Alain Darte 
email: darte@lip.ens-lyon.fr
  
Ed Eric Vivien 
  
G.-A Silber 
email: gsilber@lip.ens-lyon.fr
  
F Vivien 
email: fvivien]@lip.ens-lyon.fr
  
Combining retiming and scheduling techniques for loop parallelization and loop tiling

Keywords: Automatic parallelization, nested loops, permutable loops, tiling, medium grain Parall elisation automatique, nids de boucles, boucles permutables, tiling, grain moyen

Tiling is a technique used for exploiting medium-grain parallelism in nested loops. It relies on a rst step that detects sets of permutable nested loops. All algorithms developed so far consider the statements of the loop body as a single block, in other words, they are not able to take a d v antage of the structure of dependences between di erent statements. In this report, we o vercome this limitation by s h o wing how the structure of the reduced dependence graph can be taken into account for detecting more permutable loops. Our method combines graph retiming techniques and graph scheduling techniques. It can be viewed as an extension of Wolf and Lam's algorithm to the case of loops with multiple statements. Loop independent dependences play a particular role in our study, a n d w e s h o w h o w the way w e handle them can be useful for ne-grain loop parallelization as well.

Introduction

A ne scheduling techniques -from the simplest and earliest one, Lamport's hyperplane method 13], to the most sophisticated one, Feautrier's multi-dimensional a ne scheduling 7] -are used to transform a set of nested loops into a semantically equivalent c o d e , consisting in parallel loops surrounded by s e q u e n tial loops. Lamport's method, and its extension, the linear scheduling, transform n perfectly nested loops into n;1 nested parallel loops surrounded by a single sequential loop. When this is not feasible, multi-dimensional scheduling can be used to transform the original loops into n ; r sequential loops surrounding r innermost parallel loops, with n ; r > 1. The goal is to make r Supported by the CNRS-INRIA project ReMaP.

(roughly speaking the degree o f p arallelism) as large as possible.

The underlying computational model in which these techniques are developed is nothing but a PRAM. Additional constraints such as the cost of communications, the cost of synchronizations, the number of processors, the ratio communications/computations, are not taken into account. The claim (the hope) is that they can be optimized a posteriori, for example by merging virtual PRAM processors into fewer physical processors. However, especially when r is small, the granularity o f c o mputations can be too ne, leading to poor performances especially on distributed memory systems. To circumvent this problem, the granularity of computations has to be increased. This can be achieved by a technique called tiling, i n troduced by Irigoin and Triolet 9] a s supernode partitioning.

Tiling consists in aggregating several loop iterations that will be considered as an elemental computation. The size and shape of a tile are chosen following various criteria, for achieving better vectorization of communications and/or computations, for improving cache-reuse, reducing communications, etc. All these criteria are very machine-dependent, and despite the large amount of di erent optimization strategies 9, 12, 15, 16, 1 8 , 2], choosing a \good" tiling remains an open problem.

However, before even de ning the size and shape of the tiles, one has to make sure that they will be atomic, i.e. that they can be computed with no intervening synchronization or communication. This atomicity property is ful lled if the dependence graph between tiles is acyclic which is guaranteed if the tiles partition the iteration domain into identical rectangles, and if the iteration domain is described by permutable loops.

Until now, all algorithms proposed for detecting permutable loops have the following restrictions:
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The original loops are perfectly nested. The dependences are uniform, except for Wolf and Lam's algorithm 19] where dependences can be approximated by direction vectors. The statements of the loop body are considered as a single block. This may enforce complicated skews, even if a simple shift between statements is su cient t o m a k e the loops permutable. Taking into account the structure of the reduced dependence graph has been proved very useful for the detection of parallel loops: see for example the algorithms of Allen and Kennedy 1], Darte and Vivien 5], or Feautrier 7]. In this paper, we s h o w that it can also be useful for the detection of permutable loops. Our method combines graph retiming and graph scheduling techniques.

We d o n o t o vercome all restrictions listed above a s we still consider only perfectly nested loops. However, our algorithm can be applied even if the dependences are described by a polyhedral approximation of distance vectors (which is more general than direction vectors), and we do exploit the fact that the loop body may h a ve more than one statement, i.e. that the reduced dependence graph may h a ve more than one vertex.

The paper is organized as follows. In Section 2, we explain why some particular structures of codes cannot be obtained by standard linear scheduling techniques, although they correspond to useful optimizations. These are codes containing loop independent dependences, i.e. codes that express sequentiality i n parallel loops. In Section 3, we show h o w s u c h codes can be generated for exploiting ne-grain parallelism. The technique is to modify standard scheduling techniques while introducing graph retiming techniques. In Section 4, we use a similar combination for extending Darte and Vivien's algorithm 5] ( rst designed for detecting innermost parallel loops, i.e. ne-grain parallelism) to the detection of maximal sets of permutable loops (i.e. medium-grain parallelism). Finally, in Section 5, we summary our main results, and we p o i n t o u t some open problems.

Sequentiality in parallel loops

Loops parallelized by s c heduling techniques have a particular structure: each statement in the parallelized code is surrounded by a set of nested parallel1 loops, surrounded by a s e t o f sequential loops. The term \scheduling" comes from the fact that the outermost sequential loops can be interpreted as a description of the time steps, or synchronization steps, needed for computing the loops in a PRAM manner. The innermost parallel loops describe the set of computations carried at a given time step. By construction, these computations are completely independent: each dependence is carried by one of the sequential loops. Indeed, the general principle is to transform all dependences into dependences carried by the outermost loop (level 1 dependences). If this is not possible, as many dependences as possible are transformed into level 1 dependences, then as many as possible into level 2 dependences, and so on, until all dependences are carried by one of the constructed loops (which are therefore sequential). The remaining dimensions are completely independent. With such a principle, the nal code never contains a loop independent dependence (null dependence distance). A consequence of this restriction is that some code structures that also describe ne-grain parallelism cannot be generated. We illustrate this fact on the following code structure:

for i = 1 t o n for j=1 to n S1 S2
endfor endfor Suppose that we succeeded to parallelize the above code with the scheduling technique called shifted-linear scheduling. This means that we h a ve found an integral 2 vector X = ( a b) a n d t wo constants 1 and 2 such that iteration Ĩ = ( i j) of statement S 1 (resp. S 2 ) is carried (in the PRAM model) at logical time X: Ĩ + 1 = ai + bj + 1 (resp. X: Ĩ + 2 ). Forgetting the time interpretation, this simply means that we apply a loop transformation for which i 0 = ai + bj + 1 (resp. i 0 = ai+bj + 2 ) is the new loop counter for the rst loop surrounding S 1 (resp. S 2 ). Now, two m a i n cases can occur:

The components of X are relatively prime: for each iteration of the outermost loop (corresponding to X), a hyperplane of computations can be carried out in parallel, for S1 and for S 2 . T h e resulting parallel code looks like:

Code of type (a): forseq forpar S1//S2 endforpar endforseq possibly with some guards. This is typically the case if X = ( 1 0), and for any 1 and 2 . All dependences are carried by the rst loop, and potential parallelism between S 1 and S 2 is exploited.

The components of X are not relatively prime. A t ypical example is X = ( 2 0), 1 odd, and 2 even. In this case, the even iterations of the outermost loop correspond to iterations of S 2 , and the odd iterations to iterations of S 1 . This can be written into a parallel code with the following structure: possibly with some guards. The dependences are either carried by the rst loop, or occur between the rst and the second parallel loop. On the other hand, with standard scheduling techniques, it is not possible to obtain a code such as:

Code of type (c): forseq forpar

S2 S1

endforpar endforseq which m a y contain a loop independent dependence (from S 2 to S 1 here). Yet, it can be interesting to generate such a code, for several reasons: If parallelism between S 1 and S 2 cannot be exploited anyway because of the machine programming model, a code of type (a) reveals too much parallelism. This is the case for example for a parallelizer that generates parallel code in an intermediate language such as HPF, and expresses parallel loops as !hpf$ independent directives: the potential parallelism S 1 //S 2 cannot be exploited. Instances of S 1 and S 2 will be sequentialized, even if they can be carried out in parallel. In this case, a code of type (c) is su cient. Of course, any c o d e o f t ype (a) can be sequentialized into a code of type (c). However, all codes of type (c) cannot be obtained this way (see our example in Section 3). A c o d e o f t ype (c) can lead to better performance t h a n a c o d e o f t ype (b) when the minimization o f communications and/or synchronizations is important. Indeed, for a code of type (b), a synchronization (or a phase of communications) is needed between the two parallel loops. In a code of type (c), all iterations can be carried in parallel, and possible communications from S 2 to S 1 take place inside a g i v en iteration of the parallel loop. This principle is similar to the one used in Allen and Kennedy's algorithm where loop fusion (more precisely partial loop distribution) is shown useful to minimize synchronizations. De ning loop transformations that lead to codes of type (c) can also be useful for enlarging the set of valid schedules, and having more exibility. This freedom gives us a better control on the code shape. We c a n u s e i t t o a void loop skewing when it is not necessary, t o k eep loops perfectly nested if possible (which can be useful for tiling), to impose loop transformations to be unimodular if loop strides are not desirable, etc. To conclude this short study, let us point out that codes of type (c) can be obtained simply by allowing loop independent dependences in the transformed codes. We n o w s h o w that this can be done by combining standard scheduling techniques with graph retiming techniques, linked to Bellman-Ford's algorithm, for ne-grain parallelism detection (Section 3) as well as for medium-grain parallelism detection (Section 4).

Notations and hypotheses In the rest of the paper, we consider n perfectly nested loops whose dependences are represented by a polyhedral reduced dependence graph (PRDG), i.e. where set of distance vectors are approximated by non parameterized polyhedra. As shown in 5], we can capture such dependences through a modi ed reduced dependence graph with edges labeled by n-dimensional integral vectors, i.e. a uniform dependence graph. This graph has particular vertices (called virtual vertices) which are handled in a special way. H o wever, to make the discussion simpler, we will forget about these vertices. Taking them into account is indeed mainly technical, but does not bring any f u ndamental di culty. Going back, from the modi ed dependence graph, to the original dependence graph, is also conceptually not di cult. See 6] for a complete explanation of this \uniformization" process. The only important point is that the vectors that label the edges are not necessarily lexicographically positive. Therefore, in the rest of our study, w e will make the following assumptions:

The reduced dependence graph is uniform.

There is no cycle of null weight.

Dependence vectors are not necessarily lexicographically positive.

We will use the following notations: G is the reduced dependence graph (RDG), V the set of vertices and E the set of edges. #V (resp. #E) i s t h e n umber of vertices (resp. edges). e = ( x y) i s a n e d g e o f G from vertex x to vertex y. we is the weight o f e. wC denotes the weight of a cycle C (sum of the weights of its edges) and l C denotes its length (number of edges).

Application to the detection of negrain parallelism

In this section, we explain how a t e c hnique based on shifted-linear scheduling can be modi ed so as to allow the generation of codes of type (c), i.e. codes with parallel loops and sequential bodies. As recalled in Section 2, shifted-linear scheduling consists in de ning a logical time for computing the iterations of each statement S: iteration Ĩ of S is scheduled at time X: Ĩ + S . X will be used for building the outermost loop of the parallelized code. All dependences are carried by t h i s loop (if possible).

The two following lemmas show the di erences between the \pure" shifted-linear approach and our modi ed approach which does not require all dependences to be loop carried in the transformed code. With this technique, we can nd as much parallelism, and with more freedom on the choice of X. The constraints on X

given by Lemma 1 (resp. Lemma 2) are the constraints imposed by the pure shifted-linear approach (resp. the modi ed one).

Lemma 1 Let G be a RDG. Let X be a v e ctor which induces on each cycle C of G a delay greater than the length of C:

8C cycle of G X:w C l C
Then, for each vertex v 2 V , t h e r e exists a constant v such that the shifted linear schedule built from X and the constants v is valid. In other words: 8e = ( x y) 2 E X:w e + y ; x 1

Proof Let F be a copy o f G, except that the weight o f an edge e is set to w 0 e = 1 ; X:w e instead of we . A d d to F a new vertex s (the source) and a null weight edge from s to any other vertex. Let C be a cycle of F. B y h ypothesis, the weight o f C is non positive: w 0 C = P e2C (1; X:w e ) = l C ; X:w C 0. Thus, we can successfully apply on F an algorithm to nd the longest paths from s (e.g. Bellman-Ford's algorithm 3]). For each v ertex x in F, let x be the length of the longest path from s to x. F or each edge e = ( x y) i n G, the definition of the longest paths leads to the following triangular inequality : y x +w 0 e , i.e. X:w e + y ; x 1.

Lemma 2 Let G be a RDG. Let X be an integral vector which induces on each cycle C of G a delay greater than one: 8C cycle of G X:w C 1 Then, for each vertex v 2 V , t h e r e exists a constant v such that: 8e = ( x y) 2 E X:w e + y ; x 0 Furthermore, the subgraph generated b y t h e e dges with null delay is acyclic.

Proof Let F be a copy o f G, except that the weight of the edge e is set to w 0 e = ; X:w e instead of we . A d d to F a new vertex s (the source) and a null weight edge from s to any other vertex. Let C be a cycle of F. By hypothesis, the weight o f C is non positive: w 0 C = P e2C (; X:w e ) = ; X:w C ; 1. Thus, we can successfully apply on F an algorithm to nd the longest paths from s. For each v ertex x of F, let x be the longest path from s to x. As the edge weights and X are integers, so are the longest paths. For each edge e = ( x y) o f G, w e h a ve b y de nition of the longest paths: y x +w 0 e , i . e . X:w e + y ; x 0. Now, if all edges of a cycle C have a n ull delay, i.e. X:w e + y ; x = 0 , t h e n X:w C = 0 which contradicts the hypothesis. Thus, the subgraph generated by t h e edges of null delay is acyclic.

Note that the number of elementary cycles in a graph can be exponential in the number of vertices and edges of the graph. Therefore, checking directly that X:w C 1 o r X:w C l C for all elementary cycles can be exponential, even if in practice it can be fast when the number of cycles is small. However, Lemma 1 shows that nding a X such that X:w C l C for all cycles is equivalent to solving #E inequalities with #V additional variables (the constants v ), thus a polynomial number of inequalities. Expressing the constraints X:w C 1 with a polynomial number of inequalities and variables is more tricky, but feasible.

With the example hereafter, we illustrate the differences between the three following techniques: linear schedule, shifted-linear schedule, and shifted-linear schedule allowing loop independent dependences.

for i=1 to N for j=1 to N S1: a(i, j) = b(i-1, j) S2: b(i, j) = a(i, j-1)
endfor endfor

The reduced dependence graph of this program is depicted on Figure 1. Linear schedule We l o o k f o r a v ector X such that X:w 1 for each dependence vector w in the RDG.

Because of the values of the two dependences, both components of X must be greater than one. Hence we h a ve to do at least one loop skewing. We c hoose X = ( 1 1) and we complete it into a unimodular matrix with the vector (0 1). After transformation, we obtain the following code:

forseq i=2 to 2N forall j=max(1, i-N) to min(i-1, N) S1: a(i-j, j) = b(i-j-1, j) S2: b(i-j, j) = a(i-j, j-1)
endforall endforseq Shifted linear schedule We l o o k h e r e f o r a v ector X such that X:w C l C for each cycle C in the RDG.

The only cycle weight i s ( 1 1), of length 2, thus we can choose X = ( 2 0). Using Lemma 1, we n d t wo constants, 1 = 0 and 2 = 1, to complete the schedule.

Once again, we complete X into a unimodular matrix using the vector (0 1). After transformation, we obtain the following code, of type (b): forseq i=1 to N forall j=1 to N S1: a(i, j) = b(i-1, j) endforall forall j=1 to N S2: b(i, j) = a(i, j-1) endforall endforseq Shifted linear schedule allowing loop independent dependences We look here for a vector X such that X:w C 1 for each cycle C in the RDG. Using Lemma 2, we will nd some constants to complete the schedule. This schedule is said to be allowing loop independent dependences because it does not induce a delay greater than one on all the edges as usually required, but only a non negative delay. Since all values are integers, a delay is either greater than one or null. If a delay is equal to zero, the dependence will only be satis ed by the ordering of the statements in the loop body. This can be achieved through a topological ordering of the subgraph generated by the edges with null delay, since this subgraph is acyclic (cf Lemma 2). Such a dependence will nally be transformed into a loop independent dependence.

In our example we c a n c hoose X equal to (1 0), and both constants to be null. But then S 1 must precede S 2 in the nal loop body as the delay on the edge from S 1 to S 2 is null. Furthermore, constants in the remaining dimension must be carefully ch o s e n s o t h a t the dependences from S 1 to S 2 is not carried (otherwise the remaining loop will be sequential). Once again, we complete X into a unimodular matrix using the vector (0 1). For the second dimension, we c hoose 1 = 1 , a n d 2 = 0. After transformation, we obtain the following code, of type (c): forseq i=1 to N forall j=1 to N+1 S1: i f ( j > 1) then a(i, j-1) = b(i-1, j-1) S2: i f ( j < N+1) then b(i, j) = a(i, j-1) endforall endforseq This technique completely solves the problem stated by Okuda in 14]: in a uniform nested loops, shift statements before searching a schedule, so that the latency of the best linear schedule is minimized. This can be done simply by minimizing the latency induced by a vector X subject to the constraints of Lemma 2. [START_REF] Cormen | Introduction to Algorithms[END_REF] Detecting fully permutable loops Consider the following piece of code, whose dependence graph is depicted in Figure 2. for i=1 to N for j=1 to N S1: a ( i , j ) = b ( i , j -1 ) + a ( i , j -1 ) S2: b(i, j) = a(i-1, j+1) + b(i-1, j) endfor endfor It is a uniform program with four dependence vectors. Fine-grain parallelism detection will lead to a code with one sequential and one parallel loop, which m a y n o t be su cient for achieving good performance on distributed memory machines. To increase the granularity of computations, we can use the tiling technique, introduced by Irigoin and Triolet 9], by rst transforming the original loops into permutable loops. The condition of permutability is easy to check: two consecutive loops are permutable if and only if all dependence vectors, not carried by outermost loops, have non negative components in these dimensions. The technique is as follows: a 2-by-2 non singular integral transformation matrix H is generated, such t h a t H we 0 for each dependence vector we . In particular, each r o w X = ( a b) o f H satis es X:w e 0. This leads to the following constraints: a 0 b 0 a ; b 0 b 0 Here, the simplest linear independent solutions are: X1 = ( 1 0) and X2 = ( 1 1). H is a matrix for performing a loop skewing. The corresponding permutable code, in which tiling can be achieved, is the following:

for i=1 to N for j=1+i to N+i S1: a(i, j+i) = b(i, j+i-1) + a(i, j+i-1) S2: b(i, j+i) = a(i-1, j+i+1) + b(i-1, j+i) endfor endfor
Now, let us use the same technique as in Section 3 so as to exploit the structure of the dependence graph.

Instead of transforming each iteration vector Ĩ = ( i j) into Ĩ0 = H Ĩ for all statements, we allow statements to be shifted between each other. In other words, we transform iteration Ĩ of statement S into H Ĩ + ~ S where ~ S is a shift vector, possibly di erent for each statement S. F o r t h e n e w l o o p s t o b e p e r m utable, the constraints are now that for each edge e = ( x y) o f t h e graph, H( Ĩ+w e )+~ y H Ĩ+~ x , i . e . H we +~ y ;~ x 0.

Reasoning row b y r o w, it means that, for each r o w X = ( a b) o f H, there are constants 1 and 2 such that: a 0 b 0 a ; b + 2 ; 1 0 b + 1 ; 2 0 Here, the simplest linear independent solutions are: X1 = ( 1 0) (with 1 = 2 = 0 ) a n d X2 = ( 0 1) (with 1 = 0 a n d 2 = 1). H is simply the identity m atrix and S 2 is moved forward one iteration along the j loop. The corresponding permutable code, in which tiling can be achieved, is the following: for i=1 to N for j=1 to N+1 S2: i f ( j > 1) then b(i, j-1) = a(i-1, j) + b(i-1, j-1) S1: i f ( j < N+1) then a(i, j) = b(i, j-1) + a(i, j-1) endfor endfor Remark that we i n terchanged S 1 and S 2 in the loop body. This is because, after transformation, all dependence vectors are now non negative, and some of them can even be null (loop independent dependences). To k eep the semantic of the code, we h a ve t o o r d e r the statements inside the loop body so that loop independent dependences follow the textual order. For this to be possible, we h a ve t o m a k e sure that the subgraph of G generated by loop independent dependences is acyclic. Once again, the technique is related to Lemma 2. The main di erence with Section 3 is that, for tiling, we are looking for a family of independent v ectors X (and not only for one vector X) t h a t form a matrix H of full rank. The condition on the weights of the cycles wC given in Lemma 2 is now t o o strong. What we n e e d i s H wC 0 a n d H wC 6 = 0. It is now possible that one of the rows X of H satis es X:w C = 0, as long as at least one of the other rows satis es X:w C > 0.

We are now ready to generalize this technique to arbitrary reduced dependence graphs with uniform (but not necessarily lexicographically positive) dependences, as long as the graph has no cycle of null weight. We c o m bine two ideas:

Wolf and Lam's idea 19] that a set of perfectly nested loops can be transformed by unimodular transformations into a canonical form consisting of nested blocks of fully permutable loops. The technique is greedy and recursive. First, as many outermost permutable loops as possible are generated. All dependences have n o w non negative components in these dimensions. Some of them have at least one positive component: they are carried by at least one loop and are not considered any longer. The other ones are taken into account for building a new block of permutable loops. This recursive procedure ends when all dependences 3 are nally carried by at least one of the generated loops.

Darte and Vivien's idea 5] that ne-grain parallelism can be detected by \uniformizing" the polyhedral reduced dependence graph into the dependence graph of a system of uniform recurrence equations, which can be scheduled. The technique is also greedy and recursive. First, an outermost loop is generated that carries as many dependences as possible, possibly after shifting the di erent statements between each other. Then, all carried dependences are removed from the graph. The procedure keeps going on each strongly connected component of the remaining graph (called G 0 ) and the recursive procedure ends when all dependences are nally carried by at least one of the generated loops.

We mixed these two approaches: we aim at nding a nested structure of blocks of permutable loops as in Wolf and Lam's algorithm, but we exploit the structure of the reduced dependence graph, as in Darte and Vivien's algorithm, by a l l o wing shifts between statements.

Each statement S is transformed by a m ultidimensional a ne function: iteration Ĩ of S is represented by the new iteration vector Ĩ0 = H S Ĩ + ~ S where H S is a non singular n-by-n matrix. Following the technique used in 5] (called shifted-linear multidimensional schedules), we look for transformation matrices H S whose rst rows (as many as possible) are the same 4 for all statements within a given strongly connected component o f G. After transformation, the rst common r rows of the matrices H S correspond to r permutable loops if 8e = ( x y) 2 G M we + ~ y ; ~ x 0

(1) 3 except loop independent dependences of the original loops: they are not taken into account and they remain unchanged. 4 Such a restrictionkeeps optimalityfor maximalparallel loops detection in polyhedral reduced dependence graphs (PRDG), we conjecture it is also true for maximal permutableloops detection.

where M is the r-by-n matrix of full rank formed by these row v ectors. Our goal is to build such a matrix M while maximizing r.

Of course, M de nes only one part of the nal transformation. To b e v alid, the nal transformation has to respect all dependences. Some of them are already carried by the loops de ned by M. T h e other ones, corresponding to edges e = ( x y) s u c h t h a t M we +~ y ;~ x = 0, will be satis ed either by a topological sort as in Section 3, or recursively in the subsequent dimensions.

For the sake of clarity, w e only focus on the construction of the outermost block o f p e r m utable loops. We will explain brie y at the end of the section how t o adapt this study to the whole recursive construction. Our problem is therefore the following: build a full, maximal rank matrix M (and its corresponding vectors ~ v ) that can be extended to a n-dimensional valid transformation.

Condition 1 is a necessary condition, expressed in terms of edges. It can be reformulated as a necessary condition on cycles: Lemma 3 (Condition on cycles) Let M be a matrix. M satis es Condition 1 for some vectors ~ v , v 2 V , if and only if M wC 0 for each cycle C of G.

Proof The proof is similar to the proofs of Lemmas 1 and 2, by reasoning on each r o w o f M.

We n o w s h o w the fundamental role of G 0 , the subgraph of G generated by the multi-cycles (union of cycles) of null weight, i.e. the subgraph generated by t h e edges of G that belong to a multi-cycle of null weight. We point out that G 0 is also the base of Karp Proof ( is true by de nition of U. C o n versely, let C be a cycle not in G 0 . Consider again the vector ~ introduced in the proof of Lemma 6. ~ belongs to U ? and is such that ~ :w C > 0. Therefore, wC is not in U (otherwise ~ :w C = 0 ) .

Lemma 8 If M is such that M wC 0 for each cycle C of G, and if M is of full and maximal rank, then for each cycle C not in G 0 we have: M wC 0 and M wC 6 = 0

Proof For each cycle C of G, w e h a ve M wC 0. If M wC = 0, then wC is orthogonal to all rows of M. I f M is of full and maximal rank, its rows generate exactly U ? (cf Lemma 6). Therefore wC 2 (U ? ) ? = U. Then, Lemma 7 shows that C 2 G 0 .

We are now able to characterize precisely the matrices M which enable us to build a maximal set of fully permutable loops. Lemmas 5 and 8 show that they are the matrices M, of full and maximal rank, such t h a t : (i) for each cycle C 6 2 G 0 M wC 0 6 = 0 (ii) for each cycle C 2 G 0 M wC = 0

We can also characterize the matrices M by conditions on edges. They are the matrices M, of full and maximal rank, satisfying both following properties:

1. there exist some vectors ~ v , v 2 V , s u c h that: (i) 8e 6 2 G 0 M we + ~ y ; ~ x 0 (ii) 8e 2 G 0 M we + ~ y ; ~ x = 0 2. the subgraph G of G generated by the edges e = ( x y) for which M we + ~ y ; ~ x = 0 is a forest of strongly connected components, and those with at least one edge are exactly the strongly connected components of G 0 .

The characterization above leads to a recursive c o nstruction of the whole n-dimensional transformation.

As said before, each edge not in G is carried by o n e of the loops corresponding to M. Edges in G , but not in G 0 , can be satis ed by a topological ordering of the strongly connected components of G . Finally, edges in G 0 will be satis ed through the recursive processing of the strongly connected components of G 0 which completes the matrix M already built. The construction of the new rows of M (which m a y be di erent for each strongly connected component o f G 0 ) is done the same way. The only di erence is that they must be chosen with an additional constraint: they have to be linearly independent with the existing rows of M. A s i n 5 ], the correctness of this recursive algorithm comes from the fact that G has no cycles of null weight. From a practical point of view, we point out that all statements do not necessarily have the same nal n-dimensional matrix M. H o wever, we can impose these matrices to be unimodular so as to get simpler codes. We illustrate our technique on the following code:

for i=1 to N for j=1 to N for k=1 to N S1: a(i, j, k) = a(i, j-1, k) + b(i, j, k-1) S2: b(i, j, k) = b(i-1, j+i, k) + a(i, j-1, k+j) endfor endfor endfor Figure 3 shows the reduced dependence graph with direction vectors. Figure 4 shows the \uniformized" dependence graph G. G has ve cycles, three self-dependences with weights (0 1 0), (0 0 ;1), and (0 ;1 0), and two other cycles with weights (0 1 0) and (1 ;1 0). Therefore, G 0 is the graph generated by the cycles whose weights are (0 1 0) and (0 ;1 0). The dimension of U is 1. We can thus build 3;1 = 2 o u t e r m o s t p e r m utable loops. Here, we see directly that the two canonical vectors X1 = ( 1 0 0) and X2 = ( 0 0 ;1) belong to U ? , and that they satisfy Xi :w C 0 for all other cycles. Thus, we can choose them as the rows of M. W e j u s t have to nd the corresponding shift vectors. We g e t ~ S1 = ( 0 1), and ~ S2 = ( 0 0). Here, G = G 0 , n o topological sort is required. We consider the strongly connected component that contains S 1 and S 2 , and we look for a vector X3 , linearly independent with X1 and X2 , such that X3 :(0 1 0) 0, e.g. X3 = ( 0 1 0). No shift in this dimension is required, however S 2 has to be textually ordered before S 1 . To rewrite the code, we use the function codegen of the software Petit 11]. Our nal transformation can be expressed in Petit's framework as S 1 (i j k) ! (i ;k + 1 j 1) and S 2 (i j k) ! (i ;k j 0), and we get the code: for i=1 to N for k=-N to 0 for j=1 to N S2: i f ( k < 0) then b(i, j, -k) = b(i-1, j+i, -k) + a(i, j-1, -k+j) S1: i f ( k > -N) then a(i, j, -k+1) = a(i, j-1, -k+1) + b(i, j, -k) endfor endfor endfor in which tiling can be performed on the two outermost loops. Note that, in this example, permutable loops cannot be detected by W olf and Lam's algorithm.

Conclusion

In this paper, we enlarge the set of codes that can be generated by standard linear scheduling techniques, and that expose either parallel loops or permutable loops. Our method exploits the structure of the dependence graph by c o m bining graph retiming and scheduling techniques.

For ne-grain parallelism detection, we a r e n o w a b l e to generate codes with parallel loops that contain loop independent dependences. This can be useful for minimizing communications and/or synchronizations.

For medium-grain parallelism detection, we generalize Wolf and Lam's algorithm to the case of loops with multiple statements. We generate maximal sets of fully permutable loops that are essential for tiling.

We still have some open problems: how to de ne a criterion of optimality for the detection of permutable loops? How to handle non perfectly nested loops? How to choose the size and shape of a tile? How t o m a p d a t a with respect to the chosen tiling? Our future work will address these problems.
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 1 Figure 1. RDG of the first example.
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 2 Figure 2. RDG of the second example.

  , Miller and Winograd's decomposition 10] for the computability of systems of uniform recurrence equations, and of Darte and Vivien's algorithm 5] for the detection of parallelism in PRDGs. G 0 can be built by rational linear programming, with a polynomial numb e r o f c o nstraints and variables (see 4]). Lemma 4 (Condition on edges) Condition 1 is equivalent to: (i) 8e 6 2 G 0 M we + ~ y ; ~ x 0 (ii) 8e 2 G 0 M we + ~ y ; ~ x = 0 Proof Let C be a multi-cycle of null weight: wC = 0, thus M wC = 0. Therefore: X e2C M we + ~ y ; ~ x = M wC + X e2C (~ y ; ~ x ) = 0 that M we + ~ y ; ~ x = 0. We show h o w w e can satisfy them recursively. W e need the following lemmas: Lemma 7 For each cycle C of G, wC 2 U , C 2 G 0 .

Figure 4 .

 4 Figure 3. RDG for third example.

A loop is said parallel if it carries no dependences, i.e. if there is no dependences between di erent iterations of the loop.

X may b e c hosen with rational components, in this case the logical time is b X: Ĩ + c, and code generation may i n volve l o o p unrolling. We will not discuss this here. We assume all along the paper that timing vectors such a s X are integral vectors.

The left-hand side of the above equation is a null sum of non negative t e r m s ( M we + ~ y ; ~ x 0), thus is a sum of null terms.

The matrix M is composed by r row v ectors Xi , with 1 i r. Our goal is to maximize r. Let U be the vector space generated by the weights of the cycles of G 0 . Let k be the dimension of U. Lemma 5 ( Xi 2 U ? ) 8 cycle C 2 G 0 M wC = 0 In other words, each Xi is in the orthogonal of U. Thus, r n ; k.

Proof If C is a cycle of G 0 , all its edges belong to G 0 . By Lemma 4, M wC is a sum of null terms, and thus is null.

We n o w show that, in fact, r equals n ; k. Lemma 6 (Vect( Xi ) = U ? ) The rows of M form a basis of U ? , i.e. r = n ; k. We rst give an existence proof of the n ; k vectors X i . Then, we will discuss their construction from an algorithmic point of view.

Proof We use a well-known property o f G 0 (see 10]). There exists a vector ~ and some constants v , v 2 V , such that: (i) 8e 6 2 G 0 ~ :w e + y ; x 1 (ii) 8e 2 G 0 ~ :w e + y ; x = 0 This can be proved as follows. There is no multi-cycle of null weight w h i c h contains an edge not in G 0 . This property can be expressed by the fact that some system of linear equations has no solution. Then, using Farkas' lemma 17], we obtain the existence of ~ and of the desired constants. In particular, ~ is such that ~ :w C = 0 i f C 2 G 0 and ~ :w C 1 otherwise. Now, consider a basis b1 : : : bn;k of U ? . Let B be the n (n ; k) matrix whose columns are the b i . W e look for vectors Xi of the form ( bi + i ~ ). According to Lemma 3, we n o w h a ve to determine the i such that Xi :w C 0 for each c y c l e C of G and such that the vectors Xi are linearly independent.

We rst give a condition on the i for the Xi to be linearly independent. ~ is in the orthogonal of U too, it is therefore a linear combination of the vectors bi : ~ = P n;k i=1 y i bi . Let be the matrix of size 1 (n;k), with components the i , Y the matrix of size (n;k) 1 with components the y i and write ~ as a matrix X of size n 1. Then: X = BY and t M = B + X = B(I n;k + Y ) Since B is of full rank, M is of full rank if and only if the matrix I n;k + Y , which is a square matrix of size n ; k, is non singular. Actually, this matrix is the change of basis from B to t M. W e can show t h a t i t s determinant i s e q u a l t o 1 + Y , i . e . 1 + P n;k i=1 y i i . T o summarize, the vectors Xi are linearly independent i f and only if:

We n o w c heck Condition 1 using Lemma 3. Xi :w C = bi :w C + i ~ :w C . I f C is a cycle of G 0 , t h e n Xi :w C = 0 whatever i . I f C is an elementary cycle with at least one edge not in G 0 , t h e n ~ :w C 1. Therefore, it is sufcient t o c hoose i su ciently large, i.e. larger than ;( bi :w C )=( ~ :w C ). If C is any cycle, it is sum of elementary cycles and the desired inequality is automatically satis ed, if already satis ed for all elementary cycles. This proves the existence of the i : w e c hoose them large enough while checking Equation (2).

There is an in nite number of matrices M, of rank n ; k, satisfying M wC 0 for each c y c l e C of G.

To build one of them, we h a ve t wo possibilities. On one hand, if the number of elementary cycles is small, we can directly work with the cone generated by t h e weights of the cycles of G. The corresponding polar cone contains all candidate vectors X. Then, to select the matrix M, optimization techniques such a s i n 2 ] can be used.

On the other hand, if generating all the elementary cycles is too expensive, we can still build one solution in polynomial time, by c hoosing M as done in the proof of Lemma 6.

First, we nd a basis B of U ? . F or that, we build the weights of a basis of cycles of G 0 , w h i c h can be done in polynomial time. Since G 0 is a union of strongly connected components, we can show that these vectors span exactly the vector space U. N o w, using U, w e build the basis B of U ? .

Then, we build a vector ~ by linear programming techniques. Finally, w e c hoose the smallest i as stated in the proof of Lemma 6.

As already noticed, no matter how M is completed into a square matrix of size n, e a c h dependence that corresponds to an edge e = ( x y) s u c h that M we + ~ y ; ~ x 0 and M we + ~ y ; ~ x 6 = 0 will be satis ed as already carried by one of the loops corresponding to M. W e still have to consider the other edges, those such