N

N

Further reducing the redundancy of a notation over a
minimally redundant digit set.
Marc Daumas, David W. Matula

» To cite this version:

Marc Daumas, David W. Matula. Further reducing the redundancy of a notation over a minimally re-
dundant digit set.. [Research Report] LIP RR-2000-09, Laboratoire de I'informatique du parallélisme.
2000, 24+14p. hal-02102107

HAL Id: hal-02102107
https://hal-lara.archives-ouvertes.fr /hal-02102107
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lara.archives-ouvertes.fr/hal-02102107
https://hal.archives-ouvertes.fr

%

Laboratoire de I’ I nformatique du Parall&isme

, . CENTRE NATIONAL
Ecole Normale Supérieure de Lyon % DE LA RECHERCHE
Unité Mixte de Recherche CNRS-INRIA-ENS LYON 1P 5668 SCIENTIFIQUE

Further reducing the redundancy of a
notation over a minimally redundant digit
set

M. Daumas and D. Matula March 2000

Research Report N° 2000-09

Ecole Normale Supérieure de Lyon

- SPI
EEEEN
EEEEN

46 Allée d'Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37 F 1 N R I A
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : 1ip@ens-lyon.fr



Further reducing the redundancy of a
notation over a minimally redundant digit set

M. Daumas and D. Matula
March 2000

Abstract

Redundant notations are used implicitly or explicitly in many digital designs.
They have been studied in details and a general framework is known to reduce
the redundancy of a notation down to the minimally redundant digit set. We
present, here an operator to further reduce the redundancy of such a represen-
tation. It does not reduce the number of allowed digits since removing one digit
to a minimally redundant digit set is a conversion to a non redundant digit set
and this is an expensive operation. Our operator introduces some correlation
between the digits to reduce the number of possible redundant notations for any
represented number. This reduction is visible in small useful operators like the
elimination of leading zeros. We also present a key application with a CMOS
Booth recoded multiplier. Our multiplier is able to accept both a redundant
or a non redundant input with very little modifications and almost no penalty
in time or space compared to state-of-the-art non redundant multipliers.

Keywords: Redundant notation, Language, Multiplication, Computer arithmetic, Computer
architecture, CMOS technology.

Résumé

Les notations redondantes sont utilises de faon implicite ou explicite dans de
nombreux circuits numriques. Elles ont t tudies en dtail et des mthodes gn-
rales sont connues pour rduire la redondance jusqu’ atteindre un ensemble de
chiffres redondant minimal. Nous prsentons ici un oprateur pour rduire encore
la redondance d’une telle notation. Il ne rduit pas le nombre de chiffres au-
toriss car supprimer un chiffre une notation sur un ensemble de chiffres dj
redondant minimum est une conversion vers une notation non redondante et
une opration longue. Notre oprateur introduit des correlations entre les chiffres
pour rduire le nombre des notations redondantes possibles pour chaque nombre
reprsent. Cette rduction a un effet visible pour de petits oprateurs tels que I’li-
mination de zros non significatifs en tte d’un mot. Nous prsentons aussi une
application importante avec un multiplieur CMOS bas sur le codage de Booth.
Notre multiplieur est capable de traiter une entre redondante ou non redon-
dante avec trs peu de modifications et sensiblement aucune pnalit en vitesse
et en taille compar un multiplieur capable uniquement de traiter des nombres
non redondants.

Mots-clés: Notation redondante, Langage, Multiplication, Arithmtique des ordinateurs, Architecture des
ordinateurs, Technologie CMOS.
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1 Introduction and Summary

Any positive integer has a unique radix 3 representation (4 € N and 8 > 2) with digits in the set {0, -- -, 5—1}.
When the set contains more than 3 elements, the notation is redundant and some integers have several
representations. If the redundant representation of a number is computed by an automatic device such as a
computer, we might be able to retrieve some correlations between the digits.

One such example is the radix 4 Booth recoding on the digit set {—2,---,2} as presented in [1, 2] where
a digit 2 can only be followed by a negative digit possibly preceded by a string of zeros. For example,
(201)4 = 2-4%240-4! +1-4° = 33 is not a valid Booth recoded representation. The valid one for 33 is
(1201), = 1-43 + (=2) - 42 +0-4' +1-4°.

The conversion from the usual radix 2 representation to the radix 4 Booth recoded representation is
obtained from the bit to digit conversion presented in Table 3, page 9. This special radix 4 notation on the
redundant digit set {—2,---,2} is not redundant. Contrary to general beliefs, converting a Booth recoded
number to its conventional non redundant representation would not involve any carry ripple and could be
performed in parallel (should any user be interested in doing it). This property is not visible by looking at
the digit set alone.

In Section 2, we identify a quantity that describes part of the correlation of the digits. This quantity was
first presented in [3] and it has been used in [4, 5, 6, 7, 8]. It is called the fraction range associated to a set of
valid representations (language). It is the set of all the possible fractions of units in the last position lost when
one truncates any valid representation for any possible position in the representation. This measure proves
to be appropriate in retaining most of the information when carry recodings are applied. Such operations
are specific digit set conversions [9] or rewriting rules [10, 11] that compute in parallel a £1 carry and an
in-place residual digit for each position. Digit set conversion is a generalization of the addition of numbers
in redundant and/or non redundant notations on parallel and serial systems [12, 13]. The fraction range
traces the correlation of the digits in a complex arithmetic algorithm that uses only recodings as this is the
case for most implemented arithmetic operators on a redundant notation.

We present in Section 3 three applications of redundancy reduction of radix two borrow save and carry
save notations, one of them being a Booth multiplier with one redundant operand. Previous research has
shown the feasibility of multiplier designs employing redundant binary operands. To avoid the general

*This work has been partially supported by the PICS 479 from the French National Center for Scientific Research (CNRS).
This text is also available as a research report of the Institut National de Recherche en Informatique et en Automatique
http://www.inria.fr.



increase in hardware size entailed by redundant binary input, recent attention has been focused on limiting
redundant input simply to the multiplier recoder input [14, 15, 16, 17, 18]. With minimum circuitry, we are
ready to derive the low-power hot-one (only one signal is set at any time) signal controls { -2, -1, 0, 1, 2 } [19]
or the common multiplier controls { negative; doubled factor; unchanged factor } [20, 21, 22]. But we prefer
to compute the enhanced sign select controls { negative; positive; doubled factor; unchanged factor } [23].
For practical reasons, this seems more desirable than converting the number from digit set {0,---,3} (non
redundant input), {0,---,6} (carry save input) or {—3,---,3} (borrow save input) to digit set {—2,---,2}
before converting each of the digits obtained to control signals. Past recoders have added critical path delay
for the more frequent case where non redundant binary input is available. Our proposed circuit does not
lengthen the time of one multiplication, compared to the state-of-the-art encoding if both inputs are non
redundant.

2 Fraction range and carry recoding

2.1 Definitions

The radix £ notation (dp, ---do . d—1 ---d;)s on the digit set S represents the rational number of equation
(1). The set of all the possible representations from positions [ through m with digits in S is the language
noted S;* (I <0 < m). The valuation || -||g maps S;* into the set Q of the rational numbers.

ldm---do . d_y---di|ls =D dif' with [<i<m = d;€S (1)
i=l
In the following, we are only interested in contiguous digits sets containing zero, that is S = {Smin, -, Smax }

with Smin < 0 < Shax leading to a redundant notation as soon as Smax —Smin > - The digit set is minimally
redundant if Spmax —Smin = 8 and a carry ripple process with best time complexity © (log(m —1)) is necessary
to reduce S to only g elements.

On an automatic device such as a computer circuit, a number is produced as a vector of digits D =
[d -+ -do d_1---d;]. In the introduction, we have seen that there might be some correlations between the
digits of the vector as long as they have not been given by the user but computed by an algorithm A(X) = D
to perform some arithmetic operations. Before knowing the actual value of the digits stored in the vector
D, we can define some representations that are acceptable and prove that some others cannot occur. This
defines the language AT = {A(X)} C S/ which is the subset of all the possible output representations. By
extension, we use the same notation for AT and A. We define the fraction range of A and the fraction range
at position j by equations (2) and (3). We will see how to use the quantity and how this single set captures
alone some very relevant part of the correlation between the digits.

Fri(A) =Frj(A") ={ll0. dj—1---dillg , [dn--di] € AT} (2)
Fr(A) = Fr(At) = |J Frj(4") (3)
I<j<m

An input vector given by the user, where nothing is known about any of its digits, yields the largest a

priori fraction range associated with this radix and this digit set. It is bounded by equation (4)!.

. m 1
FriS/)={10.dj—1---dillg , I<j<m , [dn---di] €S} C i-1 - (Smin; Smax) U {0} 4)
For radix two representations, the fraction range of a borrow save vector where S = {—1;0;1} and a carry
save vector where S = {0;1;2} are respectively (—1,1) and [0, 2). Indeed this fact was recognized in Intel’s
description of the Pentium bug: truncating a number in carry save format produces an error within 2 ulps

called the “region of uncertainty” [24, 25]. If the number is stored in borrow save format the error is within
+1 ulp.

IThe product of a set B by a scalar a is the set of any element of B scaled by a, a-B = {a-b, b€ B }.



A positive carry recoding transforms a radix 8 notation (dy, - - - d;)g on the digit set S = {Smin, - -, Smax}
to the representation (em+1 €m ---€1)g. It uses a quantity p € S called the pivot to define the equations (5)
and (6) for [ <i <m + 1 where ¢; = dpt1 = cma2 =0.

_ 1 if dl Z P
Cit1 = { 0 otherwise (5)
cit1B+e;=d; + ¢ (6)

We verify by induction on m that a recoding does not change the value stored as presented below.

m+1

Y dif =) el
i=l

i=l

The recoded digit set is {min(Smin;p — 3), - - -, max(Smax — 8+ 1;p)}. The digit set is reduced if Sy, + 5 <
P < Smax- The output digit set is minimally redundant as soon as Sy, > p — 8 and p+ 8 > Spax, that is
the case for example if the digit set is maximally redundant and p = 0. If the output digit set is minimally
redundant, it is {p— 3, -, p}. If p = Smax = Smin + B the output digit set is minimally redundant, identical
to the input set.

A negative carry conversion is similar to the positive carry conversion except that c;;; is defined from

equation (7).
] _ -1 if dl‘ S p
Gt = { 0 otherwise (7)

The recoded digit set is {min(Smin + 3 — 1;p), - - - ,max(Smax; P + 3)}. The digit set is reduced if Spin < p <
Smax — 3. If the output digit set is minimally redundant, it is {p,---,p + 8}. It is unchanged, minimally
redundant, if p = Sy = Smax — 8. We will see that even when we do not reduce the digit set width, such
conversions perform some legitimate work visible through its effect on the fraction range.

2.2 Fundamental property

If A is a language of 52[” with fraction range Fr(A) and P any positive carry recoding with output digit set
{Smina T Smax} then

! (FT(A) + {Smina ) Smax - 1}) (8)

Proof Let D € A with D = [d,, - - d;], we define the carry vector C = [¢i41 Cm -+ - ¢i41] from equation (5)
and the result vector E = P(D) = [em+1 €m - - - €] from equation (6). We obtain the following equation for
any rational number f € Fr;j(P(A)) by extracting a term from the radix polynomial of E from equation (1)

i—1—Cj

€
F=10.e1--ellg = 3

We recognize that [cj_1 ej_2 - - €] is the recoded vector of [dj_s - - - d;] and therefore

= +10. ¢jo1 ejoa---eillp-

1 1
0. ¢j—1 ej—2---ellg =10 .0dj—---dil|g € BFTJ'+1(A) - BFT'(A)-

We know from the definition of the output digit set that ej_; —cj—1 = d;j—1 — Bc; < Smax to allow cj_; to
be incorporated without carry ripple. It follows that

Smax—1
Fr(PA) c | %({k}+Fr(A))

k=Smin

_1

ﬂ (FT(A) + {Smiru T Smax - 1}) '

O

2The sum of two sets A and B is the set of the sum of any two elements from A and B, A+ B={a+b, (a;b) € Ax B }.



We prove in a very similar way that if IV is a negative carry recoding then

- %(FT(A) +{Smin+1;"'75’max})- (9)

Counsidering equations (8) and (9) it is now legitimate to perform a digit set recoding from one digit set
to the same digit set since it reduces the fraction range of the final vector. We can recode a borrow save

vector to reduce its fraction range from (a,b) to (=%, 2) with a positive recoding and to (%, 1t2) with a

2 02 27
negative recoding. For a carry save number, we can reduce its fraction range from [a,b) to [%, 17“’) with a
positive recoding and to [H'T“, 1+ %) with a negative recoding.

We start with digits in the set {p — 3,---,p — 1+ r} with 1 < r < 3 for a generalization of this last
observation. Let P be a positive recodings with pivot p, then by induction

Fr(N(4))

1 r
Fr(P*) c —— —B,p—1+—JuU{0}. 10
(P g (p- =14 ) U0} (10)
Comparing the fraction range of such a vector recoded k times to the fraction range of a non redundant
vector 5= - (p—B3;p—1), we see that the difference r- B~F is decreasing geometrically with each new recoding.

We can even apply another recoding to center the added quantity. Let N be the negative recoding with
plvot p 6, the fraction range N P*(X) is bounded by equation (11). The centering is best if 3 = 2 since

T_ﬁ_i'
1 -1 1
FT(NPk)Cﬁ'<p—ﬁ+6ﬂ 1+67+5k+1>U{0}. (11)

Proof The proof of equation (10) is easily done by induction on k. We prove it for k = 1. From equation
(4), we know that Fr(S{*) C gty - (p — 8,p — 1 +7) U {0}. The output digit set is minimally redundant
since p — 1 + 7 < p+ [ and equation (8) gives us the inclusion:
(FT( )+{p /37 7p_]-})

PO -8 +p- 8550 —1+7“)+p—1)U{0}

m( —Bip— E)U{O}
Equation (11) is proved in a similar way:
(Fr(P*)+{p—=B+1,---,p})
= 8)+p =B+ Lz~ 1+ &) +p) U0}
%1( 6"'[3 :p_l'f'BT"'BkTH)U{O}

Fr(P) C

mw =

Fr(NP*) C

Q= @l

O

We obtain an identical property if k£ negative recodings are applied to a vector of digits in the set
{p+1—r,---,p+ B} with 1 <r < 3. In this case N* has its fraction range bounded by equation (12) and
PN* with one last positive recoding of pivot p + 3 has its fraction range bounded by equation (13)

Fr(N®) c ﬁ (p+1— %,p+6> u {0} (12)
1 B-1 51
Fr(PNk)Cm-<p+1—7—#;p+ﬂ—7>u{0} (13)



Table 1: Reducing the redundancy to obtain a minimally redundant digit set radix 10

Rec. Fraction range Digits radix 100
(Radix 10) Max Digit set
1 1

Non 5-(—1,8+1)= (—5, ) 99 {-11,---,99}
1 1 19 1

P 9’ —1,8+1—0> = <—§,1—0> 90+§ {-11,---,90}
1 1 1 89 1

2 2 i R Z 11 ... 3

P 9 < 1;8 + 100) < 9’ 100) 89 + 9 {-11,---,89}
1 1 1 889 1

p3 — | L8+ — | =|—=; —— 88.9+ ~ | {—11,---,89}3

9 ( o 1000> < 9’ 1000> i 9 { 89

2.3 First application: Combining several digits in a window

We will see Section 3 how the fraction range of a binary encoding can be used to deduce important properties
on the digits stored in a vector. We will just present here a first practical application of the fraction range.

Let D = [d,,---di] be a vector of radix § digits. The window of k digits starting at position j - k
can be valued alone as an integer d; given by equation (14). If we apply this transformation for any
|m/k] < j < [l/k] we obtain a new vector of digits d;; representing the same number radix B* as shown in
equation (15). We commonly use the octal and the hexadecimal notations because this conversion is very
easy to perform back and forth from radix 2 with k = 3 or k = 4.

k—1 k
. . ~1
&= Ndgsyams - dialls = 3 dassl’ with 5 € 5 S S (14)
=0
-l = ||y -ty ]| (15)

We can also write dj as presented in equation (16) leading to another interval for dj.
ds =110 . djpryw—r - dillg - B =110 . dj---dillp  with  dj € (8% Fr(D) - Fr(D))  (16)

If the fraction range satisfies F'r(D) C (a,b), equation (16) yields that a combined digit d}; is bounded by
a-B%—b < dj <b-B*—a. We present Tables 1 and 2 two examples radix 10, with the digit set {—1,---,9}
and up to 3 positive carry recodings with pivot p = 9. The lower bound on the combined digit set is given by
equation (14) and does not change. The maximum value for one digit is computed from the fraction range
in the table. The first recoding removed approximately a portion % of the possible digits and the second one

a portion %
Getting rid of almost % of the digits allows us to reach easily the minimally redundant digit set. It may
not seem to be important working radix 10 but this is very relevant radix 2 as we will see in the next section.

3 Binary applications

As we have seen in equations (10), (11), (12) and (13), a short sequence of recodings can be employed to reduce
the fraction range and approach the width of 1 ulp. The practical value of binary carry recodings is that just
a few recodings provide partial compression sufficient to obtain almost all the benefits of full conversion to a
non redundant notation while avoiding the high cost of a carry-ripple addition. The following observations
are straightforward from the definition and support partial compression applications in rounding, leading
insignificant digit deletion, and multiplier recoding.

3The digit set is minimally redundant. There will be no further improvement.



Table 2: Reducing the redundancy to obtain a minimally redundant digit set radix 103.

Rec. Fraction range Digits radix 1000
(Radix 10) Max Digit set
1 1
Non 9 (-1,84+1)= (—5, ) 999 {-111,---,999}
1 1 19 1
P 9’ <—1,8+1—0> = <—§,1—0> 900+§ {-111,---,900}
1 1 1 89 1
2 i — === == Z —
P 9 < 1;8 + 1 0) < 9’ 100) 890+9 {-111,---,890}
1 1 1 889 1
p3 — | L8+ — | =|—=; —— 889 + — —111,---,889}3
9 ( o 1000> < 9’ 1000> * 9 { 889}

3.1 Implementation and bit specialization

In computers, the digit vector is not stored but encoded into bits. In the carry save format, each digit d; is
stored with two bits p; and ¢; and the digit value is defined as d; = p; + q;. We specialize the bits of the
result register e; = p; + ¢; such that pj,, stores the carry bit ¢;;1 generated by equation (5) and g; stores
the residual quantity e; — ¢; = d; — ¢;+18 of equation (6). This lead us to the truth table and the equations
for the positive carry recoding of a carry save number Figure 1-a. If the numbers are stored using two’s
complement, the sign digit is moved to position m + 1 and ¢n+1 = ¢m- The equations of Figure 1-a are the
ones of an half adder cell (HA) as we will see soon.

The negative carry recoding of a carry save number cannot be defined in such an elementary manner but
we may define more recodings if the target encoding is borrow save instead of carry save. A borrow save
digit d; (resp. e;) is stored with two bits p; and n; (resp. p} and n}) and the digit is defined as d; = p; — n;
(resp. e; = p} —n}). We specialize a positive carry or a negative carry recoding since we can store the carry
in pj,, (positive carry P-recoding of Figure 1-b) or nj,, (negative carry N-recoding of Figure 1-c).

The positive carry recoding of a carry save number to borrow save notation is not possible but a negative
carry recoding is possible. It is presented Figure 1-d as Q-recoding. Figure 2 illustrates how each output
diagonal of the 2 x (m — [ 4+ 2) bit array is determined by an input column of the 2 x (m — [ + 1) bit array
for the N-carry recoding.

The half-adder cell is one of the basic cells of the computer arithmetic libraries. Functionally, it is
implemented with an exclusive or gate and a logical and (see Figure 3). In choosing the place to add
some new logical inverters, we define the bit level cells corresponding to the P-, N- and Q- recodings (see
Fig 4). These inverters may or may not yield an actual penalty compare to a standard half adder cell. For
example, the exclusive or gate may be implement using pass transistors as it is the case in state-of-the-art
circuit design [23]. If so, an inverted exclusive or gate is obtained by switching some of the input wires of
a straight exclusive or gate.

We will see in the remaining of the text that being an high level quantity, the fraction range can be easily
tracked through an algorithm and is therefore very useful when more than one recoding is performed. Our
redundant Booth recoder (section 3.3) uses some additional information on the last recoding.

3.2 Rounding and leading digit deletion

If we truncate the low order part of a word, we may cause an error up to =1 ulp or 2 ulps depending on the
notation. On the other hand, if we first apply a PN*~! transformation (k¥ > 1) to the borrow save register
or a PN*~2Q) transformation (k > 2) to a carry save register, we obtain a number stored in borrow save
format that has a very limited fraction range included in [—%, % +27%). As a consequence, truncating it at
any position will result in an error less than % + 27k ulp.

Three lines of half adder provides a PN? rounding with fraction range (—2,%) sufficient to reduce
truncation error below % ulps. This can be quite useful in microcoded redundant binary designs for division,
square root, and transcendentals. The next observation has great applicability in extracting differences from



Carry Piiq
Residual ¢

= Di 4
= pidq

(a) Positive carry recoding of a carry save number (HA)

Carry Dig1
Residual n)

= pi-ny
= Didn;

(b) Positive carry recoding of a borrow save number (P)

Carry niiq
Residual p)

= Di Ny
= pidn

(c) Negative carry recoding of a borrow save number (N)

CS Di 0]0]1 1
in qi 01011
[ Digitd JO]1]1]2
CS | piy |O]O]O0|1
out | ¢ 0[1]1]0
BS | pi 0|0 |11
in n; 0|1 01
| Digitd; J[O[-1]1]0
BS | pi, JO]O]1]0O
out | n} 0j1]1]0
BS | p; 0j0|1]1
in n; 0O(1]0]1
| Digitd; JO]-1]1]0
BS | pi 0j1]1]0
out [nj , |O[1]0]0
CS Pi 0 0 1 1
in qi 01011
[ Digitd JO]1]1]2
BS | pi, JOJ1T]1]1
out | n} O[1]1]0

(d) Negative carry recoding from carry save number to borrow save representation (Q)

Figure 1: Truth table and equations of binary recodings with a specialized carry bit

Input

Output

Carry Piiy
Residual n]

= pitq
= pidqG

Figure 2: N-carry recoding of a borrow save number
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Figure 4: Recoder cells




Table 3: Radix 4 Booth recoding

Multiplier representation Booth digit Sign select from [23]

byjpr | baj | byjon [ b= —2byyy1 +boj+byya | X; [ TX; | PL; | M
0 0 0 0 0 1 0 0
0 0 1 1 1 0 1 0
0 1 0 1 1 0 1 0
0 1 1 2 0 1 1 0
1 0 0 -2 0 1 0 1
1 0 1 -1 1 0 0 1
1 1 0 -1 1 0 0 1
1 1 1 0 0 1 0 0

a function table for performing interpolation [26, 27]. The 2 x (m — [ + 1) bit array may be formed as the
difference a — b of two (m — [ + 1)-bit unsigned integers and stored in borrow save format with no operation.
In this case, two recodings allow to discard the leading digits.

Partial compression also realizes virtually all the benefits of leading digit deletion. Let X be a positive
number represented in borrow save such that X < 2% — 1. We know that if N(X) = [d],,, d, ---d]], then
dj, =0 for all i > k+ 1. Thus N(X) may be truncated to a 2 x (k + 1) bit array. If we can only bound the
magnitude of X (ie. |X| < 2% — 1), we have to compute PN (X) and we prove that d; = 0 for all i > k + 2

3.3 Booth Recoder

A radix 4 Booth multiplier computes in three steps the representation of D = A x B where the two numbers
A and B are represented radix 2 by (am, - - ;)2 and (b, -+ - by )2. This organization is visible Figure 6 and in
[20, 21, 23]. The first step converts B to a radix-4 minimally redundant recoding on the digit set {—2,---,2}
(“Booth encoding”). This conversion is performed for |I'/2] < j < [m//2] by looking at bits bajy1, bsj and
baj_1 to compute digit b;- as presented in Table 3. One can check by induction that this operation does not
change the represented value as written in the first part of equation (17). The second step (“Tree reduction”)
accumulates the partial products b} - A -4 in a redundant format to compute the product as suggested by
the second part of equation (17). The third step converts the redundant result to the usual non redundant
binary representation and possibly round it according to the active rounding mode (“2-1 compression”).

mo o Im2l m o Im/2) ,
dob2i= > b4 and AxB=)» bi-A-2= Y b-A-4 (17)
i=l i=11/2] i=l i=11/2]

Compared to the usual multiplication, Booth recoding divides by two the number of partial products
generated and accumulated but these products are more difficult to generate since they cannot be obtained
by a logical and gate as this is the case when we multiply only by b; € {0;1}. A naive implementation
can ruin all the advantages of Booth recoding. State of the art implementations usually present two cells:
the encoder that is responsible of generating a set of control signals from the input bits bajt1, ba; and baj—1
and the multiplexer that computes a representation of b;- - A based on (a,, ---a;)2 and the control signals
generated by the encoder. As noted in [23], an IEEE-754 standard [28] double precision multiplier uses 27
encoders and 1527 multiplexers — up to 90% of the area of the circuit in some earlier publication [21].

We present in Table 3 the set of control signals compatible with the multiplexer used in [23]. The number
obtained is the one’s complement representation of A X b;.. Little extra circuitry is added to take care of 2’s
complement logic [2].

The next result supports the factoring of multiplier recoding into a two step process. Partial compression
is first applied to recode a redundant format so in a second step it may be passed through a Booth recoder
with very few penalty. The leading negative weight bit of any 2 x k bit window of a borrow save number



Table 4: Radix 4 PN? or PN(Q recoded borrow save number

Input bits Radix 4 Acceptable digit?
P2j+1 | N2je1 | P2j | gy digit Recoded | Non redundant
0 0 0 0 0 Yes Yes
0 0 0 1 -1 No No
0 0 1 0 1 Yes Yes
0 0 1 1 0 Yes No
0 1 0 0 -2 Yes Yes
0 1 0 1 -3 No No
0 1 1 0 -1 Yes Yes
0 1 1 1 -2 Yes No
1 0 0 0 2 No No
1 0 0 1 1 Yes Yes
1 0 1 0 3 No No
1 0 1 1 2 Yes Yes
1 1 0 0 0 No No
1 1 0 1 -1 Yes Yes
1 1 1 0 1 No No
1 1 1 1 0 Yes Yes

PN*(X) indicates the sign of the digit value of that window whenever that digit is non-zero. The same
result applies for a window on a PN*~1() recoded number.

Proof Let D = N¥(X) with D = [dp,---d;], we define the carry vector C = [cjut1 Cm -+ cip1] from
equation (5) and the result vector E = P(D) = [em+1 €m - - €] from equation (6) with e; = p; —n;. We
obtain the following equation for any combined digit e} radix 2*

6; = ||0 . e(i+1)~k—1 . '6l||2 . 2k - ||0 . €Lk "€l||2-
We extract a term from the radix polynomial of E from equation (1)

e; = (e(it1) k-1 = Ctyh—1) - 25T 10 )bt ety h—z - erllz 28 =10 e el

We recognize that [c(j11).x—1 €(i41).k—2 €] is the recoded vector of [d(y1).k—2 - di] and eiy1)y.p—1 —
C(i+1)-k—1 = —N(i+1).k—1 and therefore
1

€f € —n(snypr 2"+ 250 (=2771) — 5 (-1-27%1)

For any k, if n(;11).—1 = 1 then ef < —2F~1 4 2k~1 4 % and e} < 0 since e} € Z.
O

We can now list all the possible output of two digits e»;y1 and ez; of a PN? or a PNQ recoder. As
presented Table 4 some outputs are not valid because they violate the fraction range or the last result just
presented or because they cannot be obtained from the last P recoding. We have also listed Table 4 all the
valid cases if we store boji1 in noji1, bej in pajy1 and ny; and finally by;—1 in poj. The value of the stored
number is unchanged since we virtually compute 2B — B as presented in details by the authors in [3].

We design the new encoder presented Figure 5-b to produce the correct result for each acceptable input
of dyj+1 and dpj. It shows how a borrow save register can be used as the input to the Booth encoding logic
to store either a PN () precoded carry save result or a non redundant number which has been converted to
borrow save using the centered conversion. The modified Booth multiplier of Figure 6 accepts a redundant
number as one of its operands, by the use of a precoder which does not generate any additional delay for a
non-redundant operand.
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(a) Circuit of [23] (b) Proposed encoder

Figure 5: Usual non redundant and redundant aware enhanced sign select Booth encoders
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Figure 6: General purpose Booth multiplier with fast feedback capacities through a precoder
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Figure 7: Useful transformations

4 Conclusion

We have presented a general formalism for the study of partial compression and roundings. This approach
proves fruitful in reducing the redundancy of a borrow save or a carry save bit array to allow radix 2¥ Booth
recoding with minimal circuitry. Reducing redundancy is useful in any applications that do not allow any
full range redundant number as input but do not require non redundant inputs.

We are able to build three useful recoder segments with our analysis (see Fig.7). To obtain the corre-
sponding recoder, the desired segment is replicated k times, where k is the desired input length. Modified
versions of the segment are used at the ends, to avoid using logic simply to generate constants. These pre-
coders allow transformation of carry save to sign digit (see fig. 7-a and [3] for a more detailed discussion on
signed digit notation) and of borrow save or carry save to radix 4 Booth recoding (Fig. 7-b and 7-c). The
format and the fraction range are indicated after each recoding.

With the technology used in the design presented in [23], that is 0.25 gym CMOS technology with 2.5 V
power supply. The authors obtain a 54 x 54 multiplier with a clock cycle of 4.1 ns. From spice simulations
presented [23] we can predict that, each row of modified half-adders will delivers its output with a delay
between 100 ps and 200 ps (depending on electrical properties). As a result, the circuit presented Figure 6
can perform a non redundant multiplication in 4.1 ns or prepare a redundant result to be reused by another
multiplication in 3.4 ns. For example computing a product of 10 numbers will take 41 ns with the original
multiplier and 35 ns with our modified one. Higher savings could be assessed by an electrical simulation of
the PN (@ recoding.

Other applications arise in the forwarding and feedback of number internal to a floating point unit to
reduce redundancy as presented in [4]. Precoders are used to forward some parts of the redundant result
after redundancy is sufficiently reduced. This allows an IEEE standard behavior of the rounding unit albeit
the numbers are not compressed to a non redundant format. The construction of a standard adder using
this technique is depicted in [5].

Other applications will appear in converting the two bounds of an interval to the step of a linear inter-
polation as it is performed for fast reciprocal and square root approximation [26]. This will allow to forward
directly the couple of recoded bounds in borrow save format to a modified Booth multiplier.
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