N

N

Optimal algorithms for scheduling divisible workloads on
heterogeneous systems

Olivier Beaumont, Arnaud Legrand, Yves Robert

» To cite this version:

Olivier Beaumont, Arnaud Legrand, Yves Robert. Optimal algorithms for scheduling divisible work-
loads on heterogeneous systems. [Research Report] LIP RR-2002-36, Laboratoire de l'informatique
du parallélisme. 2002, 2+23p. hal-02102118

HAL Id: hal-02102118
https://hal-lara.archives-ouvertes.fr /hal-02102118
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102118
https://hal.archives-ouvertes.fr

Laboratoire de I’ Informatique du Parallélisme

(®)
% Ecole Normale Supérieure de Lyon % M
Unité Mixte de Recherche CNRS-INRIA-ENS LYON r 5668 SCIENTIFIQUE

Optimal algorithms for scheduling divisible
workloads on heterogeneous systems

Olivier Beaumont,
Arnaud Legrand, October 2002
Yves Robert

Research Report N° 2002-36

Ecole Normale Supérieure de Lyon

46 Allée d' Italie, 69364 Lyon Cedex 07, France
I“ Téléphone : +33(0)4.72.72.80.37 ﬁ (I N R I A
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : 1ip@ens-lyon.fr

Optimal algorithms for scheduling divisible workloads on
heterogeneous systems

Olivier Beaumont, Arnaud Legrand, Yves Robert
October 2002

Abstract
In this paper, we discuss several algorithms for scheduling divisible loads
on heterogeneous systems. Our main contributions are (i) new optimal-
ity results for single-round algorithms and (ii) the design of an asymp-
totically optimal multi-round algorithm. This multi-round algorithm
automatically performs resource selection, a difficult task that was pre-
viously left to the user. Because it is periodic, it is simpler to implement,
and more robust to changes in the speeds of processors or communica-
tion links. On the theoretical side, to the best of our knowledge, this is
the first published result assessing the absolute performance of a multi-
round algorithm. On the practical side, extensive simulations reveal that
our multi-round algorithm outperforms existing solutions on a large va-
riety of platforms, especially when the communication-to-computation
ratio is not very high (the difficult case).

Keywords: scheduling, divisible tasks, multi-round algorithms, asymptotical optimality

Résumé

Dans ce rapport, nous comparons un certain nombre d’algorithmes d’or-
donnancement de taches divisibles sur une plateforme hétérogene. Nos
contributions principales sont (i) de nouveaux résultats d’optimalité
pour les algorithmes & une étape et (ii) la conception d’un algorithme
multi-étapes asymptotiquement optimal. Ce dernier algorithme effectue
automatiquement la sélection des ressources & utiliser, tache délicate gé-
néralement laissée a 'utilisateur. En raison de sa périodicité, il est plus
facile & mettre en ceuvre et plus robuste aux variations de charge des pro-
cesseurs ou des liens de communications. D’un point de vue théorique,
c’est, & notre connaissance, le premier résultat garanti sur les perfor-
mances d’un algorithmes multi-étapes. D’un point de vue plus appliqué,
les simulations que nous avons menées montrent que cet algorithme est
meilleur que les autres algorithmes sur une large variété de plateformes,
tout particulierement quand le rapport entre les communications et le
calcul est élevé (le cas le plus délicat).

Mots-clés: ordonnancement, taches divisibles, algorithmes multi-étapes, optimalité
asymptotique

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 1

1 Introduction

Scheduling computational tasks on a given set of processors is a key issue for high-performance
computing. In this paper, we restrict our attention to the processing of independent tasks
whose size (and number) are a parameter of the scheduling algorithm. This corresponds to the
divisible load model which has been widely studied in the last several years, and popularized
by the landmark book written by Bharadwaj, Ghose, Mani and Robertazzi [6]. A divisible
job is a job that can be arbitrarily split in a linear fashion among any number of processors.
This corresponds to a perfectly parallel job: any sub-task can itself be processed in parallel,
and on any number of processors. The applications of the divisible load model encompass
a large spectrum of scientific problems, including among others Kalman filtering [22], image
processing [19], video and multimedia broadcasting [I], 2], database searching [14} [7], and the
processing of large distributed files [23] (see [6] for more examples).

On the practical side, the divisible load model provides a simple yet realistic framework
to study the mapping on independent tasks on heterogeneous platforms. The granularity of
the tasks can be arbitrarily chosen by the user, thereby providing a lot of flexibility in the
implementation tradeoffs. On the theoretical side, the success of the divisible load model is
mostly due to its analytical tractability. Optimal algorithms and closed-form formulas exist
for the simplest instances of the divisible load problem. This is in sharp contrast with the
theory of task graph scheduling, which abounds in NP completeness theorems [16, I7] and in
inapproximability results [12, [3].

In this paper, the target computing platform is a heterogeneous master/worker platform,
with p worker processes running on p processors labeled P, P, ..., P,. The master Py sends
out chunks to workers over a network: we can think of a star-shaped network, with the master
in the center. The master uses its network connection in exclusive mode: it can communicate
with a single worker at any time-step. There are different scenarios for the workers, depending
whether they can compute while receiving from the master (full overlap) or not. The overlap
model is widely used in the literature, because it seems closer to the actual characteristics
of state-of-the-art computing resources (but we point out that our results extend to both
models, with and without overlap). For each communication of size L between the master
and a worker, say P;, we pay a latency g; and a linear term L.G;, where G; is the inverse of
the bandwidth of the link between the master Py and P;. In the original model of [6], all the
latencies g; are equal to zero, hence a linear cost model. However, latencies play an important
role in current architectures [13], and more realistic models use the affine cost g; + LG; for a
message of size L. Finally, note that when g; = g and G; = G for 1 <1 < p, the star network
can be viewed as a bus oriented network [22].

The master processor can distribute the chunks to the workers in a single round, (also
called installment in [6]), so that there will be a single communication between the master
and each worker. This is the simplest situation, but surprisingly the optimal solution for
a heterogeneous star network is not known, even for a linear cost model. We provide the
optimal solution in Section 4, thereby extending the results of [22] for bus oriented networks
to heterogeneous platforms.

For large workloads, the single round approach is not efficient, because of the idle time
incurred by the last processors to receive their chunks. To minimize the makespan, i.e. the
total execution time, the master will send the chunks to the workers in multiple rounds: the
communications will be shorter (less latency) and pipelined, and the workers will be able
to compute the current chunk while receiving data for the next one. Deriving an efficient

2 O. Beaumont, A. Legrand, Y. Robert

solution becomes a challenging problem: how many rounds should be scheduled? what is
the best size of the chunks for each round? Intuitively, the size of the chunks should be
small in the first rounds, so as to start all the workers as soon as possible. Then the chunk
size should increase to a steady-state value, to be determined so as to optimize the usage
of the total available bandwidth of the network. Finally the chunk size should be decreased
while reaching the end of the computation. In Chapter 10 of [0], there is no quantified value
provided for the number of rounds to be used. Recently, Altilar and Paker [I} 2], and Yang
and Casanova [24] have introduced multi-round algorithms and analytically expressed their
performance. We discuss these algorithms, and others, in Section 3, which is devoted to
related work. To the best of our knowledge, no optimality result has ever been obtained for
multi-round algorithms on heterogeneous platforms. The most important result of this paper
is to fill this gap: in Section 5, we design a periodic multi-round algorithm and we establish
its asymptotic optimality.

The rest of the paper is organized as follows. We begin with models for computation
and communication costs in Section 2. Next we review related results in Section 3. Then
we deal with single-round algorithms in Section 4. We proceed to multi-round algorithms
in Section 5. We provide some simulations in Section 6 . Finally, we state some concluding
remarks in Section 7.

2 Models

As already said, we assume a total workload Wigta that is perfectly divisible into an arbitrary
number of pieces, or chunks. Usually, it is assumed that the master itself has no processing
capability, because otherwise we can add a fictitious extra worker paying no communication
cost to simulate the master. There is a wide acceptance in the literature on using linear costs
to model computation costs. Worker P; will require o;w; time-units to process a chunk of size
«;. However, Yang and Casanova [24] suggest to add a start-up cost, or computation latency,
so that the cost becomes z; + a;w; for P; to process a chunk of size «;; they emphasize the
importance of adding such a latency to obtain realistic results in some data-sweep applica-
tions [9]. In the following, we stick to linear computational costs, but we will later mention
which equations to modify to take latencies into account in the multi-round algorithms.
Modeling communication costs is more difficult, and several models have been proposed.
In the original approach [6], communication costs were also assumed linear. The master would
need «;G; time-units to send a chunk of size o; to P;. While acceptable for large messages, the
model becomes quite unrealistic for small messages. For instance in [6], the authors recognize
that infinitely small messages would be the best solution for multi-round algorithms with this
crude model. Communication latencies g; have been introduced by Drozdowski [14] and are
now widely used!: the master needs g; + a;G; to send a chunk of size a; to worker P;. An even
more accurate model has been proposed by Rosenberg [21] and further investigated by Yang
and Casanova [24]. They suggest to use the expression g} +a;G;+g., where the first latency g/
is not overlappable, while the second latency g/ is overlappable with the next communication.
The master may send another message g; + «;G; time-units later, while the worker cannot
start computing before g + o;G; + g/’ time-units. The overlappable latency was introduced to
model pipelined networking. Again, we restrict ourselves to non-overlappable latencies, but
we will indicate how to incorporate them in the design of multi-round algorithms. Finally,

'Because there is no consensus on the notations, we borrowed the notations g; and G; from Wang et al [23]

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 3

note that other models [I8] [I7] assume a fixed communication cost to dispatch chunks of any
size, which seems much less realistic than adopting an affine expression with a startup and a
linear term proportional to the chunk size.

Next, there is to discuss the amount of computation and communication that can be
overlapped. In the model with overlap, each worker is capable of receiving the next chunk
from the master while computing the current chunk. This corresponds to workers equipped
with a front end in [6]. In the no overlap model, each worker executes communications and
computations sequentially. Of course this distinction of models only applies to multi-round
algorithms, because in a single-round algorithm it is impossible to overlap the communication
with independent computation. When dealing with multi-round algorithms in Section 5, we
will elaborate results for both models, with and without overlap..

The last question is the number of simultaneous communications that can be handled by
the master. With few exceptions, the one-port model is assumed: the master can communicate
with at most a worker at a given time-step (except may be for the short time-slice correspond-
ing to the overlappable latency). However, as pointed out by Yang and Casanova [24], the
one-port model is nicely suited to LAN network connections but a multi-port model could be
used for WAN network connections.

In conclusion, we retain the following model:

1. One-port for the master (at most one communication to a worker at any time-step)
2. Communication-computation overlap for the workers

3. Linear computation costs «;w; for a chunk of size «; processed by P;, 1 <7 <p

4. Affine communication cost g; + «;G; to send a chunk of size «; from Py to worker P;,
1<i<p

We discuss some extensions of this model when dealing with multi-round algorithms.

3 Related results

We divide this overview into two categories: results for single-round algorithms, and results
for multi-round algorithms. We restrict ourselves to master/worker platforms, which includes
bus-oriented and star-shaped networks. See [6] for results on processor trees and [I4] for
hypercubes.

3.1 Single-round algorithms

For single-round algorithms, the first problem is to determine in which order the chunks
should be sent to the different workers. Since the master can handle only one communication
at a given time step, the solution is as depicted in Figure 1. Once the communication order
has been determined, the second problem is to decide how much work should be allocated to
each processor P;. The final objective is to minimize the makespan, i.e. the total execution
time.

In the case of a homogeneous (bus-oriented) platform (all G; are equal to G), and using
a linear cost model for computation (all g; are equal to zero), Bataineh, Hsiung and Rober-
tazzi [4], 22] have derived an optimal solution, together with closed-form expressions for the

4 O. Beaumont, A. Legrand, Y. Robert

B,
(YP’UVP

Py : ‘

QW

Py

ajwy

a G ‘ G ‘ ‘ a,G ‘

T Ty T, Ty

Figure 1: Pattern of a solution for dispatching the load of a divisible job, using a bus-oriented
platform (G; = G) All workers complete execution at the same time-step 7.

makespan Ty. This solution is surprisingly simple. Let «; denote the fraction of workload
assigned to worker P;, where Zle a; = Wiotal, and let T; denote the time elapsed before P;
begins its processing. Thus, Ty = max;(T; + o;w;).

First, one can prove that all the processors must finish their work at the same time (i.e.
T; +oyw; = Ty, Vi). Indeed, otherwise, some work could be transferred from a busy processor
to an idle one in order to reduce T';. Thus, the following system of equation holds,

Ty =T, = awj, Vi<i<p
Tiy1 —Ti=0;11G VI<i<p-1

if data is sent successively to Pi,...,P,. Closed forms can be obtained for both the «;’s
and T. These closed form are rather complicated, although the method for obtaining them
is elementary, and we refer the reader to [22] to find the actual algebraic expressions. The
surprising and interesting point is that the overall computational time 7’y does not depend
upon the order chosen for sending data to the different processors, so that the ordering
Py, ..., P, is in fact optimal.

Later, Charcranoon, Roberatzzi and Luryi [IT] have partially extended this work to hetero-
geneous (star-shaped) platforms: they still use linear communication costs, but with different
G;’s. The results are less satisfying than in the case of the bus. Indeed, the main known re-
sult is that if data is sent to the different processors in a given order (say, again, P, ..., P,),
then closed forms can be obtained for both the «;’s and T;. Unfortunately, the makespan
T strongly depends on the communication ordering, and the result stating that all the pro-
cessors must finish their work at the same time-step is no longer valid for all communication
orderings. To the best of our knowledge, the optimal communication ordering is not known,
and we provide the optimal solution in Section 4.

Moving to affine communication costs rather than linear communication costs, several
results have been published, among others [19, [14] [7] 21]. In 1997, Drozdowski [14] stated
that the complexity of determining the optimal makespan for a general star-shaped platform
(different g;’s and different G;’s) is not known, and to the best of our knowledge the problem
is still open. We point out that Drozdowski [I4] proposes an interesting mixed linear pro-
gramming formulation of the problem. In the following program, z;; is a boolean variable
that equals 1 if P; is chosen for the i-th communication from the master:

Optimal algorithms for scheduling divisible workloads on heterogeneous systems)

MiINIMIZE T,

SUBJECT TO
(

(1) o > 0 1<i<p

(2) —1 @ = Wiotal

e 1<ij<p

(4) Zz 1T =1 1<j<p

(5) iz =1 1<i<p

(6) Z =1 1 Z(gZ + 0;G; + oyw;) < Ty (first communication)

(7) Z l 1 Tki(gi + i GY) 2 < j < p (j-th communication)
L +$],z(gz +a;G; + azwz) < Tf

Equation (4) states that exactly one processor is activated for the j-th communication, and
equation (5) states that each processor is activated exactly once. Equation (6) is a particular
case of equation (7), which expresses that the processor selected for the j-th communication
(where 5 = 1 in equation (6) and j > 2 in equation (7)) must wait for the previous com-
munications to complete before its own communication and computation, and that all this
quantity is a lower bound of the makespan. As pointed out by Drozdowski [14], this mixed
linear program may have no solution if all the workers are not involved in the optimal solution
(it may well be the case that using a strict subset of the resources proves more efficient), so
the formulation is not fully general.

3.2 Multi-round algorithms

Several multi-round algorithms have been proposed in the literature [, [} 2], 24] but in general
they have been validated through simulations or experiments rather than with analytical
formulas. This is not surprising: deriving the adequate number of rounds is a challenging
task. On one hand short rounds minimize idle times in the beginning, and enable to better
overlap computations and communications. On the other hand longer rounds mean less
latency overheads.

Technically, a round is defined as a sequence of communications to different workers, one
per worker, and deciding whether to use all workers or a strict subset of the workers is a
difficult question. Even worse, should a strict subset be used, there is no reason for the subset
to remain the same from one round to another.

Let W) be the total size of the chunks assigned to the workers during round k: W) =

b a(k), where agk) is the chunk size of P; at round k. Intuitively, W) should be small
for the first rounds, then reach an adequate value, and then decrease in the last rounds.
Yang and Casanova [24] propose that W& follows a geometric progression, and within each
round that all involved processors compute for the same amount of time?. These simplifying
assumptions enable them to derive analytical expressions for the total execution time, and the
optimal number of rounds is then derived through some numerical optimization technique.
The results are technically involved but very interesting. However, there remains two main
limitations to this approach: (i) resource selection (determining the best subset) is performed
heuristically, and (ii) there is no fundamental reason to privilege a geometric progression for
the round sizes, any other monotonic and sufficiently “regular” function could be adopted.

2The geometric progression is stopped when approaching the end of the execution, so that all processors
terminate working simultaneously.

6 O. Beaumont, A. Legrand, Y. Robert

In Section 5, we derive a periodic algorithm which is asymptotically optimal. This algo-
rithm is simple, because rounds are repeated identically one after the others. The key-issues,
i.e. the optimal number of chunks, resource selection and chunk size assignments within a
chunk, are all solved through a relaxed linear program in rational numbers (hence a low-degree
polynomial complexity).

4 New results for single-round algorithms

In this section, we propose a new proof method for the optimal distribution of the work to the
processors in single-round algorithms. This approach enables us to retrieve some well known
results, and to establish new ones.

The approach is based upon the comparison of the amount of work that is performed by
the first two workers. To simplify notations, assume that P, and P, have been selected as
the first two workers. There are two possible orderings, as illustrated in Figure 2. For each
ordering, we will determine the total number of tasks «; + a9 that have been processed in
T time-units, and the total occupation to of the communication medium during this time
interval. We denote with upper-script (A) (resp. (B)) all the quantities related to the first
(resp. second) ordering.

4) T (B t$B) T
g1 agA)Gl a(lA)wi g2 agE)G'z agB)wzi
g2 agA)GQ agA)wg g1 agB)G’l ags)wl
(A) Py starts before P, (B) P; starts before P

Figure 2: Comparison of the two possible orderings.

Let us first determine the different quantities ong), agA),tgA) and tgA) for the left ordering
in Figure 2:

(4)

® g1+ (Gi4+w)=T=T= I—a,

Grtwy*

o tiV =g +aiVa = Y = oG
A A A = -
o 1Y 9o+ ol (G v uwy) =T = ofY = Tw(lGlgisucil)(?zﬁwgiwl
o 1§ =11V 1 g + 0V Gy = 1) = TROEC ALl b 2 G,

Therefore, the overall number of processed tasks is equal to

W Tzg T—g2 TGi+gun
1 2 Gy + w; Gy + wsy (G1 + ’wl)(Gz + wg)’

and the overall occupation time of the network medium is equal to

JA) _ T(G2Gy + Gowy + Grws) + (g1 + g2)wiwe + G1gow
2 = .
(G1 + ’wl)(Gz + 'LU2)

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 7

These expressions are rather complicated. Nevertheless, it is possible to obtain simple ex-
pressions when expressing the differences between situation (A) and situation (B). Indeed,
we have:

(4) (A)Y\ _ (.(B) (B)\ _ gew2 — 1wy +T(Gy — Gy)
(041 +a2> (al +)— (G1+w1)(G2+w2)

and
(A) _ ,(B) Girg2w2 — Gagiw

ty ' —1 = .
2 2 (G1 +w1)(G2 +w2)

Thanks to these expressions, we can derive the optimal distribution in some special cases:

1. g1 = g2 = 0: Then, the occupation of the communication medium does not depend on
the communication ordering, since téB) = téA). Therefore, we only need to consider the

number of processed tasks in both situations. Since
(agA) + agA)> > (agB) + agB)) — Gy > Gy,

we have better to send tasks to the processor with the smallest G; first.

In the case of p processors, we sort them so that G; < Gy < ... < G),. We state the
first result:

Theorem 1. When all communication latencies g; are equal to 0, sort the p processors
so that G1 < G2 < ... < G)p. Then the ordering where tasks are sent to P, P, ..., P,
18 optimal.

Proof. Consider an optimal ordering of the communications o, where tasks are sent
successively to Py(1), Py(2), ... Pyp)- Let us denote by 4, if it exists, the smallest index
satisfying o (i) > o(i + 1). Let us consider the following ordering:

P(r(l)a s ?Po'(ifl)’PO'(i#*l)? P(r(i)aPU(H»Q)a s Pa(p)'

Then, Py(1),... Py(i=1), Ps(it2)s - - - Po(p) perform exactly the same number of tasks,
since the exchange does not affect the overall communication time, but together, P 1)
and F,; perform % more tasks, where T" denotes the remaining time after
communications to0 Py(1),..., Pyi—1). Since Gy(i11) > Go(;), there exists an optimal
ordering where tasks are sent accordingly to increasing values of the G;’s. U

Once the optimal ordering is known, we can use the formulas in [II] to derive the
optimal assignment of works to processors, thereby filling the gap towards obtaining an
optimal solution in the heterogeneous case. If all the G;’s are equal, then we find the
classical result of [4], stating that the number of processed tasks does not depend of the
communication ordering.

2. G1 = G2 = G, but the start-up times g; and go are different. Then,

(A) A\ _ (B (B)\ _ gowz — g1wi
(0‘1 +) (al +) = (G+w1)(G+w2)’
and B
tgA) _ th) =@ ga2w3 gi1wi

(G+w1)(G+w2)

8 O. Beaumont, A. Legrand, Y. Robert

Therefore, the number of tasks processed in situation (A) is larger if and only if gjw; <
gows, but in this case, the occupation of the communication medium is also larger.

Nevertheless, since
(O[g) + Oéé)) - (Oég) + Oéé)> 1

1P — 4 G’

the amount of communication required per task is optimal for those extra tasks. Thus,
in order to maximize the number of processed tasks, we have better to send tasks to
the processor with the smallest g;w; first.

With p processors, we extend this result as follows:

Theorem 2. When all elemental transfer times G; are equal to G, sort the p proces-
sors so that gyw; < gowo < ... < gpwy,. Then the ordering where tasks are sent to
P, P,..., P, is optimal.

Proof. Consider an optimal ordering of the communications o, where tasks are sent
successively to Py (1), Py(2), - - - Py(p)- Denote by i, if it exists, the smallest index satisfying
o(i) > o(i +1). We can derive the following ordering:

Po1ys - s Po(iz1)s Po(ivr): Poti)s Po(iv2)s - - - Pop)-
This is a solution that performs at least as many tasks than the optimal ordering. Since

we exchanged P,y and P,), we are able to process more tasks with P, ;) and
9o (i) Wo (i) 95 (i+1) W (i41)

(GHws (i) (GHwe(it1))
tion cost of BG, as depicted in Figure 3. Nevertheless, we can send (using the notations

of Figure 3) agﬂ tasks to P(;11) and az(c) tasks to Pp(;), where

Py(iy1), where g = , but that would induce an extra communica-

(© _ B _ B

© _ (B _B (
« A A 2

i+l T %l T and o
In this case, since the number of received tasks is lower for F,;) and P,(;;q1), both
processors are able to complete their processing within time bounds. Moreover, the
communication medium is occupied exactly the same time, and the number of processed
tasks is the same as in the optimal solution. Thus, there exists an optimal ordering where
tasks are sent accordingly to increasing values of the g;w;’s. U

5 Asymptotically optimal multi-round algorithms

In this section, we derive asymptotically optimal algorithms for the multi-round distribution
of divisible tasks, when slave processors are either able or not to overlap their processing with
incoming communications.

5.1 No overlap

The sketch of the algorithm that we propose is as follows: the overall processing time 7' is
divided into k regular periods of duration 7}, (hence T' = kT),, but k (and T},) are yet to be
determined).

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 9

A A
A ¢) T
g1 agA)Gl a(lA)w"A
g2 aéA)G2 DégA)w2
B B
+B) t$)‘ T
g2 agB)Gg ags)u@i
91 a(lB)G1 GEB)wl
c c
) ¢) T
SR |
91 agc)Gl aﬁc)m ‘ |

Figure 3: Illustrating the proof of Theorem 2.

During a period of duration 7}, the master processor sends «; tasks to slave processor P;
(see Figure 4 for an example). It may well be the case that not all the processors are involved in
the computation. Let Z C {1,...,p} represent the subset of indices of participating processors.
For all ¢ € Z, the «;’s must satisfy the following inequality, stating that communication
resources are not exceeded:

> (gi+ iGi) < Ty (1)
1€
Since the processors cannot overlap communications and processing, the following inequalities
also hold true:
Vi<i<p,i €L, gi+ai(Gi+wi)§Tp.
Let us denote by f; the averaged number of tasks that slave P; processes during one time
unit, then the system becomes

Tp

Vi<i<pieZ, pBi(Gi+w)<1-4
Ei i 9
Yier BiGi < 1 — =%

and our aim is to maximize the overall number of tasks processed during one time unit, i.e.
Nmax = Zz‘eI Bi.
Let us consider the following linear program:
MAXIMIZE Y 0| @,
1 9i
VI<i<p, mi(Gitw) <1- Zmd
D19
S G <1 — —Elflg

p

This linear program is more constrained than previous one, since 1 — % has been replaced
P

P .
by 1 — ZiT;plgl in p inequalities. Therefore, the objective value for Y°?_, z; satisfies Y7 | z; <

10 O. Beaumont, A. Legrand, Y. Robert

911Gy g1o1G1 ‘g1 a1G1

{ Transfer l arwr F alwy F alwy

Compute |

Transfer : Qaws : Qzws Qw2

{ g2 2G> 92 a2G> g2 a2G>

Compute |
: g303G3 . 93a3G3 933Gy

Transfer : ﬁ azws azwy azws

Compute ‘

anGn ¢ gn anGn gn anGn

: | "
{ Transfer - Qntwn - Qnwy, - nwn
Compute 77 77777777777 -)

Figure 4: Sketch of a periodic multi-round schedule using the first n workers P, to P,, where
n < p.

Nmax- The linear program can be solved using a package similar to Maple [10] (we have
rational numbers), but it turns out that the technique developed in [5] enables us to obtain
the solution in closed form. We refer the reader to [5] for the complete proof. Let us sort the
Gi’s so that G; < Gy < ... < G, and let ¢ be the largest index so that Zl e +wl <1 If

Z 1 G(iw The optimal solution to the linear program

q < p, let € denote the quantity 1 —
is obtained with

1_2?:191‘
. Tp
Vi<i<gq, z=
=t=d ’ Gi + w;
and (if ¢ < p):
P
i=19i €
o= (1-Z2) ()
! < Tp Gq+1

and Tg19 = Tg43 = ... =z, = 0.
With these values, we obtain:

P
o . z 191 €
> (1 ><ZG L. pﬂ).

Thus, we verify that n,ax satisfies

e > (1 ng .
ima _< ><ZG + w; p+1>

Let us denote by n},.. the optimal number of tasks that can be processed within one unit
of time. If we denote by 8 the optimal number of tasks that can be processed by slave P;
within one unit of time, the 3;’s satisfy the following set of inequalities, in which the g;’s have
been withdrawn:

{ Vi<i<p, Bi(Gi+w)<1
S BiGi <1

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 11

Here, because we have no latencies, we can safely assume that all the processors are involved
(and let 5 = 0 for some of them). We derive that:

Z'%) . 1 €
Ny < | 1 — =2 + .
max — (Ty ; Gi+w, Ggqr

If we consider a large number B of tasks to be processed and if we denote by T}y,
time necessary to process them, then

the optimal

ax

. B B
T > >

max = = :
n p 1 €
max (i=1 G;+w; + Gq+1)

Let us denote by 7' the time necessary to process all B tasks with the algorithm that we
propose. Since the first period is lost for processing, then the number & of necessary periods
satisfies nmaxTp(k — 1) > B so that we choose

B
k= + 2.
nma.pr
Therefore,
B B 1
T< - yor, < 1 (1 : gi>+2Tp,
Mmax (;1:1 ferury + Gq:l) i=1T,

and therefore, if T, > 237 | g;,
p T*
T<T:,. + 2Zgi% +2T,,.
i=1 P
Finally, if we set T}, = \/T},., we check that

p
T < T + 200 91 + D)V Tiax = T + O(v/ T
i=1

which achieves of proof of the asymptotic optimality of our algorithm.

Note that resource selection is part of our explicit solution to the linear program: to
give an intuitive explanation of the analytical solution, processors are greedily selected, fast-
communicating processors first, as long as the communication to communication-added-to-
computation ratio is not exceeded.

Also, note that it is easy to include a computation latency z;, as suggested by Yang and
Casanova [24]: simply replace G; by G; + z; in the formulas.

We formally state our main result:

Theorem 3. For arbitrary values of g;, G; and w;, and assuming no communication-computation
overlap, the previous periodic multi-round algorithm is asymptotically optimal. Closed-form
expressions for resource selection and task assignment are provided by the algorithm, whose
complezity does not depend upon the total amount of work to execute.

12 O. Beaumont, A. Legrand, Y. Robert

5.2 With overlap

In the case where slaves are able to overlap communications and processing, the algorithm
that we propose in very similar to the previous one. Thus, we do not detail the proof. During
time period ¢ + 1, the slave processors process the tasks that they have received during time
period 7, so that no processing occurs during the first period, and no communication occurs
during the last period. The system of inequalities for one time unit using our algorithm
becomes:
Vi<i<p, 1€ p[w; <1
{ Y B <1 X
ZGI 7 7 = Tp

and we can prove, as previously that n,,y satisfies

Ep—1gi> 1 €
Nmax > (1 — 2==L9 — .
™ (T, ;wi Goit
G

where ¢ is the largest index so that Y7 ; % <landifg<p,e=1-57 % Similarly,

i=1 w;
. 1 €
nmaxg ZE"" :
i

i1 Got1

and we obtain
P

T < Trtlax + 2(2 gi + 1) V Tr);laxv

=1

what achieves the proof of the asymptotic optimality of our algorithm.

To summarize, we still sort the processors according to the bandwidths G; and we select
them greadily until the sum of the ratios % (instead of Ggfwi) exceeds 1. We state the result
formally:

Theorem 4. For arbitrary values of g;, G; and w;, and assuming full communication-
computation overlap, the previous periodic multi-round algorithm is asymptotically optimal.
Closed-form expressions for resource selection and task assignment are provided by the algo-
rithm, whose complexity does not depend upon the total amount of work to execute.

6 Simulations

In order to evaluate our multi-round algorithm, we have crafted a simulation with the SimGrid
simulator [8, Z0]. One major interest of relying on SimGrid is that all machine and network
characteristics used in the simulations correspond to realistic values taken from the SimGrid
database. We detail below the platforms that we have simulated.

In the experiments, we let the total workload size Wiyia vary in terms of workload units
(or tasks) whose number range from 100 to 2000 by step of 100. Of course, the divisible load
model applies here, so we assign fractional numbers of units to the processors. We let the
size of a workload unit itself (i.e. the number of floating-point operations performed per unit)
vary from one set of experiments to the other, so as to investigate different communication-
to-computation ratios for a given application/platform pair.

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 13

In the experiments, no overlap of communications by computations was possible. We
have compared our no-overlap multi-round algorithm with the multi-installment algorithm
proposed in [6]. We have used a total of eleven heuristics. Three heuristics are different
variants of the linear programming formulation, and the multi-installment algorithm has been
tested for 1 to 8 installments. Here is a description of the eleven heuristics:

L.P with fixed period We use here the simplest variant of linear programming. We arbi-
trarily fix the value of the period to T), = 2000. While there remains tasks to process,
we allocate them to the workers according to a variant of Equation 1: we maximize
P | «; subject to Y7 (g; + a;G;) < T, and g; + (G + w;) < T, for all 4, 1 <4 < p.
The problem is slightly over-constrained, in that we include all p latencies in Equation 1
governing the bandwidth utilization, rather than only those of the participating pro-
cessors ¢ € Z, as in the original formulation. Of course if the linear program returns
«; = 0 for some 7, we do not schedule the empty communication. This approximation
is very good for large values of T),, and provides a simple yet efficient task allocation if
the period T}, is known a priori.

L. P. with fixed square-root period At the beginning of the computation, an evaluation
of the optimal time 7" needed to process the whole set of task is computed, by neglecting
all latencies. This works as follows: we assume a perfectly load-balance of the work and
write (G;+w;)a; = Constant, with Y% | @ = Wiga1. Once we have T', we let T}, = VT,
and o; = ;Tp, 1 <14 < n, where the z;’s are the values computed in Section 5.1.

L. P. with adaptive period This is a slight modification of the previous heuristic. At each
round, the period T}, is recomputed as T, = VT, where T now is an estimation of the
total time needed to process the remaining work units (rather than the total time for all
units). In the very last steps of the heuristic, we stop the process and do not decrease
T}, below the time needed to process the last work unit.

M.I.x This is the Multi-Installment procedure of [6] with = rounds. A set of linear equations,
whose number of variables depends on z, is proposed in [6]. From these equations, it is
possible to derive the amount of work units to distribute to each process at each round.
Note that these equations do not take in account the latency.

6.1 Homogeneous platforms, no latency

The first set of experiments deals with homogeneous platforms, made up with PIII 1GHz
processors (delivering 114.444 Mflops), interconnected through an Ethernet 100 Mbits/sec
(but measured at 32.10 Mbits/sec bandwidth). The number of processors ranges from 1 to
20. One workload unit amounts to 1 GFlops of computations and 2 Mbits of data exchange.
In other words, the workers communicate during 0.06 seconds to be able to compute during
9 seconds. The communication-to-computation ratio is quite low, which makes it easier to
obtain good performances.

Figure 5 depicts the behavior of the eleven heuristics for a 5-processor platform. The
general behavior is the same for other platform sizes. We see that L.P with fixed period and
M.I.1, the one-round strategy, perform very badly. All the other strategies look similar. To
outline the differences, we plot the performance ratio of a subset of the remaining heuristics
over that of the L.P. with adaptive period: in Figure 6, we use a 5 processor platform. For

14

Computation time

7000

6000

4000

3000

2000

1000

O. Beaumont, A. Legrand, Y. Robert

L.P. with fixed period
L.P. with adaptive period
L.P. with fixed sqrt period
M.I. 1installment

1. 2 installments
I. 3installments
1. 4installments
1. 5installments
.I. 6 installments
1. 7 installments
.l. 8 installments

IZTZZZEL

800

1000 1200 1400 1600

1800 2000

Task Number

Simulation time for an homogeneous platform with 5 processors.

Figure 5:

Comparison with the L.P. adaptive strategy

1.04

1.03

1.02

L.P. with adaptive period
L.P. with fixed sqrt period
M.I. 2 installments

M.I. 3installments

M.l. 4 installments

M.I. 5 installments

T
T

-5
-

800 1000 1200 1400 1600 1800 2000
Task Number

0 200 400 600

Figure 6: Comparison with the adaptive heuristic for an homogeneous platform with 5 pro-
Cessors.

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 15

the sake of clarity, only M.I.x with £ = 2 to « = 5 are reported in the figure; no improvement
is obtained with larger values of z. The following observations can be made:

e the adaptive strategy is always very close to the best heuristic;

e the number of rounds of the Multi Installment algorithm must be at least 3, and no real
improvement is to be expected when increasing that number;

e the linear programming with fixed square-root period is not very regular but stays
within 5% of the optimal heuristic, as soon as the number of tasks (work units) grows
sufficiently.

The behavior is similar when increasing the size of the platform. The adaptive strategy
may need a larger task set to achieve the same efficiency. The number of installments needed
to obtain good results with the Multi Installment algorithm also becomes higher. As an
example, Figure 7 depicts the results for a 20-processor platform.

1.35 T T T T
L.P. with adaptive period —+—
13} L.P. with fixed sgrt period —— | |
. M.I. 2 installments —*—
3 M.I. 3installments —&—
= 125 M.I. 4installments —=— |
% M.l. 5installments —e—
< 12
oy
B 115
o
< 11}
=
£ 105t
2
o
B ir
]
Q.
E 095
o
09
0.85

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Task Number

Figure 7: Comparison with the adaptive approach for an homogeneous platform with 20
Processors.

6.2 Heterogeneous platforms, no latency

Experiments have been conducted with 2000 simulated platforms made up of machines ran-
domly chosen in the following processor set : PPro 200MHz (22.151 Mflops), PII 450MHz
(48.492 Mflops), PII 350MHz (34.333 Mflops), and PIII 1GHz (114.444 Mflops). The net-
work used to interconnect the slaves to the master could be Ethernet either 10 Mbits/secs
or 100 Mbits/sec (we measured 4.70, 32.10 or 30.25 Mbits/sec of effective bandwidth). The
number of workload units ranges from 100 to 2000; with a step of 100. As before, one task
unit amounts to 1 GFlops of computation and 2 Mbits of data. In other words, the workers
communicate during between 0.06 and 0.4 seconds to be able to compute during between 9
and 90 seconds. Again, the communication-to-computation ratio is quite low, which makes it
easier to obtain good performances.

We have run one simulation per platform and per task set, which amounts to 40000
experiments per heuristic; the figures below correspond to averaged values. Figure 8 and its

16

Comparison with the L.P. adaptive strategy

Figure 8: Comparison
Cessors.

Comparison with the L.P. adaptive strategy

O. Beaumont, A. Legrand, Y. Robert

0.5

L.P. with fixed period
L.P. with adaptive period
L.P. with fixed sqrt period
M.I. 1 installment

. 2 installments
. 3installments
. 4 installments
. 5installments
. 6installments
. 7 installments
. 8 installments

SZZK=ER

200 400

600

800

1000

1200 1400 1600 1800 2000

Task Number

with the adaptive approach for heterogeneous platforms with 5 pro-

1.03

1.025

1.02

1.015

1.01

1.005

0.995

0.99

0.985

0.98

L.P. with adaptive period
L.P. with fixed sqrt period
M.I. 3installments —*—
M.l. 4installments —=—
M.I. 5 installments —=—

0

200

400

600

800

1000 1200 1400 1600 1800 2000

Task Number

Figure 9: Comparison with the adaptive approach for heterogeneous platforms with 5 pro-

cessors (zoom).

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 17

zoomed counterpart Figure 9 depict the comparison of the heuristics with the adaptive linear
programming approach on 5-processor platforms. The following observations can be made:

e linear programming with fixed period, and one installment strategies lead to very poor
performances;

e the optimal number of rounds of the Multi Installment algorithm is close to 4 (for the
sake of clarity, only M.I.x with x = 2 to z = 5 installments are depicted on Figure 9
because increasing the number of rounds does not improve the performances);

e the linear programming with fixed square-root period slightly outperforms the multi
installment algorithm;

e the adaptive approach leads to the best performances but with a small improvement
over the other good heuristics (1% in average).

When increasing the size of the platform, the optimal number of rounds of the multi-
installment gets larger. Linear programming strategies show good performances only when the
task set is large enough; the adaptive method remains better than other linear programming
approaches. As an example, Figure 10 depicts the results for 20-processor platforms.

12
§ 1.15
o
17}
g 11
§
a 1.05
-
[}
=
£ ir
=
j o
Y . —
g L.P. with adaptive period —+—
1S L.P. with fixed sqgrt period ——
S 09 | M.I. 3installments —*— ||
. M.l. 4installments —=—
M.l. 5installments —=—
) M.I.Qinstallments e

0.85 | | | ;i ;i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Task Number

Figure 10: Comparison with the adaptive approach for heterogeneous platforms with 20
Processors.

6.3 Heterogeneous platforms, with latency
6.3.1 With a low communication-to-computation ratio

Experiments have been conducted with the same platform set and the same workloads as
in Section 6.2. The only difference resides in the fact that we add 2 Mbits of data to each
message, so as to model the latencies: in other words, we set g; = 2.10°.G; for every worker
P;.

Figure 11 and its zoomed counterpart Figure 12 depict the comparison of the heuristics
with the adaptive linear programming approach on 5-processor platforms. Multi Installments

18 O. Beaumont, A. Legrand, Y. Robert

26 T T T T T T
L.P. with adaptive period —+—
.P. with fix iod

24 Y .
5 il
B 22f M. .
% 1.
© M.
= 2+ M.l. 6 installments —=— B
& M.I. 7 instalIments ——
3 M.I. 8installments —=—
o 18 i
_
[}
= 16 p
£
E 1.4
c A b
3
8
g— 12 R
S a8 B a8 g g~ B85 B8 4
o

1L e
08 ! ! ! ! ! ! ! ! !

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Task Number

Figure 11: Comparison with the adaptive approach for heterogeneous platforms with 5 pro-
cessors, with latencies.

"L.P. with adaptive period ———

1.08

1.06 |

Comparison with the L.P. adaptive strategy

0.98 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Task Number

Figure 12: Comparison with the adaptive approach for heterogeneous platforms with 5 pro-
cessors, with latencies (zoom).

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 19

with a small number of rounds still lead to poor performances. The optimal number of rounds
for the Multi Installment algorithm is equal to 4. The best strategy is the adaptive approach,
which still leads to a small improvement of 1%. When the size of the platform gets larger
(see Figure 13), the optimal number of rounds for the Multi Installment algorithm is equal to
5 and the adaptive strategy is at most 3% far away from the best other solutions (when the
number of task is larger than 200).

12 T T T T T
L.P. with adaptive period —+—
L.P. with fixed sqrt period —<—
M.l. 3installments —*—
B M.1. 4 installmengs
= 1.15 e
?
[}
2
&
" 11
o
_
[}
s
£ 105+
2
o
3
£ 1r
Q
o
0.95

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Task Number

Figure 13: Comparison with the adaptive approach for heterogeneous platforms with 20
processors, with latencies.

6.3.2 With a high communication-to-computation ratio

Experiments have been conducted with, again, the same platform set as in Section 6.2, the
same workloads and the same latencies. But we change the communication-to-computation
ratio: one task unit now amounts to 50 MFlops of computation and, still, 2 Mbits of data:
the communication-to-computation ratio has roughly been multiplied by 20.

Figures 14 and 15 depict the comparison of the heuristics with the adaptive linear program-
ming approach on 5-procesor and 20-processor platforms. Linear programming approaches
clearly outperform any Multi Installment heuristic. This is due to many reasons:

e The linear equations given in [6] cannot take latencies into account. Since the communication-
to-computation ratio is getting higher, considering them becomes crucial;

e No resource selection is done in [6]. When the size of the platform gets larger, the
network becomes a bottleneck and we must decide which computing resources to use.
This choice is automatically performed when solving the linear inequalities.

6.4 Summary

As a general conclusion, we see that L.P. strategies, either with fixed square-root period, or
with the adaptive strategy to compute the next period, are to be recommended. In most cases,
they are very close to the best multi-installment solution (and determining the optimal number

20 O. Beaumont, A. Legrand, Y. Robert

13
§ 1.25
B
1]
.g 12
§
o 115
_ L.P. with adaptive period
L L.P. with fixed sqrt period ——
b= 11 M.I. linstallment —+— | -
§ M.l. 2 installments —=—
p= M.l. 3instalments —=—
] 105 - M.I. 4ingtalments —— | |
B ’ M.I. 5instalments —e—
g M.I. 6 installments —a—
§ 1
A s e e T Sl eSS
0.95 ! ! ! ! ! ! ! ! !

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Task Number

Figure 14: Comparison with the adaptive approach for heterogeneous platforms with 5 pro-
cessors, with latencies.

19 T
18
8 17f
17}
¢
= 16
oy
®
a 15
_
Q
S 14+ L.P. with adaptive period —+— |
£ L.P. with fixed sqrt period —x—
2 M.I. Linstallment —*—
& 13 r M.I. 2ingtalments —s— |]|
5 M.I. 3installments —=—
Q 12} M.l 4installments —e— | |
g M.I. 5installments —e—
o M.1. 6 installments —=—
11 B
1] ; | ;

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Task Number

Figure 15: Comparison with the adaptive approach for heterogeneous platforms with 20
processors, with latencies.

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 21

of rounds for this class of heuristics is a non-trivial problem). When the communication-to-
computation ratio gets higher, both L.P. strategies are much better than the other heuristics.

If we were to make a final choice, we would recommend the adaptive strategy, because it
would be the most robust to changes in computation speeds or network bandwidths.

7 Conclusion

On the theoretical side, the main result of this paper is the proof of the asymptotic optimality
of our multi-round algorithm. This is the first quantitative result ever assessed for a multi-
round algorithm. But (maybe more importantly), our algorithm exhibits a lot of interesting
features that make it a candidate of choice in a wide variety of situations:

e The best selection of the resources to be used among all available machines is automati-
cally conducted through the linear program. Even better, resources are sorted according
to the G; and greedily selected until the sum of the ratios Gﬁ;wz (without overlap) or
% (with overlap) exceeds 1. Previous approaches had to resort to un-guaranteed ex-

périmental heuristics.

e The best number of rounds is easily determined as a function of the task number, so
there is no need to test several solutions with different round numbers, and then to
select the best one.

e Because it is periodic, the algorithm is simpler to implement that other schemes that
grow the chunk size repeatedly.

e For the same reason, our algorithm is more robust: the decisions taken for each round
(how many work units should be sent to each worker) can be questioned before each
round, thus allowing a dynamic approach to cope with, and respond to variations in
computation speeds or network bandwidths. Such changes are very likely to occur,
especially when the overall processing time is large. Other algorithms that rely on very
long rounds in the end cannot rapidly adapt to speed or bandwidth changes.

Extensive simulations have shown that our multi-round algorithm does perform very
well in practice, and significantly outperforms other heuristics when the communication-to-
computation ratio of the application is not too low on the target platform. This opens up a
larger range of applications for the divisible workload paradigm.

References

[1] D. Altilar and Y. Paker. An optimal scheduling algorithm for parallel video processing. In
IEEE Int. Conference on Multimedia Computing and Systems. IEEE Computer Society
Press, 1998.

[2] D. Altilar and Y. Paker. Optimal scheduling algorithms for communication constrained
parallel processing. In Furo-Par 2002, LNCS 2400, pages 197-206. Springer Verlag, 2002.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. Complezity and Approzimation. Springer, Berlin, Germany, 1999.

22

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

O. Beaumont, A. Legrand, Y. Robert

S. Bataineh, T.Y. Hsiung, and T.G.Robertazzi. Closed form solutions for bus and tree
networks of processors load sharing a divisible job. IEEE Transactions on computers,
43(10):1184-1196, October 1994.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric
allocation of independent tasks on heterogeneous platforms. In International Parallel and
Distributed Processing Symposium IPDPS’2002. IEEE Computer Society Press, 2002.
Extended version available as LIP Research Report 2001-25.

V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible Loads in
Parallel and Distributed Systems. IEEE Computer Society Press, 1996.

J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divisible task scheduling - concept
and verification. Parallel Computing, 25:87-98, 1999.

H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In Proceed-
ings of the IEEE Symposium on Cluster Computing and the Grid (CCGrid’01). IEEE
Computer Society, May 2001.

H. Casanova and F. Berman. Grid’2002. In F. Berman, G. Fox, and T. Hey, editors,
Parameter sweeps on the grid with APST. Wiley, 2002.

B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt. Maple
Reference Manual, 1988.

S. Charcranoon, T.G. Robertazzi, and S. Luryi. Optimizing computing costs using di-
visible load analysis. IEEE Transactions on computers, 49(9):987-991, September 2000.

P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors. Scheduling Theory
and its Applications. John Wiley and Sons, 1995.

D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, San Francisco, CA, 1999.

M. Drozdowski. Selected problems of scheduling tasks in multiprocessor computing sys-
tems. PhD thesis, Instytut Informatyki Politechnika Poznanska, Poznan, 1997.

H. El-Rewini, T. G. Lewis, and H. H. Ali. Task scheduling in parallel and distributed
systems. Prentice Hall, 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1991.

T. Hagerup. Allocating independent tasks to parallel processors: an experimental study.
J. Parallel and Distributed Computing, 47(2):185-197, 1997.

S. Flynn Hummel, E. Schonberg, and L.E. Flynn. Factoring: a method for scheduling
parallel loops. Communications of the ACM, 35(8):90-101, 1992.

C. Lee and M. Hamdi. Parallel image processing applications on a network of worksta-
tions. Parallel Computing, 21:137-160, 1995.

Optimal algorithms for scheduling divisible workloads on heterogeneous systems 23

[20]

21]

[22]

[23]

[24]

J. Lerouge and A. Legrand. Towards realistic scheduling simulation of distributed appli-
cations. Technical Report 2002-28, LIP, ENS Lyon, France, July 2002.

A. L. Rosenberg. Sharing partitionable workloads in heterogeneous NOWs: greedier
is not better. In D. S. Katz, T. Sterling, M. Baker, L. Bergman, M. Paprzycki, and
R. Buyya, editors, Cluster Computing 2001, pages 124-131. IEEE Computer Society
Press, 2001.

J. Sohn, T.G. Robertazzi, and S. Luryi. Optimizing computing costs using divisible load
analysis. TEEE Transactions on parallel and distributed systems, 9(3):225-234, March
1998.

R.Y. Wang, A. Krishnamurthy, R.P. Martin, T.E. Anderson, and D.E. Culler. Modeling
communication pipeline latency. In Measurement and Modeling of Computer Systems
(SIGMETRICS’98), pages 22-32. ACM Press, 1998.

Y. Yang and H. Casanova. Multi-round algorithm for scheduling divisible workload ap-
plications: analysis and experimental evaluation. Technical Report CS2002-0721, Dept.
of Computer Science and Engineering, University of California, San Diego, 2002.

	1 Introduction
	2 Models
	3 Related results
	3.1 Single-round algorithms
	3.2 Multi-round algorithms

	4 New results for single-round algorithms
	5 Asymptotically optimal multi-round algorithms
	5.1 No overlap
	5.2 With overlap

	6 Simulations
	6.1 Homogeneous platforms, no latency
	6.2 Heterogeneous platforms, no latency
	6.3 Heterogeneous platforms, with latency
	6.3.1 With a low communication-to-computation ratio
	6.3.2 With a high communication-to-computation ratio

	6.4 Summary

	7 Conclusion

