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We consider a family of gures of the discrete plane (rectangles, squares, ellipses,...) how shall we decide with a 2D cellular automaton whether a given gure belongs to the family or not? We e s s e n tially give three kinds of results. First, we look for a parallel way of de ning the family. F or example, a rectangle is a connected gure without hole such that all cells that are in the border have exactly two neighbors in the border. We s h o w that this de nition is equivalent to the classical one and give a cellular automaton which recognizes the rectangles' family in an optimal time. Secondly, the gures are de ned with the help of an algorithm which can be easily parallelized. A natural and meaningful example is the ellipses' recognition. An ellipse is a gure with two distinguished cells (the focuses) it is composed of all the cells the sum of distances to the two focus of which is less then a constant k (for the norm k k 1 or k k 1). In this case, the algorithm of recognition is the following one: a signal, generated by one of the focuses, spreads with an optimal speed in all the possible directions, and it is re ected back b y the border of the pattern. The gure is an ellipse if and only if all these signals are resorbed on the other focus. Finally, w e present an other algorithm inspired by a s y n c hronization algorithm due to F. Grasselli. in order to recognize the squares' family.

Chapter 1

Introduction.

Cellular automata (in short CA) w ere introduced by J.von Neumann vN67] i n the beginning of the sixties, according to S. Ulam's ideas, as a model of self reproduction. Cellular automata are nite automata which are regularly connected each other. They can be considered as dynamic systems. In its general historical form, a cellular automaton of dimension d is an in nite set of identical elementary nite machines (called cells, w h i c h are indexed by Z d ). A cell is a nite automaton which e v olves according to some receiving information and according to its past state which i t k eeps in memory (it has only a nite number of states). Thus, at the initial moment, all cells are in a given state and the system evolves as follows:

Synchronously: The new time is obtained when all cells have c hanged their state. Uniformly: The new state of a cell depends on the states of other cells which depend themselves on other cells that in the same way for all components of the network.

Locally: The new state of a cell depends only on a nite numb e r o f c e l l s which are in a bounded neighborhood. Cellular automata have been studied as languages' recognizers and, more recently as functions' computers. One of their application is the study of massively parallel algorithms in order to spread and to synchronize local information. In the following discussion, we d e v elopp a new utilization of cellular automata: we w ant to recognize families of gures with 2D cellular automata. As far as I know, no paper has previously been published about this subject. This report contains di erent families of gures we tried to recognize. This families are grouped in two parts. In the rst part, we search for the "most locally possible" de nition of the gure.

The main example is the rectangle's family: a rectangle is a discrete connected gure, without hole which has exactly four vertexes or, a connected gure, without hole, all border cells of which h a ve t wo border cells in their neighborhood. So, considering a connected gure which has no hole, the examination of the borders is su cient to determine if the gure is a rectangle or not. Likewise concerning the square: it's a rectangle which has a symmetry property, w h i c h is detected at the heart of the square. In this part, are also some families of gures such as the "L's family", the "U's family", the "O's family"... These families are globally de ned. In this case, we count t h e n umber of retracting vertices the gure has in order to recognize it. In the second part, we h a ve gures which bring into play w aves evolving on the plane. For example, we h a ve the ellipses' family: an ellipse is a gure with two distinguished cells (the focuses) it is composed of all the cells the sum of distances to the two focus of which is less then a constant k. In order to recognize this family of gures, we utilize a two dimensional signal which spread as a one-dimensional one. On a line, a wave spreads like that: at each top, each reached cell communicates the information to its not reached neighborhood, if it has one (see the gure 1.1). On the plane, it is a wave w h i c h seems to be a volume in the space-time diagram (it's a three-dimensional diagram). Thus, a signal which has the quickest speed appears as a pyramid, if the neighborhood is the Von Neumann's one (see gure 1.2). The wave form depends on neighborhood. We can de ne a line in terms of wave: "A wave which starts from a focus, disappears on the other focus". Then, there exist gures which can be de ned in terms of wave. Chapter 2 Basic notions.

Our goal is to recognize families of gures with plane cellular automata. In this section, we de ne notions which are useful to understand the rest.

Cellular automata

De nition 1 (Cellular automata) A two-dimensional cellular automaton, A, is a 4-tuple (d S H ) such that: d = 2 , i s c alled the dimension, S is a nite set, the elements of which are c alled the states and denoted by: S = fs k k 2 f 0 ::: jSj;1gg, H is a nite set of Z 2 , c alled the neighborhood and denoted b y : H = fv j = fs 1 j x 2 j g j 2 f 1 ::: jHjgg, is a function from S jHj to S, c alled the local transition function. The cellular automata we consider are two-dimensional ones: we put in each point o f Z 2 , c a l l e d cell, the same nite automaton.

Let A be a cellular automaton.

De nition 2 (Con guration of a cellular automaton) A con guration C A of A is an application from Z 2 to S. A c on guration C A evolves to another con guration C A de ned by: 8(x y) 2 Z 2 , C A (x y) = (C A (x + x 1 1 y + x 2 1 ) : : : C A (x + x 1 jHj y + x 2 jHj )). We denote this evolution by C A `C A and we call it the global function of A.

Starting from an initial con guration C 0 A , we obtain an in nite sequence o f con gurations C T A t 2 N de ned b y 8t 2 N, C t A `Ct+1 A .

A c e l l e n ters a new state according to its state and the states of its adjacent cells in which w e apply .

Neighborhoods

Let H be the considered neighborhood.

De nition 3 (Von Neumann's neighborhood) Let (x y) 2 Z 2 the Von Neumann's neighborhood of the cell (x y) is the set of cells, denoted b y H 4 (x y), such that: H 4 (x y) = f(x + 1 y ) (x ; 1 y ) (x y ; 1) (x y + 1 ) g.

We put H 1 4 (x y) = ( x y ; 1), H 2 4 (x y) = ( x ; 1 y ), H 3 4 (x y) = ( x y + 1 ) and H 4 4 (x y) = ( x + 1 y ): See gure 2.1. De nition 4 (Moore's neighborhood) Let (x y) 2 Z 2 the Moore's neighborhood of the cell (x y) is the set of cells, denoted b y H 8 (x y), such that: H 8 (x y) = f(x+1 y ) (x;1 y ) (x y;1) (x y+ 1) (x + 1 y + 1 ) (x + 1 y ; 1) (x ; 1 y + 1 ) (x ; 1 y ; 1)g.

H (c) 1 4 H (c)
We put H 1 8 (x y) = ( x y ; 1), H 2 8 (x y) = ( x ; 1 y ; 1), H 3 8 (x y) = ( x ; 1 y ), H 4 8 (x y) = ( x ; 1 y+ 1 ) , H 5 8 (x y) = ( x y + 1 ) , H 6 8 (x y) = ( x + 1 y+ 1 ) , H 7 8 (x y) = ( x + 1 y ) and H 8 8 (x + 1 y ; 1).

See gure 2.2. Let us notice that the cells which are in the Von Neumann's neighborhood of the cell (x y) are the cells which are one distance unit away from the cell (x y) where the distance is d 4 , d 4 (P Q) = ji P ; i Q j + jj P ; j Q j This distance is called City Block Distance (or Square Distance). In the Moore's case, the distance is d 8 , d 8 (P Q) = max(ji P ; i Q j jj P ; j Q j) This distance is called Chessboard Distance (or Diamond Distance).

Figures

We consider the discrete plane Z 2 . De nition 5 (Figure )  We call gure, denoted b y F, any nite subset of Z 2 . De nition 6 (4-connected path) A 4-connected p ath is any sequence o f p oints of Z 2 , (x 0 y 0 ) (x 1 y 1 ) ::: (x l y l ) such that 8i 2 f 0 : : : l ; 1g (x i+1 = x i + 1 and y i+1 = y i ) or (x i+1 = x i ; 1 and y i+1 = y i ) or (x i+1 = x i and y i+1 = y i + 1 ) or (x i+1 = x i and y i+1 = y i ; 1). De nition 7 (8-connected path) A 8-connected p ath is any sequence o f p oints of Z 2 , (x 0 y 0 ) (x 1 y 1 ) ::: (x l y l ) such that 8i 2 f 0 : : : l ; 1g (x i+1 = x i + 1 and y i+1 = y i ) or (x i+1 = x i ; 1 and y i+1 = y i ) or (x i+1 = x i and y i+1 = y i + 1 ) or (x i+1 = x i and y i+1 = y i ; 1) or (x i+1 = x i + 1 and y i+1 = y i + 1 ) or (x i+1 = x i ; 1 and y i+1 = y i ; 1) or (x i+1 = x i + 1 and y i+1 = y i ; 1) or (x i+1 = x i ; 1 and y i+1 = y i + 1 ) .

De nition 8 (Connected gure)

A gure F i s 4 -c onnected ( r espectively 8-connected) if and only if for all cells c and c' in F such that c 6 = c', there exists a 4-connected ( r espectively 8-connected) path which connec t s c t o c ' . De nition 10 (The external layer of a gure)

We de ne the external layer of the gure F, denoted b y L ext (F), as follows:

L ext (F) = f(x y) 2 F 9x 0 , y 0 with ((x'=x+1 and y'=y) or (x'=x-1 and y'=y) or (x'=x and y'=y+1) or (x'=x and y'=y-1)), (x',y')= 2F.g L ext (F ) is the set of cells that are on the border of F, t h a t i s t o s a y the cells that have at least one cell in their neighborhood which is not in the gure F (see gure 2.4). 

L (F)

Recognition of gures

De nition 12 (The state of a cell)

Let state(c t) be the state of the cell c at time t.

Initially, 8c 2 F , state(c 0 ) = 1 a n d 8c = 2 P, state(c 0) = 0. The cells which belong to F are in state 1 and the others are in state 0.

The state of the cell (i j), at time (t +1), is completely determined by the state of (i j) and the states of the adjacent cells at time t.

De nition 13 (Recognition of gures)

We have two notions of recognition:

The local recognition: one cell of the gure enters an accepting state or a rejection state. The global recognition: all the cells of the gure enter the same state: acceptance state or rejection state.

De nition 14 (Family which is recognisable with 2-dimensional cellular automata)

We say that a family of gures, denoted b y F, i s r ecognizable with 2D cellular automata if and only if there exists a cellular automaton A such that for every gure F on the plane there is a time t such that, A t (F) = a everywhere i n F (a=acceptance state). Otherwise, A t (F) = r everywhere i n F (r=rejection state).

That is to say there is an automaton which accepts all the gures of F and which rejects all the others.

De nition 15 (Time of recognisation)

We denote rtime(P A) = min(t 8c 2 F state(c t)= a or 8c 2 F state(c t)=r) the recognition time of F with A if the gure F is recognizable with A.

It is the rst time all the cells of the gure a r e in the same state (acceptance state or rejection state).

Chapter 3

Recognition of rectangles.

The goal of this part is to show that rectangles are recognizable by t wo-dimensional cellular automata. The idea here developed, consists in looking for the most locally possible de nition of the rectangle and using this de nition in order to construct a cellular automaton which allows to recognize it.

De nition of a rectangle.

Let us consider the rectangles' family, denoted by R, that is to say the set of gures F such that: 9(i 0 j 0 ) 2 Z 2 and (i f j f ) 2 Z 2 F = f(i j) 2 Z 2 i 0 i i f and j 0 j j f g Now, we g i v e a de nition of the rectangles which i s e q u i v alent to the previous one but, which gives us a local characterization of the rectangles. In fact, we want this de nition to indicate us the neighb o r h o o d o f e a c h cell of the gure. It will help us to construct a cellular automaton recognizing the rectangles' family.

Let F be a 4-connected gure without hole. We h a ve t o k eep in mind that, at time 0, all the cells which belong to F are in state 1 and the others are in state 0.

Let P 1 be the following property, associated to the gure F:

Property 1 (Property of the external layer of a gure)

8(i j) 2 L ext (F), jH(i j) \ L ext (F )j = 2
This property means that all the cells which belong to the external layer of the gure F, have exactly two adjacent cells which belong to this layer.

Then, we h a ve the following theorem:

Theorem 1

A gure F is a rectangle if and only if F is 4-connected, without hole and P 1 (F) is true.

3.2 Demonstration.

In this section, we w ant to prove the previous theorem. Let F be a gure which is 4-connected, without hole and which v eri es the property P 1 . W e w ant t o s h o w t h a t F is a rectangle. The proof is long then, we decompose it as follows:

In a rst part, we present the Jordan's lemma for Z 2 . It will be useful in order to demonstrate the following lemmas.

In a second part, we construct a sequence of cells which describes the border of the gure F: w e take the upper-left most cell of the gure as the rst element of the sequence and we go round the border the gure in the counterclockwise direction(see gure 3.1). We s h o w that the border of F is constituted by four parts: an horizontal part, In the third part, we show that the rst case leads to a contradiction. In the fourth part, we deduce that the gure F is a rectangle the border of which is the sequence we h a ve just constructed. In order to x the ideas, we use the part of the grid which i s s h o wn in the gure 3.4.

The Jordan

's lemma f o r Z 2 .
Lemma 1 (Jordan's lemma for Z 2 ) Any connected p ath which connects the point (a b) to the point (a + 1 b ; 1) meets any connected p ath which connects the point (a + 1 b ) to (a b ; 1). See gure 3.5. 

Construction of a sequence which describes of the border of F

We study the position of the cells which are on the border of the gure. We start with the upper-left most cell and we go round the border of the gure in the counterclockwise direction.. As soon as we go round, we construct a 4connected path, denoted by h l for 0 l n, which c o n tains the meeting cells.

The rst element, h 0 , of this path is the upper-left most cell the coordinates of which a r e i 0 and j 0 such that:

De nition 16 (De nition of (i 0 j 0 )) We put j 0 = minfj 9i (i j) 2 F g and i 0 = minfi ( i j 0 ) 2 F g (i 0 j 0 ). By de nition of i 0 and j 0 , w e h a ve:

Fact 1 (i 0 j 0 ) 2 L ext (F) (i 0 j 0 + 1 ) 2 L ext (F) (i 0 + 1 j 0 ) 2 L ext (F) Proof (i 0 j 0 ) 2 F and (i 0 j 0 ; 1) = 2 F because of the de nition of j 0 then (i 0 j 0 ) 2 L ext (F ). (i 0 ; 1 j 0 ) = 2 F because of the de nition of i 0 . A s ( i 0 j 0 ; 1) = 2 F , (i 0 ; 1 j 0 ) = 2 F, ( i 0 j 0 ) 2 L ext (F) and F satis es P 1 we h a ve: (i 0 j 0 + 1 ) 2 L ext (F ) and (i 0 + 1 j 0 ) 2 L ext (F ). See gure 3.6.

We go round the gure by the right. So, we rst describe the higher border of the gure: Lemma 2 There exists an index such that 8k 2 f 0 : : : ; 1g, i k+1 = i k + 1 , j k+1 = j k and i +1 = i and j +1 = j + 1 .

Proof. See gure 3.7.

Let be the rst index such t h a t ( i + 1 j ) = 2 L ext (F). Then (i j ; 1) = 2

L ext (F ) with the de nition of j 0 (we h a ve j 0 = j 1 = ::: = j ). Therefore (i j + 1 ) 2 L ext (F) because F satisfy P 1 and i +1 = i , j +1 = j + 1 . Now, we successively give a description of the right, the bottom and the left most borders.

Lemma 3

There exists an index (0 ) such that 8k 2 f ::: ; 1g, i k+1 = i k , j k+1 = j k + 1 and i +1 = i ; 1 and j +1 = j . Let be the smaller index ( > ) s u c h that (i j + 1 ) = 2 L ext (F). Then, as F satis es the property P 1 , i f ( i + 1 j ) = 2 L ext (F ) t h e n ( i ; 1 j ) 2 L ext (1).

i 0 i i j 2 i α-1 2 1 j j α i α i α+1 j α+1 j +1 α h α h -1 α h 2 h 1 α h -1 0 h Figure 3.7: The higher border α α α i j +1 i α j +1 α j β i β i β-1 j h β+1 i β-1 β+1 h β-1 h β+1 h β i 0 j 0 h 0 +1 α h j out of F in F contradiction
We show, by reduction to the absurd, that (i + 1 j ) = 2 L ext (F ). Otherwise, (i j ; 1) 2 L ext (F ) a n d ( i + 1 j ) 2 L ext (F ) and therefore belong to F. A s (i j ) 2 L ext (F ), it belongs to F and therefore the point ( i ; 1 j ) d o e s n ' t belong to F . L ext (F ) n f (i j )g is a k : k 1 connected path which connects (i j ; 1) to

(i + 1 j ).
As F is a gure without hole, there exists a k : k 1 connected path which connects (i ; 1 j ) t o ( i 0 j 0 ; 1). We extend this path adding it the point ( i j ), the points (i h j h ; 1) for h 2 f 1 ::: g and (i h + 1 j h ) for h 2 f ::: ; 1g. T h e n we obtain a path which connects (i j ) t o ( i + 1 j ; 1). With the lemma 2, this two paths have a common point which belongs to L ext (F ) n (i j ) a n d therefore to F. But, with the de nition of the second path, it doesn't belong to F . There is a contradiction.

Lemma 4

There exists an index ( 0) such that 8h 2 f ::: ; 1g, i k+1 = i k ; 1, j k+1 = j k and i +1 = i and j +1 = j ; 1.

Proof.

It is similar to the previous one (see gure 3.9). Now, we h a ve s e v eral possible cases. They are shown in the gure 3.10. Actually, the rst case can readily be eliminated (because of the de nition of j 0 ).

Lemma 5

Either 8k 2 f ::: ng i k+1 = i k , j k+1 = j k ; 1 and (i k+1 j k+1 ) 2 L ext (F) or, 9 such that 8k 2 f ::: ; 1g i k+1 = i k , j k+1 = j k ; 1 and i +1 = i + 1 and j +1 = j .

Proof. If we are in the rst case, the construction is ended. We will discuss about this situation after. Let be the smaller index ( ) s u c h that (i j ; 1) = 2 L ext (F ). Two c a s e s are possible: either (i ; 1 j ) 2 L ext (F) o r ( i + 1 j ) 2 L ext (F ). We show that the rst case leads to a contradiction (see gure 3.11): the two points (i + 1 j ) a n d ( i j ; 1) don't belong to F. W e call ( ĩ j) one of these points, and we consider the two paths:

L ext (1) n (i j ) i n F i j β β α i j β-1 h β-1 h β-1 i β j 0 h 0 β+1 i j β+1 h β+1 0 h γ+1 i γ h γ i γ-1 h γ-1 j γ+1 i γ+1 j γ j γ-1 h +1 α i +1 α j α i α j +1 α h contradiction out of F in F
Figure 3.9: The bottom border

j β+1 h β-1 i β+1 β+1 α β h β-1 h +1 i0 j h h 0 j α i β-1 i β i β j j hα α +1 α i α i 0 +1 i α+1 h α i0 j 0 h 0 j β i i β-1 j β-1 h β-1 h β β+1 i α h β+1 α iγ h +1 iγ-1 h γ-1 jγ j γ-1 h γ+1 jγ+1 iγ+1 j +1 j α j h n jn in h α γ+1 i γ+1 j γ+1 h β hα+1 j α i α j α+1 i α+1 h α i0 j 0 h 0 j β i β i β-1 j β-1 h β-1 h β β+1 i j β+1 h β+1 j iγ h γ iγ-1 h γ-1 jγ j γ-1 h γ+1 jγ+1 iγ+1 γ-1 j β+1 γ-1 h δ j δ i δ h γ-1 i γ j γ h γ i γ (a) (c) (d) 
? ? The path constituted with the path which doesn't belong to F and which connects ( ĩ j) t o ( i 0 j 0 ;1), with the point ( i j ) and the points (i h j h ;1) for h 2 f 1 ::: g, ( i h + 1 j h ) for h 2 f ::: g and (i h j h + 1 ) f o r h 2 f ::: g. These two paths meet in a point w h i c h is not (i j ) and which is both in F and outside F .

In the case where there exists an index such that, for all k in f ::: ;1g, i k+1 = i k , j k+1 = j k ; 1, i +1 = i + 1 a n d j +1 = j the construction of the is not ended. We continue it by induction. There are four cases, which correspond to the four possible directions of the path (see gure 3.12).

Lemma 6

There exists a sequence of indices k m indexed b y m 2 f 0 ::: g such that:

Si m = 0 , k 0 = 0 Si m > 0, { If m 0 ( 4 ) 8 k 2 f k m;1 ::: k m ; 1g i k+1 = i k and j k+1 = j k ; 1 i km+1 = i km + 1 and j km+1 = j km { If m 1 ( 4 ) 8 k 2 f k m;1 ::: k m ; 1g i k+1 = i k + 1 and j k+1 = j k 0 j h 0 h j i δ δ δ+1 j δ i β i h j β-1 h β-1 h β β i j β+1 h β+1 β-1 i γ h γ β+1 γ-1 h γ-1 j γ j γ-1 h γ+1 j γ+1 i γ+1 0 i α h h h δ-1 i δ-1 j δ-1 +1 α i +1 α j α i α j +1 α i j i δ+1 δ+1 contradiction in F not in F Figure 3.11: The left most border k 5 h k 7 h k 8 h k 9 h k 10 h k 11 h k 12 h k 13 h k 14 h k 15 h k 16 h k 6 h =(i ,j ) 0 0 k 0 h =(i ,j ) α α k 1 h =(i ,j ) β β k 2 h =(i ,j ) γ γ k 3 h =(i ,j ) δ δ k 4 h Figure 3
.12: Construction of the path by induction i km+1 = i km and j km+1 = j km + 1

{ If m 2 ( 4 )
8 k 2 f k m;1 ::: k m ; 1g i k+1 = i k and j k+1 = j k + 1 i km+1 = i km ; 1 and j km+1 = j km { If m 3 ( 4 ) 8 k 2 f k m;1 ::: k m ; 1g i k+1 = i k ; 1 and j k+1 = j k i km+1 = i km and h km+1 = j km ; 1 Proof. Notice that the constructed path is a spiral.

=(i ,j ) β β k 2 h =(i ,j ) α α k 1 h =(i ,j ) 0 0 k 0 h =(i ,j ) γ γ k 3 h =(i ,j ) δ δ k 4 h h k m-1 h k m-1 +1 h k' Figure 3

.13: Construction of the spiral

We s h o w this lemma by induction on m, distinguishing the di erent cases: m = 0 1 2 3(4). We h a ve:

For m = 0 , h k0 = h 0 = ( i 0 j 0 ) (the upper-left most cell), for m = 1 (respectively 2, 3 and 4), we h a ve the same situation as in the lemma 2 (respectively lemma 3, lemma 4 and lemma 5) with k 1 = (respectively k 2 = , k 3 = , k 4 = ), for m 5, we suppose that the path h has been constructed for k 2 f 0:::k m;1 + 1 g. We w ant to de ne it for k 2 f k m;1 + 2 :::k m + 1 g.

Notice that we only give the demonstration in the case where m 0(4) because the other cases are similar.

{ Case m 0 (4)

With the recurrence hypothesis, we h a ve i km;1+1 = i km;1 and j km;1+1 = j km;1 ; 1 (see gure 3.13). Let k 0 be the smaller index (k 0 > k m;1 ) such that j k 0 +1 6 = j k 0 ; 1. In H(i k j k ) \ L e xt), we h a ve t h e p o i n t (i k 0 j k 0 + 1). As F satis es the property P 1 , one of the two p o i n ts

(i k 0 ; 1 j k 0) o r ( i k 0 + 1 j k 0) 2 L ext (F ) \ H(i k 0 j k 0). We s h o w that if it is (i k 0 ; 1 j k 0)
, then we come to a contradiction (see gure 3.14). So, (i k 0 + 1 j k 0) and (i k 0 j k 0 ; 1) do not belong to F let ( ĩ j) b e o n e of these points.

The path I made of L ext (1) except (i k 0 j k 0), which connects (i k 0 ; 1 j k 0) t o ( i k 0 j k 0 ; 1) is entirely in F. Moreover, (i k 0 ; 1 j k 0 + 1) do not belong to L ext (F ). So, as F is 4connected and without hole, there exists a path CH, w h i c h i s e n tirely outside F, a n d w h i c h connects ( ĩ j) t o ( i k 0 ; 1 j k 0 + 1).Therefore, with the lemma 2, these two paths I and CHhave a common point. This common point can't be the point ( ĩ j) w h i c h doesn't belong to L ext (F ). Whence the contradiction.

{ Other cases.

They are similar to the former one.

Study of the path.

In this section, we study the spiral. More precisely, a s w e h a ve s h o wn that it is nite, we s h o w t h a t e v ery case of stop leads to a contradiction.

We start working on the sequence of indices k m or m 2 f 0 : : : g. W e show that, if we g i v e an other formulation of this sequence, we can deduce relations between the coordinates of the points h km (see gure 3.15). 

γ (i ,j ) γ (i ,j ) k'+1 k' k'+1 k' m-1 m-1 (i ,j ) δ β (i ,j ) (i ,j ) β (i ,j ) α α (i ,j ) 0 δ 0 (i ,j ) in F out of F contradiction Figure 3.14: Case m 0 ( 4 ) h k 16 h k 0 h k 4 h k 8 h k 12 h k 13 h k 9 h k 5 h k 1 h k 2 h k 6 h k 10 h k 14 h k 15 h k 11 h k 7 h k 3

Lemma 7

If > 3 then, nominating again the sequence k m by k 0+4l , k 1+4l , k 2+4l , k 3+4l , l 2 f 0 ::: ;3 4 g, we have: 8l 2 f 0 :::

;3 4 g a-i k4l < i k 4(l+1) < i k 4(l+1)+1 < i k4l+1 for l 1 b-j k4l+1 < j k 4(l+1)+1 < j k 4(l+1)+2 < j k4l+2 c-i k4l+2 < i k 4(l+1)+2 < i k 4(l+1)+3 < i k4l+3 d-j k4l+3 < j k 4(l+1)+3 < j k 4(l+1)+4 < j k4l+4
Proof. We show it, by recurrence on l. l=0

We h a ve:

{ j k1 < j k5 < j k6 < j k2 { i k2 > i k6 > i k7 > i k3 { j k3 > j k7 > j k8 > j k4
E ectively, j k1 = j k0 by de nition of k 1 . j k4 > j k0 by de nition of j 0 = j k0 . So, j k4 > j k1 . As, j k5 = j k4 (by de nition of k 5 ) w e h a ve j k1 < j k5 . j k6 > j k5 by de nition of k 6 , hence j k1 < j k5 < j k6 . We prove t h a t j k6 < j k2 by reducing it to the absurd. We suppose that j k6 j k2 (see gure 3.16). Then, there exists an index

h k 0 h k 1 h k 2 h k 3 h k 5 h k 6 h k 4 h l' Figure 3
.16: Case j k6 j k2 . l 0 , k 5 < l 0 k 6 , such that h l 0 has more then two adjacent cells which belong to L ext (F ). Hence, the contradiction. So, we h a ve j k1 < j k5 < j k6 < j k2 .

With a similar reasonning, we p r o ve t h a t i k2 > i k6 > i k7 > i k3 and j k3 > j k7 > j k8 > j k4 . l>0 We o n l y s h o w the item a-because the other ones are similar.

We suppose that the relations are true for the index (l ; 1) (see gure 3.17).

First, we h a ve i k4l < i k4l+1 by t h e h ypothesis of recurrence .

h k 4(l-1) h k 4(l-1)+1 k h 4(l-1)+2 h k 4(l-1)+3 h k 4l h k 4l+2 k h 4l+1 h k 4l+3 k h 4(l+1) i j Figure 3
.17: General case of the lemma 7 Moreover, i k4l+2 = i k4l+1 by de nition of h k4l+2 and i k4l+3 < i k4l+2 , h e n c e i k4l+3 < i k4l+1 . But, i k4l+3 > i k4l by the hypothesis of recurrence. Then, i k4l < i k4l+3 . i k4l+4 = i k 4(l+1) = i k4l+3 by de nition of h k 4(l+1) . Hence, i k4l < i k 4(l+1) < i k4l+1 . Moreover, i k 4(l+1)+1 < i k 4(l+1) by the de nition of h k 4(l+1)+1 . B u t , i k 4(l+1)+1 < i k4l+1 because otherwise, there exists an index l 0 , k 4(l+1) < l 0 k 4(l+1)+1 , such t h a t h l 0 has more than two adjacent cells which b e l o n g t o L ext(F) (see gure 3.18). Hence, i k4l < i k 4(l+1) < i k 4(l+1)+1 < i k4l+1 .

We observe that the lemma 5 gives a possibility to stop the construction. As the gure is a nite set of cells and since the lemme 7, the sequences of points h k0+m , h k1+m , h k2+m and h k3+m , for m 2 f 0 : : : g, converge to one or two p o i n ts. So, the sequence of indices k m , f o r m 2 f 0 ::: g is nite. The gure 3.19 shows di erent possible ends of the construction.

Proposition 1 L ext (F) = f(i j) ((j = j 0 or j = j 3 ) a n d i 0 i i 1 ) o r ( ( i = i 0 or i = i 1 ) and j 3 j j 0 ) We know that there are two kinds of stop: either the construction of the path h stops as in the situation of the rst case of the lemma 5 and i 3 > i 0 or i 3 = i 0 or, it continues as in the lemma 6 and we h a ve spiral the construction of which ends in four di erent case. In fact, we can prouve that every cases of stop, except the case where i 3 = i 0 , lead to a contradiction. E ectively, i n e a c h case there exists a cell of the path which has more than two adjacent cells which belong to L ext (F ) (see gure 3.19). Hence, h is the set of cells (i j) s u c h that ((j = j 0 or j = j 3 ) and i 0 i i 1 ) or ((i = i 0 or i = i 1 ) and j 3 j j 0 ) and h is the border of F.

h k 4l k h 4l+1 h k 4l+2 h k 4l+3 h k 4(l+1) h k 4(l+1)+1

Characterization of F .

In this section, we p r o ve that the path which has been constructed previously is the border of a rectangle, that is to say F is a rectangle.

Proposition 2 F = f(i j) i 0 i i 1 and j 3 j j 0 g.

Proof

In the former subsection, we h a ve s h o wn that the border of F , denoted by L ext (F ), is such t h a t L ext (F) = f(i j) ((j = j 0 or j = j 3 ) a n d i 0 i i 1 ) or ((i = i 0 or i = i 1 ) a n d j 3 j j 0 ). The gure 3.20 gives a graphic representation of the border of F. A s F is 4-connected and without hole, F cannot only be the border of a rectangle and there not exists any c e l l ( i j) s u c h

i 0 j 3 j 0 i 1 i j Figure 3
.20: The border of F that i 0 i i 1 , j 3 j j 0 and (i j) doesn't belong to F.

Hence, F = f(i j) i 0 i i 1 and j 3 j j 0 g.

An automaton which recognizes the rectangles.

We h a ve to nd an automaton A, w h i c h allows to have, at a given time t, all the cells of the gure in the same state: the acceptance state if the gure belongs to the rectangle family or, the rejection state if the gure doesn't belong to the rectangle family. We h a ve s h o wn that a gure F is a rectangle if and only if every cell that belong to the border of F have exactly two adjacent cells which belonging to the border. We use this de nition in order to construct a cellular automaton recognizing the rectangles: each cell of the gure says to its neighbors whether it is on the border or not. A cell which is on the border and which has not exactly to adjacent cells on the border generates a rejection state. And, a cell which is on the border and which has exacty t wo adjacent cells on the border, generates an acceptance state. The proposed automaton A is A = ( 2 S H ) such that:

A has 5 states: S = f0 1 2 3 4g, H is the Von Neumann's neighborhood, is the transition function given by the transition table 3.1. The principle is the following one. A cell which is in state 1 and that belongs to the external layer of the gure (that is to say a cell which has at least one adjacent c e l l i n s t a t e 0 ) e n ters state 2. Afterwards, each cell which is in state Table 3.1: The transition function of the automaton recognizing the rectangle's family.

Cell H 1 4 H 2 4 H 3 4 H 4 4 New state 1 0 2 1 0 2 1 0 2 1 0 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2
2 is going to determine, according to its neighborhood, if it may belong to the border of a rectangle. In fact, a cell which is in state 2, knows that it is not the border of a rectangle if it doesn't have e x a c t l y t wo adjacent cells which are in state 2. So, each cell that belongs to the border, enters the acceptance state (state 3) or in the rejection state (state 4). Then, these states spread the rejection state is stronger than the acceptance state. At some time t, w e h a ve:

8c 2 F state(c) = 3 ( F 2 R ) 8c = 2 F state(c) = 4 ( F = 2 R )
Then, we k n o w i f F is a rectangle or not.

Examples are given in the gures 3.21 and 8.1. If all the cells of the considered gure are in state 3 then the gure is a rectangle otherwise, if all the cells are in state 4 then the gure is not a rectangle. Let us consider the rst gure. All the cells of the external layer have exactly two adjacent cells belonging to this layer, therefore they all enter the acceptance state (state 3). Afterwards, this state spreads in all the gure. On the other hand, in the third gure, two cells of the external layer haven't exactly two adjacent cells in this layer, therefore these cells enter the rejection state. The rejection state dominates the acceptance state, so all the cells of the gure progressively enter the rejection state (state 4).

Conclusion.

We g a ve an automaton which allows to decide whether any 4-connected gure without hole of the discrete plane is a rectangle or not. We can notice that four of the ve states are essential: the initial states 0 and 1 and the terminal states 3 and 4 can not be suppressed. It seems that this automaton has a minimal n umber of states. Otherwise, it allows to detect very quickly, as soon as the second iteration, whether the gure is a rectangle and this independently regardless of its size. For a rectangle the size of which i s m n, the global recognition time is Chapter 4

rtime(R A ) = d min(m n) 2 e + 1 .
Recognition of squares.

4.1 Introduction.

In this chapter, we study the squares' family that is to say the set of gures F such that:

9(i 0 j 0 ) 2 Z 2 and l 2 N F = f(i j) 2 Z 2 i 0 i i 0 + l and j 0 j j 0 + lg

We are going to give an automaton which a l l o ws to recognize the squares. For this, we are going to use a similar method as the one used for the rectangles and we are going to say that a square is a rectangle which has a symmetry property.

In fact, we are going to apply the idea, which has been developed by Grasselli (1975) in Gra75], for the two-dimensional Firing Squad Problem, to the square recognition problem. Grasselli de nes two operations which are applied on the gures. The rst one, the decrease, consists in taking o the most external cells (that are the cells which h a ve at least one adjacent cell which doesn't belong to the gure). The opposite operation, the expansion, consists in adding a layer of cells to the gure. If the decrease is successively applied to any gure, at a g i v en time, if we apply one supplementary decrease, then all the cells of the gure disappear: we will say that the nucleus of the gure is reached. We will use again this idea of "peeling an onion" in order to recognize the squares.

De nition of the square.

Let F be a gure of the discrete plane. We start from the following con guration of the plane:

8c 2 F state(c,0)=1 8c = 2 F state(c,0)=0
De nition 17 (The layers of a gure)

We de ne the i th layer of the gure F, denoted b y L i (F), as follows: L 0 = L ext (F) i 1, L i = L ext (F n (L 0 ::: L n;1 )) (See gure 4.1). De nition 18 (The internal layer of a gure)

L 2 L 1 L 3 = int L (F) L 0 = ext L (F)
As F is a nite gure, there exists an index i 0 such that L i 0 +1 (F) = . W e put L int (F) = L i 0 (F). L int (F) is called the internal layer of the gure o r t h e nucleus of the gure.

We de ne the following property, S, o f a n e i g h borhood.

Property 2 S(H 4 (x y)) , 9 i i 0 , ( H For a gure F , w e de ne the following property P 2 :

Property 3 P 2 (F) , P 1 (F) and (8(i j) 2 L int (F) S (H 4 (i j)))

F veri es P 2 if and only if F veri es P 1 , t h a t i s t o s a y all the cells of the external layer of the gure have exactly two adjacent cells in this layer, and if the neighborhood of any cell that belongs to the nucleus of the gure veri es S. Then, we h a ve the following theorem:

Theorem 2 F is a square (F 2 S ) , F is 4-connected, without hole and P 2 (F )true 4.3 Demonstration.

We w ant to prove the former theorem.

Using the theorem 1 (chapter 3), we k n o w t h a t F is a rectangle, that is to say 9(i 0 j 0 ) (i f j f ) 2 Z 2 , F = f(i j) i 0 i i f and j 0 j j f g Then, three cases are possible:

Case 1: j f ; j 0 > i f ; i 0 . { Case 1.1: i f ; i 0 odd. As i f ; i 0 is odd, 9i L i = L int (F) = R(i 0 +(i;1) j 0 +(i;1) i 0 +(i;1) j f ;(i;1)) = f(i j) 2 F i 0 +(i;1) i i 0 +(i;1) et j 0 +(i;1) j j f ;(i;1)g because of the de nition of L int (F ). So L int (F ) is a rectangle the sides of which are parallel to the axis i and the length of which i s 1 . Let c 1 and c 2 be the extremist cells of this rectangle, c 1 = ( i 0 + (i ; 1) j 0 + ( i ; 1)) and c 2 = ( i 0 + ( i ; 1) j f ; (i ; 1)). We h a ve:

H 1 4 (c 1 ) 2 L i;1 , H 2 4 (c 1 ) 2 L i;1 , H 3 4 (c 1 ) 2 L i et H 4 4 (c 1 ) 2 L i;1 .
Therefore, H 4 (c 1 ) doesn't satisfy the property S (it's the same for H 4 (c 2 )). Therefore P 2 is not veri ed in this case.

{ Case 1.2: i f ; i 0 even. As i f ; i 0 is even, 9i L i (F) = L int (F) = R(i 0 +( i;1) j 0 +( i;1) i 0 +i j f ;(i;1)) = f(i j) 2 F (i 0 +(i;1) i i 0 +i and j 0 +(i;1) j j f ;(i;1)g.

So L int (F) is a rectangle the sides of which are parallel to the axis i and the length of which i s 2 .

Let c 1 = ( i 0 + ( i ; 1) j 0 + i). c 1 2 L int (F ). This cell is such t h a t

H 1 4 (c 1 ) 2 L i , H 2 4 (c 1 ) 2 L i;1 , H 3 4 (c 1 ) 2 L i et H 4 4 (c 1 ) 2 L i . Therefore
H 4 (c 1 ) doesn't verify the property S and then, P 2 is not veri ed again.

Case 2: j f ; j 0 < i f ; i 0 { Case 2.1: j f ; j 0 odd. The reasoning is the same as in the case 1.1.

We obtain a rectangle the sides of which are parallel to the axis j, and the length of which i s 1 . A n d , w e conclude as in 1.1.

{ Case 2.2: j f ; j 0 even. Idem case 1.2. Case 3: i f ; i 0 = j f ; j 0 Let l = i f ; i 0 = j f ; j 0 .

{ Case 3.1: l even. 9i L i = L int (F) = R(i 0 + ( i ; 1) j 0 + ( i ; 1) i 0 + i j 0 + i) = f(i j) i 0 + ( i ; 1) i i 0 + i et j 0 + ( i ; 1) j j 0 + ig. T h e n ucleus of the gure, L int (F), is a square the sides of which h a ve a length which equals 2. Therefore, it contains four cells which are named c 1 , c 2 , c 3 et c 4 . W e h a ve: H 4 (c 1 ) v eri es S because H 1 4 (c 1 ) 2 L i;1 , H 2 4 (c 1 ) 2 L i;1 , H 3 4 (c 1 ) 2 L i and H 4 4 (c 1 ) 2 L i .

It's the same with H 4 (c 2 ), H 4 (c 3 ) e t H 4 (c 4 ). Therefore P 2 is veri ed.

De nition 19 (The expansion of a gure)

Let E(F ) be t h e o p eration which is de ned as follows: Let G = f(i j) 2 F 9c 2 H 4 (i j) and c 2 L ext (F )g be the set of the cells which belong to the plane and which have at least one adjacent cell in the external layer of the gure.

E(F ) = F G

The operation E(F) consists in taking again a layer to the gure F: 

Lemma 8

If F is a square t h e n E(F ) is a square.

Proof.

Let S be a square such t h a t S = f(i j) 2 F i 0 i < i 0 + l and j 0 j < j 0 + lg. Let T = f(i j) 2 F (j = j 0 ; 1 and i 2 f i 0 ; 1 ::: i 0 + l + 1 g) (j = j 0 + l + 1 and i 2 f i 0 ; 1 ::: i 0 + l + 1 g) (i = i 0 ; 1 and j 2 f j 0 ::: j 0 + lg) (i = i 0 ; (l + 1) and j 2 f j 0 ::: j 0 + lg) E(C) = C T = f(i j) 2 F i 0 i < i 0 + l and j 0 j < j 0 + lg and (j = j 0 ; 1 and i 2 f i 0 ; 1 ::: i 0 + l + 1 g) and (j = j 0 + l + 1 a n d i 2 f i 0 ; 1 ::: i 0 + l + 1 g) and (i = i 0 ; 1 a n d j 2 f j 0 ::: j 0 + lg) and (i = i 0 ; (l + 1) and j 2 f j 0 ::: j 0 + lg)g Therefore E(S) = f(i j) 2 F i 0 ; 1 i < i 0 + l + 1a n dj 0 ; 1 j < j 0 + l + 1 g. Therefore E(S) is a square the length of which i s l + 2 .

As L int (F ) is a square, we can deduce with the lemma 8 that F is a square.

{ Case 3.2: l odd .

9i L i = L int (F) = ( i 0 + ( i ; 1) j 0 + ( i ; 1)). The nucleus of the gure is reduced to an unique cell c such that:

H 1 4 (c) 2 L i;1 , H 2 4 (c) 2 L i;1 , H 3 4 (c) 2 L i;
1 and H 4 4 (c) 2 L i;1 . Therefore H 4 (c) v erify the property S (with i 0 = i) and therefore the conditions of the theorem are veri ed. Furthermore, L int (F ) is reduced to a sole cell, therefore it's a square. We can deduce with the lemma 8 that F is a square.

An automaton which recognizes the squares.

The proposed automaton is B = ( 2 S H ) such that:

B has seven states: S = f0 1 2 3 4 5 6g,

The neighborhood H is the Von Neumann's one, The transition function is given by the transition tables 4.1 and 4.2. The terminal states are the states 5 and 6 with: Table 4.1: Transition table of the automaton which recognizes the squares (2).

8c 2 F state(c)=5 , F 2 S 8c 2 F state(c)=6 , F = 2 S Cell H 1H 2H 3H 4New state 1 0 2 1 0 2 1 0 2 1 0 2 1 3 4 1 3 4 1 3 4 1 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 4 3 1 4 3 1 4 3 1 4 3 2 6 = 26 = 26 = 26 = 2
As for the rectangles recognition, the rst stage consists in putting the cells that belong to the external layer in state 2. At the second stage, each c e l l w h i c h belongs to this layer is going to determine, according to its neighborhood, if it is on a border of a rectangle (and possibly on a border of a square) or not. Then, after this stage, if no cell enters the error state, we are sure to have a rectangle (according to the chapter 3) and perhaps a square. Afterwards, the gure is decomposed in layers and the cells which belong to "the internal layer" (which belong to the nucleus) are able to know if they are on a square or on a rectangle. As a matter of fact, if a cell which belongs to the nucleus has a symmetrical neighborhood then it is on a square. This is true because if we take o the external layer of a square we obtain an other square. On the other hand, if such a cell has not a symmetrical neighborhood then it is not on a square. See gure 8.2.

Conclusion.

We p r o ved that the automaton, which i s g i v en above, allows to recognize the squares.

The global recognition time is rtime(S B ) = d n 2 e + 1 where n is the distance between the farthest cells in the gure.

Chapter 5

Recognition of patterns which are built with rectangles.

In the chapter 3, we h a ve seen that a rectangle is recognizable with plane cellular automata. Now, we consider families of gures which are built with rectangles (families of characters). They are globally de ned. In order to recognize these gures, the question is to count the number retracting vertexes that the gure has.

De nitions

Coming out and retracting vertices

De nition 20 (Coming out vertex) Let (x y) 2 F . We say that (x y) is a coming out vertex of the gure F if a n d o n l y i f t h e r e exists (x 0 y 0 ) 2 H 4 (x y) and (x 00 y 00 ) 2 H 4 (x y) (x 00 6 = x 0 and y 00 6 = y 0 ) such that (x 0 y 0 ) = 2 F and (x 00 y 00 ) = 2 F . See gure 5.1.

De nition 21 (Retracting vertex)

Let (x y) 2 F. We say that (x y) is a retracting vertex of the gure F if a n d o n l y i f t h e r e exists (x 0 y 0 ) 2 H 4 (x y) and (x 00 y 00 ) 2 H 4 (x y) (x 00 6 = x 0 and y 00 6 = y 0 ) such that (x 0 y 0 ) 2 F and (x 00 y 00 ) 2 F and there exists (x 000 y 000 ) in H 4 (x 0 y 0 ) and in H 4 (x 00 y 00 ) such that (x 000 y 000 ) = 2 F . 5.2 Recognition of \L".

De nition of the L family.

A gure is a "L" if and only if it has ve v ertexes and therefore, one and only one retracting vertex (see gure 5.3). We are going to de ne more precisely the "L" family: L. W e consider the Von Neumann's neighborhood.

De nition 23

Let F 1 = R(i 0 j 0 i f j f ) = f(i j) i 0 i i f and j 0 j j f g.

Let F 2 = R(i 0 0 j 0 0 i 0 f j 0 f ) = f(i j) i 0 0 i i 0 f and j 0 0 j j 0 f g such that:

(i 0 0 j 0 0 ) = ( i 0 j 0 ) or (i 0 f j 0 0 ) = ( i f j 0 ) or (i 0 f j 0 f ) = ( i f j f ) or (i 0 0 j 0 f ) = (i 0 j f ) (i 0 f ; i 0 0 ) < (i f ; i 0 ) and (j 0 0 ; j 0 f ) < (j 0 ; j f ) L = fF Z 2 F= F 1 n F 2 g See gure 5.4. 

Automaton which recognizes L.

In A cell which is in the state 2, which has a unique adjacent cell in the state 2 and which i s o n a v ertical border enters in the state 3. A cell which i s i n t h e s t a t e 2, which has a unique adjacent cell in the state 2 and which is on an horizontal border enters in the state 4. This generates four possible neighborhood for the cell c. Then, this cell enters in a di erent state according to its neighborhood (this state is propagated...). * Afterwards, the states of the angles spread: -I f t wo di erent states meet then the gure has several retracting angles and it doesn't belong to L.

-Otherwise, at a given moment, all the cells of the gure are in the same state (the one that has been propagated since the unique angle) and F 2 L .

In order to solve the problem that occurs when the gure has no retracting angle (case of the rectangle), the state 2 is propagated and if, at a given moment, all the cells of the gure are in the state 2 then the gure is not a L (see gures 8.3).

5.2.3

Automaton which recognizes the "L" family using cells that are outside the gure.

We can notice that the utilization of cells that are outside the gure facilitates the recognition and in particular, reduces the number of states that are necessary. So, a possible automaton L 0 = ( 2 S H ) is such that:

-L 0 has 8 states: S = f0 1 2 3 4 5 6 7g, -H is the Von Neumann's neighborhood, -The transition function is given in appendix, chapter 4. The principle is exactly the same as previously but a cell that is in a retracting angle (therefore, which is outside the gure) knows right a way the existence of this angle and therefore, it's not necessary to use two di erent states in order to distinguish the angles (see gure 5.6 and 8.4). Les cellules c1, c2, c3 et c4 ont des voisinages différents. Elles peuvent donc entrer dans des états différents;

The cells c 1 , c 2 , c 3 and c 4 have di erent neighborhoods. So, they can enter in di erent states which will spread afterwards inside the gure.

Figure 5.6: Utilization of cells that are outside the gure.

5.3 Recognition of \U".

De nition of the U family.

A gure is a "U" if and only if, when we direct the border of the gure and we go over it, we meet exactly six vertexes and two successive retracting vertexes (see gure 5.7).

We are going to de ne more precisely the "U" family: U.

The utilized neighborhood is the Von Neumann's one. 

De nition 24

Let F 1 = R(i 0 j 0 i f j f ) = f(i j) i 0 i i f and j 0 j j f g and F 2 = R(i 0 0 j 0 0 i 0 f j 0 f ) = f(i j) i 0 0 i i 0 f and j 0 0 j j 0 f g such that: (i 0 f ; i 0 0 ) < (i f ; i 0 ) and (j 0 0 ; j 0 f ) < (j 0 ; j f ) i 0 0 = i 0 or (exclusive) j 0 0 = j 0 or (exclusive

) i 0 f = i f or (exclusive) j 0 f = j f U = fF Z 2 F= F 1 n F 2 g
In order to recognize this model of gures, it's necessary to verify that the gure has exactly two retracting vertexes and that these vertexes are well placed (this is in order to distinguish the "U" and the gures that are shown in the gure 5.8).

Figure 5.8: Examples of gures that don't belong to U.

Automaton which recognizes the "U".

The idea is the following one: we start marking all the cells of the external layer. Among these cells, if there exist some that have an unique adjacent c e l l in the external layer then they enter in a state which depends on the place they are (on the horizontal or vertical border). This is shown in the gure 5.9. We can distinguish the di erent angles (as in the recognition of "L"). The states that correspond are propagated. In the case where there is an unique retracting angle, all the cells of the gure will enter in the state of the angle. So, we will say that the gure is not a "U". In the case where there are two retracting angles, the corresponding states will meet. We h a ve n o w t wo possibilities: either we h a ve a " U " o r w e h a ve a " T " . I n the rst case, the states which are propagated will meet "as it is necessary" that is to say the meeting direction is respected. Then a state "YES" is generated. In the second case, a state "NO" is generated (see gure 5.10). In the case where there are three retracting angles, or more then that, the meeting of an other state causes the generation of a state "NO". The automaton is given in CHAPTER 5. RECOGNITION OF PATTERNS WHICH ARE BUILT W I T H R E C T ANGLES.47 appendix, chapter 4. See gure 8.5.

Automaton which recognizes the U family using cells

that are outside the gure.

As in the recognition of "L", we notice that if we a l l o w the utilization of cells that are outside the gure then it's possible to nd an simpler automaton which has, in particular, less states. A possible automaton is given in appendix, chapter 4.

5.4 Recognition of \O".

De nition of the O family.

A gure is a "O" if and only if it's a rectangle with a rectangular hole (see gure 5.11). The utilized neighborhood is Von Neumannn's one. 

De nition 25

Let F 1 = R(i 0 j 0 i f j f ) = f(i j) i 0 i i f and j f j j 0 g.

Let F 2 = R(i 0 0 j 0 0 i 0 f j 0 f ) = f(i j) i 0 0 i i 0 f and j 0 f j j 0 0 g with:

i 0 0 > i 0 i 0 f < i f j 0 0 < j 0 j 0 f > j f O = fF Z 2 F= F 1 n F 2 g

Automaton which recognizes the "O".

The principle is still the same. We propagate the states of di erent retracting angles, we count if they are really four and we v erify that the states meet "as it is necessary" (see gure 5.12). The automaton is given in appendix, chapter 4. See gure 8.6.

YES YES YES

YES

Step 1.

Step 2.

Step 3.

Step 4.

Step 1: Generation of states that correspond to the di erent retraction angles.

Step 2: Propagation of these states. When they meet, there is generation of new states which means: "two di erent angles have meet".

Step 3: Propagation of these states. Their meeting generate new states which means: "three di erent a n g l e s h a ve meet".

Step 4: New propagation and new states "four di erent a n g l e s h a ve meet".

Figure 5.12: Recognition of "O".

Recognition of "T".

Previously, w e cast about recognizing gures built from a rectangle which i s subtracted with di erent manners to another one. Likewise, we can look for recognizing gures which are the result of the subtraction of two rectangles. Then, we obtain gures that are similar of the ones that are presented in 5.13.

Figure 5.13: Subtraction of two rectangles.

5.5.1 De nition of the "T" family: T .

Here, we are interesting in the T family but the other ones that are built from the subtraction of two rectangles would be recognizable with similar automata.

A gure is a "T" if and only if it has exactly 6 vertexes and two retracting vertexes (separated by t wo v ertexes if we g o o ver the oriented border of the gure). See gure 5.14.

Figure 5.14: Recognition of "T".

De nition 26

Let F 1 = R(i 0 j 0 i f j f ) = f(i j) i 0 i i f and j 0 j j f g.

Let F 2 = R(i 0 0 j 0 0 i 0 f j 0 f ) = f(i 0 j 0 ) i 0 0 i 0 i 0 f and j 0 0 j 0 j 0 f g such that:

(i 0 0 j 0 0 ) = ( i 0 j 0 ) or (exclusive) (i 0 f j 0 0 ) = ( i f j 0 ) or (exclusive) (i 0 f j 0 f ) = (i f j f ) or (exclusive) (i 0 0 j 0 f ) = ( i 0 j f ) (i 0 f ; i 0 0 ) < (i f ; i 0 ) and (j 0 f ; j 0 0 ) < (j f ; j 0 )

Let F 3 = R(i 00 0 j 00 0 i 00 f j 00 f ) = f(i 00 j 00 ) i 00 0 i 00 i 00 f and j 00 0 j 00 j 00 f g such that:

(i 00 0 j 00 0 ) = ( i 0 j 0 ) 6 = ( i 0 0 j 0 0 ) or (exclusive) (i 00 f j 00 0 ) = ( i f j 0 ) 6 = ( i 0 f j 0 0 ) or (exclusive) (i 00 f j 00 f ) = ( i f j f ) 6 = ( i 0 f j 0 f ) or (exclusive) (i 00 0 j 00 f ) = ( i 0 j f ) 6 = (i 0 0 j 0 f ) (i 00 f ; i 00 0 ) < (i f ; i 0 ) and (j 00 f ; j 00 0 ) < (j f ; j 0 ) m 1 = c(x 0 y 0 ) = 1 , m i (i 2) is the encoding of the i-th vertex of the gure F when we go round the border of the gure i n t h e c ounterclockwise direction since t h e upper-left most cell.

See gure 5.15.

(x ,y )

0 0 F y x C(F)=(1,1,1,1,-1,-1,1,1,1,-1,1,-1)
Figure 5.15: Encoding of a gure. Now, we de ne an operation, denoted by OP 1 , on the encoding of a gure.

De nition 29 (Operation on the encoding of a gure)

We suppose that F has p vertices. OP 1 is such that:

OP 1 : f0 1g p ! f 0 1g p C(F) = ( m 1 ::: m p ) 7 ! C 0 (F) = ( m 0 1 : : : m 0 p+2 ) such that: Let i 2 f 1 ::: pg such that m i = 1 . F or all j in f1 : : : i ;1g, m 0 j = m j , m 0 i = ;1, m 0 i+1 = 1 , m 0 i+2 = ;1 and for all j in fi + 3 ::: p + 2 g, m 0 j = m j;2 .

In fact, the operation OP 1 change a comming out vertex of the gure into three vertices: a retracting, a coming out and a retracting vertex.

A more general family of gure

Let F be the family of gures which i s d e n e d a s f o l l o ws: Let R = f(x y) 2 Z 2 9x 0 y 0 x f y f 2 Zsuch that x 0 x x f and y 0 y y f g. R is a rectangle and C(R) = ( 1 1 1 1).

F (0) = fRg, F (i+1) = F (i) f F 2 Z 2 such that 9F 0 2 F (i) C (F) = OP 1 (C(F 0 ))g F = n i=0 F (i)
This family of gures is recognizable with 2-dimensional cellular automata. The recognition algorithm has two steps:

-The rst step consists in dividing the considered gure as it is shown in the gure 5.16.

Figure 5.16: Division of the gure.

-The second step must allow t o v erify if the di erent parts of the gure that are obtained are rectangles. It would be necessary to develop it.

Conclusion

In this chapter, we h a ve de ned family of gures since the rectangles' family. There are recognizable with 2-dimensional cellular automata and their recognition algorithm has to be studied more precisely.

Chapter 6 Recognition of ellipses.

6.1 Introduction.

In this part, we w ant to recognize ellipses. We use waves which spread into the gure. Before giving an automaton which allows to do this work, we de ne the discrete ellipse. An ellipse is the set of points, the sum of distance of which, to two particular points called (the focuses), is constant. The ellipse is called 4 ; ellipse if the considered distance is d 4 and 8 ; ellipse if the considered distance is d 8 .

In the discrete plane (Z 2 ), we consider two particular cells, which will to be the focuses of the ellipse. Since these focuses, we compute for each cell of the plane the sum of the distances between itself and the focuses. The gure 6.1 shows this computation since focuses aligned or not, with d 4 .

Let s be an integer. Therefore, an ellipse is formed with cells the sum of distances between itself and the focuses of which, is less or equal to s (see gure 6.2). Now, we are going to give a more formal de nition of the discrete ellipse. 

De nition 30

Let f 1 and f 2 be two given cells of the discrete plane. Let s be an integer. We say that E is the ellipse the focuses of which are f 1 and f 2 and the distance of which is s if and only if E = E(f 1 f 2 s ) = f(x y) 2 Z 2 d (c f 1 )+d(c f 2 ) sg where d = d 4 or d 8 .

To e a c h cell c of the discrete plane (Z 2 ) is assigned a sum of distances s(c) such that s(c) = P 2 i=1 d(c f i ).

Let E be the family of ellipses and let c 2 Z 2 . P 2 E , 9 s 2 N , 8c 2 Z 2 , s(c) s 6.2 An automaton which recognizes the 4;ellipses.

The automaton that we m ust built, must allow t o v erify: 9s 2 BbbN 8c 2 Z 2 , s(c) s. More exactly, i t m ust allow t o v erify that all the cells which belong to the border of the ellipse have a sum of distances which is equal. The idea is to make a w ave coming from one of the focuses, in all the possible directions. This wave spreads as far as touching the border of the ellipse. Then, the cells which are on the border, send back a w ave (di erent from the rst one). This wave spreads to the second focus. Then, verify that the gure is an ellipse consists in verifying that the second wave "faints" at the second focus. So, we v erify that the sum of the distances of any cell of the border to the two focuses is constant. The proposed automaton is E = ( 2 S H ) where:

E has seven states: S = f0 1 2 3 4 5 6g, H is the Von Neumann's neighborhood, The transition function is given by the transition table given in appendix, chapter 5. (See gure 8.7). The space-time diagram which corresponds to this automaton is given in gure 8.8.

Demonstration.

Here, we i n tend to prove that the automaton which has been proposed recognizes the ellipses and only them.

De nition 31 (Plane 4 ; wave centered on a cell) Let c be a c ell. A plane 4 ; wave centered o n c, denoted b y W (4) c , is de ned a s follows:

If t = 0 , W (4) c (t = 0 ) = c 8 t 1, W (4) c (t) = W (4) c (t ;1) E (4) (t;1) with E (4) (t; 1) = f(i j) 2 Z 2 , (i j) = 2 W (4) c (t ; 1), 9e 2 W (4) c (t ; 1) (i j) 2 H 4 (e)g E (4) (t ; 1) is the set of the cells which are 4 a djacent to W (4) c (t ; 1).

See gure 6.3 Let R (4) (t) = f(i j) (i j) 2 (W (4) f1 \ L ext (F)g be the set of cells that belong both, at time t, to the external layer of the gure and to the 4 ; wave which i s emitted by f 1 .

t=1 t=0 t=2 t=3 E(t=0) E (t=1) E(t=2) 
De nition 32 (Plane 4 ; wave centered on a cell which propagates in a gure) Let c be a c ell and F be a gure. A plane 4 ; wave centered o n c propagates in the gure F (we denoted i t b y W 0(4) c F ) if and only if: W 0(4) c F (t = 0 ) = c W 0(4) c F (t) = W 0(4) c F (t ; 1) E 0(4) (t ; 1) with E 0(4) (t ; 1) = f(i j) 2 F (i j) = 2 W (4) c (t ; 1), 9e 2 W (4) c (t ; 1) (i j) 2 H 4 (e)g Let c 2 L ext (F). We denote by U (4) (t) = t (W 0(4) c F ) t h e s e t o f w aves that are emitted by the cells that are on the border of the gure, at time t. We de ne the property P 3 of F as follows:

Property 4 P 3 (F ) , 9 t > 0 9!(i j) 2 F (i j) = 2 U (4) (t) and (i j) = f 2 A gure F verify the P 3 property if and only if, at a given moment t there exists an unique cell which is not reached by the union of the waves the centers of which are t h e b order of the gure.

The theorem that we w ant t o p r o ve is the following one:

Theorem 3 Any 4 ; connected gure F, without hole, which has two particular cells f 1 and f 2 and which verify the P 3 property is a 4-ellipse, that is to say:

9s 2 N F = fc 2 Z 2 d(c f 1 ) + d(c f 2 ) sg
Before showing this theorem, we i n troduce a lemme which will be usefull.

Lemma 10

Allthecells which are l o cated to a distance d from the center c of a wave W 0 c F , are r eached at the same time t by this wave and t = d. Proof. This is due both to the de nition of the wave and to the de nition of the Von Neumann's neighborhood.

Proof of the theorem.

Let t 1 = min t (R(t) 6 = ) be the necessary time for the wave to reach the nearest border. With the lemma 9, the cells that are reached at the time t 1 are the cells located at a distance d 1 = t 1 from f 1 . Let t 2 > t 1 and t 2 = max t (R(t + 1 ) = ) be the necessary time for the wave t o reach the cells that are on the farthest border from f 1 . These cells are d 2 = t 2 away f r o m f 1 . Each c e l l c, that is on the border of the gure, which is reached between t 1 and t 2 is itself the center of a new wave (see gure 6.4). Therefore, we h a ve: At t = t 1 + 1 , e a c h cell c of R(t 1 ) generate a wave W 0 c F At t = t 2 + 1 , e a c h cell c of R(t 2 ) generate too a wave W 0 c F According to the P 3 property, these waves faint at the same time t = t 0 . Let t 0 1 = t 0 ; (t 1 + 1) be the necessary time for a wave which is generated at t 1 + 1 to faint. Likewise, let t 0 2 = t 0 ; (t 2 + 1) be the necessary time for a wave which is generated at t 2 + 1 to faint. We call f 2 the cell on which the generated waves faint. Then, we h a ve t 1 + 1 + t 0 1 = t 2 + 1 + t 0 2 as the P 3 property i s v eri ed. Therefore, t 1 + t 0 1 = t 2 + t 0 2 . With the lemma 9, we h a ve d 1 + d 0 1 = d 2 + d 0 2 where d 0 1 is the distance between the cells that are nearest from f 1 and f 2 , a n d d 0 2 is the distance between the cells that are farthest from f 1 and f 2 . The cells that are on the nearest border are reached.

The cells that are on the farthest border are reached. Proof. Let c be any c e l l o f t h e b o r d e r o f F. This cell is reached at t c by the wave centered on f 1 . W e h a ve: t 1 t c t 2 , that is to say this cell is d c away f r o m f 1 , with d 1 d c d 2 . As F verify P 3 , w e h a ve: t c +t 0 c = t 1 +t 0 1 = t 2 +t 0 2 where t 0 1 is the necessary time for the wave c e n tered on c to faint i n f 2 . Therefore,

d c + d 0 c = d 1 + d 0 1 = d 2 + d 0 2
where d 0 2 is the distance between c and f 2 .

Therefore, we h a ve a k : k 1 connected gure, without hole, which has two particular cells f 1 and f 2 and such that any cell c of the border of the gure verify d c +d 0 c = s where s is a constant. Therefore, this gure is an ellipse which has two f o c u s e s f 1 and f 2 , and such that F = fc 2 Z 2 d (c f 1 ) + d(c f 2 ) sg.

6.4 Particular cases.

6.4.1 Case where the focuses are merged.

De nition.

In this part, we deal with the particular case where the focuses are merged. So, we h a ve gures which are similar to the one which i s s h o wn in the gure 6.5

De nition 33 A g u r e F is an ellipse the focuses of which are merged if and only if 8c 2 F s(c) constante with s(c) = d(f c).

Let C be the corresponding family. An automaton which recognizes the 4-ellipses the focuses of which are merged.

The automaton must verify that all the cells of the border of the gure are at the same distance from the focuses. In fact, the question is to make an automaton which is similar to the one that has been proposed for the recognition of ellipses where the unique focus acts the part of the two previous ones. So, it initiates the rst wave a n d m ust verify that the second one comes back from all quarters at the same moment. The proposed automaton is C = ( 2 S H ) where:

-S = f0 1 2 3 4g, -H is the Von Neumann's neighborhood, -The transition table is given in appendix, chapter 5. See gure 8.9.

Case of the isoceles triangle.

De nition of the triangle. The gure which i s g i v en in 6.6 is in T i the class of the isoceles triangles.

A automaton which recognizes the isoceles triangles.

In order to recognize such gures, it's su cient to initialize a wave (state 2) from the cells which are on the inclined borders of the gure (the cells the neighborhood of which has two cells in the state 1 and two cells in the state 0 or , the cells which h a ve an adjacent cell in the state 1 and the other ones in the state 0). This wave spreads to the interior of the gure. The gure belongs to T i if, at a given time, there exists a cell which is in state 1 and the neighborhood of which is compound of three cells in state 2 and one cell in state 0, and no cell in the rejection state. The proposed automaton is T r = ( 2 S H ) such that:

-S = f0 1 2 3 4g, -H is the Von Neumann's neighborhood, -The transition table is given in appendix, chapter 5. See gure 8.10. 6.5 8 ; ellipses.

Up to now, we h a ve only used the Von Neumann's neighborhood. But, likewise we can recognize 8 ; ellipses (see gure 6.7. The principle of the automaton is clearly the same as previously (see gure 8.11 and 8.12). We can also be interested in the case where the focuses are merged.

conclusion

In this chapter, we de ned the discrete ellipse and we g a ve a method which allows to recognize it. With the previous notations, the global time that is necessary to recognize an ellipse is rtime(E A ) = s. Conclusions.

We h a ve seen some simple families of gures which are easy to be recognized with two-dimensional cellular automata (the transition tables of which are given in appendix). These families of gures are divided into two classes. Either they are locally de ned as the family of rectangles, the family of squares or globally de ned as the L's family, the U's family, the O's family... but their recognition is local and an acceptance state or a rejection state spreads everywhere inside the gure. Or, they are de ned with the help of waves, it's the case of the ellipses. For each family, w e g a ve a cellular automaton which allows to recognize it. The main di culty o f t h i s w ork concerns the fact that the automata have a lot of state transitions and then, they are not easy to handle (even if we h a ve a suited software).

7.1 Extensions.

Other gures.

We w ould have l o o k ed at others gures in particular, we w ould have b e e n interested in the recognition of parallelograms. A parallelogram would be a gure de ned as follows:

De nition 34 a-Let q be any cell of the plane. Let (b i ) i=1 :: n be the sequence o f c ells de ned as follows:

{ x b1 = x q and y b1 = y

q { 8i 1 b i+1 2 H(b i ), i f H(b i ) is the set of the adjacent cells of b i . { 8i 1 x bi+1 > x bi f 2 f 1
x increasing y increasing is in correspondence with the cell c 0 such that: x b0 = x c , y b0 = y c and x c 0 = x bm+1 , y c 0 = y bm+1 . S e e gure 7 . 3 d-We call parallelogram, any 8 c onnected gure F , without hole and which is built from a given cell q and two sequences (c i ) i=1 ::: n and (b j ) j=1 ::: m as follows:

{ Any cell c i (i = 1 ::: n) i s i n c orrespondence with the cell c 0 i = F 1 (c i ).

We obtain the sequence (c 0 i ) i=1 ::: n .

{ Any cell b j (j = 1 ::: m) i s i n c orrespondence with the cell b 0 j = F 2 (b j ). We obtain the sequence (b 0 j ) j=1 ::: m .

{ The sequences (c i ) i , (b j ) j , (c 0 i ) i and (b 0 j ) j are the four sides of the parallelogram. See gure 7 . 4 As a parallelogram is a 8 c onnected gure, we h a ve to consider Moore's neighborhood in order to recognize it. Remember that all the cells that are in the gure are in state 1 and the others are in state 0. The idea consists in comparing the sides two a n d t wo. For this, a rst step consists in "making going down" the "uppermost" border on the "rock-bottom" border, the uppermost and most left cell (known) helps as a guide. So, all the cells that belong to the uppermost border make i n t u r n s the same shifting as the guide cell. Otherwise, the uppermost and most right cell veri es, when it goes dow n , i f t h e r i g h t border is well shaped. At last, if at a given time, all the cells of the gure are either in the state 1 or in the acceptance state then the gure is a parallelogram.

We can notice that now, it's a "veil" which undulate rather than a wave w h i c h spreads (the buckle is formed by t h e c e l l s t h a t g o d o wn). This idea needs to be developed.

7.1.2 Properties.

We w ould also have l o o k ed for automata that indicate if a given gure has a given property. F or example, it can be interesting looking for an automaton that allows to decide if a gure has a hole or not. In this case, the idea can be the following one (see gure 7.5):

Figure 7.5: How to know if a gure has a hole?

We assume that a cell of the gure has been elected. The problem of the election is a problem that has already been studied. In any c a s e s , w e c a n ' t elect on any graph. In the case where the cells of the plane know t h e i r orientation, this is possible.

In the rst step, this cell spreads to the right, for example, as far as touching a border (the border of the gure or the border of a hole). Afterwards, the cell of the border that corresponds, denoted by c, i s g o i n g to emit a wave which spreads in all the directions in the gure. We l o o k a t t h e w ave front. A part of this front marks the border in which c is. If the front of the wave which propagates in the gure reach a border, it is not the border in which c is. So, the gure has a hole.

This problem needs to be deepened.

Implementation.

We'd also be interested in implementing complex cellular plane automata on parallel machines. Then, the problem would be to know h o w to de ne the automaton. So, it would be necessary to know if it's useful to give all the state transitions. We can notice that any automaton corresponds to logic formulas. For example, to say that a wave spreads (case of ellipses) this is to say that one state is "stronger" than any others but also, "strongest" than others. And this doesn't need a big table !   7.2 Link with the Firing Squad problem.

We could do the link between the recognition of patterns with plane cellular automata and the Firing Squad problem. Let us recall what is this problem.

7.2.1

The Firing Squad problem.

The One-dimensional case.

The Firing Squad problem, o r fssp, g i v en by Myhill in 1957 (Moore, 1964) can be described as follows. We consider a string of cells such that each cell contains a c o p y of the same nite automaton A (see gure 7.6). The string is nite but General arbitrarily long. The inner state of a cell at t + 1 depends on its inner state at t and on the inner states of its two adjacent cells (to the right and to the left) at t. At t = 0, one of the cells that is at the end of the string (called "the general") enters a state s r (" re when ready"), whereas the others cells (called "the soldiers") enter a quiescent state s q . Then, the string must evolve s o t h a t at any t i m e t = t f , all the cells ("the general" and "the soldiers") must execute a state transition in order to enter in the state s f (" re"), and no cell enters s f before t f . The problem consists in de ning some automaton A, taking into account t h a t i t m ustn't depends on the number of cells in the string.

The Two-dimensional case.

In the two-dimensionalcase, we speak about synchronization of patterns. N g u y en and Hamacher in NH74] h a ve de ned such a problem. Then, a pattern F is a set of points which belong to Z 2 . I f x and y belong to F then there exists a string of cells that are directly connected which allows to go from x to y t h e neighborhood determines the di erent possible paths (see gure 7.7). Let J i be the set of cells compound of the cell x = ( i j) and its adjacent cells. Then, the problem of the synchronization of patterns can be word as follows:

We consider any pattern F and any c e l l G of F. A t the initial time t 0 , w e h a ve: Exactly one cell of F in the special state s r , The other ones are in one of the following states: s q1 or s q2 , s q0 is the quiescent state. We consider the uniform local state update function de ned by: if x and H(x) belong to fs q0 s q1 g at t i then x doesn't change its state at time t i+1 . s q0 and s q1 can be both considered as quiescent states because it is necessary to have a n other state in the neighborhood in order to change them. At time t 0 +T = t f all the cells enter the state s f , the " re" state, simultaneously and for the rst time and all the others cells of the plane have c o m e b a c k to the state s q0 . Nguyen and Hamacher describe a method of construction where T = 8 n + 1 0 a n d n is the distance between the cell the state of which i s s r and the smaller square centered on s r which c o n tains F . We can notice that Nguyen and Hamacher authorize the use of cells that are external of the pattern in order to synchronize. The solution which i s p r o p o s e d by S z w erinski, developed in the next part, only uses cells that belong to the pattern.

7.2.2 Solutions that are proposed by Szwerinski.

H. Szwerinski in Szw82

] proposes an optimal solution to the fssp for rectangles the size of which i s n with the general in an arbitrary position. Dimension 1.

First, H. Szwerinski recall an optimal solution to the fssp in dimension 1, which is explained by V . I . V arshavski, V.B. Marakhovsky and V.A. Peschansky in VVP69]. The principle is the following one: the algorithm consists in breaking up into successive segment the string of automata (see gure 7.8). are on the middle row(s), the middle column(s), the border cell, likewise the row(s) or the column(s) that are 1 2 3 4 7 8 : : :away from the middle row(s) or the middle column(s). This detection is done using a one-dimensional algorithm of fssp in each r o w and in each column. The second phase starts from the cells which are in the middle of rows and columns. It's an algorithm of fssp which uses the information given by the rst step. The necessary time to do this phase is the necessary time for a signal to go the border of the gure from the middle of it. 
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 57 Figure 5.7: Examples of \U".
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 66 Figure 6.6: Isoceles triangle.
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 67 Figure 6.7: "Moore ellipse" (s=7).
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 84 Figure 8.4: Recognition of L, using cells which don't belong to the gure.

Figure 8 . 5 :

 85 Figure 8.5: Recognition of T.

Figure 8 Figure 8 . 7 :

 887 Figure 8.6: Recognition of O.

Figure 8 . 8 :
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 8 Figure 8.12: Recognition of 8-ellipses the focuses of which are merged.

  A t rst, the borders of the gure are marked: the cells which are concerned (the ones that have at least one adjacent cell in the state 0) enter in the state 2. * A second and third times, we di erentiate the retracting vertexes: two di erent states are used in order to distinguish the retracting vertexes (see gure 5.5).
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	The proposed automaton is L = ( 2 S H ) s u c h that:
	* L has 10 states: S = f0 1 2 3 4 5 6 7 8 9g,
	* The neighborhood H is the Von Neumann's one,
	* The transition function is given by the transition table in appendix, chapter 4.
	Principle:		

order to know i f a n y gure belongs to L, o r n o t , w e h a ve t o k n o w if the gure has exactly one retracting vertex. *

P 2 \ P 3 = T = fF Z 2 F= F 1 n (F 2 F 3 ) 5.5.2 Automaton which recognizes the "T".

The principle is the same as the one that is used in the "U" recognition. The border of the gure is marked. The di erent retracting vertex are distinguished. The corresponding states are propagated... The automaton is given in appendix, chapter 4. See gure 8.5.

Generalization.

Here, we de ne a family of gures which c o n tains some of the families that have been studied before, and which is recognizable with 2-dimensional cellular automata. Let F be a 4-connected gure without hole.

Encoding of a gure

De nition 27 (Encoding of a vertex) Let (x y) be a vertex of the gure. We de ne the encoding of (x y), denoted b y c(x y), as follows: c(x y) = 1 if and only if (x y) is a coming out vertex of F, c(x y) = ;1 if and only if (x y) is a retracting vertex of F. Let y 0 = min(y (x y) 2 F) and x 0 = min(x (x y 0 ) 2 F. ( x 0 y 0 ) is the upper-left most cell of the gure F. Lemma 9 (x 0 y 0 ) is a coming out vertex of F. Proof (x 0 y 0 ; 1) = 2 F by de nition of y 0 and (x 0 y 0 ; 1) 2 H 4 (x 0 y 0 ). (x 0 ; 1 y 0 ) = 2 F by de nition of y 0 and (x 0 ; 1 y 0 ) 2 H 4 (x 0 y 0 ). De nition 28 (Encoding of a gure) Let F be a 4-connected gure, without hole and which has p vertices. We de ne the encoding of F, denoted b y C(F ), as follows:

{ 8i 1 y bi+1 y bi or 8i y bi+1 y bi Let (c j ) j=0 :: m be the sequence o f c ells de ned as follows: { x c1 = x b1 ; 1 and y c1 = y b1 { 8j 1 c j+1 2 H(c j ), i f H(c j ) is the set of the adjacent cells of c j . { 8j 1 y cj+1 < y cj { 8j 1 x cj+1 x cj or 8j 1 x cj+1 x cj See gure 7 . 1 . More p r ecisely, the operation f 1 consists in adding the two following cells to the sequence (c i ) i :

{ c 0 such that x c0 = x c1 ; 1 and y c0 = y c1 .

{ c n+1 such that x cn+1 = x cn + 1 and y cn+1 = y cn .

Let f 2 be t h e o p eration that consists in supplementing the sequence (b j ) i=1 ::: m . Likewise, f 2 consists in adding the two following cells to the sequence (b j ) j :

{ b 0 such that x b0 = x b1 and y b0 = y b1 + 1 { b m+1 such that x bm+1 = x bm and y bm+1 = y bm ; 1 See gure 7 . 2 c-Let F 1 be t h e " (c i ) i translation" function such that: any cell c of the plane is in correspondence with the cell c 0 such that:

x c0 = x c , y c0 = y c and x c 0 = x cn+1 and y c 0 = y cn+1 . Let F 2 be t h e " (b j ) j translation" function such that: any cell c of the plane

The partition of the string is done like that: In the case where the general is at one end of the row, the signal of initialization put the automaton which i s at the end in a preterminal state and two signals p 1 and p 3 start spreading on the string since this automaton. The rst signal has a propagation speed which equals one unit and the second one has a propagation speed which equals 1 3 (a signal spreads with a speed 1 n if it goes to the adjacent automaton after being stayed n time units in the previous one). When the signal p 1 reaches the end of the row, it makes the automaton which is at the end enters the preterminal state and comes back with the same speed. The meeting of the re ected signal with the signal p 3 takes place exactly in the middle of the row, and the corresponding automaton (or the two corresponding automata if the number of automata in the row i s e v en) enters the preterminal state. If the re ected signal goes on spreading with the same speed, and if at the initial time, the rst automaton emits a signal the speed of which i s 1 7 (signal p 7 ) then these signals will meet 1 4 away from the beginning of the row. So, if all the automata which are in the preterminal state emit a sequence of signals which spread with speeds 1 2 m+1 ;1 and if the automata that are meeting points enters the preterminal state, then the processus of recursive cuting o will takes place as in the gure 7.8. The family of signals 1 2 m+1 ;1 is built by recurence. The signal 1 2 m+1 ;1 uses the signal 1 2 m +;1 .

In the case where the intialization signal is done by a n y automaton of the row, the general image of the propagation is shown in the gure 7.9. After that the initialization signal has been sent, two s i g n a l s p 1 and p 0 1 start spreading in the two directions, since the initial automaton. The two signals have a speed which equals 1. The initial automaton doesn't enter the preterminal state if it is not at the end of the row. When the signals p 1 and p 0 1 reach the ends of the row, they make the automaton which is at the end enter the preterminal state and they re ect so there are signals which spread with the same speed. As in the previous case, an automaton which e n ters the preterminal state generates a sequence of signals the speed of which i s 1 2 m+1 ;1 . If the initialization signal has been generated by the automaton O which i s a t t h e e n d o f t h e r o w called initial automaton, the image of the propagation of the signals is the same as the one of the gure 7.8 with O 0 = O. The signal p 0 3 which starts from O 0 with a speed 1 3 meets the re ected signal p 000 3 at A 1 (the middle of the row). It is not di cult to see that the signal p 0 3 meet the signal p 00 1 at A which corresponds to the position of the initial automaton. Then, in order to do a initial cutting of the row, it is necessary to change the speed of the signal p 00 1 : it updates fron 1 to 1 3 at the point A. In order to do correctly the rest of the cutting, it is necessary that the speed of any signal which start from O 1 with the speed 1 2 m ;1 becomes 1 2 m+1 ;1 .

Dimension 2.

The algorithm that is proposed by S z w erinski can be decomposed into two phases (which c a n o verlap if necessary). The rst one identi es the cells which List of Tables