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Abstract

Several experiments have been performed in order to study the cognitive pro�

cesses which are involved in odor recognition� The current report summa�

rizes experimental protocol and analyzes collected data� The goal is to try to

recognize odors from descriptors which are selected by subjects from a list�

Di�erent groups have to choose in several descriptor lists� some with profound

descriptors and some with a few surface descriptors� Profound descriptors are

supposed to involved more cognition than surface descriptors� Subjects also

have to name the odors� Recorded data are �rst analyzed� and then learned by

an incremental neural classi�er� The problem is hard to be learned� It seems

very di	cult to discriminate the di�erent odors from the sets of descriptors�

A variant of the learning algorithm� less sensitive to di	cult examples� is

proposed� The pertinence of surface descriptors is discussed�

Keywords� Olfaction� Recognition� Neural Networks� Classi�cation

R�esum�e

Des exp
eriences ont 
et
e r
ealis
ees pour 
etudier les processus cognitifs impliqu
es

dans la reconnaissance des odeurs� Ce rapport r
esume le protocole exp
eri�

mental et 
etudie les donn
ees collect
ees� Le but est d�essayer de discriminer

des odeurs �a partir de descripteurs qui sont choisis par les sujets dans une

liste� Plusieurs groupes travaillent avec di�
erentes listes de descripteurs� ces

descripteurs pouvant etre de surface ou profonds� Les descripteurs profonds

sont suppos
es etre imliqu
es dans des traitememts plus cognitifs que les de�

scripteurs de surface� Les sujets doivent 
egalement nommer les odeurs� Les

donn
ees recueillies sont d�abord analys
ees� puis apprises par un classi�eur neu�

ronal incr
emental� Le probl�eme est di	cile �a apprendre� Il semble tr�es d
elicat

de discriminer les odeurs �a partir des jeux de descripteurs� Une variante de

l�algorithme d�apprentissage� moins sensible aux exemples di	ciles� est pro�

pos
ee� La pertinence des descripteurs de surface est discut
ee�
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eseaux neuronaux� classi�cation
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� Introduction

It can be assumed that odor memorization takes place in both perceptive and associative

memories ���� This experiments are part of a project devoted to the study of perception

and cognitive processes involved in olfactory memory� The current report summarizes

experimental protocol and analyzes collected data� This study enables easier future works

by doing spade�work on data�

� Experimental protocol

Several odors have been presented to ��� subjects� Subjects have been divided into �

groups� � groups of approximately �� persons and � others of �� persons�

In each group� all subjects judge all the �� odors ��� shown in table �� Each experiment

consists of two parts� �rst the odor is described� and second the odor is named� The

experimental protocols of these phases are related with more details below�
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�� Lilac ��� Perspiration ��� Smoked salmon

�� Mint ��� Citronella ��� Lavender

�� Mushroom ��� Thyme ��� Nail varnish

�� Pepper � ��� Orange ��� Anise

�� Camphor ��� Chocolate � ��� Banana

�� Passion fruit ��� Ether ��� Tar

�� Rose ��� Peach ��� Cinnamon �

�� Herb ��� Strawberry ��� Vervain

�� Caramel ��� Pine � ��� Bitter almonds

��� Clove ��� Vinegar � ��� Lemon

Table �� Names of the �� odors �� marks the odors for which less than �� examples have

been correctly named in GP��

��� First part� describing odors

In the �rst part of the experiment� subjects have to select from a descriptor list those

which are suitable for the odor� For each group� lists of di�erent descriptors are presented

to the subjects� The number of descriptors in groups is given in table �� The subjects

choose as many descriptors as they like� in the �xed delay they have at their disposal�

Descriptors of both groups GP� and GP� are said to be profound since they are supposed

to involve more cognition than surface descriptors of the third group GS� Descriptors of

the fourth group GSP are descriptors of both groups GP� and GS� The subjects of the

�fth group do calculation �such as additions� substractions and multiplications� during

the �rst part of the experiment� instead of choosing descriptors�

Group name GP� GP� GS GSP

Number of Descriptors �� �� � ��

Table �� Number of descriptors in groups

For each odor� each time a subject chooses a descriptor� two informations are recorded�

� a value of intensity� for this descriptor�

� the response time� i�e� the elapsed time since the odor has been presented�

For both informations� if there are repeated modi�cations of one descriptor� only the last

one is taken into account� Intensity ranges in ����� ���� and response time ranges in �����

������ A set of �� ��� or �� values for one odor will now be referred to as an example for

the odor� The number of input values depends on the nature of the descriptors� according

to the group �cf� table ���

�



��� Second part� naming odors

Without having been told the name of the odor in the �rst part� subjects must name the

odor with a common word of their own choice� Denomination time is recorded� Chosen

name is labeled afterwards by an expert with either no answer� wrong� right� or close

to the correct answer� Due to the di	culty of naming an odor� we assume that answers

close to the correct one are correct� because in general it is very di	cult to name a given

odor� This leads to three di�erent categories� no answer� wrong� and correct �n� w and c�

respectively�� The meaning of this classi�cation is not straightforward� because a wrong

denomination does not necessarily mean that the odor is not recognized� The semantic

reference can be speci�c to the subject� Table � gives the number of examples available

for each group�

Group subjects c � w � n � all

GP� �� ��� �� ��� �� ��� �� ����

GP� �� ��� �� ��� �� ��� �� ���

GS �� ��� �� ��� �� ��� �� ����

CAL �� ��� �� ��� �� ��� �� ���

Table �� Number of examples available� according to the group

A number of examples between ��� and ����� for one group� does not seem to be very

small� but these examples are distributed among the �� odors� Hence for some odors there

are about �� examples �one for each subject�� Assuming there is a di�erence between

values of the chosen descriptors depending on the correctness of the denomination� the

number of examples for one odor is reduced� For example� in group GP�� there are only

��� correct denominations available� that is� only about �� examples per odor� It is

further necessary to distribute examples among a learning set and a test set� Despite a

chosen proportion of �� and �� percent for the learning and test sets� respectively� there

are odors that have less than �� examples �still for group GP�� which correspond to a

correct answer� These odors are marked with � in table �� Finally� the numbers of answers

for the � categories vary for the di�erent odors�

� Data analysis in group GP�

Data for group GP� will now be further examined� The �� descriptors to choose from the

GP� list are presented to the subject on the monitor screen as indicated in table ��

��� Study of values for one odor

Generally only about � descriptors from the �� proposed are chosen by a subject for one

odor� All other descriptors equal zero� It is doubtful whether this zero value� which results

�



�� Woody �Bois
ee� �� Acid �Acide�

�� Corporal �Corporelle� ��� Bitter �Am�ere�

�� Spicy �Epic
ee� ��� Salty �Sal
ee�

�� Floral �Florale� ��� Sweet �Sucr
ee�

�� Fruity �Fruit
ee� ��� Heady �Ent
etante�

�� Smoked �Fum
ee� ��� Fresh �Fraiche�

�� Herbaceous �Herbac
ee� ��� Greasy �Graisseuse�

�� Medicinal �M
edicinale� ��� Irritating �Irritante�

Table �� Descriptors for group GP�
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Figure �� Frequencies of descriptors selected for orange� by the subjects of GP�� as a

function of the denomination correctness �correct� wrong� or no answer�

when a subject does not choose a descriptor at all� can be taken as an active choice of

the value zero� The odor of an orange is correctly named by a rather large number of

persons and is therefore retained as an example� The total number of subjects which have

selected each descriptor is shown in �gure ��

��� Intensity

For each descriptor� two values are recorded� intensity and response time� Some selected

examples of the given values of intensity for the orange odor are shown in �gure � with

correct denomination responses� It is clear that some examples can be totally di�erent

�examples � and ��� and that others can be very similar �examples � and ��� Figure �

represents intensity� for orange odor� with incorrect denomination responses �w � wrong�

n � no answer��

��� Response time

Figure � shows response time for some other orange examples� As for intensity� some

examples are totally di�erent �examples � and �� and others are similar �examples � and

��� Comparing these examples with those from �gure �� it is di	cult to say if these

examples are more distinct than the other ones� Regarding more examples for one odor�
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Figure �� Four examples of individual responses of intensity� for orange odor� as a function

of �� descriptors� with correct denomination responses
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Figure �� Four examples of individual responses of intensity� for orange odor� as a function

of �� descriptors� with incorrect denomination responses

the response time of a descriptor seems to be random and not speci�c to each descriptor�

��� Mean intensity

Computing mean intensity gives a global information of all examples for one odor� This

brings us to the question either to calculate the mean over all values or to calculate the

mean of non�zero values� Both results can be seen in �gures � and �� It is not clear that

calculating the mean of all examples for one odor is valuable� Indeed� examples from one

odor are very distinct in their chosen descriptors and their intensity�

��� Normalization of the responses of the subjects

It is obvious that some subjects are used to give greater values than others� Handling

with a small number of subjects� it must be considered whether values can be taken

directly or if a normalization process is required� An easy normalization process consists in

ordering intensity or time values� According to this resulting order� the highest descriptor

intensities are set to �xed values �e�g� ��� for the �rst one� ��� for the second one� and

so on�� On the one hand� this reduces di�erences between subjects� On the other hand�

this normalization induces a loss of information� since the di�erence between two nearly

�
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Figure �� Odor orange� response time for the � examples of �gure �
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Figure �� Mean of all intensity responses�

for orange odor
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Figure �� Mean of intensity responses

greater than �� for orange odor

similar values is magni�ed� This would be the case for example � of �gure ��

Another drawback can appear when comparing two examples of the same odor provided

by two di�erent subjects� Assume that the subjects have chosen two common descriptors�

with nearly similar values for these two descriptors� The ordering process can lead to

an inversion for these descriptors� from one of the examples to the other� Hence the

normalization induces a great disparity which was not present in initial data� In this case�

the normalization would emphasize the di�erence and not the actual similarity�

��� Comparison of the data of di�erent odors

Comparing examples of di�erent odors� it appears that a lot of examples are similar�

These examples are not only equal in chosen descriptors� but also in selected intensities�

�	
	� Similarity

A great similarity among example � of �gure � and both examples � and � of �gure �

�page �� can be recognized� The same descriptors have been chosen� and intensities are

also very similar� Values for banana lie between the two examples for orange� For one of

these examples it is di	cult to determine the correct odor� Other examples of �gure �

show that there are also similarities between several odors � orange� strawberry� and

peach� In this case odors are di�erent kinds of fruits� This kind of similarity exists also

�



between odors which do not belong to the same categories� Figure � illustrates examples

of mint and caramel odors�
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Figure �� Similar examples� for di�erent fruit odors
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Figure �� Similar examples� for Mint and Caramel

�	
	� Distances between examples

Figure � �page �� shows distances between recorded intensities� for several odors� A good

measure of the similarity of two examples is the distance which is calculated as follows�

dist �
sX

i

�ui � vi�
�

where U � �ui� and V � �vi� are examples ���

The title of each sub�plot indicates the name of the odor and its number according to

table �� Each circle mark in a sub�plot corresponds to one example of one odor� For this

example� the minimal distance to all other examples is marked� The x�axis represents the

number of the odor to which this closest example belongs� The y�axis is for the value

of this minimal distance� If di�erent examples of a same odor were very similar among

themselves and very distinct from other odors� their marks would all be in the row of this

odor� Experimental results are not so simple� Only for some of the odors� most of their

closest examples belong to the same odor �e�g� odor ��� ether�� For most of the odors�

their closest examples are distributed among many di�erent odors� There are odors for

which there is not even one example with its closest example belonging to the same odor�

�



From these odors� there are some for which closest examples are distributed among all the

other odors �e�g� odor ��� banana� and others for which they are accumulated in a few

odors �e�g� odor ��� lemon�� These �gures enhance the inherent di	culties for separating

the di�erent classes �odors� from each others� Considering this amount of similarity and

overlapping between examples� it is doubtful that a better distance measure could be

found�
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Figure �� Distances between examples

��	 Cross
correlation coe�cients

As shown in �gures � and �� it is not clear that calculating the mean of all examples for

one odor is valuable� Despite this fact� the cross�correlation coe	cients over mean values

have been computed for the �� odors �see �gure ���� For each odor� the mean value

over all examples is calculated� regardless the category of denomination� The result is a

k�dimensional vector of mean values for each odor� where k is the number of descriptors�

Cross�correlation coe	cients for these vectors are illustrated in �gure �� for the orange

odor�

� Results with an incremental neural network

The aim is to distinguish odors with the help of descriptors� For this� an incremental

neural classi�er in a supervised mode is used ��� ��� It compares input vectors with all

already existing prototypes� Distance of formula � is used as the measure of similarity�

�
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Figure ��� Cross�correlation coe	cients of orange �odor ��� to all other odors

��� Algorithm of the classi�er

Figure �� presents an incremental neural network� In this report� we are using a more

algorithmic point of view ��gure ����

�	�	� Learning

When an input pattern X is presented to the classi�er� the algorithm computes distance

dPj
between each prototype Pj and the input pattern�
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Figure ��� Architecture of the classi�er

P1 (w11, w12, ..., w1n)

P2 P3

P4

P5

C2X (x1,x2, ..., xn)

Input pattern Category of X

C4

P7 P8

C3P6

Prototype

CategoryC1

C(X)

Figure ��� An algorithmic point of view

Step � The algorithm �nds the best prototype Pbest� that is the prototype with the

shortest distance dbest� The prototype Psecond �distance dsecond� is the second best proto�

type from another category� Thus C�Pbest� �� C�Psecond� where C�Pj� is the category of

Pj� In other words� Psecond is the best prototype among prototypes that do not belong to

C�Pbest�� Pbest must be close enough to X and far enough from Psecond �equations ��� If

both conditions are not veri�ed� Pbest does not exist��
dbest � �influence

dbest � dsecond � �confusion

���

��



Step � The algorithm modi�es or creates prototypes�

Presentation of a pattern X with a label C�X�

� If Pbest exists and C�Pbest� � C�X� �

� X is recognized�

� upgrade Pbest to take X into account�

� Else �

� X is not recognized�

� Create Pnew from X� with C�Pnew� � C�X��

�	�	� Generalization

The generalization algorithm is almost the learning algorithm� but prototypes are not

anymore tuned� Step � does not change� Step � becomes�

Presentation of a pattern X

� If Pbest exists � X is recognized to belong to C�Pbest��

� Else � X is not recognized�

��� Results with input data from group GP�

�	�	� Results for the �� odors

Table � shows classi�cation results for all the odors of table ��

Data columns The input vector of the classi�er is a vector of either intensities or

response times for the �� descriptors �column ��� Assuming there is a di�erence between

examples whether there are correct �c�� or wrong �w�� or not at all classi�ed �n�� available

examples are divided into these � categories� The third column of the table indicates which

categories are taken as input data� Depending on this choice� the number of available

examples varies �LearnEx�� During the learning phase� every example is treated similarly�

regardless of the category� and the network creates as many prototypes as necessary� The

number of prototypes created can be taken as a measure of generalization capabilities� A

high number illustrates that� for most of the examples� a new prototype is created� and it

is bad for generalization� As a matter of fact� a small number of prototypes� in relation to

the number of examples� for each odor� has more chance to imply a good generalization

ability�

Results columns The last � columns illustrate the classi�cation results�

� Right Cl� is the number of test examples which are correctly classi�ed� The next

column gives the same result in percentage� depending on the number of available

test examples�

��



� Wrong Cl� stands for a classi�cation to another odor�

� No Cl� is the number of examples that could not be matched to any odor�

Nr�odors value category LearnEx Nr	Proto Right Cl� � Wrong Cl� No Cl�

�� intens cwn ��� �� �� �� ��� ��

�� intens c ��� �
� �� �
 �� �

�� intens cn ��� �
 �� �� ��� ��

�� time cwn ��� �
� � � �� ���

�� time c ��� ��� � � �� ��

Table �� Classi�cation results for all the �� odors

Results with intensity Table � presents a number of prototypes very close to the

number of learning examples� Generalization performance is rather bad� The best clas�

si�cation result is �� �� It comes from examples with a correct denomination �c� or no

denomination �n�� Considering all available examples �cwn�� only �� � of the test set

are correctly classi�ed� The di�erence between these two results is small� Nevertheless�

it shows that denomination correctness must be taken into account�

Results with response time The two bottom lines of table � are obtained with re�

sponse times� The classi�er refuses to give an answer for many examples� With a correct

classi�cation of around � � it is evident that response time is less signi�cant than intensity

for discriminating odors�

�	�	� Results with �� odors only

There are odors with less than �� examples with a correct denomination� These odors�

marked ��� in table �� are omitted in further tests� Table � illustrates results for the

reduced number of �� odors� Classi�cation is a bit better� Best result comes from examples

with a correct denomination ��� ���

Nr�odors value category LearnEx Nr	Proto Right Cl� � Wrong Cl� No Cl�

�� intens cwn ��� 
�� �� �� ��� ��

�� intens c ��� ��� �� �� �� �

�� intens cn ��� ��� �� �� �� �

Table �� Classi�cation results for �� odors

�	�	� Classi�cation according to answer correctness

In previous experiments� all examples are treated similar regardless of their category

�c� w� n�� It can be argued that the chosen descriptors� or their intensities� are very

��



di�erent depending on their category� In this case� taking examples of all categories

is di	cult� Examples are therefore di�erently marked� according to their denomination

category� A further vector element is added� The new input is � if the denomination is

wrong or none �w� n�� and � if labeling is correct �c�� Results are presented in table ��

The correct classi�cation of �� � or �� � does not bring a meaningful improvement�

Nr�odors value category LearnEx Nr	Proto Right Cl� � Wrong Cl� No Cl�

�� intens cwn ��� 
�� �� �
 ��� ��

�� intens cw ��� � ��� �� �� �� �

Table �� Classi�cation results according to denomination correctness

�	�	� Classi�cation according to denomination quickness

We can assume that a good choice of descriptors has an in�uence on the needed time to

denominate odors� A quick decision for a name of an odor could be a result of a correct

choice of descriptors� To examine this possibility an additional vector element for the

denomination time is used� One of the obtained results is shown in table �� This further

input element has no great in�uence on the number of correctly classi�ed test samples

��� ���

Nr�odors value category LearnEx Nr	Proto Right Cl� � Wrong Cl� No Cl�

�� intens cwn ��� 
�� �� �
 ��� �

Table �� Classi�cation results according to denomination time

�	�	� A new learning algorithm

As mentioned in section ���� there are a lot of very similar examples which belong to

di�erent odors� It is the case for example � of �gure � �banana� and examples � and

� of �gure � �orange�� The classi�er creates news prototypes to cope with the con�ict�

However� so many prototypes lead to poor generalization capacities� To hold back pro�

totype creations� the learning algorithm of the neural network is changed so that each

input example is only compared to the prototypes of his own odor� Comparing tables �

and �� the reduction of the number of prototypes is clear �from ��� to �� for correct

denominations�� The classi�cation results attained are better but still low� Best result is

�� �� Comparing with table �� � examples miss�classi�ed are now correctly classi�ed �the

number of examples not classi�ed is the same�� We can assume that the new algorithm

has �ltered di	cult examples�

�	�	
 Tests with normalized data

In section ���� the problem of a probably necessary normalization is mentioned� We have

tested the in�uence of this normalization process� After ordering the intensity values�
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Nr�odors value category LearnEx Nr	Proto Right � Wrong NoClas

�� intens cwn ��� 
 �� �� ��� �

�� intens c ��� 
� �� � �� �

�� intens cn ��� 
 �� �� ��� �

Table �� Classi�cation results when an example is only compared to prototypes of its odor

for each example� we have set the three greatest� non�zero� values to respectively ���� ���

and ���� Table �� illustrates the classi�cation performance on such normalized data� As

learning examples are again compared with all prototypes �initial learning algorithm�� a

large number of prototypes are created� Compared to experiments represented in table ��

the correct classi�cation is clearly decreased� Best classi�cation result is only �� �� This

shows that this normalization increases di�erences between examples and results in worst

performance�

Nr�odors value category LearnEx Nr	Proto Right � Wrong NoClas

�� intens cwn ��� �� �� �� �� ���

�� intens c ��� ��� �� �
 �� ��

Table ��� Only the � greatest values are taken with intensities ���� ���� ���

��� Results for other groups

Experiments have been done with other groups� Group GS has only � descriptors which

describe odors very super�cially� Compared with the so far obtained classi�cation results�

table �� shows that results are worse� This indicates that it is almost impossible to

discriminate the �� odors only with this � descriptors� It seems that results depend on

the learning base size� more than on categories involved� However� results are too close

to a random anwer ������ to be meaningful�

Nr�odors value category LearnEx Nr	Proto Right � Wrong NoClas

�� intens cwn ��� �
� �� � ��� �

�� intens c ��� ��� � � �� �

�� intens cn ��� �� � � ��� ��

Table ��� GS� Classi�cation results

Another group is GSP which has �� descriptors to choose from� These descriptors are the

same as for GP� and GS� Compared with the results of GP�� classi�cation results are a

��



bit better� Adding the � surface descriptors raises results from �� � to �� � �compare

tables refall�� and �����

Nr�odors value category LearnEx Nr	Proto Right � Wrong NoClas

�� intens cwn ��� 
�� �� �� ��� �

�� intens c ��� ��� �� �� �� �

�� intens cn ��� ��� �� �� ��� �

Table ��� GSP� Classi�cation results

� Conclusion

Results This report examines experimental data with a neural incremental classi�er�

Because of the relatively small number of subjects �from �� to ��� in a group there is

only a small number of examples for each odor available� Furthermore a great number

of descriptors ��� for GP�� faces a small number of actively chosen descriptors �about

��� The great di�erences between examples of one odor and the similarity of examples

of di�erent odors makes the problem hard to learn� Facing this data� it seems very

di	cult to distinguish the di�erent classes� Best classi�cation results stay under �� ��

It is interesting to note that the best result has been reach by an algorithm less sensitive

with di	cult examples� According to underlined problems� it is not clear that a greater

number of examples for each odor would help to reinforce di�erences between odors and

so facilitate classi�cation�

Useful notes to help future works

� Descriptor intensities is a far more reliable information that response times�

� Surface descriptors of group GS are not able to discriminate odors� However� they

are helpful in addition with profound descriptors �group GSP��

Future works Several works are scheduled on collected data� Further works will deal

with modular aspects of memorization� Some works are engaged in associative memory�

properties evocation� or priming� The spade�work done in this report will be useful� Know�

ing that odors cannot be discriminate by proposed descriptors will avoid time consuming

experimentations�
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