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In this paper, we rst show that a con uent V andermonde matrix may b e viewed as composed of some rows of a certain block V andermonde matrix. As a result, we derive a Sylvester's structure for this class of matrices that appears as a natural generalization of the straightforward one known for usual Vandermonde matrices. Then we present some applications as an illustration of the established structure. For example, we s h o w h o w con uent V andermonde and Hankel matrices are linked with each other, and also we describe an O(n 2 ) algorithm for solving con uent V andermonde least squares minimizations problems.

1. Introduction. Given n di erent n umbers x 0 x 1 : : : x n;1 (that is x i 6 = x j for i 6 = j). We m e a n b y a con uent V andermonde matrix the following m (p + 1 ) n matrix: V p+1 = f(x 0 ) f 0 (x 0 ) : : :f (p) (x 0 ) : : :f (x n;1 ) f 0 (x n;1 ) : : :f (p) (x n;1 )] where f(x) i s t h e v ectorial function: f(x) = ( 1 x x 2 : : : x m;1 ) t and f 0 (x),f (2) (x),..., f (p) (x) are the derivatives of f(x). In fact, the number of the derivatives p should vary as x i , but for convenience and without loss in generality, it is assumed throughout the paper, that it is xed. It is the matter o f a w ell known concept that naturally generalizes usual Vandermonde systems and can be viewed as a matrix representation of some interpolation problems 11]. For example, Hermite's interpolation amounts simply to solve the system of linear equations: V T p x = b: Because of its importance in applications (see 2] for instance), such matrices have r e c e i v ed a particular attention in the literature. In particular, several O(n 2 ) algorithms have been proposed for computing the inverse of Vandermonde and con uent V andermonde matrices and that of their duals [START_REF] Bitmead | Asymptotically fast solution of Toeplitz and related systems Lin[END_REF], 5], 20]). In 13], Higham considered the more general case where the monomial x k is replaced by a polynomial P k (x) and constructed what is called a con uent V andermonde-like matrix. Then he developed O(n 2 ) solutions for computing the inverse of such a matrix for particular polynomials. In 14], he analyzed the numerical stability of these methods. More recently, L u 1 7 ], 18] showed the ability to design asymptotically faster solutions to these problems and conceived in particular an algorithm with O(np(lognp)logn) running time for inverting np np con uent V andermonde matrices. His approach i s b a s e d on fast convolution products and fast polynomial divisions 1].

On the other side, it is common to put matrices with particular forms, such a s Toeplitz matrices, into a uni ed algebraic formalism. In other words, given two \simple" matrices L and U the idea is to nd the Sylvester's equation : LM ; MU= GH where the concerned matrix M is completely characterized by the generator GH which is, in the essence, a summation of a xed number of outer products. The importance of this equation called the structure of M stems from the fact that it constitutes a powerful tool for e ciently manipulating such matrices, as it is emphasized in di erent situations. Of course, the structure is more and more elegant as long as the matrices L and U are simple and GH is of a small rank. See 15] and the survey paper 16] with the references therein.

In this paper, we consider this aspect of manipulating con uent V andermonde matrices via their Sylvester's structure which is deduced from a useful observation that a con uent V andermonde matrix is in a certain viewpoint e m bedded into a block-Vandermonde one. After some notations in section 2, and a brief discussion about block-Vandermonde matrices in section 3, where we s h o w s o m e limitations when trying to extend the concepts available in the usual case and 1 evidence particular instances allowing to palliate the di culties, we p r e s e n t i n Section 4 our main result where a Sylvester's equation satis ed by the con uent Vandermonde matrices is established and proved. Examining it, one may assert that it well characterizes the con uent V andermonde matrices and, apparently, can not be sharpened further. To our knowledge such a structure does not exist elsewhere. In section 5, we study the converse situation where it is shown that up to a slight modi cation, it is possible to determine precisely the matrices which are solutions of the modi ed Sylvester's equation. In other words, we establish an interesting canonical structure to which the studied Sylvester's equation may be easily transformed and conversely. As an application, an inverse formula is given. The sections 6, 7 and 8 may be viewed as interesting applications of the Sylvester's structure. In section 6, a connection between con uent V andermonde matrices, Hankel and Toeplitz-like ones is shown in a way similar to that found out for the usual Vandermonde matrices (see 7], 10], 12]). Nevertheless, it is shown that though the structure established, there are severe limitations as one attempts a direct generalization. Fortunately, i t is possible to compensate the drawbacks so that one may construct O(nlog 2 n) algorithms for solving weighted least squares minimizations settling overdetermined Hermite's interpolations. In section 7, we d e v elop an O(n 2 ) method for computing the Cholesky factorization of the covariance matrix of the con uent Vandermonde matrix. The algorithm as it is well known may be exploited for solving con uent V andermonde least squares minimizations problems. Finally, we consider in section 8, the notion of generalized con uent V andermonde matrices and explain how the results available in the simple case may be extended.

2. Notations. To m a k e the description of the text as clear as possible, some notations are adopted. As we will deal with rectangular matrices and block-Vandermonde matrices, it follows that di erent linear spaces will be considered. Consequently, c a r e m ust be taken about the use of a same notation.

For this reason, we denote throughout the paper by ( e i ) 0 i m;1 (f j ) 0 j p;1 (h k ) 0 k mp;1 and (g k ) 0 k mp;1 the canonical basis in the linear spaces C m , C p C mp and C np respectively, w h e r e C is the complex eld. In general, we consider the canonical basis in R m where R is a ring with unit element, and we denote it by ( E 0 : : : E m;1 ). For example, if R = C p p is the ring of the p p complex matrices then for 0 k m ; 1 we h a ve: E k = h kp h kp+1 : : : h (k+1)p;1 ] which i s a mp p matrix. Now, let say that whatever canonical basis one uses, it is systematically understood along the paper that if u is a vector then u i;1 denotes its i th coordinate.

Since one of our main objectives is to construct a Sylvester's structure for conuent V andermonde matrices, it is natural to expect the use the displacement matrix de ned as a square matrix with 1 0 s along its rst sub-diagonal and 0 0 s elsewhere. If we h a ve a k k displacement matrix, let denote it by Z k : For simplicity and unless otherwise stated, we l e t : Z = Z m and Z = Z np : The well known reverse identity matrix may be also utilized in such a context and is a square matrix with 1 0 s along its anti-diagonal and 0 0 s elsewhere. We will denote by J k a r e v erse identity matrix of size k k:

In this paper for reasons to be seen latter, we distinguish between vector transpose and matrix transpose and we u s e t wo notations: u t means the transpose of the vector u whereas R T means the transpose of the matrix R: By the way, we m a y use the anti-transpose operator, T 2 de ned as follows:

A T2 = J k A T J k
where A is a k k matrix.

3. Block-Vandermonde Matrices. Clearly, t h e V andermonde matrices may be de ned over arbitrary rings with unit element, as for example the ring of matrices, and it is of interest to note that in this straightforward generalization, the well known structure of Vandermonde matrices remains safe. That is, if (R + : 0 1) denotes such a ring, then we h a ve:

Z T V ; V D = E m;1 U t
where V = V (B 0 B 1 : : : B n;1 ) i s t h e m n Vandermonde matrix with elements B i into the ring R , Z is the displacement matrix (with 1 (2 R ) in the rst sub diagonal and 0 (2 R ) elsewhere), D = diag(B i ) and U t = ;(B n 0 : : : B n n;1 ): Recall that E m;1 stands for the last element in the canonical basis of R n :

In the case where R is the ring of p p matrices de ned over the eld of the complex numbers C, w e obtain what is known as block-Vandermonde matrices. Here, the displacement matrix in the above Sylvester's equation must be understood as the p-power Z p mp of the displacement matrix Z mp with elements in the eld C: Based on this structure, it is thus possible to construct e cient algorithms for manipulating block-Vandermonde matrices. On the other hand, there are natural reasons to expect that most operations over Vandermonde matrices may be carried out to block-Vandermonde ones requiring up to a p factor the same amount of computation. Unfortunately, this is not true in general because of the simple fact that several exible properties such as commutativity are missed in the ring R while well veri ed in the eld C: Consider for instance the problem of solving a linear system of equations: V T x = b where V is a block-Vandermonde matrix. An approach due to 7] (see also 10]) is to transform this system to the following equivalent o n e :

V V T x = V b :
The idea lies in the observation that in the case where V is a Vandermonde matrix, one may assert that V V T is a Hankel matrix. Hence the complexity for solving the considered system is the same as for solving a Hankel linear system. Since there are O(nlog 2 n) algorithms for computing the inverse of a positive de nite Hankel matrix (see 3], 6], 8], 19] among others), one nds out another way of constructing O(nlog 2 n) algorithms for the polynomial interpolation. On the contrary, when attempting to extend this technique to block-Vandermonde matrices, the di culty arises as soon as one writes the structure:

V T Z p ; D T V T = UE t n;1 of V T
where in general, we h a ve D 6 = D T (recall that D = diag(B i )): As an alternative issue, this last remark evidences possible ways for compensating such a disadvantage. Actually, i f w e assume that the blocks B i are symmetric matrices then one can check t h a t V V T is a block H a n k el matrix. Indeed, if we apply the matrix V to the above structure of V T (where now D = D T ) we obtain :

V V T Z p ; V D V T = V U E t n;1 :
Using the fact that V D= Z pT V ; E n;1 U t the following structure is easily deduced:

V V T Z p ; Z pT V V T = V U E t n;1 ; E n;1 U t V T
which asserts that V V T is a block-Hankel matrix.

4. Embedding con uent V andermonde matrices into block V andermonde ones. In this section, we restrict ourselves to particular block matrices.

Given n di erent complex numbers x 0 x 1 : : : x n;1 we will consider the p p matrices B 0 B 1 ::: B n;1 de ned as follows: where for 0 i m ; 1 and 0 j n ; 1 its (i j) block-element i s B i j : As it is previously stated, the matrix V ful lls the Sylvester's equation below:

B i = B(x i ) =
Z pT mp V ; V D = E m;1 U t
where Z mp is the mp mp displacement matrix, D is the block-diagonal matrix such that: D = diag(B 0 : : : B n;1 ) and both U and E m;1 are block-vectors de ned over R n and R m (R being the ring of the p p complex matrices). It is easily seen that E m;1 is the last element in the canonical basis of R m and U t = ;(B m 0 : : : B m n;1 ): The structure of V just evidenced will be a corner stone in constructing that of con uent V andermonde matrices. More precisely, we will show that the matrix V contains, in a certain sense, a con uent V andermonde one, and conversely every con uent V andermonde matrix is embedded into a block V andermonde one of a same kind. This result, from which t h e desired Sylvester's structure is obviously derived, is revealed by a n i n teresting observation in the behavior of the powers B k (x) ( k 0) of the matrix B(x). Indeed, an investigation in the elements of the k-power matrix B k (x) permits to observe that its rst row i s i n terestingly formed by x k and its derivatives. In general, it is possible to show b y an inductive reasoning about the power k, that the (i j) element k ij of B k (x) can be expressed as follows (we assume for convenience 0! = 1) :

k ij = j! i! ( k j;i )x k;j+i = j!k! i!(j ; i)!(k ; j + i)! x k;j+i
for 0 i j i + k, and is reduced to zero elsewhere. As a consequence, the con uent V andermonde matrix V p is simply that formed by t h e ( kp) th rows of V in the natural order (0 k m ; 1). Mathematically, i f P denotes the permutation matrix de ned by: P

= p;1 X i=0 m;1 X k=0 h im+k h t kp+i
where (h s ) 0 s mp;1 is the canonical basis of C mp , t h e n w e can assert that: P V= V p X On the other hand, since Z pT mp V upshifts p times the rows of V so that the (kp) th row o f V , 1 k m ; 1, will be the ((k ; 1)p) th one of Z pT mp V , the following interesting relation is obviously deduced:

P Z pT mp V = Z T V p X 0
In this direction, it is implicitly said that one is applying the permutation matrix P to the structure of V . Hence, it is useful to analyze the aspect of the generator P E m;1 U t : For direct matrix manipulations lead us to consider P E m;1 as a block-vector, where its j th block-component ( 0 j p ; 1) is precisely the m p matrix e m;1 f t j : Consequently, the rst m rows of P E m;1 U t form the m (np) matrix e m;1 y t = e m;1 f t 0 U t where its last row is the rst one of U t and otherwise, the elements are reduced to zero. Clearly ;y t is the rst row o f ;U t which is simply an alignement of the rst rows of the blocks B m 0 : : : B m n;1 : It follows from the above observation related to B m (x) t h a t :

;y t = ( x m 0 m x m;1 0 : : : (m) p;1 x m;p+1 0 : : : x m n;1 m x m;1 n;1 : : : (m) p;1 x m;p+1 n;1 ) where (m) k = m! k! : Taking into account these considerations and the fact that we are concerned with the rst m rows only, a s w e look forward V p , w e rst observe that: P Z pT mp V = P (V D + E n;1 U t ) = P VD+ P E n;1 U t from which w e conclude that the Sylvester's equation of the con uent V andermonde matrix V p is given by: Z T V p ; V p D = e m;1 y t Clearly, this structure appears as a natural generalization of that of the usual Vandermonde matrices. However, because of the fact that D i s a b l o c k-diagonal matrix and not a diagonal one, one may expect serious problems, as it will be seen in section 6, when trying to safely carry out, via this equation, the results established in the simple case. [START_REF] Bj | Algorithms for con uent V andermonde systems Numer[END_REF]. Normalization and the inverse formula. In the previous section, we have s h o wn that the con uent V andermonde matrix V p is a solution of the Sylvester's equation below: Z T X ; XD= e m;1 y t Conversely, it is possible to determine the matrix X for which this equation is veri ed. Nevertheless, for arbitrary vectors y, the obtained matrix X has a queer aspect and is not a priori representative i n a c o n vinced manner inasmuch one feels being far away from the con uent V andermonde context. As a remedy, we s h o w here that the vectors y of the form: y t = ( t 0 0 : : : 0 t 1 0 : : : 0 : : : t n;1 0 : : : 0) give r i s e t o s o l u t i o n s X with elements of simple expressions. Beforehand we suggest a normalization procedure over the Sylvester's structure which allows to conclude that there is no loss in generality when considering the particular y just above.

We rst apply over the considered equation a suitable diagonal matrix K so that the non null elements along the super-diagonal of D will be reduced to 1. To this end, let K 0 and K denote respectively the following p p and np np diagonal matrices:

K 0 = diag(1 1! 2! : : : (p ; 1)!) K = diag(K 0 K 0 : : : K 0 )
It is clear that the block-diagonal and upper bidiagonal matrix = KDK ;1 = diag(S(x 0 : : : S (x n;1 ) has the desired form since: S(x i ) = K 0 B(x i )K 0 ;1 = 2 6 6 6 6 6 6 4

x i 1 0 : : : 0 0 x i 1 : : : 0 0 0 x i . . . . . . . . . . . . . . . . . . 1 0 0 : : : : : : x i 3 7 7 7 7 7 7 5

On the other hand, the transformation we perform over the Sylvester's structure consists simply in post multiplying it by the diagonal matrix K ;1 : In doing so, one realizes that using the variable change, Y = XK ;1 the Sylvester's equation becomes: Z T Y ; Y = e m;1 y t K = e m;1 g t An interesting feature in this normalization step is that the blocks S(x i ) i n t h e block-diagonal matrix are upper bidiagonal Toeplitz matrices each o f w h i c h thereby c o m m utes with any other upper triangular Toeplitz matrix. In the next transformation, we w i l l m a k e useful of this important property. Consider n upper triangular and Toeplitz matrices R 0 R 1 : : : R n;1 each o f order p, and set: R = diag(R 0 R 1 : : : R n;1 ) that is R is a block-diagonal matrix where each block-element i s a p p matrix and its block-main diagonal is formed by t h e i n troduced Toeplitz matrices R i :

Clearly, if the structure is post-multiplied by R then remarking that R = R we obtain: Z T Y R ; Y R = e m;1 g t R = e m;1 w t so that the variable change, Y ! Y R does not alter the overall required structure of the transformed Sylvester's equation. Therefore, it is possible in general to choose the matrices R i in such a w ay that the coordinates w ip+k k 6 = 0 of the row-vector w t = ( w 0 w 1 : : : w np;1 ) will be reduced to zero. It is readily seen that this operation fails if and only if there exists at least one coordinate of w of the form w ip reduced to zero. Up to now, it is assumed that the transformations we m a y apply does not lead to this situation. It is necessary to note, by t h e w ay, that this normalization is reversible since the the Toeplitz matrices R i can be reconstructed systematically. L e t u s n o w proceed to determine explicitly the solution X (we will denote henceforth W(x 0 : : : x n;1 ) ) of the Sylvester's equation: Z T X ; X = ;e m;1 y t y t = ( 1 0 : : : 0 1 0 : : : 0 : : : 1 0 : : : 0) in terms of the numbers x i : Let a ih denote the (i h)-entry of the matrix X and write h = jp+ k such t h a t 0 j n ; 1 a n d 0 k p ; 1: By controlling the elements of X in its structure, it is easily veri ed that:

8 > > < > > : x j a m;1 h = 1 (k = 0 ) a m;1 h;1 + x j a m;1 h = 0 (1 k < p ) a m;i+1 h ; x j a m;i h = 0 (k = 0 )
a m;i+1 h ; (a m;i h;1 + x j a m;i h ) = 0 (1 k < p )

Clearly, these recurrence relations ful lled by the elements of the matrix X provide the way of computing each a m;i h : Even more, they allow to show, using an inductive reasoning about (i k) that: a m;i h = ( ;1) k ( k+i k+1 )x ;(k+i) j Indeed, by considering the row ( a m;1 : ) and the column (a : jp ) of X one realizes that (a m;1 jp+k ) k and (a m;i jp ) i are geometrical progressions from which it is deduced that the formula is true for (i k) such t h a t i = 1 o r k = 0 : On the other hand, if we assume its trueness for (i;1 k ) a n d ( i k;1) (2 i m 1 k p ; 1), and we s e t b ih = ( ;x j ) k a m;i h then after simple calculations, we can perform the operations below:

b i h = (;x j ) k;1 a m;i h;1 + ( ;1) k x k;1 j a m;i+1 h = (;x j ) k;1 (;1) k;1 ( k;1+i k )x ;(k;1+i) j + ( ;1) k x k;1 j (;1) k ( k+i;1 k+1 )x ;(k+i;1) j = ( k;1+i k )x ;i j + ( k+i;1 k+1 )x ;i j = (( k+i;1 k ) + ( k+i;1 k+1 ))x ;i j = ( k+i k+1 )x ;i j It follows directly that a m;i h = ( ;1) k x ;k j b ih = ( ;1) k ( k+i k+1 )x ;(i+k) j and, as a consequence, the desired formula holds for all elements of the matrix X:

As an application to this result, it is possible to derive an expressive formula for the inverse of nonsingular m m matrices which are solutions of the just established normalized Sylvester's structure. Indeed, if W = W (x 0 : : : x n;1 ) is the solution of the normalized equation, then it is easy to check that: W ;1 Z T ; W ;1 = W ;1 e m;1 y t W ;1 and by applying the anti-transpose operator T 2 we obtain: Z T W ;T2 ; W ;T2 T2 = W ;T2 ye t 1 W ;T2 y being the mirror vector of y: As a consequence, it is possible to assert that under the conditions where the normalization just presented does not fail, there exist an m m lower triangular Toeplitz matrix L and n upper triangular Toeplitz matrices R 0 R 1 : : : R n;1 each of order p such that: L T W ;T2 R = W (x n;1 x n;2 : : : x 0 )

where R = diag(R 0 : : : R n;1 ):

6. Transformation to structured matrices. We consider here the aspect discussed in section 3 where it is shown that if the block-elements of a block-Vandermonde matrix V b are symmetric matrices then V b V T b is a Hankel matrix (see 7]). In our situation however, this result might logically fail in general since the block V andermonde matrix from which the con uent V andermonde one is extracted has not the symmetry property: the block-elements are, rather, upper triangular matrices. To palliate this di culty, w e suggest the approach o f looking forward matrices A such t h a t V p AV T p is a Hankel or even a Hankel-like matrix. Let A be such a matrix, that is V p AV T p is Hankel: Z T V p AV T p ; V p AV T p Z = ae t m;1 ; e m;1 a t Using the structures of V p and V T p it is readily veri ed under reasonable assumptions (V p is a nonsingular square matrix) and after simple calculations that: DA; AD T = vu t ; uv t where u = V ;1 p a + y v = V ;1 p e m;1 : Therefore, it is natural to investigate the simple case where the right hand side is reduced to zero, i.e. to determine the matrices A for which DA = AD T : If we set B = KAK ;1 where K is the diagonal matrix introduced in the preceding section, then the problem amounts to compute B verifying B = B:In this direction, we s a w t h a t t h e block-diagonal matrix is formed by the upper bidiagonal Toeplitz matrices S(x i ): Hence, it is not hard to show that the matrix B = diag(R 0 J p R 1 J p : : : R n;1 J p ) where the R i are p p upper triangular Toepliz matrices and J p denotes the p p reverse identity matrix, commutes with : In the particular case where for all i R i is reduced to the p p identity matrix, one nds that V p F V T p is a Hankel matrix where F = K ;1 diag(J p J p : : : J p )K Though this result permits to express V ;1 p or V ;T p with the help of Hankel matrices deducing hence algorithms for calculating V ;1 p using those inverting a Hankel matrix, there is unfortunately a disadvantage making it somewhat meaningless. That is in the real case, the matrix V p F V T p is not positive de nite, so that there is no way to compute the pseudo inverse or \the weighted one" of V T using such a matrix. On the other hand, if we assume that DA ; AD T = GH corresponding to the case where V A V T is in general a Hankel-like matrix, it turns out that this situation yields more complicated symmetric matrices A.

As an alternative approach, we proceed now to construct matrices A for which V A V T are Toeplitz-like, where it is assumed here that the m np matrix (m np) V is real and satis es the Sylvester's equation below: Z T V ; V = e m;1 y t in such a w ay t h a t V K is a con uent V andermonde matrix, K being the diagonal matrix introduced in the previous section. On the other hand let construct the np np matrix C de ned as follows: Z T C ; C T2 = g np;1 z t where Z stands for the np np displacement matrix. It is clear that the vector z may b e c hosen such t h a t CKis a nonsingular con uent V andermonde matrix. Therefore if we set W = C T2 and A = W W T then one may claim that V A V T is a Toeplitz-like matrix. To s h o w this, let us write X Y for meaning that the di erence X ;Y of the matrices X and Y is a summation of r outer products with r xed. Thus using simple arguments, one nds that:

Z T V A V T Z = Z T V W W T V T Z V W W T T V T V W Z T ZW T V T V W W T V T = V A V T
which permits to conclude that V A V T is indeed a Toeplitz-like matrix. In fact, it is possible to show that the product V Wi s a T oeplitz matrix so that its covariance matrix will be evidently Toeplitz -like. Indeed, one has just to post-multiply the structure Z T V ; V = e m;1 y t y t R v t RD by appropriate Givens rotations. The fundamental property of which w e t a k e advantage is that if a step in the method stands for a multiplication b y a pair of Givens plane rotations, then each r o w o f R (and RD) is modi ed only once. In what follows, we describe the rst step where it is shown how the rst row of R is determined. Let H 1 and H 2 be the following plane rotations: such that the rst coordinates v 0 0 and y 0 0 of v 0 and y 0 respectively are reduced to zero, where:

H 1 v t RD = v 0 t
R 00 and H 2 y t R = y 0 t R 0 According to the property stated above, one maintains that the rst row o f R 00 and that of R 0 are identical, and moreover they remain unmodi ed during the subsequent G i v ens rotations. Taking into account this and the fact that v 0 0 = y 0 0 = 0, one may write the equations below: (a) cv 0 ; sr 0 x = 0 (b) y 0 ; r 0 = 0 (c) cr 0 x + sv 0 = r 0 + y 0 where r t denotes the rst row o f R, r 0 the rst coordinate of r and x = x 0 : It is readily seen that the last relation (relation (c)) can be also expressed as follows:

x 2 r 2 0 + v 2 0 = r 2 0 + y 2 0 from which one obtains the value of r 0 : r 0 = s y 2 0 ; v 2 0 x 2 ; 1 as a consequence the numbers c s can be calculated as follows: d = q r 2 0 + y 2 0 c = r 0 x d s = v 0 d = r 0 d = y 0 d On the other hand, since the rst row o f R 0 and that of R 00 are identical, it follows that: cr t D + sv t = r t + y t and thereby: r t = ( y t ; sv t )( I np ; cD) ;1 is the solution of a bidiagonal system. Of course, the row v ectors v 0t and y 0t can be computed easily as a preparation for computing analogously the subsequent rows of R: We h a ve: v 0 t = cv ; sr t D y 0 t = y; r t

It is obvious that the upcoming steps for computing the rows of the Cholesky factor R may be realized identically since the shape of the augmented matrices y t R v t RD after each s t e p m a y be rearranged in such a w ay t o h a ve the original one.

We h a ve t h us sketched a possible method for performing the Cholesky factorization of V T p V p using O((np) 2 ) operations. However as it may be observed, it contains divisions and therefore care must be taken in its implementation. If it happens that a division by zero occurs for computing an unknown, we suggest as a solution the use of the classical Cholesky factorization algorithm in order to circumvent the problem. In this perspective, it is not hard to remark that if there are cosines c and corresponding to a same step, say the rst one, and an index k such that cx k = then the (k+1 ) p th coordinate r (k+1)p;1 of r and only it is missed in the relation cr t D + sv t = r t + y t on which the computation of r is based. Since the rows of the factor R are determined by t h i s m e t h o d i n an ascending order and each c o n tains at most two coordinates in di culty, i t follows that the classical Cholesky factorization approach can be utilized successfully to compute r (k+1)p;1 without altering the total computational time.

We end this discussion by noting that the guidelines of the Cholesky factorization method developed here can be used to compute the Cholesky factorization of the matrix V T p SV p where S is a symmetric positive de nite Toeplitz matrix.

8. Generalization. In view of the formalization established in this paper, it is natural to consider what we m a y call the generalized con uent V andermonde matrices de ned as solutions of Sylvester's structures of the type: Z T X ; X = GH where in general the generator GH is a summation of outer products, being a (relatively small) positive i n teger, and is the block-diagonal matrix introduced in section 4. Such a de nition is precisely motivated by the fact that the linear operator:

: X ! (X) = Z T X ; X is one-to-one, so that one is assured of the existence and uniqueness of the solution X of the equation (X) = B , no matter what is the right hand side matrix B. The problem that obviously arises in this context is to develop algorithms manipulating the generalized con uent V andermonde matrices in a way similar to that available for the simple case where = 1 : It is readily seen that the transformation to structured matrices shown in section 6 as well as the Cholesky factorization described in section 7 can be directly extended to this case. On the other hand, it follows directly from the linearity of the operator and from the results of section 5, that if A is a generalized con uent V andermonde matrix and the solution of the Sylvester's equation just established, then there are generally lower triangular Toeplitz matrices L 0 : : : L ;1 and block-diagonal matrices R 0 : : : R ;1 where each block i s a p p upper triangular Toeplitz matrix, such that: As a consequence, the complexity of realizing matrix vector multiplications with generalized con uent V andermonde matrices is, up to the multiplicative f a ctor, the same as that of computing the con uent V andermonde matrix vector multiplication. It is thus possible to construct fast algorithms by exploiting the fast methods developed in 17]. Combining this observation with the results of section 6, one may conclude that it is possible to construct asymptotically fast algorithms for computing the inverse of a nonsingular generalized con uent Vandermonde matrix, using the methods presented in 8].

  Let now form the mp np block-Vandermonde matrix V = V (B 0 B 1 : : : B n;1 )

  W(x 0 : : : x n;1 )R k

of V by the introduced matrix W and then use the structure of C in order to nd that of V W . It is not hard to check t h a t : W = W Z T ; zg t 0 which can be substituted in the structure of V multiplied by W: In doing so, one nds that: Z T V W ; V W Z T = e m;1 y t W ; V zg t 0 from which w e conclude that our task is accomplished.

Besides the general interest of this result, it deserves to say t h a t i t i s m o r e signi cative than the just established one in the sense that A and V A V T are symmetric positive de nite matrices and the solution x of the linear system V A V T x = V W b solves the least squares minimization problem below:

The importance of this observation lies in the fact that there are asymptotically fast methods in order to solve it. Indeed one may exploit the O(np(lognp)logn) fast method of 17] for computing the products V A V T and V W b , and on the other hand it is possible to solve the symmetric positive de nite and Toeplitz-like system V A V T x = V W b with O(mlog 2 m) operations only appealing the rapid techniques developed in 8]. Hence, O(np(lognp)logn+ mlog 2 m) arithmetic operations are su cient for solving the just introduced least squares minimization problem.

7. Con uent V andermonde least squares minimizations. In this section, we p r e s e n t another application of the Sylvester's structure of the m np (m np) real con uent V andermonde matrix V p and show that it is possible to construct an O((np) 2 ) algorithm for computing the Cholesky factorization of its covariance matrix V T p V p : The idea is to establish a Sylvester's structure for the covariance matrix which can be achieved by computing D T V T p V p D using the structures of V p and V T p : We can write: D T V T p V p D = ( V T p Z ; ye t m;1 )(Z T V p ; e m;1 y t ) = V T p ZZ T V p + yy t

Observing that ZZ T = I m ; e 0 e t 0 and denoting by v t the rst row o f V p it is readily veri ed that: D T V T p V p D + vv t = V T p V p + yy t Let now V T p V p = R T R be the Cholesky factorization of the covariance matrix V T p V p and let substitute it into this relation: D T R T RD + vv t = R T R + yy t Therefore, we obtain what we can call a rank-2 modi cation of the Cholesky factorization with the di erence that here we are concerned with the determination of the matrix R: It is therefore logical to appeal to the well known techniques used for and adapt them to our situation (see 9] for example). As it is customary in such a case, we w i l l m ultiply the augmented matrices below: