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Abstract

In this paper� we �rst show that a con�uent Vandermonde matrix may be
viewed as composed of some rows of a certain block Vandermonde matrix� As
a result� we derive a Sylvester	s structure for this class of matrices that ap�
pears as a natural generalization of the straightforward one known for usual
Vandermonde matrices� Then we present some applications as an illustration of
the established structure� For example� we show how con�uent Vandermonde
and Hankel matrices are linked with each other� and also we describe an O
n��
algorithm for solving con�uent Vandermonde least squares minimizations prob�
lems�

Keywords� con�uent Vandermonde matrix� Sylvester	s equation� structured
matrices�

R�esum�e

Dans cet article� nous proposons une structure de Sylvester pour les matrices de
Vandermonde con�uentes qui parait comme une g�en�eralisation naturelle de celle
connue dans le cas d	un systeme de Vandermonde simple� La d�emonstration
de ce r�esultat tire pro�t d	une propri�et�e int�eressante disant� dans un sens que
nous pr�eciserons plus loin� qu	une telle matrice est en fait plong�ee dans une ma�
trice de Vandermonde par blocks� En exploitant cette structure� nous montrons
ensuite� qu	il est possible d	exprimer l	inverse d	une matrice de Vandermonde
con�uente comme le produit de son duale et d	une matrice de Hankel� Toujours
a l	aide de cette structure� nous d�ecrivons un algorithme O
n�� permettant de
r�esoudre les problemes aux moindres carr�es bas�es sur ces matrices� En�n nous
montrons comment on peut �etendre les r�esultats �etablis a une classe de matrices
beaucoup plus g�enerale�

Mots�cl�es� matrice de Vandermonde con�uente� structure de Sylvester�
matrices structurees�



�� Introduction� Given n di�erent numbers x�� x�� � � � � xn�� 
that is xi ��
xj for i �� j�� We mean by a con�uent Vandermonde matrix the following
m � 
p� ��n matrix�

Vp�� � �f
x�� f �
x�� � � � f �p�
x�� � � � f
xn��� f �
xn��� � � � f �p�
xn����

where f
x� is the vectorial function�

f
x� � 
�� x� x�� � � � � xm���t

and f �
x��f ���
x������ f �p�
x� are the derivatives of f
x�� In fact� the number
of the derivatives p should vary as xi� but for convenience and without loss in
generality� it is assumed throughout the paper� that it is �xed� It is the matter
of a well known concept that naturally generalizes usual Vandermonde systems
and can be viewed as a matrix representation of some interpolation problems
����� For example� Hermite	s interpolation amounts simply to solve the system
of linear equations� V T

p x � b� Because of its importance in applications 
see ���
for instance�� such matrices have received a particular attention in the literature�
In particular� several O
n�� algorithms have been proposed for computing the
inverse of Vandermonde and con�uent Vandermonde matrices and that of their
duals 
���� ���� ������ In ����� Higham considered the more general case where the
monomial xk is replaced by a polynomial Pk
x� and constructed what is called
a con�uent Vandermonde�like matrix� Then he developed O
n�� solutions for
computing the inverse of such a matrix for particular polynomials� In ����� he
analyzed the numerical stability of these methods� More recently� Lu ����� ����
showed the ability to design asymptotically faster solutions to these problems
and conceived in particular an algorithm with O
np
lognp�logn� running time
for inverting np � np con�uent Vandermonde matrices� His approach is based
on fast convolution products and fast polynomial divisions ����

On the other side� it is common to put matrices with particular forms� such as
Toeplitz matrices� into a uni�ed algebraic formalism� In other words� given two
�simple� matrices L and U the idea is to �nd the Sylvester	s equation �

LM �MU � GH

where the concerned matrixM is completely characterized by the generator GH
which is� in the essence� a summation of a �xed number of outer products� The
importance of this equation called the structure of M stems from the fact that
it constitutes a powerful tool for e�ciently manipulating such matrices� as it is
emphasized in di�erent situations� Of course� the structure is more and more
elegant as long as the matrices L and U are simple and GH is of a small rank�
See ���� and the survey paper ���� with the references therein�

In this paper� we consider this aspect of manipulating con�uent Vandermonde
matrices via their Sylvester	s structure which is deduced from a useful observa�
tion that a con�uent Vandermonde matrix is in a certain viewpoint embedded
into a block�Vandermonde one� After some notations in section �� and a brief
discussion about block�Vandermonde matrices in section �� where we show some
limitations when trying to extend the concepts available in the usual case and
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evidence particular instances allowing to palliate the di�culties� we present in
Section � our main result where a Sylvester	s equation satis�ed by the con�uent
Vandermonde matrices is established and proved� Examining it� one may assert
that it well characterizes the con�uent Vandermonde matrices and� apparently�
can not be sharpened further� To our knowledge such a structure does not ex�
ist elsewhere� In section �� we study the converse situation where it is shown
that up to a slight modi�cation� it is possible to determine precisely the ma�
trices which are solutions of the modi�ed Sylvester	s equation� In other words�
we establish an interesting canonical structure to which the studied Sylvester	s
equation may be easily transformed and conversely� As an application� an in�
verse formula is given� The sections �� � and � may be viewed as interesting
applications of the Sylvester	s structure� In section �� a connection between
con�uent Vandermonde matrices� Hankel and Toeplitz�like ones is shown in a
way similar to that found out for the usual Vandermonde matrices 
see ���� �����
������ Nevertheless� it is shown that though the structure established� there
are severe limitations as one attempts a direct generalization� Fortunately� it
is possible to compensate the drawbacks so that one may construct O
nlog�n�
algorithms for solving weighted least squares minimizations settling overdeter�
mined Hermite	s interpolations� In section �� we develop an O
n�� method for
computing the Cholesky factorization of the covariance matrix of the con�uent
Vandermonde matrix� The algorithm as it is well known may be exploited for
solving con�uent Vandermonde least squares minimizations problems� Finally�
we consider in section �� the notion of generalized con�uent Vandermonde ma�
trices and explain how the results available in the simple case may be extended�

�� Notations� To make the description of the text as clear as possible� some
notations are adopted� As we will deal with rectangular matrices and block�
Vandermonde matrices� it follows that di�erent linear spaces will be considered�
Consequently� care must be taken about the use of a same notation�

For this reason� we denote throughout the paper by 
ei���i�m��� 
fj���j�p���

hk���k�mp��� and 
gk���k�mp��� the canonical basis in the linear spaces C

m
�

C
p
� C

mp
and C

np
respectively� where C is the complex �eld� In general� we

consider the canonical basis in Rm where R is a ring with unit element� and

we denote it by 
E�� � � � � Em���� For example� if R � C
p�p

is the ring of the
p� p complex matrices then for � � k � m� �� we have�

Ek � �hkp� hkp��� � � � � h�k���p���

which is a mp� p matrix� Now� let say that whatever canonical basis one uses�
it is systematically understood along the paper that if u is a vector then ui��
denotes its ith coordinate�

Since one of our main objectives is to construct a Sylvester	s structure for con�
�uent Vandermonde matrices� it is natural to expect the use the displacement
matrix de�ned as a square matrix with ��s along its �rst sub�diagonal and ��s
elsewhere� If we have a k � k displacement matrix� let denote it by Zk� For
simplicity and unless otherwise stated� we let� Z � Zm and �Z � Znp� The well
known reverse identity matrix may be also utilized in such a context and is a
square matrix with ��s along its anti�diagonal and ��s elsewhere� We will denote
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by Jk a reverse identity matrix of size k � k�

In this paper for reasons to be seen latter� we distinguish between vector trans�
pose and matrix transpose and we use two notations� ut means the transpose
of the vector u whereas RT means the transpose of the matrix R� By the way�
we may use the anti�transpose operator� T�� de�ned as follows�

AT� � JkA
TJk

where A is a k � k matrix�

�� Block�Vandermonde Matrices� Clearly� the Vandermonde matrices may
be de�ned over arbitrary rings with unit element� as for example the ring of
matrices� and it is of interest to note that in this straightforward generalization�
the well known structure of Vandermonde matrices remains safe� That is� if

R��� �� �� �� denotes such a ring� then we have�

ZTV � V D � Em��U
t

where V � V 
B�� B�� ���� Bn��� is the m � n Vandermonde matrix with el�
ements Bi into the ring R � Z is the displacement matrix 
with � 
� R�
in the �rst sub diagonal and � 
� R� elsewhere�� D � diag
Bi� and U t �
�
Bn

� � � � � � B
n
n���� Recall that Em�� stands for the last element in the canonical

basis of Rn�

In the case where R is the ring of p � p matrices de�ned over the �eld of the
complex numbers C� we obtain what is known as block�Vandermonde matri�
ces� Here� the displacement matrix in the above Sylvester	s equation must be
understood as the p�power Zp

mp of the displacement matrix Zmp with elements

in the �eld C� Based on this structure� it is thus possible to construct e�cient
algorithms for manipulating block�Vandermonde matrices� On the other hand�
there are natural reasons to expect that most operations over Vandermonde ma�
trices may be carried out to block�Vandermonde ones requiring up to a p factor
the same amount of computation� Unfortunately� this is not true in general
because of the simple fact that several �exible properties such as commutativ�
ity are missed in the ring R while well veri�ed in the �eld C� Consider for
instance the problem of solving a linear system of equations� V Tx � b where
V is a block�Vandermonde matrix� An approach due to ��� 
see also ����� is to
transform this system to the following equivalent one�

V V Tx � V b�

The idea lies in the observation that in the case where V is a Vandermonde
matrix� one may assert that V V T is a Hankel matrix� Hence the complexity for
solving the considered system is the same as for solving a Hankel linear system�
Since there are O
nlog�n� algorithms for computing the inverse of a positive
de�nite Hankel matrix 
see ���� ���� ���� ���� among others�� one �nds out another
way of constructing O
nlog�n� algorithms for the polynomial interpolation� On
the contrary� when attempting to extend this technique to block�Vandermonde
matrices� the di�culty arises as soon as one writes the structure�

V TZp �DTV T � UEt
n��
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of V T � where in general� we have D �� DT 
recall that D � diag
Bi��� As
an alternative issue� this last remark evidences possible ways for compensating
such a disadvantage� Actually� if we assume that the blocks Bi are symmetric
matrices then one can check that V V T is a block Hankel matrix� Indeed� if we
apply the matrix V to the above structure of V T 
where now D � DT �� we
obtain �

V V TZp � V DV T � V UEt
n���

Using the fact that V D � ZpTV � En��U
t� the following structure is easily

deduced�
V V TZp � ZpTV V T � V UEt

n�� � En��U
tV T

which asserts that V V T is a block�Hankel matrix�

�� Embedding con�uent Vandermonde matrices into block Vander�

monde ones� In this section� we restrict ourselves to particular block matrices�
Given n di�erent complex numbers x�� x�� � � � � xn��� we will consider the p� p

matrices B�� B�� ���� Bn�� de�ned as follows�

Bi � B
xi� �

�
�������

xi � � � � � �
� xi � � � � �

� � xi
� � �

���
���

���
���

� � � p� �
� � � � � � � � xi

�
�������

Let now form themp�np block�Vandermondematrix V � V 
B�� B�� � � � � Bn���
where for � � i � m � � and � � j � n� �� its 
i� j� block�element is Bi

j � As
it is previously stated� the matrix V ful�lls the Sylvester	s equation below�

ZpT
mpV � V D � Em��U

t

where Zmp is the mp�mp displacement matrix� D is the block�diagonal matrix
such that� D � diag
B�� ���� Bn���� and both U and Em�� are block�vectors
de�ned over Rn and Rm 
R being the ring of the p � p complex matrices��
It is easily seen that Em�� is the last element in the canonical basis of Rm

and U t � �
Bm
� � � � � � B

m
n���� The structure of V just evidenced will be a corner

stone in constructing that of con�uent Vandermonde matrices� More precisely�
we will show that the matrix V contains� in a certain sense� a con�uent Vander�
monde one� and conversely every con�uent Vandermonde matrix is embedded
into a block Vandermonde one of a same kind� This result� from which the
desired Sylvester	s structure is obviously derived� is revealed by an interesting
observation in the behavior of the powers Bk
x� 
k � �� of the matrix B
x��
Indeed� an investigation in the elements of the k�power matrix Bk
x� permits
to observe that its �rst row is interestingly formed by xk and its derivatives�
In general� it is possible to show by an inductive reasoning about the power k�
that the 
i� j� element �kij of B

k
x� can be expressed as follows 
we assume for
convenience �� � �� �

�kij �
j�

i�

 k
j�i�x

k�j�i �
j�k�

i�
j � i��
k � j � i��
xk�j�i

�



for � � i � j � i � k� and is reduced to zero elsewhere� As a consequence�
the con�uent Vandermonde matrix Vp is simply that formed by the 
kp�th rows
of V in the natural order 
� � k � m � ��� Mathematically� if P denotes the
permutation matrix de�ned by�

P �

p��X
i��

m��X
k��

him�kh
t
kp�i

where 
hs���s�mp�� is the canonical basis of C
mp
� then we can assert that�

PV �

�
Vp
X

�

On the other hand� since ZpT
mpV upshifts p times the rows of V so that the 
kp�th

row of V � � � k � m � �� will be the 

k � ��p�th one of ZpT
mpV � the following

interesting relation is obviously deduced�

PZpT
mpV �

�
ZTVp
X�

�

In this direction� it is implicitly said that one is applying the permutation matrix
P to the structure of V � Hence� it is useful to analyze the aspect of the generator
PEm��U

t� For direct matrix manipulations lead us to consider PEm�� as a
block�vector� where its jth block�component 
� � j � p � �� is precisely the
m � p matrix em��f tj � Consequently� the �rst m rows of PEm��U

t form the
m�
np� matrix em��yt � em��f

t
�U

t where its last row is the �rst one of U t and
otherwise� the elements are reduced to zero� Clearly �yt is the �rst row of �U t

which is simply an alignement of the �rst rows of the blocks Bm
� � � � � � B

m
n��� It

follows from the above observation related to Bm
x� that�

�yt � 
xm� �mx
m��
� � � � � � 
m�p��x

m�p��
� � � � � � xmn���mx

m��
n�� � � � � � 
m�p��x

m�p��
n�� �

where 
m�k �
m�
k� � Taking into account these considerations and the fact that

we are concerned with the �rst m rows only� as we look forward Vp� we �rst
observe that�

PZpT
mpV � P 
V D �En��U

t� � PV D � PEn��U
t

from which we conclude that the Sylvester	s equation of the con�uent Vander�
monde matrix Vp is given by�

ZTVp � VpD � em��y
t

Clearly� this structure appears as a natural generalization of that of the usual
Vandermonde matrices� However� because of the fact that D is a block�diagonal
matrix and not a diagonal one� one may expect serious problems� as it will be
seen in section �� when trying to safely carry out� via this equation� the results
established in the simple case�

�



	� Normalization and the inverse formula� In the previous section� we
have shown that the con�uent Vandermonde matrix Vp is a solution of the
Sylvester	s equation below�

ZTX �XD � em��y
t

Conversely� it is possible to determine the matrix X for which this equation
is veri�ed� Nevertheless� for arbitrary vectors y� the obtained matrix X has a
queer aspect and is not a priori representative in a convinced manner inasmuch
one feels being far away from the con�uent Vandermonde context� As a remedy�
we show here that the vectors y of the form�

yt � 
t�� �� � � � � �� t�� �� � � � � �� � � � � tn��� �� � � � � ��

give rise to solutions X with elements of simple expressions� Beforehand we
suggest a normalization procedure over the Sylvester	s structure which allows
to conclude that there is no loss in generality when considering the particular
y just above�

We �rst apply over the considered equation a suitable diagonal matrix K so
that the non null elements along the super�diagonal of D will be reduced to ��
To this end� let K� and K denote respectively the following p� p and np� np

diagonal matrices�

K � � diag
�� ��� ��� � � �� 
p� ����� K � diag
K��K�� � � � �K ��

It is clear that the block�diagonal and upper bidiagonal matrix � � KDK�� �
diag
S
x�� � � � � S
xn��� has the desired form since�

S
xi� � K�B
xi�K
��� �

�
�������

xi � � � � � �
� xi � � � � �

� � xi
� � �

���
���

���
���

� � � �
� � � � � � � � xi

�
�������

On the other hand� the transformation we perform over the Sylvester	s structure
consists simply in post multiplying it by the diagonal matrix K��� In doing
so� one realizes that using the variable change� Y � XK��� the Sylvester	s
equation becomes�

ZTY � Y� � em��y
tK � em��g

t

An interesting feature in this normalization step is that the blocks S
xi� in the
block�diagonal matrix � are upper bidiagonal Toeplitz matrices each of which
thereby commutes with any other upper triangular Toeplitz matrix� In the next
transformation� we will make useful of this important property�
Consider n upper triangular and Toeplitz matrices R�� R�� � � � � Rn�� each of
order p� and set�

R � diag
R�� R�� � � � � Rn����

that is R is a block�diagonal matrix where each block�element is a p� p matrix
and its block�main diagonal is formed by the introduced Toeplitz matrices Ri�

�



Clearly� if the structure is post�multiplied by R then remarking that �R �
R�� we obtain�

ZTY R� Y R� � em��g
tR � em��w

t

so that the variable change� Y � Y R� does not alter the overall required
structure of the transformed Sylvester	s equation� Therefore� it is possible in
general to choose the matrices Ri in such a way that the coordinates wip�k� k ��
�� of the row�vector

wt � 
w�� w�� � � � � wnp���

will be reduced to zero� It is readily seen that this operation fails if and only
if there exists at least one coordinate of w of the form wip reduced to zero� Up
to now� it is assumed that the transformations we may apply does not lead to
this situation� It is necessary to note� by the way� that this normalization is re�
versible since the the Toeplitz matrices Ri can be reconstructed systematically�

Let us now proceed to determine explicitly the solutionX 
we will denote hence�
forth W 
x�� � � � � xn��� � of the Sylvester	s equation�

ZTX �X� � �em��y
t

yt � 
�� �� � � � � �� �� �� � � � � � � � � � � � � �� � � � � ��

in terms of the numbers xi� Let aih denote the 
i� h��entry of the matrixX and
write h � jp � k such that � � j � n � � and � � k � p � �� By controlling
the elements of X in its structure� it is easily veri�ed that��		


		�
xjam���h � � 
k � ��
am���h�� � xjam���h � � 
� � k � p�
am�i���h � xjam�i�h � � 
k � ��
am�i���h � 
am�i�h�� � xjam�i�h� � � 
� � k � p�

Clearly� these recurrence relations ful�lled by the elements of the matrix X
provide the way of computing each am�i�h� Even more� they allow to show�
using an inductive reasoning about 
i� k�� that�

am�i�h � 
���
k
k�ik���x

��k�i�
j

Indeed� by considering the row 
am����� and the column 
a��jp� of X� one
realizes that 
am���jp�k�k and 
am�i�jp�i are geometrical progressions from
which it is deduced that the formula is true for 
i� k� such that i � � or
k � �� On the other hand� if we assume its trueness for 
i��� k� and 
i� k��� 
� �
i � m� � � k � p � ��� and we set

bih � 
�xj�
kam�i�h�

then after simple calculations� we can perform the operations below�

bi�h � 
�xj�
k��am�i�h�� � 
���

kxk��j am�i���h

� 
�xj�
k��
���k��
k���ik �x��k���i�j � 
���kxk��j 
���k
k�i��k�� �x

��k�i���
j

� 
k���ik �x�ij � 
k�i��k�� �x
�i
j

� 

k�i��k � � 
k�i��k�� ��x
�i
j

� 
k�ik���x
�i
j

�



It follows directly that am�i�h � 
���
kx�kj bih � 
���k
k�ik���x

��i�k�
j and� as a

consequence� the desired formula holds for all elements of the matrix X�

As an application to this result� it is possible to derive an expressive formula
for the inverse of nonsingular m �m matrices which are solutions of the just
established normalized Sylvester	s structure� Indeed� if W � W 
x�� � � � � xn���
is the solution of the normalized equation� then it is easy to check that�

W��ZT ��W�� �W��em��y
tW���

and by applying the anti�transpose operator T�� we obtain�

ZTW�T� �W�T��T� � W�T� �yet�W
�T�

�y being the mirror vector of y� As a consequence� it is possible to assert that
under the conditions where the normalization just presented does not fail� there
exist an m � m lower triangular Toeplitz matrix L and n upper triangular
Toeplitz matrices R�� R�� � � � � Rn�� each of order p� such that�

LTW�T�R � W 
xn��� xn��� � � � � x��

where R � diag
R�� � � � � Rn����


� Transformation to structured matrices� We consider here the aspect
discussed in section � where it is shown that if the block�elements of a block�
Vandermonde matrix Vb are symmetric matrices then VbV T

b is a Hankel matrix

see ����� In our situation however� this result might logically fail in general
since the block Vandermonde matrix from which the con�uent Vandermonde
one is extracted has not the symmetry property� the block�elements are� rather�
upper triangular matrices� To palliate this di�culty� we suggest the approach of
looking forward matrices A such that VpAV T

p is a Hankel or even a Hankel�like

matrix� Let A be such a matrix� that is VpAV T
p is Hankel�

ZTVpAV
T
p � VpAV

T
p Z � aetm�� � em��a

t

Using the structures of Vp and V T
p � it is readily veri�ed under reasonable as�

sumptions 
Vp is a nonsingular square matrix� and after simple calculations
that�

DA �ADT � vut � uvt

where u � V ��
p a � y� v � V ��p em��� Therefore� it is natural to investigate

the simple case where the right hand side is reduced to zero� i�e� to deter�
mine the matrices A for which DA � ADT � If we set B � KAK��� where K
is the diagonal matrix introduced in the preceding section� then the problem
amounts to compute B verifying B� � �B� In this direction� we saw that the
block�diagonal matrix � is formed by the upper bidiagonal Toeplitz matrices
S
xi�� Hence� it is not hard to show that the matrix

B � diag
R�Jp� R�Jp� � � � � Rn��Jp��

where the Ri are p � p upper triangular Toepliz matrices and Jp denotes the
p � p reverse identity matrix� commutes with �� In the particular case where

�



for all i� Ri is reduced to the p� p identity matrix� one �nds that VpFV T
p is a

Hankel matrix where

F � K��diag
Jp� Jp� � � � � Jp�K

Though this result permits to express V ��
p or V �T

p with the help of Hankel
matrices deducing hence algorithms for calculating V ��

p using those invert�
ing a Hankel matrix� there is unfortunately a disadvantage making it some�
what meaningless� That is in the real case� the matrix VpFV

T
p is not pos�

itive de�nite� so that there is no way to compute the pseudo inverse or �the
weighted one� of V T using such a matrix� On the other hand� if we assume
that DA � ADT � GH corresponding to the case where V AV T is in general
a Hankel�like matrix� it turns out that this situation yields more complicated
symmetric matrices A�

As an alternative approach� we proceed now to construct matrices A for which
V AV T are Toeplitz�like� where it is assumed here that the m � np matrix

m � np� V is real and satis�es the Sylvester	s equation below�

ZTV � V� � em��y
t

in such a way that V K is a con�uent Vandermondematrix�K being the diagonal
matrix introduced in the previous section� On the other hand let construct the
np� np matrix C de�ned as follows�

�ZTC �C�T� � gnp��z
t

where �Z stands for the np� np displacement matrix� It is clear that the vector
z may be chosen such that CK is a nonsingular con�uent Vandermonde matrix�
Therefore if we set W � CT� and A �WWT then one may claim that V AV T

is a Toeplitz�like matrix� To show this� let us write

X � Y

for meaning that the di�erence X�Y of the matrices X and Y is a summation
of r outer products with r �xed� Thus using simple arguments� one �nds that�

ZTV AV TZ � ZTV WWTV TZ

� V�WW T�TV T

� VW �ZT �ZWTV T

� VWW TV T

� V AV T

which permits to conclude that V AV T is indeed a Toeplitz�like matrix� In
fact� it is possible to show that the product VW is a Toeplitz matrix so that
its covariance matrix will be evidently Toeplitz �like� Indeed� one has just to
post�multiply the structure

ZTV � V� � em��y
t

�



of V by the introduced matrix W and then use the structure of C in order to
�nd that of V W � It is not hard to check that�

�W � W �ZT � �zgt�

which can be substituted in the structure of V multiplied by W� In doing so�
one �nds that�

ZTV W � VW �ZT � em��y
tW � V �zgt�

from which we conclude that our task is accomplished�

Besides the general interest of this result� it deserves to say that it is more
signi�cative than the just established one in the sense that A and V AV T are
symmetric positive de�nite matrices and the solution x of the linear system
V AV Tx � V Wb solves the least squares minimization problem below�

minjjWTV Tx� bjj�

The importance of this observation lies in the fact that there are asymptotically
fast methods in order to solve it� Indeed one may exploit the O
np
lognp�logn�
fast method of ���� for computing the products V AV T and VWb� and on the
other hand it is possible to solve the symmetric positive de�nite and Toeplitz�like
system V AV Tx � V Wb with O
mlog�m� operations only appealing the rapid
techniques developed in ���� Hence� O
np
lognp�logn�mlog�m� arithmetic op�
erations are su�cient for solving the just introduced least squares minimization
problem�

�� Con�uent Vandermonde least squares minimizations� In this section�
we present another application of the Sylvester	s structure of the m�np� 
m �
np�� real con�uent Vandermonde matrix Vp and show that it is possible to
construct an O

np��� algorithm for computing the Cholesky factorization of its
covariance matrix V T

p Vp� The idea is to establish a Sylvester	s structure for the

covariance matrix which can be achieved by computing DTV T
p VpD using the

structures of Vp and V
T
p �We can write�

DTV T
p VpD � 
V T

p Z � yetm���
Z
TVp � em��y

t� � V T
p ZZ

TVp � yyt

Observing that ZZT � Im � e�e
t
�� and denoting by v

t the �rst row of Vp� it is
readily veri�ed that�

DTV T
p VpD � vvt � V T

p Vp � yyt

Let now V T
p Vp � RTR be the Cholesky factorization of the covariance matrix

V T
p Vp� and let substitute it into this relation�

DTRTRD � vvt � RTR� yyt

Therefore� we obtain what we can call a rank�� modi�cation of the Cholesky
factorization with the di�erence that here we are concerned with the deter�
mination of the matrix R� It is therefore logical to appeal to the well known
techniques used for and adapt them to our situation 
see ��� for example�� As
it is customary in such a case� we will multiply the augmented matrices below�

��



�
yt

R

�
�

�
vt

RD

�
by appropriate Givens rotations� The fundamental property of which we take
advantage is that if a step in the method stands for a multiplication by a pair
of Givens plane rotations� then each row of R 
and RD� is modi�ed only once�
In what follows� we describe the �rst step where it is shown how the �rst row
of R is determined� Let H� and H� be the following plane rotations�

H� �

�
������

c �s � � � � �
s c � � � � �
� � � � � � �
���

���
� � �

� � �
���

� � � � � � �

�
������ � H� �

�
������

� �� � � � � �
� � � � � � �
� � � � � � �
���

���
� � �

� � �
���

� � � � � � �

�
������

such that the �rst coordinates v�� and y�� of v
� and y� respectively are reduced

to zero� where�

H�

�
vt

RD

�
�

�
v

�t

R��

�

and

H�

�
yt

R

�
�

�
y

�t

R�

�

According to the property stated above� one maintains that the �rst row of
R�� and that of R� are identical� and moreover they remain unmodi�ed during
the subsequent Givens rotations� Taking into account this and the fact that
v�� � y�� � �� one may write the equations below��


�

a� cv� � sr�x � �

b� �y� � �r� � �

c� cr�x� sv� � �r� � �y�

where rt denotes the �rst row of R� r� the �rst coordinate of r and x � x�� It is
readily seen that the last relation 
relation 
c�� can be also expressed as follows�

x�r�� � v�� � r�� � y��

from which one obtains the value of r� �

r� �

s
y�� � v��
x� � �

�

as a consequence the numbers c� s� �� � can be calculated as follows�

d �
q
r�� � y�� � c �

r�x

d
� s �

v�

d
� � �

r�

d
� � �

y�

d

On the other hand� since the �rst row of R� and that of R�� are identical� it
follows that�

crtD � svt � �rt � �yt

��



and thereby�
rt � 
�yt � svt�
�Inp � cD���

is the solution of a bidiagonal system� Of course� the row vectors v�t and y�t can
be computed easily as a preparation for computing analogously the subsequent
rows of R� We have�

v
�
t � cv � srtD� y

�
t � �y � �rt

It is obvious that the upcoming steps for computing the rows of the Cholesky
factor R may be realized identically since the shape of the augmented matrices�

yt

R

�
�

�
vt

RD

�

after each step may be rearranged in such a way to have the original one�

We have thus sketched a possible method for performing the Cholesky factor�
ization of V T

p Vp using O

np��� operations� However as it may be observed� it
contains divisions and therefore care must be taken in its implementation� If it
happens that a division by zero occurs for computing an unknown� we suggest
as a solution the use of the classical Cholesky factorization algorithm in order
to circumvent the problem� In this perspective� it is not hard to remark that if
there are cosines c and � corresponding to a same step� say the �rst one� and an
index k such that cxk � � then the 
k���pth coordinate r�k���p�� of r and only
it is missed in the relation crtD � svt � �rt � �yt on which the computation
of r is based� Since the rows of the factor R are determined by this method in
an ascending order and each contains at most two coordinates in di�culty� it
follows that the classical Cholesky factorization approach can be utilized suc�
cessfully to compute r�k���p�� without altering the total computational time�

We end this discussion by noting that the guidelines of the Cholesky factoriza�
tion method developed here can be used to compute the Cholesky factorization
of the matrix V T

p SVp where S is a symmetric positive de�nite Toeplitz matrix�

�� Generalization� In view of the formalization established in this paper� it
is natural to consider what we may call the generalized con�uent Vandermonde
matrices de�ned as solutions of Sylvester	s structures of the type�

ZTX �X� � GH

where in general the generator GH is a summation of � outer products� �
being a 
relatively small� positive integer� and � is the block�diagonal matrix
introduced in section �� Such a de�nition is precisely motivated by the fact that
the linear operator�

 � X �  
X� � ZTX �X�

is one�to�one� so that one is assured of the existence and uniqueness of the solu�
tion X of the equation  
X� � B � no matter what is the right hand side matrix
B� The problem that obviously arises in this context is to develop algorithms
manipulating the generalized con�uent Vandermonde matrices in a way similar
to that available for the simple case where � � �� It is readily seen that the

��



transformation to structured matrices shown in section � as well as the Cholesky
factorization described in section � can be directly extended to this case� On
the other hand� it follows directly from the linearity of the operator  and from
the results of section �� that if A is a generalized con�uent Vandermonde matrix
and the solution of the Sylvester	s equation just established� then there are gen�
erally � lower triangular Toeplitz matrices L�� � � � � L��� and � block�diagonal
matrices R�� � � � � R��� where each block is a p � p upper triangular Toeplitz
matrix� such that�

A �
���X
k��

LT
kW 
x�� � � � � xn���R

k

As a consequence� the complexity of realizing matrix vector multiplications with
generalized con�uent Vandermonde matrices is� up to the � multiplicative fac�
tor� the same as that of computing the con�uent Vandermonde matrix vector
multiplication� It is thus possible to construct fast algorithms by exploiting the
fast methods developed in ����� Combining this observation with the results
of section �� one may conclude that it is possible to construct asymptotically
fast algorithms for computing the inverse of a nonsingular generalized con�uent
Vandermonde matrix� using the methods presented in ����
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