Marc Daumas 
email: marc.daumas@lip.ens-lyon.fr
  
David W Matula 
email: matula@seas.smu.edu
  
Recoders for Partial Compression and Rounding

Keywords: Computer Arithmetic, Floating Point Notation, Redundant Notation, Number Conversion Arithm etique des Ordinateurs, Notation a Virgule Flottante, Notation Redondante, Conversion

The purpose of this paper is to treat digit set conversions and digit recodings in terms of primitive recoding operations that have elementary implementations. The partial compressions and roundings are each associated with borrow-save or carry-save recodings implementable in one level of logic. Iterative utilization of recoding have application for: i) reducing the range of truncated lower order digits of a redundant binary operand to intervals less than a 2 ulp range (;1 1) approaching 1 ulp, ii) truncating strings of leading insigni cant digits in a redundant binary operand, iii) realizing Booth recoding for radices 2 k , k 2, by realizing the symmetric minimal redundant digit set for 2 k for all k bit substring of a redundant binary operand.

Introduction and Summary

Inputs and outputs of adder and multiplier components of an arithmetic logic unit (ALU) are traditionally described in terms of compressed binary formats (eg. two's complement). Microcoded and hardware enhanced algorithms for division, transcendentals, and fused multiply-add involve i n ternal feedback o r f o r w arding of intermediate results. Output of the multiplier may b e fed-back to the multiplier input or forwarded to the adder. The expensive 2-1 compression, that is an addition of the multiplier output can be avoided if the redundant output is forwarded directly. The problem we address here is how can the forwarded value be partially compressed so that the provision for forwarded input does not signi cantly degrade the adder or multiplier compared to optimisation for compressed binary input.

Previous research has shown the feasibility o f m ultiplier and adder designs employing redundant binary operands 1, 2 , 3 , 4 , 5 , 6 ]. To a void the general increase in hardware size entailed by redundant binary input, recent attention has been focused on limiting redundant input simply to the multiplier recoder input 7, 8 , 9 , 1 0 , 1 1 , 1 2 ]. Such recoders can add critical path delay for the more frequent case where compressed binary input is available.

Our purpose in this paper is to investigate the use of partial compression of redundant binary output for forwarding and feedback. The goal is that employing the forwarded value should be virtually transparent in performance compared to direct input of compressed binary values. We provide a methodology for partial compression and illustrate the realization of our goal in one important application by the logic design of a precoder. The precoder provides partial compression of a redundant binary value before feedback with output in a format that may be directly input to a standard radix 4 Booth recoder.

In Section 2, we describe various compressed binary and redundant binary formats and inplace recodings. In-place recoding of binary to redundant binary format involves only wire routing and possibly bitwise complementation. This establishes compressed binary input in a register format that may alternately receive partially compressed forwarded redundant binary data in a performance-wise transparent manner.

In Section 3, we establish the foundation for partial compression by carry-recodings. Our methods apply to both carry-save and borrow-save format. They are most simply described for borrow-save. Borrow-save format has a positive b i t p i and a negative bit n i , encoding the ith digit d i 2 f ; 1 0 1g for all i. T runcating a fully redundant b o r r o w-save format at the ith place deletes the fraction portion d i;1 d i;2 ::: having value in the fraction range (;1 1) units in the last place (ulps). A P-carry recoding propagates a positive c a r r y p 0 i+1 leaving a negative residual n 0 i for all i. It reduces the fraction range d 0 i;1 d 0 i;2 ::: to ; ;1 1 2 ulps. An N-carry recoding propagates a negative carry n 0 i+1 with positive residual p 0 i for all i with fraction range ;

; 1 2 1 ulps. Thus a single P or N recoding compresses the 2 ulp width of redundant binary half way to the one ulp width of the compressed binary format at very little cost. Extending the terminology that 3-2 and 2-1 adders are also termed 3-2 and 2-1 compressors, we m a y call a single carry recoder a 2-1 1 2 compressor. Our principal result in Section 3 is the following theorem for a sequence of carry recodings. The compression theorem allows us to measure the compression obtained by recoding a borrow-save variable. Compression index k corresponds to a fraction width of at most 1 + 2 ;k ulps. Note that a recoding obtaining compression index k is su cient to provide a fully compressed binary output for a k digit borrow s a ve input.

Theorem 1 (Partial Compression Theorem) Given as input a borrow-save maximally redundant binary variable with fraction range of width 2 ulps, any sequence o f k P-or N-recodings in any order compresses the width of the fraction range to 1 + 2 ;k ulps.

The basis of our precoder is the index 3 compression provided by the carry recoding PN 2 ( ). This recoding is shown su cient t o p r o vide that every two digit output has a radix four value in f;2 ;1 0 1 2g. F urther properties allow the recoded output to be directly input to a standard Booth recoder.

In Section 4, we show that a single carry recoding can be implemented with single logic level depth as described by a r o w of half adders. Our PN 2 ( ) precoder is comprised of three rows of half-adders. We describe a BiCMOS transistor implementation of the precoder indicating delay signi cantly less than a nanosecond. The precoder has delay only a small fraction of the delay o f a 2-1 compressor which could require a full cycle at 400-500 MHz for compression of a 64 bit carrysave m ultiplier output. Conclusions and other applications of partial compressors are discussed in the Section 5.

Compressed and Redundant Binary Formats

Standard binary compressed representations suitable for storage include unsigned binary, signmagnitude and two's complement. Redundant binary representations encountered internal to an ALU include carry-save, borrow-save and signed digits. Operations within the ALU can e ectively recode, convert and round the internal formats.

Compressed Binary Formats

The basis for all compressed binary format representations is a bit vector and its associated weight vector which together determine a radix polynomial. Alternative i n terpretations of the leading bit are employed to distinguish between ranges that include or exclude negative v alues.

An unsigned binary (UB) bit vector b k;1 b k;2 :::b 0 with weight v ector W = ( 2 k;1 2 k;2 :::2 0 ) denotes the radix polynomial P k;1 i=0 b i 2 i with value in 0 2 k ; 1]. A sign-magnitude (SM) bit vector sb k;2 :::b 0 denotes the sign by ( ;1) s , yielding the signed radix polynomial (;1) s P k;2 i=0 b i 2 i which has values in the balanced range ;2 k;1 +1 2 k;1 ;1]. A two's complement (2C) bit vector b k;1 b k;2 :::b 0 with weight v ector W = ( ;2 k;1 2 k;2 :::2 0 ) determines negative v alues by h a ving b k;1 denote a negative coe cient. The resulting radix polynomial ;b k;1 2 k;1 + P k;2 i=0 b i 2 i has values in the unbalanced range ;2 k;1 2 k;1 ; 1].

Observation 1 alerts us that the value zero requires special attention in sign-magnitude format, and the value ;2 k;1 requires special attention in the design of a two's complement arithmetic unit. Observation 1 The sign-magnitude bit vector sb k;2 :::b 0 allows redundant representations of 0 but any other integer in its range is de ned uniquely. A two's complement bit vector represents every integer uniquely in its range with the value ;2 k;1 being the only value for which its negation ;(;2 k;1 ) is out of range.

Conversion rules for the three compressed binary formats regarding leading insigni cant bit deletion, higher radix digit conversion, and low order digit chopping are well known and follow similar but not identical rules. An appropriate number of leading bits (beyond the sign in signmagnitude notation) may simply be deleted from a k-bit binary vector whose magnitude is at most 2 j;1 for j < k . This holds for insigni cant zeros or ones in two's complement in view of the following identity for b being 0 or 1.

;b2 k;1 + k;2 X i=j b2 i = ;b2 j (1)
A xed point binary vector may be arbitrarily extended to the right of the radix point t o b k;1 :::b 0 b ;1 b ;2 ::: with the bit window b ;1 b ;2 ::: denoting the radix polynomial P +1 i=1 b ;i 2 ;i with value in the fraction range 0 1). For any nite or in nite bit vector b k;1 b k;2 ::: the fraction value at position j, f j ( ) is the ratio of the term of order j ;1 and below of the radix polynomial divided by the weight of the rst term not counted to normalize to units in the last place. For j < k this is de ned along with the fraction value function f( ) b y f j (b k;1 b k;2 :::) = f (b j;1 b j;2 :::) = X i>0 b j;i 2 ;i 2 0 1)

(2)

Chopping of the low order bits below position j results in subtracting the fractional value f j .

Note that this fractional range is always non negative for either unsigned or two's complement yielding a round down towards ;1 (RD) rounded value for the bit vector b k;1 b k;2 :::b j . F or signmagnitude the chopped portion deleted inherits the sign of the bit vector which e ects a round towards zero (RZ) with range (;1 1).

For any nite or in nite bit vector b k;1 b k;2 ::: an l-bit window at position j denotes the substring b j+l;1 b j+l;2 :::b j . The value of the l-bit window i s g i v en by the integer ratio of the corresponding terms of the radix polynomial divided by the weight of the last term b j .

d (b j+l;1 b j+l;2 :::b j ) = l;1 X i=0 b j+i 2 i = d l 2 0 2 l;1 ] (3)
In two's complement a window including the sign bit will have d( ) m a p i n to ;2 l;1 2 l;1 ; 1] by the appropriate modi cation. All this data are summarized in Table 1. 

X i=0 b i 2 i 0 2 k ; 1] 0 1) RZ Two's complement (2C) ;b k;1 2 k;1 + k;2 X i=0 b i 2 i ;2 k;1 2 k;1 ; 1] 0 1) RD Sign-magnitude (SM) (;1) s + k;2 X i=0 b i 2 i ;2 k;1 + 1 2 k;1 ; 1] (;1 1) RZ

Redundant Binary Formats

A redundant binary format is a 2 k bit array fb j i g with an associated 2 k weight a r r a y fw j i g with w j i 2 f 2 i ;2 i ;2:2 i g for all i. The bit array is equivalently interpreted by r o ws or columns: (i) for j = 1 2, the rows b j = b j k;1 b j k;2 :::b j 0 each comprise a binary vector of unsigned binary or two's complement format whose weighted values may be summed to provide the value of the representation, (ii) the ith column b 1 i b 2 i determines digit d i and term d i 2 i = b 1 i w 1 i + b 2 i w 2 i of the radix polynomial P k;1 i=0 d i 2 i which provides the value of the representation.

Carry save, borrow s a ve and signed digit redundant formats are di erentiated simply by the assumed weight arrays associated with the 2 k bit array.

A carry save (CS) bit array C employs the weight array W to denote the radix polynomial. C = p k;1 p k;2 ::: p 0 q k;1 q k;2 ::: q 0 W = ;2 k;1 2 k;2 2 k;3 ::: 2 0 ;2 k;1 2 k;2 2 k;3 ::: 2 0 (4)

All digits d i = ( p i + q i ) are in the extended binary digit set f0 1 2g for 0 i k ; 2 w i t h the sign digit d k;1 = ;(p k;1 + q k;1 ) in the negative binary extended digit set f;2 ;1 0g. The CS radix polynomial value is in the range ;2 k 2 k ; 2]. Equivalently the CS bit array has for rows the two's complement bit vectors p = p k;1 p k;2 :::p 0 and q = q k;1 q k;2 :::q 0 such that the sum (p + q) of their radix polynomials yields the CS radix polynomial.

;

p k;1 2 k;1 + k;2 X i=0 p i 2 i + ;q k;1 2 k;1 + k;2 X i=0 q i 2 i = ;(p k;1 + q k;1 )2 k;1 + k;2 X i=0 (p i + q i )2 i
Two's complement Two's complement CS radix polynomial A borrow s a ve (BS) bit array B employs the weight array W to denote the radix polynomial. B = p k;1 p k;2 ::: p 0 n k;1 n k;2 ::: n 0 W = 2 k;1 2 k;2 ::: 2 0 ;2 k;1 ;2 k;2 ::: ;2 0

(5)

All digits d i = ( p i ; n i ) are in the minimally redundant balanced digit set f;1 0 1g and the BS radix polynomial value is in the balanced range ;(2 k ; 1) 2 k ; 1]. Equivalently the BS bit array has for rows the unsigned binary vectors p = p k;1 p k;2 :::p 0 and n = n k;1 n k;2 :::n 0 such that the di erence (p ; n) of their radix polynomials yields the BS radix polynomial.

P k;1 i=0 p i 2 i ; P k;1 i=0 q i 2 i = P k;1 i=0 (p i ; q i )2 i

Unsigned binary Unsigned binary BS radix polynomial

A signed digit (SD) bit array A with s i b i 6 = 1 0 for all i employs the weight array W to denote the SD radix polynomial P k;1 i=0 (;2s i +b i )2 i = P k;1 i=0 (;1) s i b i 2 i (see Observation 2). A = s k;1 s k;2 ::: s 0 b k;1 b k;2 ::: b 0 W = ;2:2 k;1 ;2:2 k;2 ::: ;2:2 0 2 k;1 2 k;2 ::: 

Requiring b 1 b 0 6 = 1 0 allows the sign bit s to be assigned the weight -2 in encoding the digit set f;1 0 1g

The alternative r o w and column evaluations of a carry-save format are illustrated in example 1.

The p and q vectors evaluated as two's complement v alues yield 10 and -13, with their sum 10;13 = 3 being the carry-save v alue. The columns yield the digit vector (;1 1 0 2 1) with radix polynomial ;1 6 + 8 + 2 2 + 1 = ;3. Example 1 p q 0 1 0 1 0 1 0 0 1 1 ;! 10 ;! -13 Digits ; -1 1 0 2 1 ;! -3 For convenience we shall herein use p and q as the row v ectors of the carry-save b i t a r r a y. W e then use p for the positive bit vector and n for the negative bit vector of the borrow s a ve bit array, and s for the sign bit vector and b for the magnitude bit vector of the signed digit bit array.

A base digit set is minimally redundant i f i t h a s + 1 digit values and is balanced if ;d is an allowed digit whenever d is an allowed digit. The bitwise encoding of digits is a redundant encoding if some allowed digit is encoded by more than one bit vector. 

p i 0 0 1 1 q i 0 1 0 1 d i 0 1 1 2 (b) Borrow S a ve p i 0 0 1 1 n i 0 1 0 1 d i 0 -1 1 0 (c) Signed Digit s i 0 0 1 1 b i 0 1 0 1 d i 0 1 NA -1
minimally redundant base 2 digit set. Both borrow s a ve and signed digit employ the minimally redundant balanced base 2 digit set f1 0 1g with borrow s a ve providing a redundant encoding and signed digit a non redundant encoding as illustrated in Tables 2(b,c).

For any redundant binary format 2 k bit array, a n l-bit window at position j denotes the 2 l subarray of the bits position j through j + l ; 1. The value of the l-bit window is given by the integer valued digit value function d( ) separately extended to borrow s a ve and carry save b y: d p j+l;1 p j+l;2 ::: p j n j+l;1 n j+l;2 ::: n j = l;1 X i=0 (p i+j ; n i+j )2 i 2 f ; (2 l ; 1) ::: 2 l ; 1g d p j+l;1 p j+l;2 ::: p j q j+l;1 q j+l;2 ::: q j = l;1 X i=0 (p i+j + q i+j )2 i 2 f 0 1 :::

2 l+1 ; 2g (8) 
The meaning and range of d( ) for carry save is appropriately modi ed when the window includes the sign bits p k , q k . T h e fraction value at position j, f j ( ) f o r j < k and the fraction value function f( ) are de ned for borrow s a ve and carry save with value in ulps at position j by f j p k;1 p k;2 ::: n k;1 n k;2 ::: = f p j;1 p j;2 ::: n j;1 n j;2 ::: = X i>0 (p j;i ; n j;i )2 ;i 2 (;1 1) f j p k;1 p k;2 ::: q k;1 q k;2 ::: = f p j;1 p j;2 ::: q j;1 q j;2 ::: = X i>0 (p j;i + q j;i )2 ;i 2 0 2)

The higher radix digit sets and fraction ranges for uncompressed redundant binary formats are both essentially twice as large as for compressed binary.

In-place Recoding

A recoding where (i) the input is one or two b i n a r y v ectors or a redundant binary array a n d (ii) the output is a redundant binary array, i s a n in-place r ecoding whenever each output bit is determined by at most one input bit. In-place recodings are e ciently implemented in hardware by direct wiring with complementations as needed. Three classes of in-place recodings merit separate comments.

Compressed binary to redundant binary conversion In-place recodings from 2C or UB

to redundant binary can be implemented so as to both convert the digit set of the higher radix digit windows and change the nature of the rounding obtained when low order digits are deleted. Table 3 illustrates ve in-place recodings of 2C to redundant b i n a r y . The correctness of each i s readily veri ed by reference to the de ning weight v ectors (4), ( 5), [START_REF] Kornerup | \Digit-set conversion: Generalizations and applications[END_REF]. Binary sums to redundant binary For the 2C binary vectors a = a k;1 a k;2 :::a 0 and b = b k;1 b k;2 :::b 0 the sum a+b and the di erence a;b can be realized by a direct recoding of the result in redundant binary format. Table 4 illustrates three such summation and conversion operations realized by in-place recodings, the correctness is again readily veri ed by the de ning weight v ectors.

Note that for 2C to CS general summation a ; b and conversion the CS result was extended to the right one place with the added digit (1 + 1)2 ;1 = 1 ulp. This provides that the carry of The usefulness of Observation 4 will depend on the latencies of the multiplier recoding for the cases of compressed and redundant binary inputs discussed in Section 3.

Redundant binary to redundant binary reformatting Table 5 illustrates that a BS (resp. SD) 2 k bit array can be recoded in-place to a CS 2 (k + 2) (resp. BS 2 (k + 1)) bit array. When high and low b i t a r r a y extensions are allowed, the carry save format is the most versatile of the output formats for in-place recoding to redundant binary.

For the recoding from SD to BS, it is important to note that the fraction range has been compressed from a width of two ulps to 1 1 2 ulps. It should be recognized that this compression is e ectively realized at the cost that the 2 1 b i t v ector s i b i = 1 0 can not occur in the SD array.

Carry Recoding

Carry recoding maps a 2 k bit borrow s a ve B or carry save C array i n to a 2 (k + 1) bit borrow save array B 0 by generating an (i + 1)th carry bit and an ith residual bit from each column i of the input array with no alteration to the actual value of the radix polynomial. The three recodings of interest herein are readily de ned by logic formulas on the respective bits. Carry p 0 i+1 = p i + q i Residual n 0 i = p i q i with the following pertaining to the sign digit input

Carry n 0 k+1 = p k :q k Residual n 0 k = p k q k Figure 1 illustrates how e a c h output diagonal of the 2 (k + 1) bit array is determined by a n input column of the 2 k bit array for the N-carry recoding. A carry recoding compresses the fraction range of a borrow s a ve bit array uniformly at each position i.

Lemma 1 Let B be a b orrow save bit array with fraction range f j (B) 2 (a b) for all j. Then f j (P(B)) 2 ; 1 

Proof With B = p k;1 p k;2 ::: n k;1 n k;2 ::: and P(B) = p 0 k p 0 k;1 ::: 0 n 0 k;1 ::: we obtain by extracting a term from the radix polynomial of P(B) f j (P(B)) = f p 0 j;1 p 0 j;2 ::: n 0 j;1 n 0 j;2 ::: = ;n 0 j;1 2 ;1 + f p 0 j;1 p 0 j;2 ::: 0 n 0 j;2 ::: = ;n 0 j;1 2 ;1 + f 0 p j;2 p j;3 ::: 0 n j;2 n j;3 ::: = ;n 0 j;1 2 ;1 + 1 2 f p j;2 p j;3 ::: n j;2 n j;3 :::

Since ;n 0 j;1 2 ;1 2 ; 1 2 0 and f p j;2 p j;3 ::: n j;2 n j;3 ::: 2 a b) w e obtain f j (P(B)) 2

;

;

1 2 + a 2 b 2 .
The result for f j (N(B)) follows similarly.

2

A sequence of carry recodings can be employed to determine a desired compression index for the fraction range approaching the width of 1 ulp. A level carry recoding is de ned recursively for all 0 on a borrow s a ve bit array B as follows:

Table 6: Truth table of transformation cells (a) P-cell BS p i 0 0 1 1 in n i 0 1 0 1 BS p 0 i+1 0 0 1 0 out n 0 i 0 1 1 0 Value 0 -1 1 0

(b) N-cell BS p i 0 0 1 1 in n i 0 1 0 1 BS p 0 i 0 1 1 0 out n 0 i+1 0 1 0 0 Value 0 -1 1 0 (c) Q-cell CS p i 0 0 1 1 in q i 0 1 0 1 BS p 0 i+1 0 1 1 1 out n 0 i 0 1 1 0 Value 0 1 1 2
Proof With B 0 = N l (B) = p 0 k;1 p 0 k;2 ::: n 0 k;1 n 0 k;2 ::: and B 00 = PN l (B) = p 00 k p 00 k;1 ::: 0 n 00 k;1 ::: we obtain any digit d' from the following equations. Extracting a term from the radix polynomial of B 00 in f j+l (B 00 ) allows us to continue. d 0 = f j+l (B 00 ) 2 l ; f j (B 00 ) = f p 00 j+l;1 p 00 j+l;2 ::: n 00 j+l;1 n 00 j+l;2 ::: 2 l ; f j (B 00 ) = ;n 00 j+l;1 2 l;1 + f p 00 j+l;1 p 00 j+l;2 ::: 0 n 00 j+l;2 ::: 2 l ; f j (B 00 ) = ;n 00 j+l;1 2 l;1 + f j+l;1 (B 0 ) 2 l;1 ; f j (B 00 )

The observation falls from the fraction range of B 0 and B 00 , respectively equal to ; ;2 ;l 1 and to ;

; 1 2 ; 2 ;(l+1) 1 2 .

4 Partial Compressors and Precoders

The implementation of a -level recoding involves only a logic depth of N-P-or Q-gates and is conveniently described by rows of transformed half adders obtained from the truth table of each cell (see Table 6).

Half-adder Logic

The half-adder cell is one of the basic cells of the computer arithmetic libraries. Functionally, it is implemented with an exclusive or gate and a logical and (see With BiCMOS industry technology used in modern microprocessors, a row of modi ed halfadders delivers its output with a delay comprised between 100 ps and 200 ps depending on electrical properties. For all the cells compute a value and its complement in BiCMOS, the inverter do not had any additional logic or delay to the standard cells but merely consist on a wire reassignment.

Booth Recoder

Booth recoding involves the generation of radix-4 minimally redundant recoding of the multiplier b = b k;1 b k;2 :::. The radix 4 recoded digit b 0 j is best represented from three selection lines p j 0 , p j 1 and p j 2 (see Table 7) leading to the logic optimal speci cation of both Booth cells presented Figure 5. For each bit of the multiplicand a = a k;1 a k;2 ::: the following operation are performed if necessary: complemented a i to multiply by -1, shifted a i;1 in a i to multiply by 2 or clear the result. The number obtained a 0 = a 0 k+1 a 0 k ::: represents the one's complement notation of A b 0 j.

Due to replication, it is preferred in practical implementation to compute the following signals in the encoding part in order to reduce the number of transistors of the multiplexers. s j 0 = p j 1 + p j 2 s j 1 = p j 1 :p j 2

The Figure 5(a) presents the input of the encoding as a BS register. We show from observations 7 and 8 that the circuit used in usual implementation of Booth encoding works identically with a PNQ ( ) precoded result or with the BS centered conversion of a UB bit vector. By the addition of a precoder that does not generate any d e l a y to the non-redundant case, the Booth multiplier is modi ed to accept a redundant input in one of its operands (see Figure 6). We h a ve presented a general formalism for study of partial compression and roundings. This approach p r o ves fruitful in reducing the redundancy of a borrow s a ve o r a c a r r y s a ve bit array to allow radix 2 k Booth recoding with minimal circuit. Reducing redundancy is useful in any application that do not allow a n y full range redundant n umber as input but do not require non redundant inputs. Other applications will certainly arise in the forwarding and feedback o f n umber internal to an ALU.

  All digits d i = ( ;2s i + b i ) are in the minimally redundant balanced digit set f;1 0 1g and the SD radix polynomial value is in the balanced range ;(2 k ; 1) 2 k ; 1]. Equivalently the SD bit array has for rows the unsigned binary vectors s = s k;1 s k;2 :::s 0 and b = b k;1 b k;2 :::b 0 such that the expression (;2s+b) of their radix polynomials yields the SD radix polynomial. sign-magnitude 2-bit vector sb 0 = b 1 b 0 denoting (;1) s b 0 and two's complement 2-bit vector b 1 b 0 denoting ;2b 1 + b 0 satis es (;1) b 1 b 0 = ;2b 1 + b 0 for b 1 b 0 2 f 00 01 11g:

Table 3 :Table 4 :Observation 3

 343 In-place redundant binary recoding of 2C bit vectors In-place redundant binary recoding of sum of binary vectors Recoding Sum Bits array Length Fraction range 2C to CS a + b a k;1 a k;2 ... a 1 a 0 b k;1 b k;2 ... b 1 For the 2C to BS (centered) recoding, an l-digit window of the output yields digit values in the minimally redundant 2 l digit set d b j+l;2 ::: b j b j;1 b j+l;1 ::: b j+1 b j 2 f ; 2 l;1 :::2 l;1 g (10) eg. f;2 ;1 0 1 2g radix 4. Furthermore, low order digit chopping e ects a round to nearest rounding (with mid-points towards +1) s i n c e f j b k;2 b k;3 ::: b k;1 b k;2 ::: = f b j;2 b j;3 ::: b j;1 b j;2 :::

Observation 4

 4 Given the three c ompressed binary inputs a, b and c, t h e c ompound operation (a b) c can be implemented by a multiplier accepting its multiplier recoding input in redundant binary format.

  Figure 1: N-carry recoding

  Figure 2: Half adders

Figure 4 :

 4 Figure 4: Useful transformations

Table 7 :Figure 5 :Figure 6 :

 756 Figure 5: Logic optimal speci cation of Booth partial products

Table 1 :

 1 Interpretation and properties of compressed binary vectors

	Bit vector format	Radix polynomial	Range of values	Fraction range Rounding (ulps) e ected
		k;1		
	Unsigned binary (UB)			

Table 2

 2 

	(a) illustrates that

Table 2 :

 2 Digit set encoding (a) Carry Save

Table 5 :

 5 In place recoding of redundant bit arrays

	Recoding	Bit array	Length Fraction range
	BS to CS	0 p k;1 p k;2 ... p 1 p 0 1 n k;1 n k;2 ... n 1 n 0 . 1 1	k + 1	0 2)
	SB to BS	0 b k;1 b k;2 ... b 1 b 0 s k;1 s k;2 s k;3 ... s 0 0	k + 1	; ; 1 2 1
	the two's complement operation on the vector b can be represented without the need for carry absorption logic. Applications of binary sums to redundant binary conversion for more e cient complex number multiplication was discussed in 6], and for more e cient i n terpolation table look-up discussed in 13].

This work has been partially supported by t h e T exas Advanced Technology program, by Cyrix Corporation and by the r egion Rhône-Alpes.

(i) B 0] = B is a 0-level carry recoding of B, (ii) for B ;1] a ( ; 1)-level carry recoding of B, B ] = P ; B ;1] and B ] = N ; B ;1] are -level carry recodings of B. For example P(N(B)) or simply PN(B) is a 2-level recoding of B and P(N(N(B))) or PN 2 (B) is a 3-level recoding. From Lemma 1 we obtain the following providing a convenient measure of compression level.

Theorem 2 (Partial Compression Theorem) Let B be a b orrow-save bit array with the maximally redundant fraction range f i (B) 2 (;1 1) for all i. Then the -level carry recoding B ] resulting fro m a s e quence o f P-or N-carry recodings in any order yields f i ; B ] 2 (a b) for all i for some a and b with b ; a = 1 + 2 ; . T h i s i s b est possible in that f i (B ] ) is not restricted t o any interval (a b) where b ; a < 1 + 2 ; .

Proof By induction the result holds for 0-level carry recoding B 0] . Assume it holds for a ( ;1)level carry recoding B ;1] so f i (B ;1] ) 2 (a b) with b ; a = 1 + 2 ;( ;1)

Then, by lemma 1,

2 ) where b 2 ; a 2 + 1 2 = 1 + 2 ;

Similarly f i (P(B ;1] )) has a width 1 + 2 ; , proving the bound. The fact that this interval is minimum width requires more detail and is omitted for brevity.

2

It is straightforward to show that the Q-carry recoding on a maximally redundant c a r r y s a ve bit array with fraction range f i (C) 2 0 2) has f i (Q(C)) 2 ; 1 2 1). Thus the -level recoding PNQ (C) will have the same fraction range as PN 2 (B) in the maximally redundant case with one exception that the lower bound is closed, ie. a b) f o r PNQ (C) and (a b) for PN 2 (B).

Let the borrow s a ve bit array B have compression index whenever f i (B) 2 a b) with b ; a 1 + 2 ; . W e then obtain:

Corollary 1 The -level carry recoding B ] of a borrow save bit array B and the -level carry recoding B ;1] (Q(C)) of the carry save bit array C yields a borrow save bit array with compression index .

Recall from Table 5 that a SD 2 k bit array can be recoded in-place to a BS 2 (k + 1) bit array with fraction range ; ; 1 2 1 . T h us we m a y consider signed digit representation e ectively as a form of borrow s a ve representation with compression index one. In the following, we then restrict our focus to the carry save and borrow s a ve formats.

The practical value of carry recodings is that just a few ( = 1 2 3) carry recodings provide partial compression su cient to obtain nearly all the bene ts of full compression while avoiding the high cost of a 2-1 compressor. The following observations are straightforward from the de nition and support partial compression applications in rounding, leading insigni cant digit deletion, and multiplier recoding.

Observation 5 For a borrow save B or a carry save C bit array, truncating a low order part of the j-level carry recoding PN j;1 (B) or PN j;2 Q(C) e ects a rounding with maximum error less than 1 2 + 2 ;j for any j 2. Thus the 3-level rounding PN 2 (B) with fraction range ; ; 5 8 1 2 is su cient to reduce rounding error below 5 8 ulps. This can be quite useful in microcoded redundant binary designs for division, square root, and transcendentals. Partial compression also realizes virtually all the bene ts of leading digit deletion.

Observation 6 Let B be a b orrow save 2 k bit array formed as the di erence a ; b of two k-bit unsigned integers (see T able 4).

(i) If 0 a ;b 2 j ; 1, then the signed digit string d k d k;1 :::d 0 determined by the carry recoding N(B) must have d i = 0 for all i j + 1 . Thus N(B) may be t r u n c ated t o a 2 (j + 1 ) bit array.

(ii) If ja ; bj 2 j ; 1, then the signed digit string d k d k;1 :::d 0 determined by the 2-level carry recoding PN(B) must have d i = 0 for all i j + 2 . Thus PN(B) may be truncated t o a 2 (j + 2 ) bit array.

Observation 6 has great applicability in extracting di erences from a function table for performing interpolation 13]. Note that since case (ii) must provide for an e ective sign bit, full compression would allow deletion of only one more leading digit than that provided by the partial compression for both cases (i) and (ii).

The following two observations support the factoring of multiplier recoding into a two step process. Partial compression is rst applied to recode a redundant format so in a second step it may be passed through a standard Booth recoder.

Observation 7 Let B be a b orrow save bit array. The l + 1level recoding PN l (B) yields a borrow save bit array where a n y 2 l bit window has a value in the minimally redundant radix 2 l digit set f;2 l;1 ;2 l;1 + 1 ::: 2 l;1 g. Proof From Lemma 1, the fraction range of PN l (B) i s ; ; 1 2 + 2 ;(l+1) 1 2 . The value of any digit d 0 of a particular l bit window at a particular position j is given by d 0 = f j+l (B)2 l ; f j (B)

The integer d 0 for any j falls in the range 2 l (; 1 2 + 2 ;(l+1) ) ; 1 2 < d 0 < 2 l ( 1 2 ) + 1 2 ; 2 ;(l+1) ;2 l;1 d 0 2 l;1 2 Observation 8 Let PN l (B) be the l + 1 level recoding of the borrow save bit array B. Then the leading negative weight bit of any 2 l bit window of PN l (B) indicates the sign of the digit value of that window whenever that digit is non-zero.