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Abstract

Tiling is a technique used for exploitingmedium�grain parallelism in nested loops� It relies on a �rst step
that detects sets of permutable nested loops� All algorithms developed so far consider the statements of
the loop body as a single block� in other words� they are not able to take advantage of the structure of
dependences between di�erent statements� In this report� we overcome this limitation by showing how
the structure of the reduced dependence graph can be taken into account for detecting more permutable
loops� Our method combines graph retiming techniques and graph scheduling techniques� It can be
viewed as an extension of Wolf and Lam�s algorithm to the case of loops with multiple statements�
Loop independent dependences play a particular role in our study� and we show how the way we handle
them can be useful for �ne�grain loop parallelization as well�

Keywords� Automatic parallelization� nested loops� permutable loops� tiling� medium grain�

R�esum�e

�Loop tiling� est une technique utilis�ee pour exploiter du parall�elisme 	a grain moyen dans les boucles
imbriqu�ees� Elle repose sur une premi	ere �etape de d�etection de boucles permutables� Tous les algo�
rithmes d�evelopp�es jusqu�	a maintenant consid�eraient les instructions du corps du nid de boucles comme
un bloc indissociable� En d�autres termes� ils ne pouvaient pas tirer pro�t de la structure des d�epen�
dances entre di��erentes instructions� Dans ce rapport� nous surmontons cette limitation en montrant
comment la structure du graphe de d�ependance r�eduit peut 
etre prise en compte pour d�etecter plus de
boucles permutables� Notre m�ethode combine des techniques de synchronisation et d�ordonnancement
de graphes� Elle peut 
etre vue comme une extension de l�algorithme de Wolf et Lam au cas de boucles
comportant plusieurs instructions� Les d�ependances qui ne sont pas port�ees par une boucle �loop inde�
pendent dependences� jouent un r
ole particulier dans notre �etude et nous montrons comment la fa
con
particuli	ere dont nous les traitons peut 
etre utile �egalement pour la parall�elisation 	a grain �n�

Mots�cl�es� Parall�elisation automatique� nids de boucles� boucles permutables� tiling� grain moyen�
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Abstract

Tiling is a technique used for exploiting medium�

grain parallelism in nested loops� It relies on a �rst

step that detects sets of permutable nested loops� All

algorithms developed so far consider the statements of

the loop body as a single block� in other words� they are

not able to take advantage of the structure of depen�

dences between di�erent statements� In this paper� we

overcome this limitation by showing how the structure

of the reduced dependence graph can be taken into ac�

count for detecting more permutable loops� Our method

combines graph retiming techniques and graph schedul�

ing techniques� It can be viewed as an extension of Wolf

and Lam�s algorithm to the case of loops with multiple

statements� Loop independent dependences play a par�

ticular role in our study� and we show how the way

we handle them can be useful for �ne�grain loop paral�

lelization as well�

�� Introduction

A�ne scheduling techniques � from the simplest and
earliest one� Lamport�s hyperplane method ����� to the
most sophisticated one� Feautrier�s multi�dimensional
a�ne scheduling ��� � are used to transform a set
of nested loops into a semantically equivalent code�
consisting in parallel loops surrounded by sequential
loops� Lamport�s method� and its extension� the linear
scheduling� transform n perfectly nested loops into n��
nested parallel loops surrounded by a single sequen�
tial loop� When this is not feasible� multi�dimensional
scheduling can be used to transform the original loops
into n � r sequential loops surrounding r innermost
parallel loops� with n � r � �� The goal is to make r

�Supported by the CNRS�INRIA project ReMaP�

�roughly speaking the degree of parallelism� as large as
possible�

The underlying computational model in which these
techniques are developed is nothing but a PRAM� Ad�
ditional constraints such as the cost of communications�
the cost of synchronizations� the number of processors�
the ratio communications�computations� are not taken
into account� The claim �the hope� is that they can be
optimized a posteriori� for example by merging virtual
PRAM processors into fewer physical processors� How�
ever� especially when r is small� the granularity of com�
putations can be too �ne� leading to poor performances
especially on distributed memory systems� To circum�
vent this problem� the granularity of computations has
to be increased� This can be achieved by a technique
called tiling� introduced by Irigoin and Triolet ��� as
supernode partitioning�

Tiling consists in aggregating several loop itera�
tions that will be considered as an elemental com�
putation� The size and shape of a tile are chosen
following various criteria� for achieving better vector�
ization of communications and�or computations� for
improving cache�reuse� reducing communications� etc�
All these criteria are very machine�dependent� and de�
spite the large amount of di�erent optimization strate�
gies ��� ��� ��� ��� ��� ��� choosing a �good� tiling re�
mains an open problem�

However� before even de�ning the size and shape of
the tiles� one has to make sure that they will be atomic�
i�e� that they can be computed with no intervening syn�
chronization or communication� This atomicity prop�
erty is ful�lled if the dependence graph between tiles
is acyclic which is guaranteed if the tiles partition the
iteration domain into identical rectangles� and if the
iteration domain is described by permutable loops�

Until now� all algorithms proposed for detecting per�
mutable loops have the following restrictions�
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� The original loops are perfectly nested�

� The dependences are uniform� except for Wolf
and Lam�s algorithm ���� where dependences can
be approximated by direction vectors�

� The statements of the loop body are considered
as a single block� This may enforce complicated
skews� even if a simple shift between statements
is su�cient to make the loops permutable�

Taking into account the structure of the reduced de�
pendence graph has been proved very useful for the
detection of parallel loops� see for example the algo�
rithms of Allen and Kennedy ���� Darte and Vivien ����
or Feautrier ���� In this paper� we show that it can also
be useful for the detection of permutable loops� Our
method combines graph retiming and graph scheduling
techniques�
We do not overcome all restrictions listed above as

we still consider only perfectly nested loops� However�
our algorithm can be applied even if the dependences
are described by a polyhedral approximation of dis�
tance vectors �which is more general than direction
vectors�� and we do exploit the fact that the loop body
may have more than one statement� i�e� that the re�
duced dependence graph may have more than one ver�
tex�
The paper is organized as follows� In Section �� we

explain why some particular structures of codes can�
not be obtained by standard linear scheduling tech�
niques� although they correspond to useful optimiza�
tions� These are codes containing loop independent
dependences� i�e� codes that express sequentiality in
parallel loops� In Section �� we show how such codes
can be generated for exploiting �ne�grain parallelism�
The technique is to modify standard scheduling tech�
niques while introducing graph retiming techniques� In
Section �� we use a similar combination for extending
Darte and Vivien�s algorithm ��� ��rst designed for de�
tecting innermost parallel loops� i�e� �ne�grain paral�
lelism� to the detection of maximal sets of permutable
loops �i�e� medium�grain parallelism�� Finally� in Sec�
tion �� we summary our main results� and we point out
some open problems�

�� Sequentiality in parallel loops

Loops parallelized by scheduling techniques have a
particular structure� each statement in the parallelized
code is surrounded by a set of nested parallel � loops�
surrounded by a set of sequential loops� The term

�A loop is said parallel if it carries no dependences� i�e� if
there is no dependences between di�erent iterations of the loop�

�scheduling� comes from the fact that the outermost
sequential loops can be interpreted as a description of
the time steps� or synchronization steps� needed for
computing the loops in a PRAM manner� The inner�
most parallel loops describe the set of computations
carried at a given time step� By construction� these
computations are completely independent� each depen�
dence is carried by one of the sequential loops� Indeed�
the general principle is to transform all dependences
into dependences carried by the outermost loop �level
� dependences�� If this is not possible� as many depen�
dences as possible are transformed into level � depen�
dences� then as many as possible into level � depen�
dences� and so on� until all dependences are carried by
one of the constructed loops �which are therefore se�
quential�� The remaining dimensions are completely
independent� With such a principle� the �nal code
never contains a loop independent dependence �null de�
pendence distance�� A consequence of this restriction is
that some code structures that also describe �ne�grain
parallelism cannot be generated� We illustrate this fact
on the following code structure�

for i�� to n
for j�� to n

S�

S�

endfor
endfor

Suppose that we succeeded to parallelize the above
code with the scheduling technique called shifted�linear
scheduling� This means that we have found an inte�
gral � vector �X � �a� b� and two constants �� and

�� such that iteration �I � �i� j� of statement S�
�resp� S�� is carried �in the PRAM model� at logical

time �X��I � �� � ai� bj � �� �resp� �X��I � ���� Forget�
ting the time interpretation� this simply means that we
apply a loop transformation for which i� � ai� bj� ��
�resp� i� � ai� bj ���� is the new loop counter for the
�rst loop surrounding S� �resp� S��� Now� two main
cases can occur�

� The components of �X are relatively prime� for
each iteration of the outermost loop �correspond�

ing to �X�� a hyperplane of computations can be
carried out in parallel� for S� and for S�� The
resulting parallel code looks like�

� �X may be chosen with rational components� in this case the
logical time is b �X��I � �c� and code generation may involve loop
unrolling� We will not discuss this here� We assume all along
the paper that timing vectors such as �X are integral vectors�
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Code of type �a��
forseq

forpar
S���S�

endforpar
endforseq

possibly with some guards� This is typically the
case if �X � ��� ��� and for any �� and ��� All
dependences are carried by the �rst loop� and
potential parallelism between S� and S� is ex�
ploited�

� The components of �X are not relatively prime�
A typical example is �X � ��� ��� �� odd� and ��
even� In this case� the even iterations of the out�
ermost loop correspond to iterations of S�� and
the odd iterations to iterations of S�� This can
be written into a parallel code with the following
structure�

Code of type �b��
forseq

forpar
S�

endforpar
forpar

S�

endforpar
endforseq

possibly with some guards� The dependences are
either carried by the �rst loop� or occur between
the �rst and the second parallel loop�

On the other hand� with standard scheduling tech�
niques� it is not possible to obtain a code such as�

Code of type �c��
forseq

forpar
S�

S�

endforpar
endforseq

which may contain a loop independent dependence
�from S� to S� here�� Yet� it can be interesting to
generate such a code� for several reasons�

� If parallelism between S� and S� cannot be ex�
ploited anyway because of the machine program�
ming model� a code of type �a� reveals too much
parallelism� This is the case for example for a
parallelizer that generates parallel code in an in�
termediate language such as HPF� and expresses
parallel loops as �hpf� independent directives�

the potential parallelism S���S� cannot be ex�
ploited� Instances of S� and S� will be sequen�
tialized� even if they can be carried out in paral�
lel� In this case� a code of type �c� is su�cient�
Of course� any code of type �a� can be sequential�
ized into a code of type �c�� However� all codes
of type �c� cannot be obtained this way �see our
example in Section ���

� A code of type �c� can lead to better performance
than a code of type �b� when the minimization of
communications and�or synchronizations is im�
portant� Indeed� for a code of type �b�� a syn�
chronization �or a phase of communications� is
needed between the two parallel loops� In a code
of type �c�� all iterations can be carried in paral�
lel� and possible communications from S� to S�
take place inside a given iteration of the parallel
loop� This principle is similar to the one used
in Allen and Kennedy�s algorithm where loop fu�
sion �more precisely partial loop distribution� is
shown useful to minimize synchronizations�

� De�ning loop transformations that lead to codes
of type �c� can also be useful for enlarging the
set of valid schedules� and having more �exibil�
ity� This freedom gives us a better control on the
code shape� We can use it to avoid loop skewing
when it is not necessary� to keep loops perfectly
nested if possible �which can be useful for tiling��
to impose loop transformations to be unimodular
if loop strides are not desirable� etc�

To conclude this short study� let us point out that
codes of type �c� can be obtained simply by allow�
ing loop independent dependences in the transformed
codes� We now show that this can be done by combin�
ing standard scheduling techniques with graph retim�
ing techniques� linked to Bellman�Ford�s algorithm� for
�ne�grain parallelism detection �Section �� as well as
for medium�grain parallelism detection �Section ���

Notations and hypotheses In the rest of the pa�
per� we consider n perfectly nested loops whose depen�
dences are represented by a polyhedral reduced depen�
dence graph �PRDG�� i�e� where set of distance vectors
are approximated by non parameterized polyhedra� As
shown in ���� we can capture such dependences through
a modi�ed reduced dependence graph with edges la�
beled by n�dimensional integral vectors� i�e� a uniform
dependence graph� This graph has particular vertices
�called virtual vertices� which are handled in a special
way� However� to make the discussion simpler� we will
forget about these vertices� Taking them into account
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is indeed mainly technical� but does not bring any fun�
damental di�culty� Going back� from the modi�ed de�
pendence graph� to the original dependence graph� is
also conceptually not di�cult� See ��� for a complete
explanation of this �uniformization� process� The only
important point is that the vectors that label the edges
are not necessarily lexicographically positive� There�
fore� in the rest of our study� we will make the following
assumptions�

� The reduced dependence graph is uniform�

� There is no cycle of null weight�

� Dependence vectors are not necessarily lexico�
graphically positive�

We will use the following notations� G is the reduced
dependence graph �RDG�� V the set of vertices and E
the set of edges�  V �resp�  E� is the number of
vertices �resp� edges�� e � �x� y� is an edge of G from
vertex x to vertex y� �we is the weight of e� �wC denotes
the weight of a cycle C �sum of the weights of its edges�
and lC denotes its length �number of edges��

�� Application to the detection of �ne�
grain parallelism

In this section� we explain how a technique based on
shifted�linear scheduling can be modi�ed so as to allow
the generation of codes of type �c�� i�e� codes with par�
allel loops and sequential bodies� As recalled in Sec�
tion �� shifted�linear scheduling consists in de�ning a
logical time for computing the iterations of each state�
ment S� iteration �I of S is scheduled at time �X��I��S �
�X will be used for building the outermost loop of the
parallelized code� All dependences are carried by this
loop �if possible��

The two following lemmas show the di�erences be�
tween the �pure� shifted�linear approach and our mod�
i�ed approach which does not require all dependences
to be loop carried in the transformed code� With this
technique� we can �nd as much parallelism� and with
more freedom on the choice of �X� The constraints on �X
given by Lemma � �resp� Lemma �� are the constraints
imposed by the pure shifted�linear approach �resp� the
modi�ed one��

Lemma � Let G be a RDG� Let �X be a vector which

induces on each cycle C of G a delay greater than the

length of C�

�C cycle of G� �X��wC � lC

Then� for each vertex v � V � there exists a constant �v
such that the shifted linear schedule built from �X and

the constants �v is valid� In other words�

�e � �x� y� � E� �X��we � �y � �x � �

Proof Let F be a copy ofG� except that the weight of
an edge e is set to w�e � ��

�X��we instead of �we� Add
to F a new vertex s �the source� and a null weight
edge from s to any other vertex� Let C be a cycle
of F � By hypothesis� the weight of C is non positive�
w�C �

P
e�C���

�X��we� � lC� �X��wC � �� Thus� we can
successfully apply on F an algorithm to �nd the longest
paths from s �e�g� Bellman�Ford�s algorithm ����� For
each vertex x in F � let �x be the length of the longest
path from s to x� For each edge e � �x� y� inG� the def�
inition of the longest paths leads to the following trian�
gular inequality � �y � �x�w

�
e� i�e� �X��we��y��x � ��

Lemma � Let G be a RDG� Let �X be an integral vec�

tor which induces on each cycle C of G a delay greater

than one�

�C cycle of G� �X��wC � �

Then� for each vertex v � V � there exists a constant �v
such that�

�e � �x� y� � E� �X��we � �y � �x � �

Furthermore� the subgraph generated by the edges with

null delay is acyclic�

Proof Let F be a copy of G� except that the weight
of the edge e is set to w�e � � �X��we instead of �we� Add
to F a new vertex s �the source� and a null weight
edge from s to any other vertex� Let C be a cycle
of F � By hypothesis� the weight of C is non posi�
tive� w�C �

P
e�C��

�X��we� � � �X��wC � ��� Thus�
we can successfully apply on F an algorithm to �nd
the longest paths from s� For each vertex x of F �
let �x be the longest path from s to x� As the edge
weights and �X are integers� so are the longest paths�
For each edge e � �x� y� of G� we have by de�nition of

the longest paths� �y � �x�w�e� i�e� �X��we��y��x � ��
Now� if all edges of a cycle C have a null delay� i�e�
�X��we� �y � �x � �� then �X��wC � � which contradicts
the hypothesis� Thus� the subgraph generated by the
edges of null delay is acyclic�
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Note that the number of elementary cycles in a
graph can be exponential in the number of vertices
and edges of the graph� Therefore� checking directly
that �X��wC � � or �X��wC � lC for all elementary cy�
cles can be exponential� even if in practice it can be fast
when the number of cycles is small� However� Lemma�
shows that �nding a �X such that �X��wC � lC for all cy�
cles is equivalent to solving  E inequalities with  V
additional variables �the constants �v�� thus a polyno�
mial number of inequalities� Expressing the constraints
�X��wC � � with a polynomial number of inequalities
and variables is more tricky� but feasible�
With the example hereafter� we illustrate the dif�

ferences between the three following techniques� lin�
ear schedule� shifted�linear schedule� and shifted�linear
schedule allowing loop independent dependences�

for i�� to N
for j�� to N

S�� a�i� j� � b�i��� j�
S�� b�i� j� � a�i� j���

endfor
endfor

The reduced dependence graph of this program is
depicted on Figure ��

0
1

S
1 2

1
0

S

Figure 1. RDG of the first example.

Linear schedule We look for a vector �X such that
�X��w � � for each dependence vector �w in the RDG�
Because of the values of the two dependences� both
components of �X must be greater than one� Hence
we have to do at least one loop skewing� We choose
�X � ��� �� and we complete it into a unimodularmatrix
with the vector ��� ��� After transformation� we obtain
the following code�

forseq i�� to �N
forall j�max��� i�N� to min�i��� N�

S�� a�i�j� j� � b�i�j��� j�
S�� b�i�j� j� � a�i�j� j���

endforall
endforseq

Shifted linear schedule We look here for a vector
�X such that �X��wC � lC for each cycle C in the RDG�

The only cycle weight is ��� ��� of length �� thus we

can choose �X � ��� ��� Using Lemma �� we �nd two
constants� �� � � and �� � �� to complete the schedule�
Once again� we complete �X into a unimodular matrix
using the vector ��� ��� After transformation� we obtain
the following code� of type �b��

forseq i�� to N
forall j�� to N

S�� a�i� j� � b�i��� j�
endforall
forall j�� to N

S�� b�i� j� � a�i� j���
endforall

endforseq

Shifted linear schedule allowing loop indepen�
dent dependences We look here for a vector �X such
that �X��wC � � for each cycle C in the RDG� Using
Lemma �� we will �nd some constants to complete the
schedule� This schedule is said to be allowing loop in�

dependent dependences because it does not induce a
delay greater than one on all the edges as usually re�
quired� but only a non negative delay� Since all values
are integers� a delay is either greater than one or null�
If a delay is equal to zero� the dependence will only
be satis�ed by the ordering of the statements in the
loop body� This can be achieved through a topological
ordering of the subgraph generated by the edges with
null delay� since this subgraph is acyclic �cf Lemma ���
Such a dependence will �nally be transformed into a
loop independent dependence�
In our example we can choose �X equal to ��� ���

and both constants to be null� But then S� must pre�
cede S� in the �nal loop body as the delay on the edge
from S� to S� is null� Furthermore� constants in the
remaining dimension must be carefully chosen so that
the dependences from S� to S� is not carried �otherwise
the remaining loop will be sequential�� Once again� we

complete �X into a unimodular matrix using the vector
��� ��� For the second dimension� we choose �� � �� and
�� � �� After transformation� we obtain the following
code� of type �c��

forseq i�� to N
forall j�� to N	�

S�� if �j � �� then a�i� j��� � b�i��� j���
S�� if �j � N	�� then b�i� j� � a�i� j���

endforall
endforseq

This technique completely solves the problem stated
by Okuda in ����� in a uniform nested loops� shift state�
ments before searching a schedule� so that the latency
of the best linear schedule is minimized� This can be
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done simply by minimizing the latency induced by a
vector �X subject to the constraints of Lemma ��

� Detecting fully permutable loops

Consider the following piece of code� whose depen�
dence graph is depicted in Figure ��

for i�� to N
for j�� to N

S�� a�i� j� � b�i� j��� 	 a�i� j���
S�� b�i� j� � a�i��� j	�� 	 b�i��� j�

endfor
endfor

It is a uniform program with four dependence vectors�
Fine�grain parallelismdetection will lead to a code with
one sequential and one parallel loop� which may not
be su�cient for achieving good performance on dis�
tributed memorymachines� To increase the granularity
of computations� we can use the tiling technique� intro�
duced by Irigoin and Triolet ���� by �rst transforming
the original loops into permutable loops� The condi�
tion of permutability is easy to check� two consecutive
loops are permutable if and only if all dependence vec�
tors� not carried by outermost loops� have non negative
components in these dimensions�

0
1

1
0

0
1

2

-1
 1

S
1

S

Figure 2. RDG of the second example.

The technique is as follows� a ��by�� non singular in�
tegral transformation matrixH is generated� such that
H�we � �� for each dependence vector �we� In particular�
each row �X � �a� b� of H satis�es �X��we � �� This
leads to the following constraints�

a � � b � � a � b � � b � �

Here� the simplest linear independent solutions are�
�X� � ��� �� and �X� � ��� ��� H is a matrix for per�
forming a loop skewing� The corresponding permutable
code� in which tiling can be achieved� is the following�

for i�� to N
for j��	i to N	i

S�� a�i� j	i� � b�i� j	i��� 	 a�i� j	i���
S�� b�i� j	i� � a�i��� j	i	�� 	 b�i��� j	i�

endfor
endfor

Now� let us use the same technique as in Section �
so as to exploit the structure of the dependence graph�
Instead of transforming each iteration vector �I � �i� j�

into �I� � H�I for all statements� we allow statements
to be shifted between each other� In other words� we
transform iteration �I of statement S into H�I � ��S
where ��S is a shift vector� possibly di�erent for each
statement S� For the new loops to be permutable� the
constraints are now that for each edge e � �x� y� of the

graph�H��I��we����y � H�I���x� i�e� H�we���y���x � ���
Reasoning row by row� it means that� for each row
�X � �a� b� of H� there are constants �� and �� such
that�

a � � b � � a� b� �� � �� � � b� �� � �� � �

Here� the simplest linear independent solutions are�
�X� � ��� �� �with �� � �� � �� and �X� � ��� �� �with
�� � � and �� � ��� H is simply the identity ma�
trix and S� is moved forward one iteration along the
j loop� The corresponding permutable code� in which
tiling can be achieved� is the following�

for i�� to N
for j�� to N��
S�� if �j � �� then b�i� j��� � a�i��� j� � b�i��� j���
S�� if �j � N��� then a�i� j� � b�i� j��� � a�i� j���

endfor
endfor

Remark that we interchanged S� and S� in the loop
body� This is because� after transformation� all de�
pendence vectors are now non negative� and some of
them can even be null �loop independent dependences��
To keep the semantic of the code� we have to order
the statements inside the loop body so that loop in�
dependent dependences follow the textual order� For
this to be possible� we have to make sure that the
subgraph of G generated by loop independent depen�
dences is acyclic� Once again� the technique is related
to Lemma �� The main di�erence with Section � is
that� for tiling� we are looking for a family of indepen�
dent vectors �X �and not only for one vector �X� that
form a matrix H of full rank� The condition on the
weights of the cycles �wC given in Lemma � is now too
strong� What we need is H�wC � �� and H�wC �� ��� It
is now possible that one of the rows �X of H satis�es
�X��wC � �� as long as at least one of the other rows
satis�es �X��wC � ��
We are now ready to generalize this technique to

arbitrary reduced dependence graphs with uniform
�but not necessarily lexicographically positive� depen�
dences� as long as the graph has no cycle of null weight�
We combine two ideas�

� Wolf and Lam�s idea ���� that a set of perfectly
nested loops can be transformed by unimodular

�



transformations into a canonical form consisting
of nested blocks of fully permutable loops� The
technique is greedy and recursive� First� as many
outermost permutable loops as possible are gen�
erated� All dependences have now non negative
components in these dimensions� Some of them
have at least one positive component� they are
carried by at least one loop and are not consid�
ered any longer� The other ones are taken into
account for building a new block of permutable
loops� This recursive procedure ends when all de�
pendences � are �nally carried by at least one of
the generated loops�

� Darte and Vivien�s idea ��� that �ne�grain par�
allelism can be detected by �uniformizing� the
polyhedral reduced dependence graph into the
dependence graph of a system of uniform recur�
rence equations� which can be scheduled� The
technique is also greedy and recursive� First�
an outermost loop is generated that carries as
many dependences as possible� possibly after
shifting the di�erent statements between each
other� Then� all carried dependences are removed
from the graph� The procedure keeps going on
each strongly connected component of the re�
maining graph �called G�� and the recursive pro�
cedure ends when all dependences are �nally car�
ried by at least one of the generated loops�

We mixed these two approaches� we aim at �nding
a nested structure of blocks of permutable loops as in
Wolf and Lam�s algorithm� but we exploit the struc�
ture of the reduced dependence graph� as in Darte and
Vivien�s algorithm� by allowing shifts between state�
ments�
Each statement S is transformed by a multi�

dimensional a�ne function� iteration �I of S is rep�
resented by the new iteration vector �I� � HS

�I � ��S
where HS is a non singular n�by�n matrix� Following
the technique used in ��� �called shifted�linear multi�
dimensional schedules�� we look for transformation ma�
trices HS whose �rst rows �as many as possible� are
the same � for all statements within a given strongly
connected component of G� After transformation� the
�rst common r rows of the matrices HS correspond to
r permutable loops if

�e � �x� y� � G� M �we � ��y � ��x � �� ���

�except loop independent dependences of the original loops�
they are not taken into account and they remain unchanged�

�Such a restrictionkeeps optimality for maximalparallel loops
detection in polyhedral reduced dependence graphs �PRDG�� we
conjecture it is also true for maximal permutable loops detection�

where M is the r�by�n matrix of full rank formed by
these row vectors� Our goal is to build such a matrix
M while maximizing r�
Of course� M de�nes only one part of the �nal

transformation� To be valid� the �nal transforma�
tion has to respect all dependences� Some of them
are already carried by the loops de�ned by M � The
other ones� corresponding to edges e � �x� y� such that
M �we���y���x � ��� will be satis�ed either by a topologi�
cal sort as in Section �� or recursively in the subsequent
dimensions�
For the sake of clarity� we only focus on the con�

struction of the outermost block of permutable loops�
We will explain brie�y at the end of the section how to
adapt this study to the whole recursive construction�
Our problem is therefore the following� build a full�

maximal rank matrix M �and its corresponding vec�
tors ��v� that can be extended to a n�dimensional valid
transformation�
Condition � is a necessary condition� expressed in

terms of edges� It can be reformulated as a necessary
condition on cycles�

Lemma � �Condition on cycles�
Let M be a matrix� M satis�es Condition � for some

vectors ��v� v � V � if and only if M �wC � �� for each

cycle C of G�

Proof The proof is similar to the proofs of Lemmas �
and �� by reasoning on each row of M �

We now show the fundamental role of G�� the sub�
graph of G generated by the multi�cycles �union of cy�
cles� of null weight� i�e� the subgraph generated by the
edges of G that belong to a multi�cycle of null weight�
We point out that G� is also the base of Karp� Miller
and Winograd�s decomposition ���� for the computabil�
ity of systems of uniform recurrence equations� and of
Darte and Vivien�s algorithm ��� for the detection of
parallelism in PRDGs� G� can be built by rational lin�
ear programming� with a polynomial number of con�
straints and variables �see �����

Lemma � �Condition on edges�
Condition � is equivalent to�

�i� �e �� G�� M �we � ��y � ��x � ��

�ii� �e � G�� M �we � ��y � ��x � ��

Proof Let C be a multi�cycle of null weight� �wC � ���
thus M �wC � ��� Therefore�

X

e�C

M �we � ��y � ��x �M �wC �
X

e�C

���y � ��x� � ��
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The left�hand side of the above equation is a null sum
of non negative terms �M �we � ��y � ��x � ���� thus is a
sum of null terms�

The matrix M is composed by r row vectors �Xi�
with � � i � r� Our goal is to maximize r� Let U be
the vector space generated by the weights of the cycles
of G�� Let k be the dimension of U �

Lemma 	 � �Xi � U��

� cycle C � G�� M �wC � �

In other words� each �Xi is in the orthogonal of U �

Thus� r � n� k�

Proof If C is a cycle of G�� all its edges belong to G��
By Lemma �� M �wC is a sum of null terms� and thus is
null�

We now show that� in fact� r equals n � k�

Lemma 
 �Vect� �Xi� � U��
The rows of M form a basis of U�� i�e� r � n� k�

We �rst give an existence proof of the n � k vectors
Xi� Then� we will discuss their construction from an
algorithmic point of view�

Proof We use a well�known property of G� �see ������

There exists a vector �� and some constants �v� v � V �
such that�

�i� �e �� G�� ����we � �y � �x � �

�ii� �e � G�� ����we � �y � �x � �

This can be proved as follows� There is no multi�cycle
of null weight which contains an edge not in G�� This
property can be expressed by the fact that some system
of linear equations has no solution� Then� using Farkas�
lemma ����� we obtain the existence of �� and of the

desired constants� In particular� �� is such that ����wC �
� if C � G� and ����wC � � otherwise�
Now� consider a basis �b�� � � � ��bn�k of U�� Let B be

the n � �n � k� matrix whose columns are the bi� We

look for vectors �Xi of the form ��bi��i���� According to
Lemma �� we now have to determine the �i such that
�Xi� �wC � � for each cycle C of G and such that the
vectors �Xi are linearly independent�
We �rst give a condition on the �i for the �Xi to be

linearly independent� �� is in the orthogonal of U too�
it is therefore a linear combination of the vectors �bi�
�� �
Pn�k

i�� yi�bi� Let ! be the matrix of size �� �n�k��
with components the �i� Y the matrix of size �n�k���

with components the yi and write �� as a matrix X of
size n� �� Then�

X � BY and tM � B �X! � B�In�k � Y !�

Since B is of full rank� M is of full rank if and only
if the matrix In�k � Y !� which is a square matrix of
size n� k� is non singular� Actually� this matrix is the
change of basis from B to tM � We can show that its
determinant is equal to ��!Y � i�e� ��

Pn�k

i�� yi�i� To

summarize� the vectors �Xi are linearly independent if
and only if�

n�kX

i��

yi�i �� �� ���

We now check Condition � using Lemma�� �Xi� �wC �
�bi� �wC � �i����wC� If C is a cycle of G�� then �Xi� �wC � �
whatever �i� If C is an elementary cycle with at least
one edge not in G�� then ����wC � �� Therefore� it is suf�
�cient to choose �i su�ciently large� i�e� larger than
���bi� �wC�������wC�� If C is any cycle� it is sum of elemen�
tary cycles and the desired inequality is automatically
satis�ed� if already satis�ed for all elementary cycles�
This proves the existence of the �i� we choose them

large enough while checking Equation ����

There is an in�nite number of matrices M � of rank
n � k� satisfying M �wC � �� for each cycle C of G�
To build one of them� we have two possibilities� On
one hand� if the number of elementary cycles is small�
we can directly work with the cone generated by the
weights of the cycles of G� The corresponding polar
cone contains all candidate vectors �X� Then� to select
the matrix M � optimization techniques such as in ���
can be used�
On the other hand� if generating all the elementary

cycles is too expensive� we can still build one solution
in polynomial time� by choosingM as done in the proof
of Lemma ��
First� we �nd a basisB of U�� For that� we build the

weights of a basis of cycles of G�� which can be done
in polynomial time� Since G� is a union of strongly
connected components� we can show that these vectors
span exactly the vector space U � Now� using U � we
build the basis B of U��
Then� we build a vector �� by linear programming

techniques� Finally� we choose the smallest �i as stated
in the proof of Lemma ��
As already noticed� no matter how M is completed

into a square matrix of size n� each dependence that
corresponds to an edge e � �x� y� such that M �we �
��y � ��x � �� and M �we � ��y � ��x �� �� will be satis�ed
as already carried by one of the loops corresponding to
M � We still have to consider the other edges� those such
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that M �we � ��y � ��x � ��� We show how we can satisfy
them recursively� We need the following lemmas�

Lemma � For each cycle C of G� �wC � U � C � G��

Proof 	 is true by de�nition of U � Conversely� let
C be a cycle not in G�� Consider again the vector ��
introduced in the proof of Lemma �� �� belongs to U�

and is such that ����wC � �� Therefore� �wC is not in U
�otherwise ����wC � ���

Lemma � If M is such that M �wC � �� for each cycle

C of G� and if M is of full and maximal rank� then for

each cycle C not in G� we have�

M �wC � �� and M �wC �� ��

Proof For each cycle C of G� we have M �wC � ��� If
M �wC � ��� then �wC is orthogonal to all rows of M � If
M is of full and maximal rank� its rows generate ex�
actly U� �cf Lemma ��� Therefore �wC � �U��� � U �
Then� Lemma � shows that C � G��

We are now able to characterize precisely the matri�
ces M which enable us to build a maximal set of fully
permutable loops� Lemmas � and � show that they are
the matrices M � of full and maximal rank� such that�

�i� for each cycle C �� G�� M �wC � ��

�� ��

�ii� for each cycle C � G�� M �wC � ��

We can also characterize the matricesM by conditions
on edges� They are the matricesM � of full and maximal
rank� satisfying both following properties�

�� there exist some vectors ��v� v � V � such that�

�i� �e �� G�� M �we � ��y � ��x � ��

�ii� �e � G�� M �we � ��y � ��x � ��

�� the subgraph G� of G generated by the edges
e � �x� y� for which M �we � ��y � ��x � �� is a for�
est of strongly connected components� and those
with at least one edge are exactly the strongly
connected components of G��

The characterization above leads to a recursive con�
struction of the whole n�dimensional transformation�
As said before� each edge not in G� is carried by one
of the loops corresponding toM � Edges in G�� but not
in G�� can be satis�ed by a topological ordering of the

strongly connected components of G�� Finally� edges in
G� will be satis�ed through the recursive processing of
the strongly connected components of G� which com�
pletes the matrix M already built� The construction
of the new rows of M �which may be di�erent for each
strongly connected component of G�� is done the same
way� The only di�erence is that they must be chosen
with an additional constraint� they have to be linearly
independent with the existing rows ofM � As in ���� the
correctness of this recursive algorithm comes from the
fact that G has no cycles of null weight� From a prac�
tical point of view� we point out that all statements
do not necessarily have the same �nal n�dimensional
matrix M � However� we can impose these matrices to
be unimodular so as to get simpler codes�
We illustrate our technique on the following code�

for i�� to N
for j�� to N
for k�� to N
S�� a�i� j� k� � a�i� j��� k� � b�i� j� k���
S�� b�i� j� k� � b�i��� j�i� k� � a�i� j��� k�j�

endfor
endfor

endfor

Figure � shows the reduced dependence graph with
direction vectors� Figure � shows the �uniformized�
dependence graph G�
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0
1
0

0
0
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Figure 3. RDG for third example.
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Figure 4. “Uniformized” RDG (Example �).

G has �ve cycles� three self�dependences with
weights ��� �� ��� ��� ������ and ������ ��� and two
other cycles with weights ��� �� �� and ������ ��� There�
fore� G� is the graph generated by the cycles whose
weights are ��� �� �� and ������ ��� The dimension of U
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is �� We can thus build ��� � � outermost permutable
loops� Here� we see directly that the two canonical vec�
tors �X� � ��� �� �� and �X� � ��� ����� belong to U

��
and that they satisfy �Xi� �wC � � for all other cycles�
Thus� we can choose them as the rows of M � We just
have to �nd the corresponding shift vectors� We get
��S� � ��� ��� and ��S� � ��� ��� Here� G� � G�� no
topological sort is required� We consider the strongly
connected component that contains S� and S�� and we
look for a vector �X�� linearly independent with �X� and
�X�� such that �X����� �� �� � �� e�g� �X� � ��� �� ���
No shift in this dimension is required� however S� has
to be textually ordered before S�� To rewrite the
code� we use the function codegen of the software Pe�
tit ����� Our �nal transformation can be expressed in
Petit�s framework as S��i� j� k� 
 �i��k � �� j� �� and
S��i� j� k�
 �i��k� j� ��� and we get the code�

for i�� to N
for k��N to �
for j�� to N
S�� if �k � �� then

b�i� j� �k� � b�i��� j�i� �k� � a�i� j��� �k�j�
S�� if �k � �N� then

a�i� j� �k��� � a�i� j��� �k��� � b�i� j� �k�
endfor

endfor
endfor

in which tiling can be performed on the two outermost
loops� Note that� in this example� permutable loops
cannot be detected by Wolf and Lam�s algorithm�

�� Conclusion

In this paper� we enlarge the set of codes that can
be generated by standard linear scheduling techniques�
and that expose either parallel loops or permutable
loops� Our method exploits the structure of the depen�
dence graph by combining graph retiming and schedul�
ing techniques�
For �ne�grain parallelism detection� we are now able

to generate codes with parallel loops that contain loop
independent dependences� This can be useful for min�
imizing communications and�or synchronizations�
For medium�grain parallelism detection� we general�

ize Wolf and Lam�s algorithm to the case of loops with
multiple statements� We generate maximal sets of fully
permutable loops that are essential for tiling�
We still have some open problems� how to de�ne a

criterion of optimality for the detection of permutable
loops" How to handle non perfectly nested loops" How
to choose the size and shape of a tile" How to map data
with respect to the chosen tiling" Our future work will
address these problems�
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