
HAL Id: hal-02102115
https://hal-lara.archives-ouvertes.fr/hal-02102115

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining retiming and scheduling techniques for loop
parallelization and loop tiling.

Alain Darte, Georges-Andre Silber, Frédéric Vivien

To cite this version:
Alain Darte, Georges-Andre Silber, Frédéric Vivien. Combining retiming and scheduling techniques for
loop parallelization and loop tiling.. [Research Report] LIP RR-1996-34, Laboratoire de l’informatique
du parallélisme. 1996, 2+11p. �hal-02102115�

https://hal-lara.archives-ouvertes.fr/hal-02102115
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Combining retiming and scheduling

techniques

for loop parallelization and loop tiling

Alain Darte

Georges�Andr�e Silber

Fr�ed�eric Vivien

November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Combining retiming and scheduling techniques

for loop parallelization and loop tiling

Alain Darte

Georges�Andr�e Silber

Fr�ed�eric Vivien

November ����

Abstract

Tiling is a technique used for exploitingmedium�grain parallelism in nested loops� It relies on a �rst step
that detects sets of permutable nested loops� All algorithms developed so far consider the statements of
the loop body as a single block� in other words� they are not able to take advantage of the structure of
dependences between di�erent statements� In this report� we overcome this limitation by showing how
the structure of the reduced dependence graph can be taken into account for detecting more permutable
loops� Our method combines graph retiming techniques and graph scheduling techniques� It can be
viewed as an extension of Wolf and Lam�s algorithm to the case of loops with multiple statements�
Loop independent dependences play a particular role in our study� and we show how the way we handle
them can be useful for �ne�grain loop parallelization as well�

Keywords� Automatic parallelization� nested loops� permutable loops� tiling� medium grain�

R�esum�e

�Loop tiling� est une technique utilis�ee pour exploiter du parall�elisme 	a grain moyen dans les boucles
imbriqu�ees� Elle repose sur une premi	ere �etape de d�etection de boucles permutables� Tous les algo�
rithmes d�evelopp�es jusqu�	a maintenant consid�eraient les instructions du corps du nid de boucles comme
un bloc indissociable� En d�autres termes� ils ne pouvaient pas tirer pro�t de la structure des d�epen�
dances entre di��erentes instructions� Dans ce rapport� nous surmontons cette limitation en montrant
comment la structure du graphe de d�ependance r�eduit peut
etre prise en compte pour d�etecter plus de
boucles permutables� Notre m�ethode combine des techniques de synchronisation et d�ordonnancement
de graphes� Elle peut
etre vue comme une extension de l�algorithme de Wolf et Lam au cas de boucles
comportant plusieurs instructions� Les d�ependances qui ne sont pas port�ees par une boucle �loop inde�
pendent dependences� jouent un r
ole particulier dans notre �etude et nous montrons comment la fa
con
particuli	ere dont nous les traitons peut
etre utile �egalement pour la parall�elisation 	a grain �n�

Mots�cl�es� Parall�elisation automatique� nids de boucles� boucles permutables� tiling� grain moyen�

Combining retiming and scheduling techniques

for loop parallelization and loop tiling

A� Darte� G��A� Silber� and F� Vivien �

Laboratoire LIP� URA CNRS ���	

Ecole Normale Sup�erieure de Lyon

F������ LYON Cedex
�� FRANCE

�darte�gsilber�fvivien��lip�ens�lyon�fr

Abstract

Tiling is a technique used for exploiting medium�

grain parallelism in nested loops� It relies on a �rst

step that detects sets of permutable nested loops� All

algorithms developed so far consider the statements of

the loop body as a single block� in other words� they are

not able to take advantage of the structure of depen�

dences between di�erent statements� In this paper� we

overcome this limitation by showing how the structure

of the reduced dependence graph can be taken into ac�

count for detecting more permutable loops� Our method

combines graph retiming techniques and graph schedul�

ing techniques� It can be viewed as an extension of Wolf

and Lam�s algorithm to the case of loops with multiple

statements� Loop independent dependences play a par�

ticular role in our study� and we show how the way

we handle them can be useful for �ne�grain loop paral�

lelization as well�

�� Introduction

A�ne scheduling techniques � from the simplest and
earliest one� Lamport�s hyperplane method ����� to the
most sophisticated one� Feautrier�s multi�dimensional
a�ne scheduling ��� � are used to transform a set
of nested loops into a semantically equivalent code�
consisting in parallel loops surrounded by sequential
loops� Lamport�s method� and its extension� the linear
scheduling� transform n perfectly nested loops into n��
nested parallel loops surrounded by a single sequen�
tial loop� When this is not feasible� multi�dimensional
scheduling can be used to transform the original loops
into n � r sequential loops surrounding r innermost
parallel loops� with n � r � �� The goal is to make r

�Supported by the CNRS�INRIA project ReMaP�

�roughly speaking the degree of parallelism� as large as
possible�

The underlying computational model in which these
techniques are developed is nothing but a PRAM� Ad�
ditional constraints such as the cost of communications�
the cost of synchronizations� the number of processors�
the ratio communications�computations� are not taken
into account� The claim �the hope� is that they can be
optimized a posteriori� for example by merging virtual
PRAM processors into fewer physical processors� How�
ever� especially when r is small� the granularity of com�
putations can be too �ne� leading to poor performances
especially on distributed memory systems� To circum�
vent this problem� the granularity of computations has
to be increased� This can be achieved by a technique
called tiling� introduced by Irigoin and Triolet ��� as
supernode partitioning�

Tiling consists in aggregating several loop itera�
tions that will be considered as an elemental com�
putation� The size and shape of a tile are chosen
following various criteria� for achieving better vector�
ization of communications and�or computations� for
improving cache�reuse� reducing communications� etc�
All these criteria are very machine�dependent� and de�
spite the large amount of di�erent optimization strate�
gies ��� ��� ��� ��� ��� ��� choosing a �good� tiling re�
mains an open problem�

However� before even de�ning the size and shape of
the tiles� one has to make sure that they will be atomic�
i�e� that they can be computed with no intervening syn�
chronization or communication� This atomicity prop�
erty is ful�lled if the dependence graph between tiles
is acyclic which is guaranteed if the tiles partition the
iteration domain into identical rectangles� and if the
iteration domain is described by permutable loops�

Until now� all algorithms proposed for detecting per�
mutable loops have the following restrictions�

�

� The original loops are perfectly nested�

� The dependences are uniform� except for Wolf
and Lam�s algorithm ���� where dependences can
be approximated by direction vectors�

� The statements of the loop body are considered
as a single block� This may enforce complicated
skews� even if a simple shift between statements
is su�cient to make the loops permutable�

Taking into account the structure of the reduced de�
pendence graph has been proved very useful for the
detection of parallel loops� see for example the algo�
rithms of Allen and Kennedy ���� Darte and Vivien ����
or Feautrier ���� In this paper� we show that it can also
be useful for the detection of permutable loops� Our
method combines graph retiming and graph scheduling
techniques�
We do not overcome all restrictions listed above as

we still consider only perfectly nested loops� However�
our algorithm can be applied even if the dependences
are described by a polyhedral approximation of dis�
tance vectors �which is more general than direction
vectors�� and we do exploit the fact that the loop body
may have more than one statement� i�e� that the re�
duced dependence graph may have more than one ver�
tex�
The paper is organized as follows� In Section �� we

explain why some particular structures of codes can�
not be obtained by standard linear scheduling tech�
niques� although they correspond to useful optimiza�
tions� These are codes containing loop independent
dependences� i�e� codes that express sequentiality in
parallel loops� In Section �� we show how such codes
can be generated for exploiting �ne�grain parallelism�
The technique is to modify standard scheduling tech�
niques while introducing graph retiming techniques� In
Section �� we use a similar combination for extending
Darte and Vivien�s algorithm ��� ��rst designed for de�
tecting innermost parallel loops� i�e� �ne�grain paral�
lelism� to the detection of maximal sets of permutable
loops �i�e� medium�grain parallelism�� Finally� in Sec�
tion �� we summary our main results� and we point out
some open problems�

�� Sequentiality in parallel loops

Loops parallelized by scheduling techniques have a
particular structure� each statement in the parallelized
code is surrounded by a set of nested parallel � loops�
surrounded by a set of sequential loops� The term

�A loop is said parallel if it carries no dependences� i�e� if
there is no dependences between di�erent iterations of the loop�

�scheduling� comes from the fact that the outermost
sequential loops can be interpreted as a description of
the time steps� or synchronization steps� needed for
computing the loops in a PRAM manner� The inner�
most parallel loops describe the set of computations
carried at a given time step� By construction� these
computations are completely independent� each depen�
dence is carried by one of the sequential loops� Indeed�
the general principle is to transform all dependences
into dependences carried by the outermost loop �level
� dependences�� If this is not possible� as many depen�
dences as possible are transformed into level � depen�
dences� then as many as possible into level � depen�
dences� and so on� until all dependences are carried by
one of the constructed loops �which are therefore se�
quential�� The remaining dimensions are completely
independent� With such a principle� the �nal code
never contains a loop independent dependence �null de�
pendence distance�� A consequence of this restriction is
that some code structures that also describe �ne�grain
parallelism cannot be generated� We illustrate this fact
on the following code structure�

for i�� to n
for j�� to n

S�

S�

endfor
endfor

Suppose that we succeeded to parallelize the above
code with the scheduling technique called shifted�linear
scheduling� This means that we have found an inte�
gral � vector �X � �a� b� and two constants �� and

�� such that iteration �I � �i� j� of statement S�
�resp� S�� is carried �in the PRAM model� at logical

time �X��I � �� � ai� bj � �� �resp� �X��I � ���� Forget�
ting the time interpretation� this simply means that we
apply a loop transformation for which i� � ai� bj� ��
�resp� i� � ai� bj ���� is the new loop counter for the
�rst loop surrounding S� �resp� S��� Now� two main
cases can occur�

� The components of �X are relatively prime� for
each iteration of the outermost loop �correspond�

ing to �X�� a hyperplane of computations can be
carried out in parallel� for S� and for S�� The
resulting parallel code looks like�

� �X may be chosen with rational components� in this case the
logical time is b �X��I � �c� and code generation may involve loop
unrolling� We will not discuss this here� We assume all along
the paper that timing vectors such as �X are integral vectors�

�

Code of type �a��
forseq

forpar
S���S�

endforpar
endforseq

possibly with some guards� This is typically the
case if �X � ��� ��� and for any �� and ��� All
dependences are carried by the �rst loop� and
potential parallelism between S� and S� is ex�
ploited�

� The components of �X are not relatively prime�
A typical example is �X � ��� ��� �� odd� and ��
even� In this case� the even iterations of the out�
ermost loop correspond to iterations of S�� and
the odd iterations to iterations of S�� This can
be written into a parallel code with the following
structure�

Code of type �b��
forseq

forpar
S�

endforpar
forpar

S�

endforpar
endforseq

possibly with some guards� The dependences are
either carried by the �rst loop� or occur between
the �rst and the second parallel loop�

On the other hand� with standard scheduling tech�
niques� it is not possible to obtain a code such as�

Code of type �c��
forseq

forpar
S�

S�

endforpar
endforseq

which may contain a loop independent dependence
�from S� to S� here�� Yet� it can be interesting to
generate such a code� for several reasons�

� If parallelism between S� and S� cannot be ex�
ploited anyway because of the machine program�
ming model� a code of type �a� reveals too much
parallelism� This is the case for example for a
parallelizer that generates parallel code in an in�
termediate language such as HPF� and expresses
parallel loops as �hpf� independent directives�

the potential parallelism S���S� cannot be ex�
ploited� Instances of S� and S� will be sequen�
tialized� even if they can be carried out in paral�
lel� In this case� a code of type �c� is su�cient�
Of course� any code of type �a� can be sequential�
ized into a code of type �c�� However� all codes
of type �c� cannot be obtained this way �see our
example in Section ���

� A code of type �c� can lead to better performance
than a code of type �b� when the minimization of
communications and�or synchronizations is im�
portant� Indeed� for a code of type �b�� a syn�
chronization �or a phase of communications� is
needed between the two parallel loops� In a code
of type �c�� all iterations can be carried in paral�
lel� and possible communications from S� to S�
take place inside a given iteration of the parallel
loop� This principle is similar to the one used
in Allen and Kennedy�s algorithm where loop fu�
sion �more precisely partial loop distribution� is
shown useful to minimize synchronizations�

� De�ning loop transformations that lead to codes
of type �c� can also be useful for enlarging the
set of valid schedules� and having more �exibil�
ity� This freedom gives us a better control on the
code shape� We can use it to avoid loop skewing
when it is not necessary� to keep loops perfectly
nested if possible �which can be useful for tiling��
to impose loop transformations to be unimodular
if loop strides are not desirable� etc�

To conclude this short study� let us point out that
codes of type �c� can be obtained simply by allow�
ing loop independent dependences in the transformed
codes� We now show that this can be done by combin�
ing standard scheduling techniques with graph retim�
ing techniques� linked to Bellman�Ford�s algorithm� for
�ne�grain parallelism detection �Section �� as well as
for medium�grain parallelism detection �Section ���

Notations and hypotheses In the rest of the pa�
per� we consider n perfectly nested loops whose depen�
dences are represented by a polyhedral reduced depen�
dence graph �PRDG�� i�e� where set of distance vectors
are approximated by non parameterized polyhedra� As
shown in ���� we can capture such dependences through
a modi�ed reduced dependence graph with edges la�
beled by n�dimensional integral vectors� i�e� a uniform
dependence graph� This graph has particular vertices
�called virtual vertices� which are handled in a special
way� However� to make the discussion simpler� we will
forget about these vertices� Taking them into account

�

is indeed mainly technical� but does not bring any fun�
damental di�culty� Going back� from the modi�ed de�
pendence graph� to the original dependence graph� is
also conceptually not di�cult� See ��� for a complete
explanation of this �uniformization� process� The only
important point is that the vectors that label the edges
are not necessarily lexicographically positive� There�
fore� in the rest of our study� we will make the following
assumptions�

� The reduced dependence graph is uniform�

� There is no cycle of null weight�

� Dependence vectors are not necessarily lexico�
graphically positive�

We will use the following notations� G is the reduced
dependence graph �RDG�� V the set of vertices and E
the set of edges� V �resp� E� is the number of
vertices �resp� edges�� e � �x� y� is an edge of G from
vertex x to vertex y� �we is the weight of e� �wC denotes
the weight of a cycle C �sum of the weights of its edges�
and lC denotes its length �number of edges��

�� Application to the detection of �ne�
grain parallelism

In this section� we explain how a technique based on
shifted�linear scheduling can be modi�ed so as to allow
the generation of codes of type �c�� i�e� codes with par�
allel loops and sequential bodies� As recalled in Sec�
tion �� shifted�linear scheduling consists in de�ning a
logical time for computing the iterations of each state�
ment S� iteration �I of S is scheduled at time �X��I��S �
�X will be used for building the outermost loop of the
parallelized code� All dependences are carried by this
loop �if possible��

The two following lemmas show the di�erences be�
tween the �pure� shifted�linear approach and our mod�
i�ed approach which does not require all dependences
to be loop carried in the transformed code� With this
technique� we can �nd as much parallelism� and with
more freedom on the choice of �X� The constraints on �X
given by Lemma � �resp� Lemma �� are the constraints
imposed by the pure shifted�linear approach �resp� the
modi�ed one��

Lemma � Let G be a RDG� Let �X be a vector which

induces on each cycle C of G a delay greater than the

length of C�

�C cycle of G� �X��wC � lC

Then� for each vertex v � V � there exists a constant �v
such that the shifted linear schedule built from �X and

the constants �v is valid� In other words�

�e � �x� y� � E� �X��we � �y � �x � �

Proof Let F be a copy ofG� except that the weight of
an edge e is set to w�e � ��

�X��we instead of �we� Add
to F a new vertex s �the source� and a null weight
edge from s to any other vertex� Let C be a cycle
of F � By hypothesis� the weight of C is non positive�
w�C �

P
e�C���

�X��we� � lC� �X��wC � �� Thus� we can
successfully apply on F an algorithm to �nd the longest
paths from s �e�g� Bellman�Ford�s algorithm ����� For
each vertex x in F � let �x be the length of the longest
path from s to x� For each edge e � �x� y� inG� the def�
inition of the longest paths leads to the following trian�
gular inequality � �y � �x�w

�
e� i�e� �X��we��y��x � ��

Lemma � Let G be a RDG� Let �X be an integral vec�

tor which induces on each cycle C of G a delay greater

than one�

�C cycle of G� �X��wC � �

Then� for each vertex v � V � there exists a constant �v
such that�

�e � �x� y� � E� �X��we � �y � �x � �

Furthermore� the subgraph generated by the edges with

null delay is acyclic�

Proof Let F be a copy of G� except that the weight
of the edge e is set to w�e � � �X��we instead of �we� Add
to F a new vertex s �the source� and a null weight
edge from s to any other vertex� Let C be a cycle
of F � By hypothesis� the weight of C is non posi�
tive� w�C �

P
e�C��

�X��we� � � �X��wC � ��� Thus�
we can successfully apply on F an algorithm to �nd
the longest paths from s� For each vertex x of F �
let �x be the longest path from s to x� As the edge
weights and �X are integers� so are the longest paths�
For each edge e � �x� y� of G� we have by de�nition of

the longest paths� �y � �x�w�e� i�e� �X��we��y��x � ��
Now� if all edges of a cycle C have a null delay� i�e�
�X��we� �y � �x � �� then �X��wC � � which contradicts
the hypothesis� Thus� the subgraph generated by the
edges of null delay is acyclic�

�

Note that the number of elementary cycles in a
graph can be exponential in the number of vertices
and edges of the graph� Therefore� checking directly
that �X��wC � � or �X��wC � lC for all elementary cy�
cles can be exponential� even if in practice it can be fast
when the number of cycles is small� However� Lemma�
shows that �nding a �X such that �X��wC � lC for all cy�
cles is equivalent to solving E inequalities with V
additional variables �the constants �v�� thus a polyno�
mial number of inequalities� Expressing the constraints
�X��wC � � with a polynomial number of inequalities
and variables is more tricky� but feasible�
With the example hereafter� we illustrate the dif�

ferences between the three following techniques� lin�
ear schedule� shifted�linear schedule� and shifted�linear
schedule allowing loop independent dependences�

for i�� to N
for j�� to N

S�� a�i� j� � b�i��� j�
S�� b�i� j� � a�i� j���

endfor
endfor

The reduced dependence graph of this program is
depicted on Figure ��

0
1

S
1 2

1
0

S

Figure 1. RDG of the first example.

Linear schedule We look for a vector �X such that
�X��w � � for each dependence vector �w in the RDG�
Because of the values of the two dependences� both
components of �X must be greater than one� Hence
we have to do at least one loop skewing� We choose
�X � ��� �� and we complete it into a unimodularmatrix
with the vector ��� ��� After transformation� we obtain
the following code�

forseq i�� to �N
forall j�max��� i�N� to min�i��� N�

S�� a�i�j� j� � b�i�j��� j�
S�� b�i�j� j� � a�i�j� j���

endforall
endforseq

Shifted linear schedule We look here for a vector
�X such that �X��wC � lC for each cycle C in the RDG�

The only cycle weight is ��� ��� of length �� thus we

can choose �X � ��� ��� Using Lemma �� we �nd two
constants� �� � � and �� � �� to complete the schedule�
Once again� we complete �X into a unimodular matrix
using the vector ��� ��� After transformation� we obtain
the following code� of type �b��

forseq i�� to N
forall j�� to N

S�� a�i� j� � b�i��� j�
endforall
forall j�� to N

S�� b�i� j� � a�i� j���
endforall

endforseq

Shifted linear schedule allowing loop indepen�
dent dependences We look here for a vector �X such
that �X��wC � � for each cycle C in the RDG� Using
Lemma �� we will �nd some constants to complete the
schedule� This schedule is said to be allowing loop in�

dependent dependences because it does not induce a
delay greater than one on all the edges as usually re�
quired� but only a non negative delay� Since all values
are integers� a delay is either greater than one or null�
If a delay is equal to zero� the dependence will only
be satis�ed by the ordering of the statements in the
loop body� This can be achieved through a topological
ordering of the subgraph generated by the edges with
null delay� since this subgraph is acyclic �cf Lemma ���
Such a dependence will �nally be transformed into a
loop independent dependence�
In our example we can choose �X equal to ��� ���

and both constants to be null� But then S� must pre�
cede S� in the �nal loop body as the delay on the edge
from S� to S� is null� Furthermore� constants in the
remaining dimension must be carefully chosen so that
the dependences from S� to S� is not carried �otherwise
the remaining loop will be sequential�� Once again� we

complete �X into a unimodular matrix using the vector
��� ��� For the second dimension� we choose �� � �� and
�� � �� After transformation� we obtain the following
code� of type �c��

forseq i�� to N
forall j�� to N	�

S�� if �j � �� then a�i� j��� � b�i��� j���
S�� if �j � N	�� then b�i� j� � a�i� j���

endforall
endforseq

This technique completely solves the problem stated
by Okuda in ����� in a uniform nested loops� shift state�
ments before searching a schedule� so that the latency
of the best linear schedule is minimized� This can be

�

done simply by minimizing the latency induced by a
vector �X subject to the constraints of Lemma ��

� Detecting fully permutable loops

Consider the following piece of code� whose depen�
dence graph is depicted in Figure ��

for i�� to N
for j�� to N

S�� a�i� j� � b�i� j��� 	 a�i� j���
S�� b�i� j� � a�i��� j	�� 	 b�i��� j�

endfor
endfor

It is a uniform program with four dependence vectors�
Fine�grain parallelismdetection will lead to a code with
one sequential and one parallel loop� which may not
be su�cient for achieving good performance on dis�
tributed memorymachines� To increase the granularity
of computations� we can use the tiling technique� intro�
duced by Irigoin and Triolet ���� by �rst transforming
the original loops into permutable loops� The condi�
tion of permutability is easy to check� two consecutive
loops are permutable if and only if all dependence vec�
tors� not carried by outermost loops� have non negative
components in these dimensions�

0
1

1
0

0
1

2

-1
 1

S
1

S

Figure 2. RDG of the second example.

The technique is as follows� a ��by�� non singular in�
tegral transformation matrixH is generated� such that
H�we � �� for each dependence vector �we� In particular�
each row �X � �a� b� of H satis�es �X��we � �� This
leads to the following constraints�

a � � b � � a � b � � b � �

Here� the simplest linear independent solutions are�
�X� � ��� �� and �X� � ��� ��� H is a matrix for per�
forming a loop skewing� The corresponding permutable
code� in which tiling can be achieved� is the following�

for i�� to N
for j��	i to N	i

S�� a�i� j	i� � b�i� j	i��� 	 a�i� j	i���
S�� b�i� j	i� � a�i��� j	i	�� 	 b�i��� j	i�

endfor
endfor

Now� let us use the same technique as in Section �
so as to exploit the structure of the dependence graph�
Instead of transforming each iteration vector �I � �i� j�

into �I� � H�I for all statements� we allow statements
to be shifted between each other� In other words� we
transform iteration �I of statement S into H�I � ��S
where ��S is a shift vector� possibly di�erent for each
statement S� For the new loops to be permutable� the
constraints are now that for each edge e � �x� y� of the

graph�H��I��we����y � H�I���x� i�e� H�we���y���x � ���
Reasoning row by row� it means that� for each row
�X � �a� b� of H� there are constants �� and �� such
that�

a � � b � � a� b� �� � �� � � b� �� � �� � �

Here� the simplest linear independent solutions are�
�X� � ��� �� �with �� � �� � �� and �X� � ��� �� �with
�� � � and �� � ��� H is simply the identity ma�
trix and S� is moved forward one iteration along the
j loop� The corresponding permutable code� in which
tiling can be achieved� is the following�

for i�� to N
for j�� to N��
S�� if �j � �� then b�i� j��� � a�i��� j� � b�i��� j���
S�� if �j � N��� then a�i� j� � b�i� j��� � a�i� j���

endfor
endfor

Remark that we interchanged S� and S� in the loop
body� This is because� after transformation� all de�
pendence vectors are now non negative� and some of
them can even be null �loop independent dependences��
To keep the semantic of the code� we have to order
the statements inside the loop body so that loop in�
dependent dependences follow the textual order� For
this to be possible� we have to make sure that the
subgraph of G generated by loop independent depen�
dences is acyclic� Once again� the technique is related
to Lemma �� The main di�erence with Section � is
that� for tiling� we are looking for a family of indepen�
dent vectors �X �and not only for one vector �X� that
form a matrix H of full rank� The condition on the
weights of the cycles �wC given in Lemma � is now too
strong� What we need is H�wC � �� and H�wC �� ��� It
is now possible that one of the rows �X of H satis�es
�X��wC � �� as long as at least one of the other rows
satis�es �X��wC � ��
We are now ready to generalize this technique to

arbitrary reduced dependence graphs with uniform
�but not necessarily lexicographically positive� depen�
dences� as long as the graph has no cycle of null weight�
We combine two ideas�

� Wolf and Lam�s idea ���� that a set of perfectly
nested loops can be transformed by unimodular

�

transformations into a canonical form consisting
of nested blocks of fully permutable loops� The
technique is greedy and recursive� First� as many
outermost permutable loops as possible are gen�
erated� All dependences have now non negative
components in these dimensions� Some of them
have at least one positive component� they are
carried by at least one loop and are not consid�
ered any longer� The other ones are taken into
account for building a new block of permutable
loops� This recursive procedure ends when all de�
pendences � are �nally carried by at least one of
the generated loops�

� Darte and Vivien�s idea ��� that �ne�grain par�
allelism can be detected by �uniformizing� the
polyhedral reduced dependence graph into the
dependence graph of a system of uniform recur�
rence equations� which can be scheduled� The
technique is also greedy and recursive� First�
an outermost loop is generated that carries as
many dependences as possible� possibly after
shifting the di�erent statements between each
other� Then� all carried dependences are removed
from the graph� The procedure keeps going on
each strongly connected component of the re�
maining graph �called G�� and the recursive pro�
cedure ends when all dependences are �nally car�
ried by at least one of the generated loops�

We mixed these two approaches� we aim at �nding
a nested structure of blocks of permutable loops as in
Wolf and Lam�s algorithm� but we exploit the struc�
ture of the reduced dependence graph� as in Darte and
Vivien�s algorithm� by allowing shifts between state�
ments�
Each statement S is transformed by a multi�

dimensional a�ne function� iteration �I of S is rep�
resented by the new iteration vector �I� � HS

�I � ��S
where HS is a non singular n�by�n matrix� Following
the technique used in ��� �called shifted�linear multi�
dimensional schedules�� we look for transformation ma�
trices HS whose �rst rows �as many as possible� are
the same � for all statements within a given strongly
connected component of G� After transformation� the
�rst common r rows of the matrices HS correspond to
r permutable loops if

�e � �x� y� � G� M �we � ��y � ��x � �� ���

�except loop independent dependences of the original loops�
they are not taken into account and they remain unchanged�

�Such a restrictionkeeps optimality for maximalparallel loops
detection in polyhedral reduced dependence graphs �PRDG�� we
conjecture it is also true for maximal permutable loops detection�

where M is the r�by�n matrix of full rank formed by
these row vectors� Our goal is to build such a matrix
M while maximizing r�
Of course� M de�nes only one part of the �nal

transformation� To be valid� the �nal transforma�
tion has to respect all dependences� Some of them
are already carried by the loops de�ned by M � The
other ones� corresponding to edges e � �x� y� such that
M �we���y���x � ��� will be satis�ed either by a topologi�
cal sort as in Section �� or recursively in the subsequent
dimensions�
For the sake of clarity� we only focus on the con�

struction of the outermost block of permutable loops�
We will explain brie�y at the end of the section how to
adapt this study to the whole recursive construction�
Our problem is therefore the following� build a full�

maximal rank matrix M �and its corresponding vec�
tors ��v� that can be extended to a n�dimensional valid
transformation�
Condition � is a necessary condition� expressed in

terms of edges� It can be reformulated as a necessary
condition on cycles�

Lemma � �Condition on cycles�
Let M be a matrix� M satis�es Condition � for some

vectors ��v� v � V � if and only if M �wC � �� for each

cycle C of G�

Proof The proof is similar to the proofs of Lemmas �
and �� by reasoning on each row of M �

We now show the fundamental role of G�� the sub�
graph of G generated by the multi�cycles �union of cy�
cles� of null weight� i�e� the subgraph generated by the
edges of G that belong to a multi�cycle of null weight�
We point out that G� is also the base of Karp� Miller
and Winograd�s decomposition ���� for the computabil�
ity of systems of uniform recurrence equations� and of
Darte and Vivien�s algorithm ��� for the detection of
parallelism in PRDGs� G� can be built by rational lin�
ear programming� with a polynomial number of con�
straints and variables �see �����

Lemma � �Condition on edges�
Condition � is equivalent to�

�i� �e �� G�� M �we � ��y � ��x � ��

�ii� �e � G�� M �we � ��y � ��x � ��

Proof Let C be a multi�cycle of null weight� �wC � ���
thus M �wC � ��� Therefore�

X

e�C

M �we � ��y � ��x �M �wC �
X

e�C

���y � ��x� � ��

�

The left�hand side of the above equation is a null sum
of non negative terms �M �we � ��y � ��x � ���� thus is a
sum of null terms�

The matrix M is composed by r row vectors �Xi�
with � � i � r� Our goal is to maximize r� Let U be
the vector space generated by the weights of the cycles
of G�� Let k be the dimension of U �

Lemma 	 � �Xi � U��

� cycle C � G�� M �wC � �

In other words� each �Xi is in the orthogonal of U �

Thus� r � n� k�

Proof If C is a cycle of G�� all its edges belong to G��
By Lemma �� M �wC is a sum of null terms� and thus is
null�

We now show that� in fact� r equals n � k�

Lemma
 �Vect� �Xi� � U��
The rows of M form a basis of U�� i�e� r � n� k�

We �rst give an existence proof of the n � k vectors
Xi� Then� we will discuss their construction from an
algorithmic point of view�

Proof We use a well�known property of G� �see ������

There exists a vector �� and some constants �v� v � V �
such that�

�i� �e �� G�� ����we � �y � �x � �

�ii� �e � G�� ����we � �y � �x � �

This can be proved as follows� There is no multi�cycle
of null weight which contains an edge not in G�� This
property can be expressed by the fact that some system
of linear equations has no solution� Then� using Farkas�
lemma ����� we obtain the existence of �� and of the

desired constants� In particular� �� is such that ����wC �
� if C � G� and ����wC � � otherwise�
Now� consider a basis �b�� � � � ��bn�k of U�� Let B be

the n � �n � k� matrix whose columns are the bi� We

look for vectors �Xi of the form ��bi��i���� According to
Lemma �� we now have to determine the �i such that
�Xi� �wC � � for each cycle C of G and such that the
vectors �Xi are linearly independent�
We �rst give a condition on the �i for the �Xi to be

linearly independent� �� is in the orthogonal of U too�
it is therefore a linear combination of the vectors �bi�
�� �
Pn�k

i�� yi�bi� Let ! be the matrix of size �� �n�k��
with components the �i� Y the matrix of size �n�k���

with components the yi and write �� as a matrix X of
size n� �� Then�

X � BY and tM � B �X! � B�In�k � Y !�

Since B is of full rank� M is of full rank if and only
if the matrix In�k � Y !� which is a square matrix of
size n� k� is non singular� Actually� this matrix is the
change of basis from B to tM � We can show that its
determinant is equal to ��!Y � i�e� ��

Pn�k

i�� yi�i� To

summarize� the vectors �Xi are linearly independent if
and only if�

n�kX

i��

yi�i �� �� ���

We now check Condition � using Lemma�� �Xi� �wC �
�bi� �wC � �i����wC� If C is a cycle of G�� then �Xi� �wC � �
whatever �i� If C is an elementary cycle with at least
one edge not in G�� then ����wC � �� Therefore� it is suf�
�cient to choose �i su�ciently large� i�e� larger than
���bi� �wC�������wC�� If C is any cycle� it is sum of elemen�
tary cycles and the desired inequality is automatically
satis�ed� if already satis�ed for all elementary cycles�
This proves the existence of the �i� we choose them

large enough while checking Equation ����

There is an in�nite number of matrices M � of rank
n � k� satisfying M �wC � �� for each cycle C of G�
To build one of them� we have two possibilities� On
one hand� if the number of elementary cycles is small�
we can directly work with the cone generated by the
weights of the cycles of G� The corresponding polar
cone contains all candidate vectors �X� Then� to select
the matrix M � optimization techniques such as in ���
can be used�
On the other hand� if generating all the elementary

cycles is too expensive� we can still build one solution
in polynomial time� by choosingM as done in the proof
of Lemma ��
First� we �nd a basisB of U�� For that� we build the

weights of a basis of cycles of G�� which can be done
in polynomial time� Since G� is a union of strongly
connected components� we can show that these vectors
span exactly the vector space U � Now� using U � we
build the basis B of U��
Then� we build a vector �� by linear programming

techniques� Finally� we choose the smallest �i as stated
in the proof of Lemma ��
As already noticed� no matter how M is completed

into a square matrix of size n� each dependence that
corresponds to an edge e � �x� y� such that M �we �
��y � ��x � �� and M �we � ��y � ��x �� �� will be satis�ed
as already carried by one of the loops corresponding to
M � We still have to consider the other edges� those such

�

that M �we � ��y � ��x � ��� We show how we can satisfy
them recursively� We need the following lemmas�

Lemma � For each cycle C of G� �wC � U � C � G��

Proof 	 is true by de�nition of U � Conversely� let
C be a cycle not in G�� Consider again the vector ��
introduced in the proof of Lemma �� �� belongs to U�

and is such that ����wC � �� Therefore� �wC is not in U
�otherwise ����wC � ���

Lemma � If M is such that M �wC � �� for each cycle

C of G� and if M is of full and maximal rank� then for

each cycle C not in G� we have�

M �wC � �� and M �wC �� ��

Proof For each cycle C of G� we have M �wC � ��� If
M �wC � ��� then �wC is orthogonal to all rows of M � If
M is of full and maximal rank� its rows generate ex�
actly U� �cf Lemma ��� Therefore �wC � �U��� � U �
Then� Lemma � shows that C � G��

We are now able to characterize precisely the matri�
ces M which enable us to build a maximal set of fully
permutable loops� Lemmas � and � show that they are
the matrices M � of full and maximal rank� such that�

�i� for each cycle C �� G�� M �wC � ��

�� ��

�ii� for each cycle C � G�� M �wC � ��

We can also characterize the matricesM by conditions
on edges� They are the matricesM � of full and maximal
rank� satisfying both following properties�

�� there exist some vectors ��v� v � V � such that�

�i� �e �� G�� M �we � ��y � ��x � ��

�ii� �e � G�� M �we � ��y � ��x � ��

�� the subgraph G� of G generated by the edges
e � �x� y� for which M �we � ��y � ��x � �� is a for�
est of strongly connected components� and those
with at least one edge are exactly the strongly
connected components of G��

The characterization above leads to a recursive con�
struction of the whole n�dimensional transformation�
As said before� each edge not in G� is carried by one
of the loops corresponding toM � Edges in G�� but not
in G�� can be satis�ed by a topological ordering of the

strongly connected components of G�� Finally� edges in
G� will be satis�ed through the recursive processing of
the strongly connected components of G� which com�
pletes the matrix M already built� The construction
of the new rows of M �which may be di�erent for each
strongly connected component of G�� is done the same
way� The only di�erence is that they must be chosen
with an additional constraint� they have to be linearly
independent with the existing rows ofM � As in ���� the
correctness of this recursive algorithm comes from the
fact that G has no cycles of null weight� From a prac�
tical point of view� we point out that all statements
do not necessarily have the same �nal n�dimensional
matrix M � However� we can impose these matrices to
be unimodular so as to get simpler codes�
We illustrate our technique on the following code�

for i�� to N
for j�� to N
for k�� to N
S�� a�i� j� k� � a�i� j��� k� � b�i� j� k���
S�� b�i� j� k� � b�i��� j�i� k� � a�i� j��� k�j�

endfor
endfor

endfor

Figure � shows the reduced dependence graph with
direction vectors� Figure � shows the �uniformized�
dependence graph G�

S1 S2

0
1
−

1
−
0

0
1
0

0
0
1

Figure 3. RDG for third example.

S1 S2

 1
−1
 0

0
1
0

0
0
0

0
0
0

 0
 0
−1

 0
 1
−1

0
0
1

 0
−1
 0

Figure 4. “Uniformized” RDG (Example �).

G has �ve cycles� three self�dependences with
weights ��� �� ��� ��� ������ and ������ ��� and two
other cycles with weights ��� �� �� and ������ ��� There�
fore� G� is the graph generated by the cycles whose
weights are ��� �� �� and ������ ��� The dimension of U

�

is �� We can thus build ��� � � outermost permutable
loops� Here� we see directly that the two canonical vec�
tors �X� � ��� �� �� and �X� � ��� ����� belong to U

��
and that they satisfy �Xi� �wC � � for all other cycles�
Thus� we can choose them as the rows of M � We just
have to �nd the corresponding shift vectors� We get
��S� � ��� ��� and ��S� � ��� ��� Here� G� � G�� no
topological sort is required� We consider the strongly
connected component that contains S� and S�� and we
look for a vector �X�� linearly independent with �X� and
�X�� such that �X����� �� �� � �� e�g� �X� � ��� �� ���
No shift in this dimension is required� however S� has
to be textually ordered before S�� To rewrite the
code� we use the function codegen of the software Pe�
tit ����� Our �nal transformation can be expressed in
Petit�s framework as S��i� j� k�
 �i��k � �� j� �� and
S��i� j� k�
 �i��k� j� ��� and we get the code�

for i�� to N
for k��N to �
for j�� to N
S�� if �k � �� then

b�i� j� �k� � b�i��� j�i� �k� � a�i� j��� �k�j�
S�� if �k � �N� then

a�i� j� �k��� � a�i� j��� �k��� � b�i� j� �k�
endfor

endfor
endfor

in which tiling can be performed on the two outermost
loops� Note that� in this example� permutable loops
cannot be detected by Wolf and Lam�s algorithm�

�� Conclusion

In this paper� we enlarge the set of codes that can
be generated by standard linear scheduling techniques�
and that expose either parallel loops or permutable
loops� Our method exploits the structure of the depen�
dence graph by combining graph retiming and schedul�
ing techniques�
For �ne�grain parallelism detection� we are now able

to generate codes with parallel loops that contain loop
independent dependences� This can be useful for min�
imizing communications and�or synchronizations�
For medium�grain parallelism detection� we general�

ize Wolf and Lam�s algorithm to the case of loops with
multiple statements� We generate maximal sets of fully
permutable loops that are essential for tiling�
We still have some open problems� how to de�ne a

criterion of optimality for the detection of permutable
loops" How to handle non perfectly nested loops" How
to choose the size and shape of a tile" How to map data
with respect to the chosen tiling" Our future work will
address these problems�

References

	�
 J� Allen and K� Kennedy� Automatic translations of
Fortran programs to vector form� ACM Toplas� ��
���
�
�� �����

	�
 P� Boulet� A� Darte� T� Risset� and Y� Robert� �pen��
ultimate tiling� Integration� the VLSI Journal� ������
��� ���
�

	�
 T� H� Cormen� C� E� Leiserson� and R� L� Rivest� In�
troduction to Algorithms� The MIT Press� �����

	

 A� Darte and F� Vivien� Revisiting the decomposition
of Karp� Miller� and Winograd� Parallel Processing

Letters� ��
���������� Dec� �����
	�
 A� Darte and F� Vivien� Optimal �ne and medium

grain parallelism in polyhedral reduced dependence
graphs� In Proceedings of PACT���� Boston� MA� Oct�
����� IEEE Computer Society Press� To appear�

	�
 A� Darte and F� Vivien� Optimal �ne and medium
grain parallelism in polyhedral reduced dependence
graphs� Technical Report ������ LIP� ENS�Lyon�
France� Apr� �����

	�
 P� Feautrier� Some e�cient solutions to the a�ne
scheduling problem� part II� multi�dimensional time�
Int� J� Parallel Programming� ����������
��� Dec�
�����

	�
 F� Gasperoni and U� Schwiegelshohn� Generating close
to optimum loop schedules on parallel processors� Par�
allel Processing Letters�
�
������
��� ���
�

	�
 F� Irigoin and R� Triolet� Supernode partitioning� In
��th Annual ACM Symp� Principles of Programming

Languages� pages �������� San Diego� CA� Jan� �����
	��
 R� Karp� R� Miller� and S� Winograd� The organiza�

tion of computations for uniform recurrence equations�
Journal of the ACM� �
������������ July �����

	��
 W� Kelly� V� Maslov� W� Pugh� E� Rosser� T� Shpeis�
man� and D� Wonnacott� New user interface for Petit

and other interfaces� user guide� University of Mary�
land� June �����

	��
 M� Lam and M� E� Wolf� Automatic blocking by a
compiler� In �th SIAM Conference on Parallel Pro�

cessing for Scienti	c Computing� pages �����
�� �����
	��
 L� Lamport� The parallel execution of DO loops� Com�

munications of the ACM� ������������ Feb� ���
�
	�

 K� Okuda� Cycle shrinking by dependence reduction�

In Euro�Par���� volume ���� of Lecture Notes in Com�

puter Science� pages ����
��� Springer Verlag� �����
	��
 J� Ramanujam� A linear algebraic view of loop trans�

formations and their interaction� In �th SIAM Confer�

ence on Parallel Processing for Scienti	c Computing�
pages �
���
�� �����

	��
 R� Schreiber and J� J� Dongarra� Automatic blocking
of nested loops� Technical Report ������ The Univer�
sity of Tennessee� Knoxville� TN� Aug� �����

	��
 A� Schrijver� Theory of Linear and Integer Program�

ming� John Wiley and Sons� New York� �����
	��
 B� Sinharoy and N� Szymanski� Finding optimum

wavefront of parallel computation� Parallel algorithms

and applications� ������� ���
�

��

	��
 M� E� Wolf and M� S� Lam� A loop transforma�
tion theory and an algorithm to maximize parallelism�
IEEE Trans� Parallel Distributed Systems� ��
��
���

��� Oct� �����

��

