(φ, d, θ) process. Full maximum likelihood estimation based on the analytical
form of the spectrum recalled in Eq. 3 are possible but computationally heavy.
In this work, we develop a two step estimation procedure: the wavelet based methodology developed in
[1, 2, 47] enables us to estimate first the long range dependence parameter d; second, the parameters of
the residual ARMA part are estimated.

Let us first recall the wavelet framework (see [30] for a thorough introduction). Let ψ0 denote
respectively the mother wavelet. Let ψj,k(t) = 2−j/2ψ0(2−jt − k) denote its dilated and translated
templates and dX(j, k) = 〈ψj,k, X0〉 the corresponding wavelet coefficients. The mother-wavelet ψ0 is
further characterized by an integer N ≥ 1, the number of vanishing moments that plays a key role in the
theoretical and practical analysis of long memory.
For any second order stationary process X, its spectrum fX(ν) can be related to its wavelet coefficients
through:

EdX(j, k)2 =
∫
fX(ν)2j |Ψ0(2jν)|2dν, (4)

where Ψ0 stands for the Fourier transform of ψ0 and E for the expected value. When X is a long range
dependent process, with parameter d, Eq. 1 implies that:

EdX(j, k)2 ∼ C2j(2d+1), if 2j → +∞. (5)

Moreover, it has been proven that the {dX(j, k), k ∈ Z} form short range dependent sequences as soon
as N > d + 1/2. This means that they no longer suffer from statistical difficulties implied by the long
memory property. In particular, the time averages Sj = 1/nj

∑nj

k=1 |dX(j, k)|2 can then be used as
relevant, efficient and robust estimators for EdX(j, k)2. Together with Eq. 4 above, this leads to the
following estimation procedure: a weighted linear regression of log2 Sj against log2 2j = j, performed in
the limit of the coarsest scales, provides us with an estimate of 2d + 1, hence of d. The plots log2 Sj

versus log2 2j = j are commonly referred to as logscale diagrams (LD). The possibility of varyingN brings
robustness to these analysis and estimation procedures. The full definition as well as the performance of
this estimation procedure are detailed in [1, 2, 47].

From this wavelet based estimate d̂W of d, we perform a fractional derivation of order d̂W of X∆.
This removes the long memory from the process so that only the ARMA component is left. A standard
iterative procedure (based on a Gauss-Newton algorithm) [28] is then applied to estimate the ARMA
parameters.
Obviously, the major weakness of this two step estimation procedure lies in the fact that be d poorly
estimated, then so will the ARMA parameters. However, the estimation performance of the procedure
are studied numerically in Section 6 using synthetic Γα,β farima(φ, d, θ) process.

5 Results and discussions

5.1 Traffic without anomalies

The Γα,β - farima(φ, d, θ) analysis procedures described above are applied to traffic time series for various
levels of aggregation independently. We present here detailed results for the AUCK-IV series and for
the Metrosec-ref1 series only. Similar results are obtained for the other series mentioned in Table 1,
they are not reported here by lack of room (they are available on request).

• Marginals. For these two series, Figs. 3 and 5, left columns (model fit superimposed to empirical
histogram), respectively illustrate the relevance of the Γα,β fits of the marginal statistics of X∆ for a
wide range of aggregation levels: 1ms ≤ ∆ ≤ 10 s. The adequacy of these fits has been characterized by
means of χ2 and Kolmogorov-Smirnow goodness-of-fit tests (not reported here). Gamma distributions
show usually a better adequacy compared to those obtained from exponential, log-normal and χ2 laws.
For some of the analyzed time series and some aggregation levels, one of these laws may better adjust
the data. However, the Gamma distributions are never significantly outperformed, and if a particular
distribution performs better than Gamma for a given ∆, this does not hold over a wide range of ∆s. As
opposed to this, the adequacy of the Gamma laws remains very satisfactory over wide ranges of ∆s, and
we advocate that this gives a scale-evolving characterization of marginals of the traffic. To some extent,
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Figure 3: AUCK-IV. Γα,β - farima(φ, d, θ) fits for the marginals (left column) and covariances (right
column) for ∆ = 10, 100, 400 ms (top to bottom); j = 1 corresponds to 10 ms.

Γα,β laws, by variation of their shape and scale parameters, offer a continuous and smooth evolution
from pure exponential to Gaussian laws.
Together, these facts are very much in favor of the use of Gamma laws to model computer traffic marginals
and is related to the fact that Gamma laws form a family that is stable under addition: for any two Xi

and i = 1, 2 independent random variables Γαi,β , their sum X = X1 +X2 follows a Γα1+α2,β law. Under
aggregation one has X2∆(k) = X∆(2k) + X∆(2k + 1). Using the stability under addition argument,
assuming independence, one would expect that α increases linearly with ∆ while β remains constant.
Figs. 4 and 6, top row, show the evolution of α̂ and β̂ as a function of log2 ∆. For all time series,
significant departures from these ideal behaviors are observed. A careful analysis shows that α̂(∆) does
not increase at small ∆, then grows roughly like log2 ∆ for larger ∆, whereas β̂(∆) behavior is close
to a power-law increase. These facts constitute clear evidences for the existence of dependencies in the
data. Moreover note that ∆ ' 1 s, corresponds to the onset of long memory (as will be discussed below).
That tells us that the evolutions of α and β with ∆ shown here accommodate mainly for short range
dependencies.
The joint variations of α and β with respect to the aggregation level ∆ provide us with a relevant feature
of nominal traffic. We will take advantage of that to characterize and classify traffic with anomalies.

• Covariances. For the two reference series, Figs. 3 and 5, right columns, respectively, compare the
logscale diagrams computed from data to fits of model logscale diagrams. These latter are computed
numerically from the combination of the analytical Eqs. 3 (where the estimated d̂W , θ̂ and φ̂ are plugged-
in) and 4 2. These plots illustrate the relevance of the farima(φ, d, θ) fits of the covariances of X∆.

2Procedure developed with D. Veitch, cf. [49].
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Figure 4: AUCK-IV. Estimated Γα,β - farima(φ, d, θ) parameters as a function of log2 ∆ (with ∆ in
ms).

One can notice that the logscale diagrams are almost obtained, as ∆ increases, as coarser versions of the
logscale diagram at finest ∆, shifted toward coarser scales. This can be easily understood as aggregating
data mainly consists in smoothing out details at fine scales but leaving coarse scales unaffected. As
expected, aggregation does not cancel the long memory characteristic and does not alter it. This can
be checked in Figs. 4 and 6, bottom left, where the d̂W remain notably independent of ∆ and this
again underlines that long range dependence captures a long-time feature of the traffic that has no inner
time-scale.
On the other side, the short-time correlations are cancelled out when the aggregation level increases.
This can be seen in Figs. 4 and 6, bottom right, that φ̂ and θ̂ significantly decrease as ∆ increases. One
expects that they would be null if the aggregation level ∆ becomes larger than the characteristics time
scales of the short range dependencies. The covariance theoretically converges to that of a fractional
Gaussian noise that turns out to be practically extremely close to that of a farima(0, d, 0). For all the
reference time series studied here, the time scale where the long memory is dominant (measured as the
approximate aggregation level ∆ at which the short memory part of the model has vanished) corresponds
to 600 ms ≤ ∆ ≤ 2 s . To finish with, let us note that for some time-series (CAIDA), higher ARMA
model proved necessary to model the covariance.
• Conclusions. As a partial conclusion, let us put the emphasis on the fact that for a wide range
of different traffic collected on various networks, the proposed Γα,β - farima(φ, d, θ) model reproduces
accurately the marginals and both the short range and long range correlations of traffic time series. The
fact that the proposed model is versatile enough to work equally well for a wide range of aggregation levels
is a key feature, for two reasons. First, as mentioned in Section 2.1, choosing ∆ a priori may be uneasy
so that using a process that offers an evolutive modeling with ∆ is of high interest. Second, the values
of the parameters of the models obviously vary, possibly significantly from one traffic to another. But,
these are not the values themselves that are of interest but the curves of evolution of these parameters
with respect to ∆ that provide us with the relevant statistical feature to analyze traffic.

5.2 Traffic with anomalies

• DDoS Attack. Fig. 7, left plot, presents the log scale diagrams for 1 hour block of data during the
DDoS Attack (∆ = 1ms) compared to those of 1h long regular traffic times series, recorded a couple
of hours before and after the attack. These plots tell us first that a farima(φ, d, θ) fits the traffic under
DDoS attack equally satisfactorily. Other plots not presented here show that this is true for a wide range
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Figure 5: METROSEC-ref1. Γα,β - farima(φ, d, θ) fits for the marginals (left column) and covariances
(right column) for ∆ = 10, 100, 400 ms (top to bottom). j = 1 corresponds to 10 ms.

of aggregation levels.
Moreover, for the behaviors of the logscale diagrams at scales larger than 500 ms (j = 9 in Fig. 7, left
plot), no discrepancies can be detected between before/after and during the attack. In particular, the
long memory parameter d̂W remains astonishingly constant. This tell us that long memory is not only
not created by the attack, but also totally insensitive to its occurrence. The only change that can be
noticed on the logscale diagram changes is a relative increase of the short-time component (at scales j
from 4 to 7) after the attack: this is due to the fact that the traffic series after attack was recorded at
night, with a lower traffic load. The logscale diagram was shifted upwards to show that the long memory
parameter d̂W (given by the slope) does not change, even when the load is smaller, and consequently the
fine scale part has been raised. We cannot detect the anomaly from the logscale diagram.

Fig. 8, left column, illustrates, in two plots, that Γα,β distributions adequately fit the marginals of
the traffic under DDoS attack. Fig. 9, left column, illustrate the compared evolutions of the estimated α̂
and β̂ with respect to ∆ for traffic during (red curves with crosses) and before (black squares) and after
(blue circles) the DDoS event. We represent the experimental average of estimation 15 minute-long non-
overlapping blocks of data, superimposed with extremal values taken by the estimate during each period.
Windows before and after the anomaly correspond to relevant nominal behaviors for regular traffic. One
sees that the functions of α̂(∆) and β̂(∆) corresponding to the DDoS attack depart dramatically from
regular behaviors. Let us put the emphasis on the fact that the values of the parameters may vary
notably from one block to the other even within the DDoS event but that the evolutions in ∆ remain
comparable and define a path different from what happens with normal traffic.
The attack causes an immediate and sharp increase of α starting from the finest ∆ levels whereas under
normal circumstances, α remains constant or with only small variations up to ∆ ' 20 ms. The evolution
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Figure 6: METROSEC-ref1. Estimated parameters of Γα,β - farima(φ, d, θ), as a function of log2 ∆
(∆ in ms).
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Figure 7: Logscale Diagrams. For the DDoS (left) and for the Flash Crowd (right). For both events,
the curves are given during the anomaly (red crosses on curve), and before (black squares) or after (blue
circles) the anomaly as references for normal traffic.

is inverse for β: it is decreasing from ∆ ' 1 ms to ∆ ' 30 ms during the DDoS attack, whereas it should
increases smoothly and regularly with ∆ under normal traffic.

These evolutions can receive several interpretations, in terms of occurrence of 0 packet event and of
Gaussianization effect. First, because during the DDoS attack a large number of packets are emitted at
the highest possible rate, a major consequence lies in the fact the possibility that one observes regularly
0 packet within a window of size ∆ goes extremely fast to 0 as soon as ∆ reaches 1 ms. More precisely,
we observe that the marginals of traffic under DDoS attacks are strictly non zero only above a threshold
that depends on ∆. This is a major discrepancy with marginals observed on regular traffic that smoothly
go to 0 when X∆ → 0 (compare Figs. 3 or 5 to Fig. 8). This effect precisely impacts the values taken
by the shape parameter α with respect to ∆, implying that α will grow with ∆ slowly for regular traffic
and much faster for DoS attack one.
Second, as mentioned in Section 4.1 above, 1/α controls the departure of Γα,β distributions from Gaussian
ones. Under aggregation α tends to always increase. However, DDoS attacks are responsible for a
significant acceleration in the Gaussianization effect. This constitutes a major statistical feature that
differentiate traffic under DDoS attacks from regular one. To finish with, let us note that this effect
involves time scales in the traffic ranging from 1 ms to 0.5 s and that the ARMA part of the covariance
modeling (plots not reproduced here) is hardly seeing it while the LRD part of the covariance modeling
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is totally blind to it.

• Flash Crowd. Fig. 8, right column, illustrates that Γα,β distributions adequately fit the marginals
of the traffic under flash crowd for a wide range of aggregation levels (from 1ms to 1s). Fig. 8, right
column, illustrate the compared evolutions of the α̂(∆) and β̂(∆) curves for traffic during (red curves)
and before (black) and after (blue) the flash crowd event. Each curve corresponds to 15 min-long non-
overlapping blocks of data. The shapes of α̂(∆) and β̂(∆) curves observed during the event do not depart
significantly from those recorded under normal circumstances. Some departures are found out for the
largest ∆s (from 0.5 to 1 s), and this will prove consistent with the findings obtained from the log scale
diagrams. This difference in α̂(∆) observed under DDoS attack and flash crowd is consistent with the
fact that the flash crowd does not involve any mechanisms that tend to forbid the 0 packet per window
event as the DDoS attack does.
Fig. 7, right plot, presents the logscale diagrams of two 15 min long block of data during the flash
crowd (∆ = 1 ms) compared to those of 15 min long blocks of normal traffic times series, recorded a few
minutes before and after the flash crowd. On this plot, one sees that the the logscale diagrams undergo
a significant change under flash crowds. At octaves j = 8 to j = 10, i.e., for scales of times ranging from
250 ms to 1 s, a strong peak of energy grows (such a peak was never observed on traffic under regular
circumstances). Obviously, farima(φ, d, θ) fits (not shown here) will fail to reproduce simultaneously
the short range dependences, the long range dependences and this energy peaks. Goodness-of-fit tests
between data and fitted models yield rejection providing us with a relevant tool for detecting this traffic
anomaly. Let us note moreover that the LRD parameter d when estimated for octaves coarser than those
corresponding to the evidenced energy peak does not notably depart from that estimated value before
or after the flash crowd. This tells that long memory is not caused by the flash crowd and neither is it
affected by it. At most, the energy peak act as a masking effect in a subrange of time scales, from 250
ms to 2 s.

• Comments and conclusions. Before concluding this section, let us mention that the estimation
of the mean and variance of X∆ as functions of ∆ would not enable us to discriminate between traffic
with or without anomalies, nor between DDoS attack and Flash Crowd traffics. All the µ̂(∆) and σ̂2(∆)
curves exhibit identical forms (plots not reproduced here).
The farima form of the covariance fails to accommodate the energy peak due to the flash crowd at specific
times scales. The Γα,β distributions reproduce the marginals of all types of traffic with and without
anomalies, be they legitimate or not. Therefore the monitoring of the goodness-of-fit test outputs for
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Figure 9: Estimated Γα,β parameters. Estimation of α̂ (top) and β̂ (bottom) as a function of log2 ∆
for the DDoS Attack (left) and for the Flash Crowd (right). In both cases, the curves are given during the
anomaly (red crosses on curve), and before (black squares) or after (blue circles) the event as references
for normal traffic. For the DDoS, the mean evolution (thick line) of the parameters on various 15 min
data blocks is drawn, superimposed with the extremal values taken during each period (dashed lines); for
the sake of example, two typical evolutions over one block during the DDoS are shown (in thin lines) on
the graph. A zoom for the small scales is shown as an inside-plot. For the FC event, of smaller duration,
one estimation on a 15 min. window is reported for each period (before, during and after the event).

the Γα,β - farima(φ, d, θ) model, together with that of the evolutions of the estimated parameters as
functions of ∆, for ∆ ranging from 1 ms to 10 s, enables us to detect between traffic with and without
anomalies as well as to classify them into legitimate and illegitimate ones. This is further discussed in
Section 7.3.

6 Validation

6.1 Numerical synthesis

In this section, we want to produce numerically sample paths of processes with Γα,β marginals and
farima(θ, d, φ) covariance and with prescribed length. One objective is the validation of the analysis
procedure, especially the estimation performance.
• Principles. Our construction relies on three steps.
i) A Γα,β random variable X can be obtained as

X =
i=2α∑
i=1

Y 2
i , (6)

where the Yis are zero-mean independent identically distributed Gaussian random variables.
ii) We can relate analytically the covariance of the process X(k), γX(l) = σ2

XρX(l), to that of the Yi(k),
γY (l) = σ2

Yi
ρY (l). This computation is derived below. It develops calculations proposed in [29], and

extends them to the Gamma case.
iii) We synthesize 2α zero mean Gaussian processes Yi, with prescribed covariance γY (τ) = σ2

Y ρY (τ),
using the so-called circulant embedded matrix method (see, e.g., [12] for a review).
Obviously, the procedure we propose here works only for integer αs. Its extension to non integer α is
under study.
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Figure 10: Synthetic data. Γα,β - farima(φ, d, θ) fits for the marginals (left column) and covariances
(right column) of synthetic data for ∆ = 10, 100, 400 ms. Parameters correspond to those of AUCK-IV.

• Derivation of the key result. First, one can easily obtain that EX = αβ = 2ασ2
Y and σ2

X = αβ2 =
4ασ4

Y , hence, σ2
Y = β/2. Second, from the canonical decomposition Y (k + l) = ρY (l)Y (k) + Z(k, l), one

can show that Z(k, l) is a Gaussian random variable, with EZ(k, l) = 0, EZ2(k, l) = σ2
Y (1− ρ2

Y (l)) and
EY (k)Z(k, l) = 0. From these results, one can derive that EY 2(k)Y 2(k+l) = σ4

Y (1+2ρ2
Y (l)). Combining

those finding with the fact that the Yi are i.i.d. zero-mean Gaussian processes, one obtains that

ρX = ρ2
Y or γX = 4αγ2

Y . (7)

The equivalent procedure for processes with other distributions such as log normal, exponential, chi-
squared, Weibull uniform,... are under analysis.

6.2 Analysis Procedures

Now, we generate a large number of realizations of Γα,β farima(θ, d, φ) processes with different lengths
n, and for different sets of α, β, θ, φ and d. In particular, we study with care the impact of the strength
of the long memory by varying d = 0.1, 0.15, 0.2, ..., 0.4, and 0.45. To each realization, we apply the anal-
ysis procedures described in Section 4. Averaging results over several realizations enable us to evaluate
numerically the performance of our analysis (goodness-of-fit and estimation) procedures.
One can compare Fig. 10 with Fig. 3: the parameters were chosen so that they correspond to those
measured on the AUCK-IV time series. It illustrates that for different ∆s, the Γα,β - farima(θ, d, φ)
model matches the marginals (left column) and covariances (right column) of both real data and the
synthetically produced X∆ time series. Results for the goodness-of-fit tests (not reported here) are also
extremely satisfactory.
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Fig. 11 presents the relative biases of the estimated parameters as a function of the log10 of the observa-
tion duration. One notices that, for all parameters and for all durations, these biases remain low, within
a few percent, even when d is large (close to 0.5). Variance plots, not shown here, present a standard
1/n decrease, a very satisfactory result. Together, these facts show that the wavelet based estimate of
d is satisfactory (as it was already thoroughly studied in [47]), but also that the other parameters are
correctly estimated, as they would from data with short range dependencies only. This shows a posteri-
ori that the removal of the long memory performed by the fractional derivation of order d̂W is actually
efficient.
Therefore, the numerical simulations reported here validate the relevance of the analysis procedures used
to analyze actual Internet time series in the previous section.
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Figure 11: Performance of estimation procedures. Relative biases for α̂, β̂, d̂ and φ̂. φ̂ is not
shown but is comparable to θ̂. Curves are plotted for 3 values of d only for clarity. n is the number of
points. Performance were obtained by averaging 500 realizations.

7 Applications

7.1 Traffic generators

Provided that the analytical derivation that connect the covariance functions of a Gaussian process and
some non gaussian process, the synthesis procedure described in Section 6.1 can be extended to other
types of marginals (log-normal, exponential, chi-squared,...) and covariances (fractional Gaussian noise
(fGn), kinked fGn,...). This is under current investigation. Other forms of statistical dependencies may
as well be incorporated, including higher order statistics.
Such synthesis procedures constitute traffic generators for non Gaussian long range dependent traffic.
Such generators may be used to feed simulation platforms aiming at estimating QoS and performance.
The impact of deviations of given parameters from those observed on traffic can hence be studied effi-
ciently and systematically.

7.2 Traffic prediction

The relevance of the proposed Γα,β - farima(P, d,Q) model enable to think of using them for traffic
evolution prediction. Indeed, within this frame, when the traffic X∆(t) is observed for t ∈ [0, T ], the
control over the first and second statistical orders of the model enables to derive a procedure to predict
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the samples X∆(T + τ) for τ > 0 within a window time that needs to be studied, that will depend on
the orders of the ARMA(P,Q) part of the model as well as on the strength of the long memory (i.e.,
the value of the d parameter). In that respect, the use of larger orders for P and Q as long as they are
relevant may prove beneficial. This is under study.

7.3 Detection
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Figure 12: DDoS Attack: α̂ averaged over 1 minute windows. α̂,(thick lines), maximum deviation
(dashed lines) as a function of log2 ∆, during (red crosses), before (black squares) or after (blue circles)
the anomaly.

A major perspective of this work is the real time detection of anomalies in traffic. For the sake of a
good statistical characterization, analysis in Section 5.1 were performed over 1h long blocks of data for
the reference times series, and 15 min long blocks of data for the DDoS attack and flash crowd. This
allowed for a precise statistical description of the data but obviously corresponds to too long observation
durations to match detection goals. We are currently developing a joint monitoring of the evolution of
α, β, θ and φ, as well as the global shapes of the marginals and of the logscale diagrams based of much
shorter observation duration.

Fig. 12 reports the estimation of α̂(∆) over one minute windows. The evolutions of the mean α̂
reproduce the features underlined for 15 minutes windows (see Fig. 8), during the attack or for reference
traffic (before and after the attack). One sees clearly that the shape of α̂(∆) undergoes a drastic change at
every aggregation level during the DDoS attack. This change could be quantified by means of (Kullback
or Bhattacharyya-type) distances or divergences [6]. Moreover the analysis is made over blocks of 1
minutes, so that shortly delayed detection can be achieved. This could serve as a basic ingredient for the
design of an IDS.

8 Conclusion

In the present work, we introduced a non Gaussian long range dependent process, the Γα,β - farima(P, d,Q),
to model (the first and second order statistics) of computer network traffic. We also describe estimation
procedures for the corresponding parameters. We showed on a large variety of standard reference traffic
time series that it constitutes a relevant versatile model, and this for a very large range of aggregation
levels ∆. Morevoer, its parameters are smoothly evolving with ∆ hence providing us with a useful statis-
tical characterization of regular traffic. We also showed that discrepancies from these reference behaviors
with respect to ∆ enabled us to distinguish between traffic with and without anomalies and to further
discriminate between legitimate (flash crowds) and illegitimate (DDoS attacks) ones.

This work can be further developed along numerous directions. First, we intend to further explore the
zoo of regular and anomalous traffics by analyzing very recent data as well as by creating a larger variety of
anomalies (more complex and more diffuse DDoS attacks, larger flash crowds, network failures,...). To this
end, an experimental platform is being developed within the METROSEC project. We want to explore
both the ability of our model to characterize meaningfully this wider set of anomalies and the need to
further enrich it and increase its complexity. Second, making use of the found statistical characterizations,
we intend to come up in a short future with a detection scheme that is able to automatically identify
changes in the traffic statistical characterizations and classify them as legitimate or illegitimate anomalies.
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It should operate as an IDS, and be based on short-time time window observation duration.
Ultimately, the METROSEC project aims at developing network based (protocols, architectures,...)
strategies to improve the robustness of the network against attacks. This increased insensitivity should
help maintaining the targeted level of QoS. The present work constitute a first step toward that global
goal.
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