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Abstract
We consider the problem of bulk data transfers and bandwidth sharing in the context
of grid infrastructures. Grid computing empowers high-performance computing in a
large-scale distributed environment. Network bandwidth, which makes the expensive
computational and storage resources work in concert, plays an active role on perfor-
mance. Due to specific traffic patterns, network topology and application scenarios,
bandwidth sharing encounters new challenges. From this perspective, this research
report looks at bulk transfers among computing and storage elements. Referred to
as short-lived, transfer requests with transmission window and volume are scheduled
in the network. By manipulating the transmission window, the request accept rate
and network resource utilization are to be optimized. The formulated optimization
problem is proven NP-complete. Associated with proposed heuristics, simulations are
carried out to study each bandwidth sharing strategy and its application scenarios. A
tuning factor, that allows adaptation of performance objective, is introduced to adjust
network infrastructure and workload.

Keywords: grid computing, network bandwidth sharing, online scheduling, optimization, transmission
window, scheduling window

Résumé
Nous considérons le problème du transfert de données de grande taille et du partage
de bande passante dans les grilles de calcul. L’utilisation de telles grilles permet de
déployer des calculs dans un environnement distribué à grande échelle pour obtenir de
grandes performances. La bande passante du réseau qui interconnecte les ressources
de calcul et de stockage a un impact critique sur les performances. À cause de la
spécificité des transferts, de la topologie du réseau et des applications sous-jacentes,
le partage de bande-passante doit s’adapter à de nouveaux défis. Nous nous concen-
trons ici sur les transferts de données de grande taille entre éléments de calcul et de
stockage. Nous cherchons à ordonnancer sur le réseau des requêtes de tels transferts
munies d’une fenêtre de transmission. Nous exprimons le problème d’optimisation
correspondant et montrons qu’il est NP-complet. Nous proposons des heuristiques
pour le résoudre, et menons à bien des simulations pour étudier chaque politique de
partage de bande passante. Nous introduisons un coefficient de calibrage qui permet
d’adapter l’objectif de performances pour ajuster l’ordonnancement à l’infrastructure
réseau et à sa charge.

Mots-clés: Calcul sur la grille, ressources de communication, partage de ressources, ordonnancement à
la volée, optimisation, fenêtre de transmission, fenêtre d’ordonnancement
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1 Introduction

As large-scale computing and data management emerges in scientific and business areas, cost-effective,
scalable, high performance computing infrastructures are called for. Moving one step further from proces-
sor clusters, grid computing is a promising technology that brings together large collection of geographi-
cally distributed resources (e.g., computing, visualization, storage, information, etc.) to build a very high-
performance computing environment for data-intensive or computing-intensive applications [1]. In data
grid applications, like experimental analyzes and simulations in high-energy physics, climate modeling,
earthquake engineering, and astronomy, massive datasets must be shared by a community of hundreds or
thousands of researchers distributed worldwide. These researchers transfer large subsets of these datasets
to local sites or other remote resources for processing. Consequently, it has been recognized that high-
performance, distributed data-intensive applications require reliable, efficient, and predictable data transfer
as a fundamental service.

Data transfer protocols [2], which extend the standard FTP protocol to include a superset of the features
offered by various grid storage systems currently in use, and that provide grid security and parallel, striped,
partial, and third-party transfers have been proposed. However, when bottleneck are tight and when links
present large bandwidth delay product, these solutions suffer heavily from TCP limitations. Apart from
poor and unpredictable performance, they have also to deal with failed transfers that may be very frequent
in congested situations. While TCP/IP protocols are improved to work with grid applications, they still
conserve the max-min fair bandwidth sharing philosophy of the Internet that does not completely fit in the
grid context.

Indeed, bandwidth sharing and transfers scheduling in grids have to be coupled with the management of
other types of grid resources. Effective scheduling of jobs in large scale distributed system is complex and
network bandwidth has been identified as one of the primary parameters that affect the performance [3].
The completion time of typical datagrid applications is given by the sum of the execution time and the time
taken to transfer the data they need. In most cases, data transfer time often dominate in completion time.
For bulk data grid applications, moving terabytes (and sometimes even petabytes) of data in the shortest
possible amount of time is then of great interest. Network bandwidth sharing then surfaces as a part of the
grid resource management. In the rest of the paper, as moving data is easier than distributing and deploying
application codes, it is assumed that scheduling algorithms allocate computing (i.e., CPUs) and storage
(i.e., memory and disks) resources first and generate output as data transfer request with time window and
volume.

This paper proposes original solutions to control bandwidth sharing considering the specificity of the
data grid context. Grid network resources are managed to ensure bandwidth reservation of dataset move-
ments. Three goals are pursued: 1) improving data transfer time predictability, 2) enhancing transfer
reliability, and finally 3) improving transfer performance. A lightweight and easy-to-deploy control plane
that is complementary to the data plane is introduced.

A data grid is modeled as a set of sites, each comprising a number of processors and storage. Sites
are connected to an over-provisioned core interconnection network. Indeed, the underlying communica-
tion infrastructure of grids is a complex interconnection of enterprize domains and public networks that
exhibit potential bottlenecks and varying performance characteristics. For instance, considering grid hosts
may generate large flows through their gigabit interfaces, the interfaces between private domains and the
network core may become bandwidth sharing bottlenecks. The sharing is carried out at network edge of a
fully-meshed grid inter-network. The proposed system model hides the packet-level traffic dynamics inside
discrete data transfer requests, thus greatly reduces the complexity of the system.

The rest of the paper is organized as follows. Section2 summarizes and explains our results. Section3
presents related work. Section4 gives the system model and defines optimization problems of bandwidth
sharing. Heuristics and simulation results are given in Sections6 and7, respectively. The report concludes
in section8.
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Figure 1: Ingress and egress points of the network as potential bottlenecks.

2 Our Results

We define the bandwidth sharing optimization problem. Each transfer request corresponds to a data flow
with limited time duration. Given the capacity of the grid network access points and the maximum constant
transfer rate an application can support, the overall requested bandwidth at any access point should be
within the capacity of the natural aggregation point. Following the concept of “what enters the network
shall be able to leave the network”, the achieved results shall guarantee absolute bandwidth all along the
path. Two optimization goals apply. One is the ordinary request accept rate, given the capacity of the
network access points. The other is the refined request accept rate, provided with a tuning factorf that
can reduce the time a request occupies the network resource. Between the originally requested bandwidth
and the maximum transfer rate of the application, this factor reflects a margin the eventually assigned
bandwidth has.

We analyze the complexity of the formulated optimization problem. From the reduction of the well-
known NP-complete 3-Dimensional Matching (3-DM) problem, we show that the problem is NP-complete.
Heuristics are then needed to obtain the solution.

Two types of online bandwidth sharing strategies are studied. Greedy heuristics follow the ’first come
first serve’ policy and are similar to a classical RSVP allocation strategy. Interval-based heuristics schedule
bandwidth on a time interval basis. For both types of heuristics, ordinary request accept rate and a refined
accept rate based on a bandwidth tuning factor are investigated through simulations.

Simulations show that greedy and interval based heuristics have similar performance when the network
is not heavily loaded. Results show an average of an acceptance rate of 50% (ie. with bandwidth guarantee)
for both strategies. The advance knowledge of requests does not improve the system. In a busy network
as the one discussed in this report, interval-based approach improves a lot the accept rate while greedy
strategy have an acceptance rate less than 20%. Furthermore, we show that the longer the interval, the
better the accept rate. Longer intervals imply chances of having a better knowledge and more requests to
schedule; it thus provides more room for the scheduling algorithm to optimize the bandwidth sharing. With
large scheduling windows, more than 50% of bandwidth requests for bulk data transfers will be guaranteed,
while it has been observed that in such overloaded context, concurrent high speed TCP flows have great
difficulties in obtaining bandwidth and the largest flows suffer denial of service. In these conditions, bulk
transfers often fails before ending. The proposed control may improve transfer reliability (goal 2) while
insuring predictability of transfer time (goal 1).

We study the behavior of the tuning factorf through simulations. Between the value of0 and1, the
tuning factor supplies requests an opportunity of actually obtaining more bandwidth for improving transfer
duration (goal 3) and then application completion time. We understand that by pushing requests out of the
network at an earlier time, the network may accommodate more requests in the future. Moreover, assigning
more bandwidth to each request will certainly decrease the number of accepted requests. Simulation results
presented in the report illustrate the dynamic between the tuning factor and the refined request accept rate.
Both greedy and interval-based strategy take advantage of this factor under very overloaded conditions
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as well as very underloaded conditions. In these conditions, allocating80% of the maximum bandwidth
improve the acceptance rate by a factor0, 2 (linear with(1−f )) while a value off = 0, 5 gives only a gain
of 0, 3. This tuning factor enables the grid manager to adjust the global system with its own characteristics
and the actual workload without modifying the bandwidth allocation strategy.

3 Related Work

How to allocate bandwidth to flows is a central issue in networking. Bandwidth sharing in IP networks
has been well studied [4]. They are different from those of grid applications from several points of view.
In the Internet, the source access rate are generally much smaller (c = 2Mbit/s for DSL lines) than the
bottleneck capacity (C = 2, 5Gbit/s, say) and the link is not a bottleneck until demand attains around
99% of link capacity. In such an environment, max-min fairness, that is giving all flows the opportunity
to make use of all available capacity in a "fair" way, is the goal of statistical bandwidth sharing strategies.
But it has been known that in overloaded networks, performance deteriorates rapidly. Pro-active admission
control is then prone to preserve performance. Admission control and reservation in the Internet have been
studied for real-time traffic and generally with immediate reservation, that is, QoS takes effect immediately
and remains in effect for an indefinite duration. Consequently, traditional admission control and reservation
algorithms [5] adopt greedy strategies. In grid context, QoS guarantees is for TCP-dominated traffic and
a certain degree of isolation is required between connections in order to support performance guarantees
without precluding multiplexing. Grid context presents also a great difference in terms of transfer duration
(hours, days...) that are bounded and are despite several order greater than that of the Internet. Flow transfer
reliability is a very important issue as other grid resources (CPUs, disks) have been scheduled and a large
amount of resources could be wasted when long transfer failure occurs. Finally, the grid network exhibits
a specific topology, that is, heterogeneous and highly hierarchical. Ingress/egress links act both as natural
aggregation points and constitute expected overloaded points as their capacity is in the same order of the
access rate of the sources. Similar topology and bandwidth sharing problem are analyzed at different rate
scales, in radio access networks. But in grids we have to consider both sides of the network and the load
matrix is given.

The fairness issue between short and long TCP flows [6], that is, between mice and elephants, gained
wide attention. Besides, the sharing is closely coupled with routing path search. The work in this report,
however, assumes that grid bulk data are separated from the rest of the traffic (mice). TCP/IP protocols [7]
have been adapted to carry high-volume grid data applications over long distance. The reliability, RTT
fairness, TCP-friendliness issues are in the center of the investigation. These TCP enhancements for large
bandwidth-delay product paths focus on Internet context. However, we consider that the work on end-to-
end protocol improvement could be of great interest in this controlled context. The routing path search has
also been integrated into the picture. This report looks at grid network access points where the traffic enters
and leaves the network. The request have a predefined route from source to destination in this topology.
The performance predictability is of more interest here.

In grid community, the Globus Architecture for Reservation and Allocation (GARA) introduced the
idea of advance reservations and end-to-end management for QoS on different type of resources (band-
width, storage, and computing) [8]. In line with this direction, the report further explores the optimization
of bandwidth sharing given the specified grid network topology and traffic pattern. A similar bandwidth
sharing problem has been investigated in [9]. Although both targeting at resource requests with transmis-
sion time windows, this report tackles optimal resource sharing, instead of investigating on impacts of the
percentage of book-ahead periods and that of malleable reservations on the system. The physical charac-
teristics of optical medium makes it an excellent candidate for supporting grid bulk data applications [10].
Existing work centers on the feasible network architectures. Assuming a system model that complies to
optical domain topology and conditions, however, the bandwidth sharing mechanisms of this report can be
deployed as part of the optical intelligent management system.
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4 System Model and Problem Definition

The system is a collection of grid sites interconnected over a well-provisioned wide area network. The
network core is assumed to have ample communication resources [10]. The aggregated capacity of a site
is larger than the capacity of its access point (i.e., the router), and the capacity of the network core is larger
than the aggregated capacity of all access points.

Given a set of transmission requests, an ingress point is where the traffic requires to enter the network,
and an egress point is where the traffic requires to leave the network. These points, as depicted in Fig. 1,
are where potential resource bottlenecks present.

Different from classical concept of flows that lasts indefinite time, flows in this report correspond to
finite-size large data transfer. Flows arrive at the network edge according to a Poisson distribution, and
each flow is associated with a source and a destination. Flows are unidirectional, given the fact that grid
traffic volume between two users is often asymmetrical.

4.1 Resource requests

Bandwidth requests can be long-lived or short-lived. Long-lived requests correspond to indefinite flows
between grid users, and short-lived requests represent discrete data transfer tasks. The scheduling of short-
lived requests can be difficult, due to their flexible time windows and thus flexible bandwidth assignments.

We use the following notations:

• a set of requestsR = {r1, r2, . . . , rK}.

• a set of ingress pointsI = {i1, i2, . . . , iM}, with Bin(i) as the capacity (i.e., bandwidth) of ingress
point i ∈ I.

• a set of egress pointsE = {e1, e2, . . . , eN}, with Bout(e) as the capacity (i.e., bandwidth) of egress
pointe ∈ E .

• each request has a required transmission window of[ts(r), tf (r)], and an assigned transmission
window of [σ(r), τ(r)] when accepted.

• each request has its volumevol(r) specified either in Bytes or other meaningful units.

• each request has the transmission limit of its attached hostMaxRate(r).

• each request, if accepted, has an assigned bandwidthbw(r).

If requestr is accepted at timeσ(r) = t, both pointsingress(r) andegress(r) devote a fraction of their
capacity, that is,bw(r), to requestr from timet to timeτ(t) = t + vol(r)

bw(r) .

tf (r)ts(r) τ(r)
(time)

(bandwidth)

MaxRate

MinRate

Figure 2: The flexible bandwidth assignment.

The flexibility of bandwidth assignment is illustrated as in Figure2. Without the loss of the generality,
the requested transmission starting time is kept as it is, that is, the assigned starting time isσ(r) = ts(r).
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Provided with a manipulatable finishing timetf (r), the assigned bandwidthbw(r) lies in the interval of
[MinRate(r),MaxRate(r)]. MinRate(r) is determined by the requested time window, that is,

MinRate(r) =
vol(r)

tf (r)− ts(r)
.

Obviously, the assigned finishing timeτ(r) should not exceed the value of the requested finishing time
tf (r). Accordingly, we have

τ(r) = σ(r) +
vol(r)
bw(r)

= ts(r) +
vol(r)
bw(r)

6 tf (r)

and
bw(r) > MinRate(r)

Moreover, the capacity of ingress or egress points pose a limit on the number of scheduled requests.
The resource sharing constraints are then stated as the following:

∀t, ∀i ∈ I,
∑

r∈R, ingress(r)=i,
σ(r)6t<τ(r)

bw(r) 6 Bin(i)

∀t, ∀e ∈ E ,
∑

r∈R, egress(r)=e,
σ(r)6t<τ(r)

bw(r) 6 Bout(e),

∀r, MinRate(r) 6 bw(r) 6 MaxRate(r) (1)

whereingress(r) ∈ I andegress(r) ∈ E are the ingress and egress point of requestr, respectively.

4.2 Optimization objectives

Let A denote the set of accepted requests. The classical objective for performance optimization is the
request accept ratio, i.e.,

#accepted =
|A|
|R|

Following this objective, scheduling algorithms grant accepted requests the requested and also the
minimum bandwidthMinRate(r). Grid computing applications, furthermore, brings new elements into
the decision making procedure. To fulfill a grid computing task, the CPU, storage, and network bandwidth
resources have to work in concert. If a transmission task gets served faster than what it originally requests,
it implies the earlier release of computing and storage resources. These resources will be returned to
the available resource pool and can be used for other application requests. The application scenario of
grid computing, therefore, suggests that assigning more bandwidth than requested to requests will benefit
grid applications. Nevertheless, given the same amount of network resource, assigning more bandwidth
will perhaps decries the accept rate. What is the relationship between increased assigned bandwidth and
decreased accept rate, and what is the traded regarding the performance gain, is of interest.

Instead of assigning the requested bandwidth ofMinRate(r) to an accepted request, one may grant a
fraction of the maximum bandwidthMaxRate(r) that a grid user can utilize. Letf denote this fraction,
then the valuef = 0.8 guarantees80% of MaxRate(r) for each accepted request. The number of accepted
requests, provided with the factorf , is to be maximized as follows:

#guaranteed = max
(
r ∈ R,

bw(r) > max(f ×MaxRate(r),MinRate(r))
)

The factorf may be adopted as a single value or adopted as a set of values corresponding to each
request. When a set of values are used, they can be associated with the pricing policy and indicate quality
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of service (QoS) of individual requests. When a single value is used, however, the factorf gives a reference
on how much faster all requests are transmitted through the network. From a customer and service provider
relationship perspective, customers now have two choices: they can stick with their requested network
resource, that is,MinRate(r), and have a better chance of being accepted at this time. they can also stand
the risk of being rejected and try later, but take the advantage of being transmitted more quickly. Obviously,
how much more quickly a request gets transmitted depends on the system load.

5 Problem complexity

Scheduling problems are known to be difficult, and the one addressed in this paper is no exception. Schedul-
ing long-lived requests has already been proven NP-hard [11], even in the case of an uniform network (same
bandwidth for each ingress and egress port). However, it was also shown in [11] that the optimal solution
for scheduling uniform long-lived requests (bw(r) = b for all r ∈ R) can be computed in a polynomial
time.

In this section, we show that scheduling uniform short-lived requests is NP-hard. This clearly shows
the combinatorial nature of the problem, and the intrinsic complexity added by the possibility to route a
request at different time-steps. We state the decision problem formally:

Definition 1 (M AX -REQUESTS-DEC). Consider a problem-platform pair(R, I, E) with uniform (unit-
size) requests:

∀r ∈ R, bw(r) = MaxRate(r) = 1

For each requestr ∈ R, the transmission window[ts(r), tf (r)] is known at the beginning (off-line prob-
lem). Given a boundK on the number of requests to satisfy, is there a feasible solution to such that at least
K requests are accepted?

Theorem 1. MAX -REQUESTS-DEC is NP-complete.

It is worth noting that if the platform reduces to a single ingress-egress pair, the problem is polynomial
(a greedy algorithm is optimal).

Proof. Clearly, MAX -REQUESTS-DEC belongs to NP; we prove its completeness by reduction from 3-DM
(3-Dimensional Matching), a well-known NP-complete problem [12]. Consider an instanceB1 of 3-DM:
givenX = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, andZ = {z1, z2, . . . , zn} three disjoint sets of same
cardinaln, and given a set of triplesT ⊆ X × Y × T , doesT contain a matchingT ′, i.e. a set ofn
triples such that no two elements ofT ′ agree in any coordinate? We build the following instanceB2 of
MAX -REQUESTS-DEC:

• There areM = n + 1 ingress points andN = n + 1 egress points. For ingress points we let
Bin(i) = 1 if 1 6 i 6 n andBin(n + 1) = n − 1. For egress points, we letBout(e) = 1 if
1 6 e 6 n andBin(n + 1) = n − 1. Both pointsBin(n + 1) andBout(n + 1) are calledspecial,
while the2n other points are calledregular.

• There are|T |+ 2n(n− 1) requests inR, andbw(r) = 1 for all r ∈ R. Each of the first|T | requests
is calledregular and is associated to a triple inT , while the remaining2n(n− 1) requests are called
special.

• For each triple(xi, yj , zk) ∈ T , we define a regular requestr as follows: we letBin(r) = i,
Bout(r) = j and[ts(r), ft(r)] = [k, k+1]. In other words, there is no flexibility for regular request;
if accepted,r must be scheduled at timeσ(r) = k.

• Special requests involve one special point and are flexible. More precisely, for each ingress pointi we
definen−1 identical requestsr such thatBin(r) = i, Bout(r) = n+1 and[ts(r), ft(r)] = [1, n+1].
Similarly, for each ingress pointe we definen − 1 identical requestsr such thatBin(r) = n + 1,
Bout(r) = e and[ts(r), ft(r)] = [1, n + 1]. Therefore, a special request can be scheduled at any
time-step between1 andn.
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• Finally, we letK = n + 2n(n− 1).

The size ofB2 is polynomial (and even linear) in the sizeB1. We have to show thatB1 has a solution if
and only ifB2 has a solution.

Assume first thatB1 has a solution. LetT ′ be the matching. For each time-stepk, 1 6 k 6 n, there is
a single triple inT ′ whose last coordinate iszk. Let (xi, yj , zk) be this triple, andr its associated regular
request. Together withr, we route2(n−1) special requests at stepk, one from each ingress point excepti,
and one to each egress point exceptj. BecauseT ′ realizes a permutation in the first and second coordinates
of its triples, each regular point is active exactlyn − 1 times during then scheduling steps. All regular
points will thus accept all theirn − 1 special requests. Together with then regular request (one per step),
we have acceptedK requests, hence a solution toB2.

Conversely, assume now thatB2 has a solution.K = n + 2n(n − 1) request are accepted during the
n scheduling steps. But at a given step, no more than2n − 1 requests can be accepted, and this is only
feasible if2n−2 of them are special requests. Therefore, at each step exactly2(n−1) special requests and
one regular request are accepted. LetT ′ be the set of the triples associated to thesen regular requests, we
claim thatT ′ is the desired matching. By construction, no two triples ofT ′ agree in the third coordinate.
Assume that two triples would share the same first coordinate, sayxi. This means that ingress pointi is
activated at two different time-steps for two regular requests. At mostn− 2 special requests with ingressi
will be accepted. But this is a contradiction, because all special requests are accepted (there are2n(n− 1)
of them, and2(n− 1) are accepted at each step). For the second coordinate the reasoning is identical. We
have found a solution toB1.

6 Heuristics

As proved in section5, the optimization problem formulated in section4 is NP-complete. Heuristics are
then pursued to solve the problem.

Given that the starting time and finishing time are not violated, that is,tf (r) > ts(r) + vol(r)
bw(r) , the

constraint on the assigned bandwidth is stated asbw(r) > MinRate(r). Algorithms that adopt differ-
ent bandwidth assignment policies, either grantingMinRate(r) to each accepted request, or ensuring
max(MinRate(r), f × MaxRate(r)) for a prescribed tuning factorf , are introduced in the following
sections. One major characteristic of all our proposed heuristics is that they areon-line. We take decisions
either on the fly (on a pure greedy basis) or after a short delay (scheduling within each time interval). There
is no need on the knowledge of the whole set of requests.

The heuristics can be classified according to the decision procedure:

• Greedy–Requests are accepted or rejected on a first-come first-serve basis. If two requests have the
same arrival timets(r), we schedule the one with the smallestMinRate(r).

• Interval-based–Requests are accepted or rejected within consecutive time intervals. These intervals
have the same length. The scheduler considers all the requests whose arrival time lies within the
current interval. More requests are expected to be processed in longer intervals; this leaves more
space for optimization, at the price of a longer response time for grid users.

6.1 Greedy heuristics

Both proposed greedy heuristics schedule requests as soon as they arrive. However, they assign different
bandwidth in to each accepted requestr: one is the minimum rateMinRate(r) as originally requested by
the user, the other one is a prescribed fractionf ×MaxRate(r). The parameterf varies in experiments.
To simplify the notation, we use

bw(r)← BANDWIDTH ASSIGNMENTALGORITHM(r),

where BANDWIDTH ASSIGNMENTALGORITHM denotes any of the previous bandwidth assignment strate-
gies.
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GREEDY(R, I, E)
A ← ∅
for each ingressi in I do

alloc_ingress(i)← 0
for each ingresse in E do

alloc_egress(e)← 0
for t = tbegin to t = tend do

if t = tf (r) for some requestr ∈ A then
{reclaim bandwidth allocated tor}
alloc_ingress(ingress(r))← alloc_ingress(ingress(r))− bw(r)
alloc_egress(egress(r))← alloc_egress(egress(r))− bw(r)

if t = ts(r) for some requestr ∈ A then
{try to scheduler}
bw(r)← BANDWIDTH ASSIGNMENTALGORITHM(r)
i← ingress(r)
e← egress(r)
if (alloc_ingress(i) + bw(r) 6 Bin(i)) and (alloc_egress(e) + bw(r) 6 Bout(e)
then
A ← A∪ {r}
alloc_ingress(i)← alloc_ingress(i) + bw(r)
alloc_egress(e)← alloc_egress(e) + bw(r)

return A

Algorithm 1: The greedy heuristics.

The pseudo code of greedy heuristics is shown in Algorithm1, wherealloc_ingress(i) denotes the
amount of bandwidth which is currently allocated for ingressi ∈ I, and which should never exceedBin(i)
(and similarlyalloc_egress(e) for e ∈ E). tbegin andtend denote the times at which execution begins and
ends.A is the set of accepted requests.

6.2 Interval-based heuristics

Interval-based heuristics do not schedule requests as soon as they arrive. Instead, they take decisions every
time steptstep . The execution is thus divided into time intervals of lengthtstep . At the end of each interval
[t, t + tstep [, scheduling decisions are taken for allcandidaterequests, i.e. requestr whose arrival time
lie in the interval: t 6 ts(r) < t + tstep . As for the greedy heuristics, we keep track of the bandwidth
alloc_ingress(i) andalloc_egress(e) already allocated on each ingress and egress ports. The first thing to
do is to reclaim the bandwidth assigned to accepted requestsr whose execution is finished in the previous
interval, i.e. requests satisfyingt− tstep 6 tf (r) < t+ tstep . Then we compute acostassociated with each
candidate request. The intuition is to balance the resource assignments among access points. A request
of high cost is likely to saturate its ingress or egress point, thereby hindering the possibility of scheduling
more requests later.

The cost of a requestr is computed as the following. Leti = ingress(r), e = egress(r), andbw(r)
the bandwidth assigned tor if accepted. As before,bw(r) will be either the minimum rateMinRate(r) or
a prescribed fractionf ×MaxRate(r). If r is accepted, the utilization rate of its ingress pointi becomes
alloc_ingress(i)+bw(r)

Bin(i) , and that of its egress pointe becomesalloc_egress(e)+bw(r)
Bout (e)

. We define the cost ofr
as the maximum value of these two quantities, that is,

cost(r) = max
(

alloc_ingress(i) + bw(r)
Bin(i)

,

alloc_egress(e) + bw(r)
Bout(e)

)
.
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The candidate request with minimum cost will be accepted. See Algorithm2 for a detailed description
of the interval-based heuristics, whereC denotes the set of candidate requests, andA the set of accepted
requests.

INTERVAL(R, I, E)
A ← ∅
for each ingressi in I do

alloc_ingress(i)← 0
for each ingresse in E do

alloc_egress(e)← 0
for t = tbegin to t = tend by steptstep do

{reclaim bandwidth of finished requests}
for each requestr ∈ A s.t. t− tstep 6 tf (r) < t do

alloc_ingress(ingress(r))← alloc_ingress(ingress(r))− bw(r)
alloc_egress(egress(r))← alloc_egress(egress(r))− bw(r)

{determine set of candidate requests}
C ← ∅
for each requestr ∈ R s.t. t 6 ts(r) < t + tstep do
C ← C ∪ {r}
bw(r)← BANDWIDTH ASSIGNMENTALGORITHM(r)

{schedule candidate requests}
continue ← true
while (C 6= ∅) andcontinue do

selectrmin such thatcost(rmin) 6 cost(r) for all r ∈ C
wherecost(r)← max(alloc_ingress(ingress(r))+bw(r)

Bin(ingress(r)) , alloc_egress(egress(r))+bw(r)
Bout (egress(r))

)
if (cost(rmin) > 1) then

continue ← false
else
C ← C \ {r}
A ← A ∪ {r}
alloc_ingress(ingress(r))← alloc_ingress(ingress(r)) + bw(r)
alloc_egress(egress(r))← alloc_egress(egress(r)) + bw(r)

return A

Algorithm 2: The interval-based heuristics.

7 Simulations and discussions

In this section, simulations are carried out to illustrate and compare the performance of the heuristics given
in the previous section.

The simulated grid network includes 10 ingress and 10 egress points with the capacity of 1GB/s. The
volume of each request is randomly chosen between 100GB and 1TB. The transmission time varies from
a couple of minutes to about one day, by randomly generating bandwidth requests between 10MB/s and
1GB/s. Request starting time is Poisson distributed, the parameter of this Poisson distribution is the average
arrival time of the requests. The value of the parameter varies to obtain heavy loaded scenarios and less
loaded cases. As described in Section4.2, the optimization objective is the accept rate, that is, the number
of accepted requests over the number of total requests.

A heavy loaded scenario is illustrated as in Figure3. The average arrival time of requests vary from
0.1 to 5 seconds. The bandwidth assignment policy assignsf ×MaxRate(r) with f = 1. The simulation
results show that in a very loaded network, the interval-based heuristics achieves better accept rate than the
greedy one. And for the interval-based algorithms, the larger the time interval, the better the request accept
rate.
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Figure 3: Comparison of Greedy and Interval-based (with different interval lengths) heuristics in heavy
loaded context

Figures4 and5 present the performance of the Greedy heuristic. The network is less loaded (average
arrival time goes from3 to 20 seconds). Different bandwidth assignment policies apply: either the mini-
mum bandwidth to every accepted request (MIN_BW), or a fixed ratiof of the maximum transmission rate
MaxRate. As expected, a smaller bandwidth to each request results in more accepted requests, especially
when the network is not too much loaded. This is no longer true, however, for heavy loaded networks. For
example, assigning a request the maximum rate of the its user leads to a smaller transmission time, thus the
corresponding ingress/egress points are freed to other requests more quickly. The same set of simulations
is run for the interval-based heuristic, and the results are depicted in Figures6 and7. The same conclusions
of the greedy heuristic hold, except that the slightly better results for small values of the average arrival
time.

8 Conclusions

Network bandwidth sharing in data grids has been investigated in this report. With bottlenecks presented
at the network edge, network bandwidth are scheduled based on the concept of what enters the network
shall be able to leave the network. Referred to as short-lived requests, the data transfer requests of grids
are scheduled with respect to optimizing the request accept rate. Proven NP-complete, the optimization
solutions are pursued with heuristics. These algorithms are studied and compared by simulations.

Along with other protocols and interfaces, the bandwidth sharing strategies studied here are going to
be integrated in grid network middleware of the Grid 5000 project, a large scale experimental grid testbed
that gathers more than 3000 CPU in eight French sites to study Grid software. They may work closely with
the scheduling of other resources, such as computational and storage. In future work we plan to investigate
realistic scenarios with real grid input data and real applications. We want to examine how our bandwidth
allocation strategies associated with enhanced TCP protocols for high speed networks achieve the transfer
optimisation goals. We are also interested in exploring how these protocols would symmetrically better
perform at very high speed and for long duration in un-congested long fat networks offered by our control
algorithms.
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Figure 4: Performance of the Greedy heuristic with different bandwidth allocation policies (overload)
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