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Abstract

We consider a family of figures of the discrete plane (rectangles, squares, ellipses,...); how shall we decide with a
2D cellular automaton whether a given figure belongs to the family or not?

We essentially give three kinds of results. First, we look for a parallel way of defining the family. For example, a
rectangle is a connected figure without hole such that all cells that are in the border have exactly two neighbors
in the border. We show that this definition is equivalent to the classical one and give a cellular automaton which
recognizes the rectangles’ family in an optimal time. Secondly, the figures are defined with the help of an algorithm
which can be easily parallelized. A natural and meaningful example is the ellipses’ recognition. An ellipse is a
figure with two distinguished cells (the focuses); it is composed of all the cells the sum of distances to the two
focus of which is less then a constant k (for the norm || |1 or || ||« ). In this case, the algorithm of recognition
is the following one: a signal, generated by one of the focuses, spreads with an optimal speed in all the possible
directions, and it is reflected back by the border of the pattern. The figure is an ellipse if and only if all these
signals are resorbed on the other focus.

Finally, we present an other algorithm inspired by a synchronization algorithm due to F. Grasselli. in order to
recognize the squares’ family.

Keywords: 2D cellular automata, recognition, family of figures, synchroniza-
tion

Résumé

Nous considérons une famille de figures du plan discret (rectangles, carrés, ellipses,...); comment décider a I'aide
d’un automate cellulaire plan, si une figure donnée appartient a la famille? Nous donnons essentiellement trois
types de résultats. Premiérement, nous cherchons un mode de définition de la famille de figures qui soit parallele.
Par exemple, un rectangle est une figure connexe sans trou telle que toute case du bord a exactement deux voisines
dans le bord. Nous montrons que cette définition est équivalente a la définition classique du rectangle et exhibons
un automate cellulaire reconnaissant la famille des rectangles en temps optimal.

Deuxiemement, les figures sont définies par un algorithme facilement parallélisable et, un exemple naturel et tres
démonstratif est la reconnaissance des ellipses. Une ellipse est une figure avec deux cases distinguées (les foyers),
formée de toutes les cases dont la somme des distances aux deux foyers (pour la norme || ||; or || ||« ) est inférieure
a une constante k. Dans ce cas, I’algorithme de reconnaissance est le suivant: un signal engendré par un des deux
foyers se diffuse a vitesses maximale dans toutes les directions du plan, puis est réfléchi par le bord de la figure.
La figure est une ellipse si et seulement si tous ces signaux se résorbent sur I'autre foyer.

Pour finir, nous présentons un algorithme inspiré d’un algorithme de synchronisation de F. Grasselli pour recon-
naitre la famille des carrés.

Mots-clés: Automates cellulaires plans, reconnaissance, famille de figures,
synchronisation
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Chapter 1

Introduction.

Cellular automata (in short C'A) were introduced by J.von Neumann [vN67] in
the beginning of the sixties, according to S. Ulam’s ideas, as a model of self
reproduction.

Cellular automata are finite automata which are regularly connected each other.
They can be considered as dynamic systems. In its general historical form, a
cellular automaton of dimension d is an infinite set of identical elementary finite
machines (called cells, which are indexed by Z9). A cell is a finite automaton
which evolves according to some receiving information and according to its past
state which it keeps in memory (it has only a finite number of states). Thus,
at the initial moment, all cells are in a given state and the system evolves as
follows:

e Synchronously: The new time is obtained when all cells have changed
their state.

e Uniformly: The new state of a cell depends on the states of other cells
which depend themselves on other cells that in the same way for all com-
ponents of the network.

e Locally: The new state of a cell depends only on a finite number of cells
which are in a bounded neighborhood.

Cellular automata have been studied as languages’ recognizers and, more re-
cently as functions’ computers. One of their application is the study of massively
parallel algorithms in order to spread and to synchronize local information.

In the following discussion, we developp a new utilization of cellular automata:
we want to recognize families of figures with 2D cellular automata. As far as I
know, no paper has previously been published about this subject.

This report contains different families of figures we tried to recognize. This
families are grouped in two parts.

In the first part, we search for the "most locally possible” definition of the figure.
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The main example 1s the rectangle’s family: a rectangle is a discrete connected
figure, without hole which has exactly four vertexes or, a connected figure, with-
out hole, all border cells of which have two border cells in their neighborhood.
So, considering a connected figure which has no hole, the examination of the
borders is sufficient to determine if the figure is a rectangle or not. Likewise
concerning the square: it’s a rectangle which has a symmetry property, which
is detected at the heart of the square.

In this part, are also some families of figures such as the ”L’s family” the "U’s
family”, the ”O’s family” ... These families are globally defined. In this case, we
count the number of retracting vertices the figure has in order to recognize it.
In the second part, we have figures which bring into play waves evolving on
the plane. For example, we have the ellipses’ family: an ellipse is a figure with
two distinguished cells (the focuses); it is composed of all the cells the sum of
distances to the two focus of which is less then a constant k. In order to recog-
nize this family of figures, we utilize a two dimensional signal which spread as
a one-dimensional one. On a line, a wave spreads like that: at each top, each
reached cell communicates the information to its not reached neighborhood, if
it has one (see the figure 1.1). On the plane, it is a wave which seems to be a

Starting point

¢

Figure 1.1: Propagation of a one-dimensional wave.

volume in the space-time diagram (it’s a three-dimensional diagram). Thus, a
signal which has the quickest speed appears as a pyramid, if the neighborhood
is the Von Neumann’s one (see figure 1.2). The wave form depends on neigh-
borhood. We can define a line in terms of wave: ”A wave which starts from a
focus, disappears on the other focus”.

Then, there exist figures which can be defined in terms of wave.
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N

Starting point of the wave.

X

Figure 1.2: Space-time diagram of a 2D wave which spreads at quickest speed.



Chapter 2

Basic notions.

Our goal is to recognize families of figures with plane cellular automata.
In this section, we define notions which are useful to understand the rest.

2.1 Cellular automata

Definition 1 (Cellular automata)
A two-dimensional cellular automaton, A, is a 4-tuple (d,S, H,§) such
that:

e d =2, 1s called the dimension,

e S is a finite set, the elements of which are called the states and denoted
by:
S = {Sk; ke {Oa ) |S| - 1}}7

o H is a finite set of Z2, called the neighborhood and denoted by:
H = {vj ={s1j,225}; 7 €{1,.... [H[}},

o & is a function from SW1 t0 S, called the local transition function.

The cellular automata we consider are two-dimensional ones: we put in each
point of Z2, called cell, the same finite automaton.

Let A be a cellular automaton.

Definition 2 (Configuration of a cellular automaton)

A configuration Cy of A is an application from Z? to S. A configuration Cy4
evolves to another configuration C7 defined by:

V(z,y) € 2%, Ch(x,y) = 6(Calw + 21,1,y + x21), ..., Calw + 21 |5y, ¥+ 2 11)))-
We denote this evolution by Cq = C% and we call it the global function of A.
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Starting from an initial configuration CY, we obtain an infinite sequence of
configurations C%; ¢ € N defined by ¥Vt € N, CY C'f4+1.

A cell enters a new state according to its state and the states of its adjacent
cells in which we apply 6.

2.2 Neighborhoods

Let H be the considered neighborhood.

Definition 3 (Von Neumann’s neighborhood)

Let (x,y) € Z*, the Von Neumann’s neighborhood of the cell (x,y) is the set of
cells, denoted by Hy(x,y), such that: Hy(x,y) = {(x + 1,y),(x — L, y),(z,y —
D, (.4 1)),

We put Hi(x,y) = (z,y — 1), Hi(z,y) = (x — L,y), Hi(z,y) = (x,y+ 1) and
Hi(z,y) = (v + 1L,y).

See figure 2.1.

H3(©)

(x,y-1)
2

Hy©| o) | Hy©

(x-1y) (x+1y)
3

()

(x,y+1)

i
Figure 2.1: Von Neumann’s neighborhood.

Definition 4 (Moore’s neighborhood)

Let (z,y) € Z2 the Moore’s neighborhood of the cell (x,y) is the set of cells,
denoted by Hg(x,y), such that: Hg(x,y) ={(x+1,y),(x=1,9), (z,y—1), (&, y+
1),(l‘+1,y—|—1),(l‘—|—1,y—1),(1‘—1,y—|—1),(l‘—1,y—1)}.

We put Hé(xay) = (x,y— 1)7 ng(l‘,y) = (l‘ -Ly— 1)7 Hg(l‘,y) = (l‘ - 1ay)7
Hy(z,y) = (x = Ly+ 1), Hi(x,y) = (x,y+ 1), Hi(z,y) = (z + Ly + 1),
Hi(z,y) = (z+1,y) and H§(z + 1,y — 1).

See figure 2.2.

Let us notice that the cells which are in the Von Neumann’s neighborhood
of the cell (x,y) are the cells which are one distance unit away from the cell
(z,y) where the distance is dg,
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HE(©)| Ha(©)| He(©)
(x-1,x-1) (x,y-1) |(x+1,y-1
3 7
Ho(©)| cii) | Ha(©)
x-Ly) <) (cLy

4 5 6
H(©)| Ha(0) | Hg()
(x-1,y+1) (x,y+1)(x+1,y+1

~

j

Figure 2.2: Moore’s neighborhood.

da(P,Q) = lir —igl + |jp — jql

This distance is called City Block Distance (or Square Distance).
In the Moore’s case, the distance is dg,

ds(P, Q) = max(lip —ig|, lip — jol)

This distance is called Chessboard Distance (or Diamond Distance).

2.3 Figures

We consider the discrete plane Z2.

Definition 5 (Figure)
We call figure, denoted by F, any finite subset of Z2.

Definition 6 (4-connected path)

A J-connected path is any sequence of points of Z2, (xo,yo), (21, Y1), -, (1, Y1)
such that Vi € {0, .., {—1} (w01 = xi+ 1 and yiy1 = y;) or (w41 = 2 — 1 and
Yit1 = i) or (Bigp1 = 2; and yip1 =y + 1) or (2i41 = 2 and yip1 =y — 1).

Definition 7 (8-connected path)

A 8-connected path is any sequence of points of Z2, (xo,yo), (21, Y1), -, (1, Y1)
such that Vi € {0, .., {—1} (w01 = xi+ 1 and yiy1 = y;) or (w41 = 2 — 1 and
Yie1 = i) or (xi41 = 2 and yip1 = yi + 1) or (41 = 2 and yqp =y — 1)
or (g1 =+ 1 and yip1 = yi + 1) or (g1 =2 — 1 and yp1 =y — 1) or
(i1 =2+ 1 and ypr =y — 1) or (xpr =25 — 1 and Yy =y + 1).

Definition 8 (Connected figure)
A figure F is 4-connected (respectively 8-connected) if and only if for all cells ¢
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and ¢’ in F such that ¢ # ¢’, there exists a {-connected (respectively 8-connected)
path which connects ¢ to ¢’.

The figure 2.3 shows examples of 4 and 8-connected paths and 4 and 8-connected

figures.
Every figure we consider here are 4-connected or 8-connected.
[T o
[T a 11 a
4-connected path 8-connected path
\ | \ |
M W
\ ] \ |
4-connected figure 8-connected figure

Figure 2.3: 4-connected and 8-connected paths, 4-connected and 8-connected
figures.

Definition 9 (Figure without hole) B
A figure F is without hole for dy (respectively ds) if and only if F' (the comple-
ment of Fin Z?) is j-connected (respectively 8-connected).

Definition 10 (The external layer of a figure)

We define the external layer of the figure F', denoted by L.y (F), as follows:
Lept(F) = {(x,y) € F; ',y with ((v’=z+1 and y’=y) or (v’=z-1 and y'=y)
or (v’=z and y'=y+1) or (x’=z and y’'=y-1)), (z",y’)¢F.}

Lept(F) is the set of cells that are on the border of F, that is to say the cells

that have at least one cell in their neighborhood which is not in the figure ¥
(see figure 2.4).

ext

Figure 2.4: The external layer, L.;:(F'), of the figure F.

Definition 11 (Vertices of a figure) Let v € I, we say thal v is a verlex of
F if and only if there exists 1 and ¢o (c1 # ¢2) in H(v) such that ¢; ¢ F and

Cz%F
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See figure 2.5.

CSE N

—— vertices

it

Figure 2.5: Vertices of a figure.

2.4 Recognition of figures

Definition 12 (The state of a cell)
Let state(e,t) be the state of the cell ¢ at time t.

Initially, Ve € F', state(c,0) = 1 and Ve & P, state(c,0) = 0. The cells which
belong to F' are in state 1 and the others are in state 0.
The state of the cell (4, j), at time (¢ + 1), is completely determined by the state
of (4,7) and the states of the adjacent cells at time ¢.

Definition 13 (Recognition of figures)
We have two notions of recognition:

e The local recognition: one cell of the figure enters an accepting state or a
rejection state.

e The global recognition: all the cells of the figure enter the same state:
acceptance state or rejection state.

Definition 14 (Family which is recognisable with 2-dimensional cellular automata)

We say that a family of figures, denoted by F, 1s recognizable with 2D cellu-
lar automata if and only if there exists a cellular automaton A such that for
every figure F' on the plane there is a time t such that,

AY(F) = a everywhere in F (a=acceptance state).
Otherwise, AY(F) = r everywhere in F (r=rejection state).

That is to say there 1s an automaton which accepts all the figures of F and
which rejects all the others.
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Definition 15 (Time of recognisation)

We denote rtime(P, A) = min(t, Ve € F state(c,t)= a or Ve € F state(c,t)=r)
the recognition time of F' with A if the figure F' 1s recognizable with A.

It is the first time all the cells of the figure are in the same state (acceptance
state or rejection state).



Chapter 3

Recognition of rectangles.

The goal of this part is to show that rectangles are recognizable by two-dimensional
cellular automata. The idea here developed, consists in looking for the most lo-
cally possible definition of the rectangle and using this definition in order to
construct a cellular automaton which allows to recognize it.

3.1 Definition of a rectangle.

Let us consider the rectangles’ family, denoted by R, that is to say the set of
figures F such that:

Ao, jo) € Z* and (iy, j;) € Z% F = {(i,j) € Z*, io > i > iy and jo > j > js}

Now, we give a definition of the rectangles which is equivalent to the previous
one but, which gives us a local characterization of the rectangles. In fact, we
want this definition to indicate us the neighborhood of each cell of the figure. It
will help us to construct a cellular automaton recognizing the rectangles’ family.

Let F' be a 4-connected figure without hole.
We have to keep in mind that, at time 0, all the cells which belong to F' are in
state 1 and the others are in state 0.

Let Py be the following property, associated to the figure F"

Property 1 (Property of the external layer of a figure)
V(i,5) € Leat(F), [H(i,§) N Legd(F)] = 2

This property means that all the cells which belong to the external layer of the
figure F, have exactly two adjacent cells which belong to this layer.

Then, we have the following theorem:

12
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Theorem 1
A figure F' is a rectangle if and only if F' is 4-connected, without hole and Py(F)
15 true.

3.2 Demonstration.

In this section, we want to prove the previous theorem.

Let F' be a figure which is 4-connected, without hole and which verifies the
property P;. We want to show that F'is a rectangle.

The proof is long then, we decompose it as follows:

In a first part, we present the Jordan’s lemma for Z2. It will be useful in order
to demonstrate the following lemmas.

In a second part, we construct a sequence of cells which describes the border of
the figure F': we take the upper-left most cell of the figure as the first element
of the sequence and we go round the border the figure in the counterclockwise
direction(see figure 3.1).

We show that the border of F is constituted by four parts: an horizontal part,

|

7 |

B —

ol

Figure 3.1: Description of the border of F.

a vertical part, an other horizontal part and an other vertical one (as in the
figure 3.2. By an iterative process, we construct the rest of the sequence.

-

[

Figure 3.2: In a first time, the border of F'is constituted by four parts

Then, we show that there are two cases: the sequence is either a spiral or the
border of a rectangle (see figure 3.3.
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=]

Figure 3.3: The constructed sequence is either a spiral or a rectangle

_ =]

001020 --
0111271 -
021,222 -

j

Figure 3.4: 1 and j axis.

In the third part, we show that the first case leads to a contradiction.
In the fourth part, we deduce that the figure F' is a rectangle the border of
which is the sequence we have just constructed.
In order to fix the 1deas, we use the part of the grid which is shown in the figure
3.4.

3.2.1 The Jordan’s lemma for Z2.

Lemma 1 (Jordan’s lemma for 72)
Any connected path which connects the point (a,b) to the point (a + 1,0 — 1)
meets any connected path which connects the point (a + 1,b) to (a,b—1).

i
\ , (a,b-1)

J (a+1,b-1)
(a+1,b)
(a,b)

See figure 3.5.

Figure 3.5: Jordan’s lemma for 72

This lemma has already been proved by Rosenfeld ([Ros70], [Ros73], [Ros74],
[RosT5], [Ros79], [ROS89]).
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3.2.2 Construction of a sequence which describes of the

border of F

We study the position of the cells which are on the border of the figure. We
start with the upper-left most cell and we go round the border of the figure
in the counterclockwise direction.. As soon as we go round, we construct a 4-
connected path, denoted by A; for 0 < { < n, which contains the meeting cells.

The first element, hy, of this path is the upper-left most cell the coordinates
of which are ¢y and jp such that:

Definition 16 (Definition of (ig, jo))
We put jo = min{j;3i,(i,j) € F} and iy = min{i; (¢, jo) € F'}
(iOajO)’

By definition of iy and jg, we have:

Fact 1
(iOajO) € Lext(F); (iOajO + 1) S Lext(F); (ZO + 1aj0) € Lext(F)

Proof
(f0,jo) € F and (dg,jo — 1) ¢ F because of the definition of jy then (ig,jo) €
Lept(F). (io — 1, jo) ¢ F because of the definition of é5. As (ip,jo— 1) ¢ F,
(io — 1,40) € F, (io,jo) € Leyt(F') and F satisfies P, we have: (ig,jo + 1) €
Lept(F) and (dg + 1, o) € Legt(F). O
See figure 3.6.

We go round the figure by the right. So, we first describe the higher border
of the figure:

Lemma 2
There exists an index o such that Vk € {0, ..., — 1}, dgp1 = ip + 1, Jr+1 = Jk
and to41 = o and jog1 = jo + 1.

Proof.
See figure 3.7.
Let o be the first index such that (ie + 1, ja) € Legt(F). Then (iq,jo — 1) ¢
Lept(F) with the definition of jy (we have jo = j1 = ... = ja). Therefore
(fayJo + 1) € Loyt (F) because F satisfy Py and iqq1 = 4o, Jat1 = Jo+ 1. O

Now, we successively give a description of the right, the bottom and the left
most borders.

Lemma 3
There exists an index § (0 < o < B) such that Vk € {a, ..., — 1}, iry1 = i,
jk+1 =jr+ 1 and i@+1 = i@ —1 and jﬁ+1 = j@.
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not in F because of the definition of j

(igdo) |(ig+1l.p)

(iglotl)

not in F because of the definition o@i

Figure 3.6: The adjacent cells of the upper-left most cell

io Jo

- not in F because of the definition of j
h, | hqa hqg . o ) _
. 2 o o = not in F because of the definition f i ang |
|2 J2 ******** lg-1)a-1 la | o
hcx+l
i0(+1j0(+l

Figure 3.7: The higher border
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contradiction

hB h[3+1

g g |ipralpra

inF

Figure 3.8: The righter border

17
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Proof.
See figure 3.8.

Let 3 be the smaller index (f > «) such that (ig,js + 1) € Leot(F). Then, as
F satisfies the property Pi, if (ig + 1, jg) & Lew:(F) then (ig — 1, jg) € Legs(1).
We show, by reduction to the absurd, that (is + 1, jg) ¢ Lew:(F). Otherwise,
(ig,jp — 1) € Lewi(F) and (ig + 1, jg) € Lews(F) and therefore belong to F. As
(ig,Jp) € Lewt(F), it belongs to F' and therefore the point (izg — 1, jg) doesn’t
belong to F'.

Loot(F)\{(ig,js)} is a || . ||1 connected path which connects (ig,jsz — 1) to
As F is a figure without hole, there exists a || . ||1 connected path which connects

(ig — 1,7s) to (i, jo — 1). We extend this path adding it the point (ig, js), the
points (ig,jp — 1) for h € {1, ...,a} and (ip, + 1, 43) for h € {e,...,—1}. Then
we obtain a path which connects (ig,jg) to (ig +1,jg — 1). With the lemma
2, this two paths have a common point which belongs to L..+(F) \ (is,j) and
therefore to F'. But, with the definition of the second path, it doesn’t belong to
F. There is a contradiction. d

Lemma 4
There exists an index v (0 < o < B < v) such that Yh € {5, ...,v — 1}, th41 =
ik — 1, Jr41 = Jr and ty41 =2y and jy41 = j, — 1.

Proof.
It is similar to the previous one (see figure 3.9). O

Now, we have several possible cases. They are shown in the figure 3.10.
Actually, the first case can readily be eliminated (because of the definition of

jo)-

Lemma 5
Fither Vk € {v,..,n} tx41 = @, Jotr = Ji — 1 and (g1, jrt1) € Lewt(F) or,
36 such that Vk € {v,....,6 — 1} dgy1 = i, Jea1 = e — L and is41 = is + 1 and
Jsx1 = Js.

Proof.

If we are in the first case, the construction is ended. We will discuss about this
situation after.

Let 8 be the smaller index (6 > ) such that (és,js — 1) € Leyi(F). Two cases
are possible: either (is — 1,75) € Legt(F) or (i5 + 1,j5) € Lege(F). We show
that the first case leads to a contradiction (see figure 3.11): the two points
(is + 1, js) and (i5, js — 1) don’t belong to F'. We call (2,3) one of these points,
and we consider the two paths:

[ Lem(l) \ (i&,jg) iIl F



CHAPTER 3. RECOGNITION OF RECTANGLES.

,,,,,,,, ha
”””” id .C(
hcx 1
iot+1Jot+1
contradiction
\ o]
' : :
hpls
'I . .
: 'p-1)p-1
N
h\; hy-1 hB+1 ‘/h%
by dy iy dya| 'pralper| g Jp
hy+1 RN S outofF ________
Ty+aly+1

Figure 3.9: The bottom border
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Figure 3.10: The left most border

e The path constituted with the path which doesn’t belong to F" and which
connects (¢, §) to (ig, jo—1), with the point (is, js) and the points (in, jo—1)
for h € {1,...;a}, (in + 1, jn) for b € {a,...,3} and (ép,jp + 1) for h €

{6,..,7}

These two paths meet in a point which is not (is,js) and which is both in F
and outside F'.

In the case where there exists an index 6 such that, for all £ in {~, ...

d

,6—1},

U1 = %, Jk+1 = Jk — 1, 2541 = 45 + 1 and jsy1 = js the construction of the is
not ended. We continue i1t by induction.
There are four cases, which correspond to the four possible directions of the
path (see figure 3.12).

Lemma 6

There exists a sequence of indices ky, indexed by m € {0, ..., A} such thal:

OSimIO,k‘oIO
e Sim >0,

~Ifm=0(4)

« Yk € {kp_1, ...

* U, 41 = ik, + 1 and jr,, 41 = jk,,

~Ifm=1(4)

« Yk € {kp_1, ...

ki — 1} dpgpr = g and jrp = jr — 1

ke — 1} dpgpr = i + 1 and jrg1 = Ji
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Pk (io-Jo) b= )
hk=4 ig,js) hk
h h 5
Kk k
8 hk12 hklg ®
hkle L
hle hk14
hkll hklo h
hk7 ke
hk3:(|y Jy) hkzz(iﬁ’b )

Figure 3.12: Construction of the path by induction

* 41 = Uk, @0 J, 41 = Jk, 1

~Fm=2(4)
* Yk € {kme1, ..., km — 1} ig11 = g and jro1 = ji + 1
* U, +1 = Uk, — 1 and jg, 41 = Ji,

~IFm=3(4)
* Yk € {hme1, ... bm — 1} dpp1 = i — 1 and jry1 = jr
* tp, 41 =, and kg 41 = Ji, — 1

Proof.
Notice that the constructed path is a spiral.

hi=(io Jo) h=(ia s )

hkﬁ(iarja)}

e 7 -
e [ ] .
S R I I
(i dy) (i)

Figure 3.13: Construction of the spiral
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We show this lemma by induction on m, distinguishing the different cases: m =

0,1,2,3(4). We have:
e For m =0, hy, = ho = (io, jo) (the upper-left most cell),

o for m = 1 (respectively 2, 3 and 4), we have the same situation as in
the lemma 2 (respectively lemma 3, lemma 4 and lemma 5) with k1 = «
(respectively ko = 5, ks = 7, k4 = §8),

e for m > b,
we suppose that the path h has been constructed for k € {0...k,—1 + 1}.
We want to define it for k € {ky—1 + 2...km + 1}.
Notice that we only give the demonstration in the case where m = 0(4)
because the other cases are similar.

— Case m=0 (4)
With the recurrence hypothesis, we have iy _, 41 = ig,,_, and jg,__, 41 =
Jhm_y — 1 (see figure 3.13). Let &’ be the smaller index (k' > kyn—1)
such that jiy1 # jrw — 1. In H(é,jr) N Leat), we have the point
(4, jx + 1). As F satisfies the property Pi, one of the two points
(ik/ - 1,jk’) or (ik/ + 1,jk/) € Lem(F) N H(ik/,jk/). We show that if
it is (ixr — 1, ji), then we come to a contradiction (see figure 3.14).
So, (ix' + 1, jgr) and (i, jrr — 1) do not belong to F'; let (2,3) be one
of these points.
The path I made of L.z:(1) except (igs, ji’), which connects (i —
1, ) to (4, i — 1) is entirely in F.
Moreover, (ipr — 1, jir + 1) do not belong to L.z :(F). So, as F' is 4-
connected and without hole, there exists a path C'H, which is entirely
outside F', and which connects (2,3) to (ixr — 1, g + 1).Therefore,
with the lemma 2, these two paths I and C'H have a common point.
This common point can’t be the point (2,3) which doesn’t belong to
Lept(F). Whence the contradiction.

— Other cases.
They are similar to the former one.

3.2.3 Study of the path.

In this section, we study the spiral. More precisely, as we have shown that 1t 1s
finite, we show that every case of stop leads to a contradiction.

We start working on the sequence of indices k,, or m € {0,...,A}. We show
that, if we give an other formulation of this sequence, we can deduce relations
between the coordinates of the points hy, (see figure 3.15).
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Lemma 7
If A > 3 then, nominating again the sequence kn by koyar, kiyar, koyar, kayar,
1 e {0, ...,AT;?’}, we have:
-3
vie{0,..,°37}

@ kg < Thygpny < g < Tha forl>1
b Jhapr < Thsgpner < Jhaggnge < Jhage
€ Ugrgn < ik4(1+1)+2 < ik4(1+1)+3 < ks
&= Jrate < Jkagrnrs < Jhagpips < Jhat

Proof.
We show 1it, by recurrence on {.

o |=0
We have:

= Tk < Jks < Jks < Jks
— g, > Tk > Iy > Uk,
= Jks > Jkr > ks > Jks
Effectively, ji, = ji, by definition of k1. jr, > ji, by definition of jo = ji,.
SO, Jka > Jk,- AS, jr, = jr, (by definition of ks) we have jp, < jg,.
Jke > jrs by definition of kg, hence ji, < ju, < Jie-
We prove that ji, < ji, by reducing it to the absurd.
We suppose that ji, > ji, (see figure 3.16). Then, there exists an index

hko hkl
hk4 hk5
h|<3 / hkz
h,
er

Figure 3.16: Case jr, > Jk,-

U, ks < I' < kg, such that hy has more then two adjacent cells which
belong to Ley:(F'). Hence, the contradiction.
SO, we have jk‘1 < jk‘s < jk‘e < jk‘2'
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With a similar reasonning, we prove that ¢, > ig, > @, > i, and
Jks > Jke > Jke > Jha-

e 1,0
We only show the item a- because the other ones are similar.
We suppose that the relations are true for the index ({ — 1) (see figure
3.17).

First, we have iy, < i,,, by the hypothesis of recurrence .

I(4(l-1) hk4(|-1)+1

r
I

h h
: Ka Kga1
I

h_ .
k4(|+1)
h
I(4I+3 k4|+2
hk4(|-1)+3 h k4(|-1)+2

Figure 3.17: General case of the lemma 7

Moreover, gy, = ik, by definition of hp, ., and iz, < iy, hence
Z.k41+3 < Z.k41+1'

But, it,,,5 > %k, by the hypothesis of recurrence. Then, iz, < ig,,-
thags = Thaqqr) = hays Py definition of hy,, . Hence, ip,, < ip, ., <
Z.k41+1'

Moreover, ik4(1+1)+1 < ik4(1+1) by the definition ofhkarI)Jr1 . But, ik4(1+1)+1 <
iku4, because otherwise, there exists an index I, kyy1) < U < kagg1)41,
such that hp has more than two adjacent cells which belong to Le.i(r)
(see figure 3.18).

Hence, i, < aagny < thaggngr < Phargs-

O

We observe that the lemma 5 gives a possibility to stop the construction.

As the figure is a finite set of cells and since the lemme 7, the sequences of

points hroy .., Priyps Phoyn and hy,,., for m € {0,..., A}, converge to one or

two points. So, the sequence of indices ki,, for m € {0,...,A} is finite. The
figure 3.19 shows different possible ends of the construction.

Proposition 1
Lewt(F) = {(4,5); ((j = jo orj =js) and ip < i < iy) or ((i =g ori =1i1)
and jz < j < jo)
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h h
Ka Kate1
h
k4(|+1) ~ k4(|+1)+1
h
I(4|+3 hk4|+2

Figure 3.18: Case i, 5 > ik,

]

Figure 3.19: Different ends of the spiral construction

Proof.
We know that there are two kinds of stop: either the construction of the path A
stops as in the situation of the first case of the lemma b and iz > iy or i3 = ip;
or, it continues as in the lemma 6 and we have spiral the construction of which
ends in four different case.
In fact, we can prouve that every cases of stop, except the case where iz = iy,
lead to a contradiction.
Effectively, in each case there exists a cell of the path which has more than two
adjacent cells which belong to L. +(F) (see figure 3.19).
Hence, h is the set of cells (7, j) such that ((j = jo or j = j3) and ip < ¢ < 4y)
or ((i =dg or i = 1) and js < j < jp) and h is the border of F. d

3.2.4 Characterization of F.

In this section, we prove that the path which has been constructed previously
is the border of a rectangle, that is to say F' is a rectangle.

Proposition 2
F=1{(1,7); io <i <y and js < j < jo}.

Proof
In the former subsection, we have shown that the border of F', denoted by
Lept(F), is such that L.y (F) = {(4,5); (j = jo or j = jg) and ip < ¢ < 47)
or (1 = dg ori = 4;) and jzs < j < jp). The figure 3.20 gives a graphic
representation of the border of F'. As F' is 4-connected and without hole, F'
cannot only be the border of a rectangle and there not exists any cell (4, j) such
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Figure 3.20: The border of F'

that ¢y < i <14y, js < j < jo and (4, ) doesn’t belong to F.
Hence, F' = {(i, j); 10 <@ <4y and j3 < j < jo). g

3.3 An automaton which recognizes the rectan-
gles.

We have to find an automaton A, which allows to have, at a given time ¢, all the
cells of the figure in the same state: the acceptance state if the figure belongs
to the rectangle family or, the rejection state if the figure doesn’t belong to the
rectangle family.

We have shown that a figure F' is a rectangle if and only if every cell that
belong to the border of F' have exactly two adjacent cells which belonging to
the border. We use this definition in order to construct a cellular automaton
recognizing the rectangles: each cell of the figure says to its neighbors whether
it is on the border or not. A cell which is on the border and which has not
exactly to adjacent cells on the border generates a rejection state. And, a cell
which i1s on the border and which has exacty two adjacent cells on the border,
generates an acceptance state. The proposed automaton A is A = (2,5, H, §)
such that:

e A has b states: S ={0,1,2,3,4},
e H is the Von Neumann’s neighborhood,
e ¢ is the transition function given by the transition table 3.1.

The principle is the following one. A cell which is in state 1 and that belongs
to the external layer of the figure (that is to say a cell which has at least one
adjacent cell in state 0) enters state 2. Afterwards, each cell which is in state
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| Cell || H} | Hj | H3 | Hj | New state |
1 0 2
1 0 2
1 0 2
1 0 2
2 2 2 3
2 2 2 3
2 2 2 3
2 2 2 3
2 2 2 3
2 2 2 3
2 0 0 0 0 3
£0,#3,#4 3 | £4|#£4 | #£4 3
£0,#3,#4 || #4| 3 | #4 | #£4 3
£0,#3,#4 || #£4 | #£4| 3 | £4 3
#£0,£3,#£4 || £4 | £4 | #£4| 3 3
2 21 #£2 | #£2 | #2 4
2 2 | #£2 1 #£2 | #£2 4
2 2| 2 | #£2 | #£2 4
2 2| #2 ] 2 | #£2 4
2 2| #£2 | #£2 ] 2 4
#0,£4 4 4
#0,£4 4 4
#0,#4 4 4
#0,#4 4 4

Table 3.1: The transition function of the automaton recognizing the rectangle’s
family.
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2 is going to determine, according to its neighborhood, if it may belong to the
border of a rectangle. In fact, a cell which is in state 2, knows that it is not
the border of a rectangle if it doesn’t have exactly two adjacent cells which
are in state 2. So, each cell that belongs to the border, enters the acceptance
state (state 3) or in the rejection state (state 4). Then, these states spread; the
rejection state 1s stronger than the acceptance state.

At some time ¢, we have:

Ve € F, state(c) =3 (F €R)
Ve ¢ I, state(c) =4 (F ¢ R)

Then, we know if F' is a rectangle or not.
Examples are given in the figures 3.21 and 8.1.

If all the cells of the considered figure are in state 3 then the figure is a rect-

angle; otherwise, if all the cells are in state 4 then the figure is not a rectangle.
Let us consider the first figure. All the cells of the external layer have exactly
two adjacent cells belonging to this layer, therefore they all enter the acceptance
state (state 3). Afterwards, this state spreads in all the figure.
On the other hand, in the third figure, two cells of the external layer haven’t
exactly two adjacent cells in this layer, therefore these cells enter the rejection
state. The rejection state dominates the acceptance state, so all the cells of the
figure progressively enter the rejection state (state 4).

3.4 Conclusion.

We gave an automaton which allows to decide whether any 4-connected figure
without hole of the discrete plane is a rectangle or not.

We can notice that four of the five states are essential: the initial states 0 and
1 and the terminal states 3 and 4 can not be suppressed. It seems that this
automaton has a minimal number of states. Otherwise, it allows to detect very
quickly, as soon as the second iteration, whether the figure is a rectangle and
this independently regardless of its size.

For a rectangle the size of which is m x n, the global recognition time is

rtime(R, A) = f%] + 1.
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Figure 3.21: Examples of rectangles recognition.
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Chapter 4

Recognition of squares.

4.1 Introduction.

In this chapter, we study the squares’ family that is to say the set of figures F
such that:

Ao, jo) € Z* and l €N F = {(i,j) € Z*,ip > i > ip+ 1 and jo > j > jo + 1}

We are going to give an automaton which allows to recognize the squares. For
this, we are going to use a similar method as the one used for the rectangles and
we are going to say that a square is a rectangle which has a symmetry property.
In fact, we are going to apply the idea, which has been developed by Grasselli
(1975) in [GraT75], for the two-dimensional Firing Squad Problem, to the square
recognition problem. Grasselli defines two operations which are applied on the
figures. The first one, the decrease, consists in taking off the most external cells
(that are the cells which have at least one adjacent cell which doesn’t belong to
the figure). The opposite operation, the expansion, consists in adding a layer
of cells to the figure. If the decrease is successively applied to any figure, at
a given time, if we apply one supplementary decrease, then all the cells of the
figure disappear: we will say that the nucleus of the figure is reached. We will
use again this idea of ”peeling an onion” in order to recognize the squares.

4.2 Definition of the square.

Let F' be a figure of the discrete plane.
We start from the following configuration of the plane:

Ve € F, state(c,0)=1
Ve ¢ F, state(c,0)=0

32
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Definition 17 (The layers of a figure)
We define the i'" layer of the figure F, denoted by L;(F), as follows:

o [g= Lem(F)
e i>1, Li=Lept(F\ (Lo U...ULy_1))

(See figure 4.1).

L=l
Lo

<~

\'—1

Lo=Lext(F)

Figure 4.1: The layers of a figure.

Definition 18 (The internal layer of a figure)

As F is a finite figure, there exists an index 7 such that Ly (F) = 0. We
put Lint(F) = Li(F). Line(F) is called the internal layer of the figure or the
nucleus of the figure.

We define the following property, S, of a neighborhood.

Property 2
S(Ha(z,y)) < F,i', (Hi(x,y) € L; and H3(x,y) € L; and Hi(x,y) € Ly and

H4(l‘ y) € Lyt ) or (H4(J: y) € Li and Hi(z,y) € Ly and H3(x,y) € Ly and

Hi(z,y) € L;) or (H4(a: y) € Ly and H4(J:,y) € Ly and H3(x,y) € L; and
Hff(x,y) € L) or (Hi(z,y) € Ly and Hi(z,y) € L; and H3(z,y) € L; and
Hi(w,y) € Lir)

If the neighborhood Hy verify S, the cells which belong to Hy are two-two in
the same state (see figure 4.2)

W

Figure 4.2: Neighborhoods that verify the property S.

For a figure F', we define the following property Ps:
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Property 3
Py(F) < Pi(F) and (Y(i, ) € Lind(F), S(Ha(i,5)))

I verifies Ps if and only if F' verifies P, that i1s to say all the cells of the

external layer of the figure have exactly two adjacent cells in this layer, and if

the neighborhood of any cell that belongs to the nucleus of the figure verifies S
Then, we have the following theorem:

Theorem 2
Fis a square (F € 8) & F is 4-connected, without hole and Pa2(F)true

4.3 Demonstration.

We want to prove the former theorem.
Using the theorem 1 (chapter 3), we know that F' is a rectangle, that is to say
Then, three cases are possible:

o Case 1: j; — jo > 1y — 1.

— Case 1.1: ¢y — ip odd.

As 1y — g is odd,

i, Li = Lint(F) = R(ig+(i—1), jo+(i—1),io+(i—1), j;— (i—1)) =
((5,4) € Fyio+(i—1) < i < ig+(i—1) et jo+(i—1) < j < jr—(i—1)}
because of the definition of Lijni(F). So Lint(F) is a rectangle the
sides of which are parallel to the axis 1 and the length of which is 1.
Let ¢; and ¢y be the extremist cells of this rectangle, 1 = (ipg +
(1—1),jo+ (i —1)) and ¢z = (in + (i — 1), jp — (1 — 1)). We have:
Hi(cl) € L1, Hi(cl) € L1, HZ’(Cl) e L; et Hﬁ(cl) € Li_q.
Therefore, Hy(c1) doesn’t satisfy the property S (it’s the same for
Hy(c2)). Therefore P, is not verified in this case.

— Case 1.2: ¢y — ip even.
As 1y —ip is even,
i, LZ(F) = Lmt(F) = R(i0+(i— 1),j0 +(i— 1), 10 —|—i,jf —(i— 1)) =
{(4,j) € F, (in+(i—1) <i<ipt+iand jo+(i—1) <j<jr—(i—1)}.
So Lin:(F) is a rectangle the sides of which are parallel to the axis i
and the length of which is 2.
Let ¢g = (ig+ (i — 1),jo +4). ¢1 € Lint(F). This cell is such that
Hji(ey) € Ly, Hi(e1) € Li—y, H3(ey) € Ly et Hj(c1) € L;. Therefore
Hy(er) doesn’t verify the property S and then, P is not verified
again.

o Case 2: j;y —jo < iy — 1o
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— Case 2.1: j; — jo odd. The reasoning is the same as in the case 1.1.
We obtain a rectangle the sides of which are parallel to the axis j,
and the length of which is 1. And, we conclude as in 1.1.

— Case 2.2: j; — jo even. Idem case 1.2.

o Case 3: 1y — i = jf — Jo
Letl:if—iozjf—jo.

— Case 3.1: 1 even.

Ji, Ly = Lint(F) = R(io + (i = 1), jo + (i = 1), 40 + 4, jo + 1) = {(4,7),
v+ (i—1)<i<ig+ietjo+(i—1)<j<jo+i} The nucleus
of the figure, L;n+(F'), is a square the sides of which have a length
which equals 2. Therefore, it contains four cells which are named ¢y,
¢a, c3 et ¢q. We have:

* Ha(cy) verifies S because Hi(c1) € Li—1, H3(c1) € Li—1, H3(c1) €

L; and Hi(er) € L;.
* It’s the same with H4(c2), Ha(es) et Ha(cq).

Therefore Ps 1s verified.

Definition 19 (The expansion of a figure)
Let E(F) be the operation which is defined as follows:

* Let G={(i,j) € F'; e € Ha(i,j) and ¢ € Legt(F)} be the set of
the cells which belong to the plane and which have at least one
adjacent cell in the external layer of the figure.

« E(F)=FUG

The operation E(F') consists in taking again a layer to the figure F:
it’s the expansion (see figure 4.3).

a) Initial pattern b) E(F)

Figure 4.3: Adding a layer.

Lemma 8
If P is a square then E(F) is a square.
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Proof.
Let S be a square such that S = {(i,j) € F, iy < i < ig +!{ and
Jo<J<jotl} Let T'={(i,j) € F,

¥ (j=jo—landi € {ig—1,....i0 +1+1})

* (J=jo+!l+landie {ig—1,..,ig+{+1})

% (i=1dip—1and j € {jo,...,jo+ {})

* (i=1ip— (I+1)and j € {jo,..., jo+{})
E(CY=CuUT={(i,j) € F;ig<i<ip+!land jo <j<jo+!}

xand (j=jo—landi€ {ip—1,....i0+{+1})

(J
xand (j=jo+!{+landie {ip—1,... g+ {+1})
* and (¢

= io — 1 and _] & {jo, ,]0+l})

x and (i =ip — (I + 1) and j € {jo, ..., Jo+ {})}
Therefore E(S) ={({,j) e Fip—1<i<ip+l+landjp—1<j<
Jo+ 1+ 1}. Therefore F(S) is a square the length of which is { 4 2.
(I

As Lin:(F) is a square, we can deduce with the lemma 8 that F is a
square.

— Case 3.2: 1 odd .
i, Ly = Lind(F) = (o + (1 = 1),jo + (i — 1)). The nucleus of the
figure is reduced to an unique cell ¢ such that: H}(c) € Li_1, H}(c) €
Li—1, H}(c) € Li—y and H{(c¢) € Li—1. Therefore Hy(c) verify the
property S (with ¢ = ¢) and therefore the conditions of the theorem
are verified. Furthermore, L;n:(F') is reduced to a sole cell, therefore
it’s a square. We can deduce with the lemma 8 that F' is a square.

d

4.4 An automaton which recognizes the squares.

The proposed automaton is B = (2, S, H, §) such that:
e B has seven states: S ={0,1,2,3,4,5,6},
e The neighborhood H is the Von Neumann’s one,
e The transition function 6 1s given by the transition tables 4.1 and 4.2.

e The terminal states are the states 5 and 6 with:

Ve € F, state(c)=b & F €S
Ve € F, state(c)=6 & FF ¢ S
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||H1|H2|H3|H4|Newstate|

Cell

AN AN QNN S OSH S ST 0000 o0 oo
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[\ | ] NelNe) Nej
AN A AN Nej NelNe)
] A AN AN NelNoNe)

A B e B e B e R A e B e B e B e T e B e B e B e B e B e A e

AN AN AN AN

© © © ©
HH o o o o
191016 1o T H
HH NPt o oo
R [ T
S H

Table 4.1: Transition table of the automaton which recognizes the squares (2).
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|Cell ||H1|H2|H3|H4|Newstate|

Table 4.2: Transition table of the automaton which recognizes the squares (2).
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As for the rectangles recognition, the first stage consists in putting the cells
that belong to the external layer in state 2. At the second stage, each cell which
belongs to this layer 1s going to determine, according to its neighborhood, if
it is on a border of a rectangle (and possibly on a border of a square) or not.
Then, after this stage, if no cell enters the error state, we are sure to have a
rectangle (according to the chapter 3) and perhaps a square. Afterwards, the
figure is decomposed in layers and the cells which belong to ”the internal layer”
(which belong to the nucleus) are able to know if they are on a square or on
a rectangle. As a matter of fact, if a cell which belongs to the nucleus has a
symmetrical neighborhood then it is on a square. This is true because if we take
off the external layer of a square we obtain an other square. On the other hand,
if such a cell has not a symmetrical neighborhood then it is not on a square.

See figure 8.2.

4.5 Conclusion.

We proved that the automaton, which is given above, allows to recognize the
squares.

The global recognition time is rtime(S, B) = [5] 4+ 1 where n is the distance
between the farthest cells in the figure.



Chapter 5

Recognition of patterns
which are built with
rectangles.

In the chapter 3, we have seen that a rectangle is recognizable with plane cellular
automata. Now, we consider families of figures which are built with rectangles
(families of characters). They are globally defined. In order to recognize these
figures, the question is to count the number retracting vertexes that the figure

has.

5.1 Definitions

5.1.1 Coming out and retracting vertices

Definition 20 (Coming out vertex)

Let (x,y) € F. We say that (z,y) is a coming out vertex of the figure F if
and only if there exists (¢',y') € Ha(x,y) and (z",y") € Hy(x,y) (2" # &' and
y' £y ) such that (2", y') ¢ F and (2",y") ¢ F.

See figure 5.1.

Definition 21 (Retracting vertex)

Let (x,y) € F. We say that (z,y) is a retracting vertex of the figure F if
and only if there exists (¢',y') € Ha(x,y) and (z",y") € Hy(x,y) (2" # &' and
' £y ) such that (¢',y') € F and (2", y") € F and there exists (2", y'") in
Hy(x',y') and in Ha(2",y'") such that (2", y") ¢ F.

See figure 5.2.

40
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comming out vertices

Figure 5.1: Coming out vertices of a figure.

retracting vertices
Figure 5.2: Retracting vertices of a figure.
Definition 22 (Vertex of a figure)
Let (x,y) € F. (x,y) is a vertex of ' if and only if (x,y) is a coming out vertex
or a retracling vertex.
5.2 Recognition of “L”.

5.2.1 Definition of the £ family.

A figure 1s a ”L” if and only if it has five vertexes and therefore, one and only
one retracting vertex (see figure 5.3).

i =
///

retracting vertexes

Figure 5.3: Examples of “L”.

We are going to define more precisely the ”L” family: £. We consider the
Von Neumann’s neighborhood.
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Definition 23

Let Iy = (lo,jo,lf Jf) (2,7),i0 <1 < iy and jo < j < jr}

Let Fy = R(i, _]O,Zf, }) (4,7),ip <i < z} and jh < j < j}} such that:
) =
)

=1
=1

o (i5,J0) = (io, jo) or (#%,50) = (ig,jo) or (¢, 45) = (i, jg) or (if,5}) =

=/

Jo
(io’ Jr

o (i —ip) < (i —io) and (jo — j3) < (Jo —Jy)
L={FCZ*F=F\Fs}

See figure 5.4.

Figure 5.4: Definition of the "L”.

5.2.2 Automaton which recognizes L.

In order to know if any figure belongs to £, or not, we have to know if the figure

has exactly one retracting vertex.
The proposed automaton is L = (2,5, H, é) such that:

* L has 10 states: S={0,1,2,3,4,5,6,7,8,9},
* The neighborhood H is the Von Neumann’s one,

* The transition function é is given by the transition table in appendix,
chapter 4.

Principle:
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* At first, the borders of the figure are marked: the cells which are concerned
(the ones that have at least one adjacent cell in the state 0) enter in the
state 2.

A second and third times, we differentiate the retracting vertexes: two
different states are used in order to distinguish the retracting vertexes

(see figure 5.5).

| |
L L l l l Hj/:ﬂceuc

T — cellc ‘ T T cellc

: I cellc : :
[ 1] | [ |

D State 2 . state 3L ] state 4
A cell which is in the state 2, which has a unique adjacent cell in the state 2 and
which is on a vertical border enters in the state 3. A cell which 1s in the state
2, which has a unique adjacent cell in the state 2 and which is on an horizontal
border enters in the state 4.
This generates four possible neighborhood for the cell ¢. Then, this cell enters
in a different state according to its neighborhood (this state is propagated...).

Figure 5.5: How differentiate the retracting vertexes.

* Afterwards, the states of the angles spread:

- If two different states meet then the figure has several retracting
angles and it doesn’t belong to L.

- Otherwise, at a given moment, all the cells of the figure are in the
same state (the one that has been propagated since the unique angle)

and F e L.

In order to solve the problem that occurs when the figure has no retracting angle
(case of the rectangle), the state 2 is propagated and if, at a given moment, all
the cells of the figure are in the state 2 then the figure is not a £ (see figures 8.3).
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5.2.3 Automaton which recognizes the ”L” family using
cells that are outside the figure.

We can notice that the utilization of cells that are outside the figure facili-
tates the recognition and in particular, reduces the number of states that are
necessary. So, a possible automaton L' = (2,5, H,§) is such that:

- L’ has 8 states: S ={0,1,2,3,4,5,6,7},
- H is the Von Neumann’s neighborhood,

- The transition function § is given in appendix, chapter 4.
The principle is exactly the same as previously but a cell that is in a
retracting angle (therefore, which is outside the figure) knows right away
the existence of this angle and therefore, it’s not necessary to use two
different states in order to distinguish the angles (see figure 5.6 and 8.4).

c3

cl c2 c4

Les cellules c1, c2, c3 et c4 ont des voisinages différents. Elles peuvent donc entrer dans des états différents;
qui se propageront ensuite a I'intérieur de la figure.

The cells ¢1, ¢9, c3 and ¢4 have different neighborhoods. So, they can enter in

different states which will spread afterwards inside the figure.

Figure 5.6: Utilization of cells that are outside the figure.

5.3 Recognition of “U”.

5.3.1 Definition of the U family.

A figure is a 7U” if and only if, when we direct the border of the figure and we
go over it, we meet exactly six vertexes and two successive retracting vertexes
(see figure 5.7).

We are going to define more precisely the ”U” family: I.

The utilized neighborhood is the Von Neumann’s one.
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Figure 5.7: Examples of “U”.

Definition 24
Let Fi = R(io,jo,iz,ds) = {(isj)io < i < if and jo < j < jr} and Fy =
Ri,Jo, 1, 77) = A0, 7), o <0< 7 and jo < j < i} such that;

o (¥ —iy) < (if —io) and (ji — j}) < (Jo — Jjf)

e iy = ig or (exclusive) jy = jo or (exclusive) iy = iy or (exclusive) j} = j;

U={F CZF=TF\F}

In order to recognize this model of figures, 1t’s necessary to verify that the
figure has exactly two retracting vertexes and that these vertexes are well placed
(this is in order to distinguish the "U” and the figures that are shown in the
figure 5.8).

Figure 5.8: Examples of figures that don’t belong to ¥.

5.3.2 Automaton which recognizes the ”U”.

The idea is the following one: we start marking all the cells of the external
layer. Among these cells, if there exist some that have an unique adjacent cell
in the external layer then they enter in a state which depends on the place they
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external layer

\
X

LAY ) T II/{/H\I\I\

On the horizontal border On the vertical border

Cells which have an unique adjacent cell
in the external layer.

Figure 5.9: Marking the retracting angles.

are (on the horizontal or vertical border). This is shown in the figure 5.9. We
can distinguish the different angles (as in the recognition of ”1.”). The states
that correspond are propagated. In the case where there is an unique retracting
angle, all the cells of the figure will enter in the state of the angle. So, we will
say that the figure is not a ”U”.

In the case where there are two retracting angles, the corresponding states will
meet. We have now two possibilities: either we have a ”U” or we have a ”'T”. In
the first case, the states which are propagated will meet ”as it 1s necessary” that
is to say the meeting direction is respected. Then a state ”YES” is generated.
In the second case, a state "NO” is generated (see figure 5.10). In the case

OO o L
L7

YE

Figure 5.10: Meeting of two states.

where there are three retracting angles, or more then that, the meeting of an
other state causes the generation of a state "NO”. The automaton is given in
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appendix, chapter 4. See figure 8.5.

5.3.3 Automaton which recognizes the ¢/ family using cells
that are outside the figure.

As in the recognition of ”L”, we notice that if we allow the utilization of cells
that are outside the figure then it’s possible to find an simpler automaton which
has, in particular, less states.

A possible automaton is given in appendix, chapter 4.

5.4 Recognition of “0O”.

5.4.1 Definition of the O family.

A figure is a 70" if and only if it’s a rectangle with a rectangular hole (see figure
5.11).

The utilized neighborhood is Von Neumannn’s one.

Figure 5.11: Examples of “O”.

Definition 25
Let F1 = R(do, jo, it j¢)
!

(i,7),i0 < i <ip and j; < j<jo}.
Let FQIR(Zéa](l)al}ajf) i’j J

= o <t

={(i,5), i <i <} and j; < j < jot with:
° i6>i0

° i}<if

* jo < Jjo

* jt > s

O={F CZ*F=TF\TF}
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5.4.2 Automaton which recognizes the 70”.

The principle is still the same. We propagate the states of different retracting
angles, we count if they are really four and we verify that the states meet ”as
it is necessary” (see figure 5.12).

The automaton is given in appendix, chapter 4. See figure 8.6.

ug

& D

A

A/\D/%
=

<l
‘s

\_ B

YES

A

YES

/5=
|
T

|

YES

|

A

— =

YES

Step 1.

Step 2.

Step 3.

Step 4.

e Step 1: Generation of states that correspond to the different retraction
angles.

e Step 2: Propagation of these states. When they meet, there is generation
of new states which means: ”two different angles have meet”.

e Step 3: Propagation of these states. Their meeting generate new states
which means: ”three different angles have meet”.

e Step 4: New propagation and new states ”four different angles have meet”.

Figure 5.12: Recognition of 70”.

5.5 Recognition of ”T”.

Previously, we cast about recognizing figures built from a rectangle which is
subtracted with different manners to another one. Likewise, we can look for
recognizing figures which are the result of the subtraction of two rectangles.

Then, we obtain figures that are similar of the ones that are presented in 5.13.
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Figure 5.13: Subtraction of two rectangles.

5.5.1 Definition of the ”T” family: 7.

Here, we are interesting in the 7 family but the other ones that are built from
the subtraction of two rectangles would be recognizable with similar automata.
A figure is a "T” if and only if it has exactly 6 vertexes and two retracting
vertexes (separated by two vertexes if we go over the oriented border of the

figure). See figure 5.14.

Figure 5.14: Recognition of ”'T”.

Definition 26

Let Fy = R(io, jo, 15, J5) = {(¢,7), 40 <1 < iy and jo < j < js}.

Let Fy = R(ih, jh i, 45) = (7,5, b < & < and ji < j' < j}} such that:
. (16,36) = (4o, jo) or (e:ztfluiive) (z},jé) = (if,jo) or (exclusive) (z},]}) =
(ig,Js) or (exclusive) (iy, j}) = (io, jy)

o (i —io) < (if —i0) and (j; — jo) < (Js — jo)
Let Fsy = R(i, jll, i}, %) = {(", j"), i <" <@} and ji < j" < ¥} such that:

* (ig,Jg) = (i0,jo) # (ig, Jo) or (exclusive) (i%,j) = (if, jo) # (i}, Jo) or
((izc{jzfive) (Z}/,j}/) = (iy,js) # (Z},j}) or (exclusive) (i{)’,j}’) = (i, j;) #
L5 Jy

o (7] = i) < (i = o) and (3§ = j§) < Gy = o)
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* P20P3:®
’T:{FCZZ,F:Fl\(FQUFg)

5.5.2 Automaton which recognizes the ”T”.

The principle 1s the same as the one that is used in the ”U” recognition. The
border of the figure is marked. The different retracting vertex are distinguished.
The corresponding states are propagated... The automaton is given in appendix,
chapter 4. See figure 8.5.

5.6 Generalization.

Here, we define a family of figures which contains some of the families that
have been studied before, and which 1s recognizable with 2-dimensional cellular
automata.

Let F' be a 4-connected figure without hole.

5.6.1 Encoding of a figure

Definition 27 (Encoding of a vertex)
Let (z,y) be a vertex of the figure. We define the encoding of (x,y), denoted by
c(x,y), as follows:

o c(x,y) =1 if and only if (x,y) is a coming out vertex of F,

o c(x,y) = —1 if and only if (x,y) is a retracting vertex of F.

Let yo = min(y, (x,y) € F) and zg = min(z,(z,y0) € F. (xo,y0) is the
upper-left most cell of the figure F.

Lemma 9
(zo,y0) is a coming out vertex of F.

Proof
(xo,y0 — 1) & F by definition of yg and (zo,yo — 1) € Ha(xo, yo)-
(o — 1,y0) ¢ F by definition of yg and (zo — 1, y0) € Ha(xo, yo). a

Definition 28 (Encoding of a figure)
Let F' be a 4-connected figure, without hole and which has p vertices.
We define the encoding of F', denoted by C(F), as follows:

C(F) = (mq,...,mp)
with:
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o my = c(xo,y0) =1,

o m; (i > 2) is the encoding of the i-th vertex of the figure F' when we go
round the border of the figure in the counterclockwise direction since the
upper-left most cell.

See figure 5.15.

c(F=(1,11,1,-1,-1,1,1,1,-1,1,-1)
Figure 5.15: Encoding of a figure.

Now, we define an operation, denoted by O Py, on the encoding of a figure.

Definition 29 (Operation on the encoding of a figure)

We suppose that F' has p vertices. OPy s such that:

oP; : {0,1}» — {0,1}*

C(F) = (my,...,mp) — C'(F) = (mY, ..., my,5) such that:

Leti € {1,...,p} such that m; = 1. Forall j in {1,...,i—=1}, m; = m;, m; = —1,
miy =1, miy, = =1 and for all j in {i+3,...,p+ 2}, mj = mj_s.

In fact, the operation OP) change a commang out vertez of the figure into three
vertices: a retracting, a coming out and a retracting verter.

5.6.2 A more general family of figure

Let F be the family of figures which is defined as follows: Let R = {(z,y) € Z%
20,90, 25, ys € Z such that 2o < z < 2y and yo < y < yy}. R is a rectangle
and C(R) = (1,1,1,1).

o« FO = (R},

o FU+D) = FO) Y {F € Z? such that 3F’ € F) C(F)= OP(C(F"))}
F = Ui F

This family of figures is recognizable with 2-dimensional cellular automata.
The recognition algorithm has two steps:

- The first step consists in dividing the considered figure as it is shown in

the figure 5.16.
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Figure 5.16: Division of the figure.

- The second step must allow to verify if the different parts of the figure
that are obtained are rectangles.

It would be necessary to develop it.

5.7 Conclusion

In this chapter, we have defined family of figures since the rectangles’ family.
There are recognizable with 2-dimensional cellular automata and their recogni-
tion algorithm has to be studied more precisely.



Chapter 6

Recognition of ellipses.

6.1 Introduction.

In this part, we want to recognize ellipses. We use waves which spread into the
figure.
Before giving an automaton which allows to do this work, we define the discrete
ellipse.
An ellipse is the set of points, the sum of distance of which, to two particular
points called (the focuses), is constant. The ellipse is called 4 — ellipse if the
considered distance is d4 and 8 — ellipse if the considered distance is ds.
In the discrete plane (Z?), we consider two particular cells, which will to be the
focuses of the ellipse. Since these focuses, we compute for each cell of the plane
the sum of the distances between itself and the focuses. The figure 6.1 shows
this computation since focuses aligned or not, with dj.

Let s be an integer. Therefore, an ellipse is formed with cells the sum of
distances between itself and the focuses of which, is less or equal to s (see figure
6.2).

Now, we are going to give a more formal definition of the discrete ellipse.

53
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14| 14|14
14|14| 14| 14| 14 14/12|12| 12|14
14/12) 12 12 12 1214 14/12| 10|10/ 10| 12| 14
14/12| 10| 10| 10{ 10{ 10| 12| 14 14/12|10| 8| 8| 8/ 10{ 12|14
14/12| 10| 8| 8| 8| 8| 8/10/12|14 14/12|10| 8| 6| 6| 6] 8[10[ 12|14
14/12|10| 8| 6| 6| 6| 6| 6| 8|10|12|14 14/12|10| 8| 6| 4| 4 6| 8|10[12|14
14/12|10| 8| 6 4| 4| 4 6| 8|10[12|14 14/12|10| 8| 6| 4| 4| 4| 6] 8|10] 12/ 14
14/12|10| 8| 6| 6| 6| 6| 6| 8|10/12|14 14/12|10| 8| 6 4| 4| 6| 8]10/12|14
14/12|10| 8| 8| 8| 8| 8|10/12|14 14/12|10| 8| 6| 6| 6] 810 12| 14
14/12|10| 10) 10 10 1012| 14 14/12| 10/ 10| 10 10 1Q12| 14
14/12) 12 12 12 1214 14/12|12| 12 12 1214
14| 14) 14 14 1 14| 14| 14 14 1.
DFOCUS

i: distance between the cell and the two focus.

Figure 6.1: Sum of distances (focus aligned or not).
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Figure 6.2: Example of ellipse (s=12, d = d4).
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Definition 30

Let f1 and fo be two given cells of the discrete plane. Let s be an integer.

We say that E 1s the ellipse the focuses of which are f1 and fs and the distance
of which is s if and only if E = E(f1, fa,s) = {(x,y) € Z*,d(c, f1)+d(c, f2) < s}
where d = d4 or dg.

To each cell ¢ of the discrete plane (Z?) is assigned a sum of distances s(c)
such that s(c) = 2?21 d(e, f;).
Let &£ be the family of ellipses and let ¢ € Z2.

‘PES@HSEN*,VCEZZ, s(c)gs‘

6.2 An automaton which recognizes the 4—cllipses.

The automaton that we must built, must allow to verify: 3s € BbbN™, Ve € Z2,
s(e) < s. More exactly, it must allow to verify that all the cells which belong to
the border of the ellipse have a sum of distances which is equal.

The idea is to make a wave coming from one of the focuses, in all the possible
directions. This wave spreads as far as touching the border of the ellipse. Then,
the cells which are on the border, send back a wave (different from the first
one). This wave spreads to the second focus. Then, verify that the figure is an
ellipse consists in verifying that the second wave ”faints” at the second focus.
So, we verify that the sum of the distances of any cell of the border to the two
focuses is constant.

The proposed automaton is £ = (2, S, H, §) where:

e F has seven states: S = {0,1,2,3,4,5 6},
e H is the Von Neumann’s neighborhood,

e The transition function is given by the transition table given in appendix,
chapter 5.

(See figure 8.7).
The space-time diagram which corresponds to this automaton is given in figure

8.8.

6.3 Demonstration.

Here, we intend to prove that the automaton which has been proposed recognizes
the ellipses and only them.

Definition 31 (Plane 4 — wave centered on a cell)

Let ¢ be a cell. A plane 4 — wave centered on c, denoted by Wc(4), s defined as
follows:
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o Ift=0, W1t=0)=c

o vt > 1, W) = Wt - 1) UED(E —1) with ED(t—1) = {(i,j) € 72,
(i) ¢ W= 1), e € WV = 1) (1,) € Ha(e))
E®(t — 1) is the set of the cells which are 4,djacent to Wc(4)(t - 1.

See figure 6.3

y y y

Starting cell: center

t=0 t=1 t=2 t=3

I Et=0) || Et=D) B Et=2)
Figure 6.3: Definition of the plane 4 — wawve.

Let R&(t) = {(3,5); (5,5) € (W;f) N Leypi(F)} be the set of cells that belong
both, at time t, to the external layer of the figure and to the 4 — wave which is
emitted by f.

Definition 32 (Plane 4 — wave centered on a cell which propagates in a figure)
Let ¢ be a cell and F be a figure. A plane 4 — wave centered on ¢ propagates in
the figure F (we denoted it by Wc/(é)) if and only if:

« WHt=0)=c

)

o W) = WPt — 1) U Bt - 1) with Bt — 1) = {(i,j) € F,
(i) ¢ Wt = 1), 3 € Wt = 1) (i,j) € Ha(e)}

Let ¢ € Lepi(F). We denote by U(4)(t) = Urgt(Wc/(;)) the set of waves that
are emitted by the cells that are on the border of the figure, at time t.

We define the property P5 of F' as follows:



CHAPTER 6. RECOGNITION OF ELLIPSES. 57

Property 4 P3(F) < 3t > 0,3!(i,j) € F, (i,7) ¢ UH(t) and (i,5) = f

A figure F' verify the Ps property if and only if, at a given moment t there exists
an unique cell which is not reached by the union of the waves the centers of
which are the border of the figure.

The theorem that we want to prove is the following one:

Theorem 3
Any 4 — connected figure F', without hole, which has two particular cells fi and
fa and which verify the Ps property s a 4-ellipse, that is to say:

Is e N*, F ={ceZ% d(e, f1) +d(c, f2) < s}
Before showing this theorem, we introduce a lemme which will be usefull.

Lemma 10
All the cells which are located to a distance d from the center ¢ of a wave W/ p,
are reached at the same time t by this wave and t = d.

Proof.
This 1s due both to the definition of the wave and to the definition of the Von
Neumann’s neighborhood. d

Proof of the theorem.
Let 3 = min,(R(t) # 0) be the necessary time for the wave to reach the nearest
border.
With the lemma 9, the cells that are reached at the time ¢; are the cells located
at a distance d; = t; from fi.
Let t2 > #; and {5 = maz,(R(t + 1) = 0) be the necessary time for the wave to
reach the cells that are on the farthest border from f;. These cells are dy = 5
away from fi.
Each cell ¢, that 1s on the border of the figure, which is reached between ¢; and
to is itself the center of a new wave (see figure 6.4). Therefore, we have:

o At t =11+ 1, each cell ¢ of R(t1) generate a wave Wc/,F
o At t =154 1, each cell ¢ of R(t2) generate too a wave Wc/,F

According to the Ps property, these waves faint at the same time ¢ = t'.

Let ¢} =t/ — (t1 + 1) be the necessary time for a wave which is generated at
t1 + 1 to faint. Likewise, let ¢, = — ({2 + 1) be the necessary time for a wave
which is generated at ¢ 4+ 1 to faint.

We call fs the cell on which the generated waves faint.

Then, we have t; +141] = to + 1+ 1% as the P5 property is verified. Therefore,
i1 + ) = ta +th. With the lemma 9, we have dy + d| = da + d}) where dj is
the distance between the cells that are nearest from f; and fa, and d is the
distance between the cells that are farthest from f; and fs.
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The cells that are on the nearest The cells that are on the
f border are reached. farthest border are reached.
1
I —

I ]

|| || ||
[ [ [
t=0 t1t1+1 t2t2+1 t't'+1

=— Wave centered gn f
=== \Naves the centers of which are the cells of the border that are reached at last by thé wave centered on
=== Waves the centers of which are the cells of the border that are reached at first by thélwave centered on

Figure 6.4: Repartition of the different wavestime.

Lemma 11

Ve € Lept(F), de+d, = dy + d}) = do+ dy with d. = d(c, f1) and d), = d(c, f2)

Proof.
Let ¢ be any cell of the border of F'. This cell is reached at t. by the wave
centered on f;. We have: ¢; <t, < 5, that is to say this cell is d, away from
fl, with d1 S dc S dz.
As F verify Ps, we have: .41, = t1 +1] = to+1% where ¢} is the necessary time
for the wave centered on ¢ to faint in f5. Therefore, d, +d, = dy +d} = ds + d},
where df, is the distance between ¢ and fa. a
Therefore, we have a || . ||; connected figure, without hole, which has two
particular cells f; and f» and such that any cell ¢ of the border of the figure
verify d. +d,, = s where s is a constant. Therefore, this figure is an ellipse which

has two focuses fi and fo, and such that F' = {c € Z%, d(c, f1) + d(c, f2) < s}.

6.4 Particular cases.

6.4.1 Case where the focuses are merged.
Definition.

In this part, we deal with the particular case where the focuses are merged. So,
we have figures which are similar to the one which is shown in the figure 6.5

Definition 33

A figure F' is an ellipse the focuses of which are merged if and only if Ve €
F,s(c) < constante with s(c) = d(f,c).

Let C be the corresponding family.
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Figure 6.5: Ellipse the focuses of which are merged.

An automaton which recognizes the 4-ellipses the focuses of which
are merged.

The automaton must verify that all the cells of the border of the figure are at the
same distance from the focuses. In fact, the question is to make an automaton
which is similar to the one that has been proposed for the recognition of ellipses
where the unique focus acts the part of the two previous ones. So, it initiates
the first wave and must verify that the second one comes back from all quarters
at the same moment.

The proposed automaton is C' = (2,5, H, ) where:

-S= {Oa 1a 2a 3a4}a
- H is the Von Neumann’s neighborhood,
- The transition table is given in appendix, chapter 5.

See figure 8.9.

6.4.2 Case of the isoceles triangle.
Definition of the triangle.

The figure which is given in 6.6 1s in 7; the class of the isoceles triangles.

A automaton which recognizes the isoceles triangles.

In order to recognize such figures, it’s sufficient to initialize a wave (state 2)
from the cells which are on the inclined borders of the figure (the cells the
neighborhood of which has two cells in the state 1 and two cells in the state 0;
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Figure 6.6: Isoceles triangle.

or , the cells which have an adjacent cell in the state 1 and the other ones in the
state 0). This wave spreads to the interior of the figure. The figure belongs to
7; if, at a given time, there exists a cell which is in state 1 and the neighborhood
of which is compound of three cells in state 2 and one cell in state 0, and no cell
in the rejection state.

The proposed automaton is 7, = (2, S, H, §) such that:

-S= {Oa 1a 2a 3a4}a
- H is the Von Neumann’s neighborhood,
- The transition table is given in appendix, chapter 5.

See figure 8.10.

6.5 8 — ellipses.

Up to now, we have only used the Von Neumann’s neighborhood. But, likewise
we can recognize 8 — ellipses (see figure 6.7. The principle of the automaton is
clearly the same as previously (see figure 8.11 and 8.12).

We can also be interested in the case where the focuses are merged.

6.6 conclusion

In this chapter, we defined the discrete ellipse and we gave a method which
allows to recognize it.

With the previous notations, the global time that is necessary to recognize an
ellipse is rtime(&, A) = s.
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Chapter 7

Conclusions.

We have seen some simple families of figures which are easy to be recognized
with two-dimensional cellular automata (the transition tables of which are given
in appendix). These families of figures are divided into two classes. Either they
are locally defined as the family of rectangles, the family of squares or globally
defined as the L’s family, the U’s family, the O’s family... but their recognition is
local and an acceptance state or a rejection state spreads everywhere inside the
figure. Or, they are defined with the help of waves, it’s the case of the ellipses.
For each family, we gave a cellular automaton which allows to recognize 1t. The
main difficulty of this work concerns the fact that the automata have a lot of
state transitions and then, they are not easy to handle (even if we have a suited
software).

7.1 Extensions.

7.1.1 Other figures.

We would have looked at others figures; in particular, we would have been
interested in the recognition of parallelograms. A parallelogram would be a
figure defined as follows:

Definition 34

a- Let q be any cell of the plane.
Let (bi)i=1, n be the sequence of cells defined as follows:

=y, = xq and Yy, = Y,
— Vi> 1,bip1 € H(by), if H(b;) is the set of the adjacent cells of b;.
- VY Z 1, Zp

i1 > Tb

z

62
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- Vi Z 1a Yoipa Z Yo, OT Vla Yoipa S Yo,
Let (¢;)j=0,.. m be the sequence of cells defined as follows:
=y, — 1 and Y1 =y,

- T,

—Vji>1,¢cj41 € H(ey), if H(ej) is the set of the adjacent cells of ¢;.
- V.] Z 1aycj'+1 < Ye;
-Vj> 1axc]'+1 > Tey OT Vi > 1axc]'+1 <z

See figure 7.1.

X increasing

y increasingT

%J

Sequence B
Cellq !

Sequence ?

Figure 7.1: Basic elements which are necessary to build a parallelogram.

b- Let fi be the operation that consists in supplementing the sequence (¢;)i=1, .n.
More precisely, the operation fi consists in adding the two following cells
to the sequence (¢;);:

— co such that ., = x., — 1 and Y., = Y, -
— cny1 such that xe, ., =x., +1 and Yo, = ye,.

Let fo be the operation that consists in supplementing the sequence (b;);=1,
Likewise, fo consists in adding the two following cells to the sequence (b;);

M.
— bo such that xp, = xp, and yp, = yp, + 1

= bmg1 such that vy, =y, and Yo, = Yo,, — 1
See figure 7.2

c- Let Iy be the 7(e;); translation” function such that: any cell ¢ of the plane
is in correspondence with the cell ¢ such that:
Leg = Loy Yeqg = Ye and x, = Lengr and yor = Yergr-
Let Fy be the 7(b;); translation” function such that: any cell ¢ of the plane
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f X increasing

y increasing

Figure 7.2: f1 and fo, operations that consist in supplementing sequences.

| =\

Sequence B

Any cell ¢

Sequence ¢ 1 Anycellc

Translation of ¢ by ?

Translation of ¢ by B

Figure 7.3: Translation of a sequence.
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is 1n correspondence with the cell ¢’ such that:
Log = Ley Yoo = Ye and r. = Lbpy1s Yo' = Ybpyr - See figure 7.3

d- We call parallelogram, any 8.onnected figure F, without hole and which
is built from a given cell ¢ and two sequences (¢ )i=1,..n and (bj)i=1 . m
as follows:

— Any celle; (i =1, ...,n)is in correspondence with the cell ¢; = Fy(e;).

We obtain the sequence (¢})i=1, . n-

— Any cell bj (j = 1,...,m) 1s in correspondence with the cell b =
Fy(b;). We obtain the sequence (b})j:1,...,m~
— The sequences (c;)i, (bj);, (ci)i and (b3); are the four sides of the

i
parallelogram.

See figure 7.4

Figure 7.4: Example of parallelogram.

As a parallelogram is a 8 onnected figure, we have to consider Moore’s neigh-
borhood in order to recognize it. Remember that all the cells that are in the
figure are in state 1 and the others are in state 0.

The idea consists in comparing the sides two and two.

For this, a first step consists in ”"making going down” the "uppermost” border
on the ”rock-bottom” border, the uppermost and most left cell (known) helps
as a guide. So, all the cells that belong to the uppermost border make in turns
the same shifting as the guide cell. Otherwise, the uppermost and most right
cell verifies, when it goes down, if the right border is well shaped. At last, if
at a given time, all the cells of the figure are either in the state 1 or in the
acceptance state then the figure is a parallelogram.
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We can notice that now, it’s a ”veil” which undulate rather than a wave which
spreads (the buckle is formed by the cells that go down).
This idea needs to be developed.

7.1.2 Properties.

We would also have looked for automata that indicate if a given figure has a
given property. For example, it can be interesting looking for an automaton
that allows to decide if a figure has a hole or not. In this case, the i1dea can be
the following one (see figure 7.5):

S gl ;

. " 7

Figure 7.5: How to know if a figure has a hole?

e We assume that a cell of the figure has been elected. The problem of the
election is a problem that has already been studied. In any cases, we can’t
elect on any graph. In the case where the cells of the plane know their
orientation, this is possible.

e In the first step, this cell spreads to the right, for example, as far as
touching a border (the border of the figure or the border of a hole).

e Afterwards, the cell of the border that corresponds, denoted by ¢, is going
to emit a wave which spreads in all the directions in the figure.

e We look at the wave front. A part of this front marks the border in which
c1s. If the front of the wave which propagates in the figure reach a border,
it 18 not the border in which ¢ is. So, the figure has a hole.

This problem needs to be deepened.

7.1.3 Implementation.

We’d also be interested in implementing complex cellular plane automata on
parallel machines. Then, the problem would be to know how to define the
automaton. So, it would be necessary to know if it’s useful to give all the state
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transitions. We can notice that any automaton corresponds to logic formulas.
For example, to say that a wave spreads (case of ellipses) this is to say that one
state is ”stronger” than any others but also, ”strongest” than others. And this
doesn’t need a big table!

7.2 Link with the Firing Squad problem.

We could do the link between the recognition of patterns with plane cellular
automata and the Firing Squad problem. Let us recall what is this problem.

7.2.1 The Firing Squad problem.

The One-dimensional case.

The Firing Squad problem, or fssp, given by Myhill in 1957 (Moore, 1964) can
be described as follows. We consider a string of cells such that each cell contains
a copy of the same finite automaton A (see figure 7.6). The string is finite but

General

$

Figure 7.6: A string of cells.

arbitrarily long. The inner state of a cell at ¢ + 1 depends on its inner state
at ¢t and on the inner states of its two adjacent cells (to the right and to the
left) at t. At ¢ = 0, one of the cells that is at the end of the string (called ”the
general”) enters a state s, ("fire when ready”), whereas the others cells (called
“the soldiers”) enter a quiescent state s,. Then, the string must evolve so that
at any time ¢ = t¢, all the cells ("the general” and ”the soldiers”) must execute
a state transition in order to enter in the state s; ("fire”), and no cell enters
sy before t¢. The problem consists in defining some automaton A, taking into
account that it mustn’t depends on the number of cells in the string.

The Two-dimensional case.

In the two-dimensional case, we speak about synchronization of patterns. Nguyen
and Hamacher in [NH74] have defined such a problem. Then, a pattern F is a
set of points which belong to Z2 If 2 and y belong to F then there exists a
string of cells that are directly connected which allows to go from z to y; the
neighborhood determines the different possible paths (see figure 7.7). Let J;
be the set of cells compound of the cell # = (4, j) and its adjacent cells. Then,
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Figure 7.7: A possible pattern.

the problem of the synchronization of patterns can be word as follows:
We consider any pattern F' and any cell G of F'. At the initial time ¢y, we have:

e Exactly one cell of F' in the special state s,.,

e The other ones are in one of the following states: s, is the

quiescent state.

oI S4,, S

1 o

We consider the uniform local state update function defined by: if z and H(z)
belong to {sg,, sq, } at t; then z doesn’t change its state at time ¢;41. s4, and
54, can be both considered as quiescent states because it is necessary to have an
other state in the neighborhood in order to change them. At timetq+1 =7 all
the cells enter the state s;, the "fire” state, simultaneously and for the first time
and all the others cells of the plane have come back to the state s,,. Nguyen
and Hamacher describe a method of construction where T'= 8n + 10 and n is
the distance between the cell the state of which is s, and the smaller square
centered on s, which contains F'.

We can notice that Nguyen and Hamacher authorize the use of cells that are
external of the pattern in order to synchronize. The solution which is proposed
by Szwerinski, developed in the next part, only uses cells that belong to the
pattern.

7.2.2 Solutions that are proposed by Szwerinski.

H. Szwerinski in [Szw82] proposes an optimal solution to the fssp for rectangles
the size of which is n with the general in an arbitrary position.

Dimension 1.

First, H. Szwerinski recall an optimal solution to the fssp in dimension 1, which
is explained by V.I. Varshavski, V.B. Marakhovsky and V.A. Peschansky in
[VVP69]. The principle is the following one: the algorithm consists in breaking
up into successive segment the string of automata (see figure 7.8).
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time

p3

p7
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Figure 7.8: Breaking up of the string.
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The partition of the string is done like that: In the case where the general is
at one end of the row, the signal of initialization put the automaton which is
at the end in a preterminal state and two signals p; and ps start spreading on
the string since this automaton. The first signal has a propagation speed which
equals one unit and the second one has a propagation speed which equals % (a
signal spreads with a speed % if it goes to the adjacent automaton after being
stayed n time units in the previous one). When the signal p; reaches the end of
the row, 1t makes the automaton which 1s at the end enters the preterminal state
and comes back with the same speed. The meeting of the reflected signal with
the signal ps takes place exactly in the middle of the row, and the corresponding
automaton (or the two corresponding automata if the number of automata in
the row is even) enters the preterminal state. If the reflected signal goes on
spreading with the same speed, and if at the initial time, the first automaton

emits a signal the speed of which is % (signal p7) then these signals will meet

% away from the beginning of the row. So, if all the automata which are in the

preterminal state emit a sequence of signals which spread with speeds 2m+1—1_1
and if the automata that are meeting points enters the preterminal state, then
the processus of recursive cuting off will takes place as in the figure 7.8. The

family of signals 2m+1—1_1 is built by recurence. The signal ﬁ uses the signal

1

1211 -tl—hel case where the intialization signal is done by any automaton of the row,
the general image of the propagation is shown in the figure 7.9. After that
the initialization signal has been sent, two signals p; and p} start spreading in
the two directions, since the initial automaton. The two signals have a speed
which equals 1. The initial automaton doesn’t enter the preterminal state if it
is not at the end of the row. When the signals p; and p} reach the ends of the
row, they make the automaton which is at the end enter the preterminal state
and they reflect; so there are signals which spread with the same speed. As in
the previous case, an automaton which enters the preterminal state generates a
sequence of signals the speed of which is ﬁ If the initialization signal has
been generated by the automaton O which is at the end of the row called initial
automaton, the image of the propagation of the signals is the same as the one of
the figure 7.8 with O’ = O. The signal pj which starts from O’ with a speed %
meets the reflected signal p§’ at A; (the middle of the row). Tt is not difficult to
see that the signal pf meet the signal p{ at A which corresponds to the position
of the initial automaton. Then, in order to do a initial cutting of the row, it
is necessary to change the speed of the signal p{: it updates fron 1 to % at the
point A. In order to do correctly the rest of the cutting, it is necessary that the
speed of any signal which start from O; with the speed 2,,}—_1 becomes ﬁ
Dimension 2.

The algorithm that is proposed by Szwerinski can be decomposed into two
phases (which can overlap if necessary). The first one identifies the cells which
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Figure 7.9: Morcellement de la chaine (cas général).
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are on the middle row(s), the middle column(s), the border cell, likewise the
row(s) or the column(s) that are %, %, g, ... away from the middle row(s) or the
middle column(s). This detection is done using a one-dimensional algorithm of
fssp in each row and in each column.

The second phase starts from the cells which are in the middle of rows and
columns. It’s an algorithm of fssp which uses the information given by the first
step. The necessary time to do this phase is the necessary time for a signal to

go the border of the figure from the middle of it.

7.2.3 Questions.

We would be interested in the following questions:

e Does the H. Szwerinski’s solution only allow to synchronize rectangles?
Or others patterns?

e Is any recognizable pattern with plane cellular automata synchronisable,
and conversely?

e Comparison between the time of synchronization and the time of local or
global recognition.
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Figure 8.1: Recognition of rectangles.



a)

I
I
I
I
I
o
I
o

EREEEEEE
EEEEEEEE
] | [ | [
EECEECOEE
ENCEECEE
EEECCEEE
EEEEEEEE
EREEEEEE

b)

0 o
I
0 o
I
0 o

ENENEEEE
5
EOOO000OE
5
] | e

DODDEOE DEEOEEE

DEEEEEE E00000H

DEE@EEE EO00O00H

OEEEDOO O000O00E

EEEEECON O00REEE
oEE

Il acceptance state

I rejection state

Figure 8.2: Recognition of squares.

DoOEE
OooEE
DoOEE
Oo0Ee

N[N | e EEEEN

I

Figure 8.3: Recognition of L.



I
I
o

i f ]}
OO
I o ||

I
I
I
I
Ll
oo

Ll
[

I
o
[l LI
0g LI
I
o

OUOEEmEn
DO EmEED
DD [

[
IIIDIIID
OEOEEmEn

EEENER
EEENZNA
N7

]

|
[m
X
il

|
X
XX
X
X
|

IENE
EEEE

I I
I
I I
DoOooCm
I
I
o

DEEEEEEE
BEOOO0O00O&E
5
EEECOOEE
BLE

DEEEEEEE
DEEEEEEE
EEECUEE
EEOECEOR
BEN
EEE

Figure 8.5: Recognition of T.
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Figure 8.7: Recognition of 4-ellipses.



Figure 8.8: Space-time diagram of the automaton that recognizes 4-ellipses.



Figure 8.9: Recognition of 4-ellipse the focuses of which are merged.
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Figure 8.10: Recognition of triangles.



og o A
[l [ I
o0 o
0oog 0 DOOEEEEEEED
Oooo0g oog 0 0og
0 EEECCOD OO0 OO 0oom
] EERCO0 0O00 OO 0oom
] EEECC0 000 EECD OOOm
OOO0o0oCOodn 0o0dodoobood oodaEEEm Oodm
O N O I o OOnEEEER
N N o N I o o o
0 1 o EEEEEEEEE 1 e o
0 o o [ [ [ [ [ [ [ | [ [] EEED CEEEEEEECOD
OO NEEEEEEEE CEEEEEEEEED B BE0D CEEEEEEECOD
COmm EE BN EED B BOC ON BOED
0 E OEE EED H EOC Om oog
0 B OEE EED B BOC ON gog
0 B OEE EED B BEOC CEEEEEEECOC
0 B OEE EEC BN BEOC CEEEEEEECOC
0 B OEE EEC BN o
Omm ]| EEEEEEEENEC I o o | o o
EEEEEEEEN o o o o o o
o o | ood
0 0 [jm[m] o [
0 o ] g0 [
0 wm [ ]| gooog [
0 (] (m/m[m(a] | [
0 OOCEEm| o [
0 g0 [
g0 [
\ B0 S[a]|
\ O oo
g

Figure 8.11: Recognition of 8-ellipses.
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