N
N

N

HAL

open science

Generalized Tilings with Height Functions
Olivier Bodini, Matthieu Latapy

» To cite this version:

Olivier Bodini, Matthieu Latapy. Generalized Tilings with Height Functions. [Research Report] LIP
RR-2001-52, Laboratoire de I'informatique du parallélisme. 2001, 24+17p. hal-02102104

HAL Id: hal-02102104
https://hal-lara.archives-ouvertes.fr /hal-02102104
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lara.archives-ouvertes.fr/hal-02102104
https://hal.archives-ouvertes.fr

AN

Laboratoire de I’ nformatique du Par-
allélisme

Ecole Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON CENTRE NATIONAL
nO 5668 DE LA RECHERCHE

SCIERTIRQUE

Generalized Tilings with Height Functions

Bodini Olivier, Latapy Matthieu December 2001

Research Report N° RR2001-52

Ecole Normale Supérieure de
Lyon

III 46 Allée d'ltalie, 693%/4 Lyon Cedex 07, France W’ N R I A

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquelip@ens-lyon.fr



Generalized Tilings with Height Functions

Bodini Olivier, Latapy Matthieu

December 2001

Abstract

In this paper, we introduce a generalization of a class of tilings which
appear in the literature: the tilings over which a height function can
be defined (for example, the famous tilings of polyominoes with domi-
noes). We show that many properties of these tilings can be seen as the
consequences of properties of the generalized tilings we introduce. In
particular, we show that any tiling problem which can be modelized in
our generalized framework has the following properties: the tilability of
a region can be constructively decided in polynomial time, the number of
connected components in the undirected flip-accessibility graph can be
determined, and the directed flip-accessibility graph induces a distribu-
tive lattice structure. Finally, we give a few examples of known tiling
problems which can be viewed as particular cases of the new notions we
introduce.

Keywords: Tilings, Height Functions, Tilability, Distributive Lattices,
Random Sampling, Potentials, Flows

Résumé

Nous introduisons dans cet articl une classe général de pavages : les pa-
vages sur lesquel une fonction hauteur peut étre définie (par exemple, le
célebre pavage des polyominos par des dominos). Nous montrons que la
plus part des propriétés de ces pavages peuvent étre vu des concéquences
des propriétés des pavages généraux que nous introduisons. En particu-
lier, nous montrons que tout pavage que ’on peut modéliser dans notre
cadre généralisé a les propriétés suivantes : la pavabilité d’une région peut
étre décidé en temps polynomial, le nombre de composantes connexes
dans le graphe non orienté d’accessibilité par flip peut étre déterminé
algorithmiquement, et le graphe orienté d’accessibilité par flip a une
structure de réseau distributif. Pour conclure, mous donnons quelques
exemples de problémes de pavages classiques que 'on peut voir comme
des cas particuliers de la nouvelle classe que nous avons définie.

Mots-clés: Pavage, fonction hauteur, réseau distributif, flot, potentiel,
tirage aléatoire



1 Preliminaries

Given a finite set of elementary shapes, called tiles, a tiling of a given region
is a set of translated tiles such that the union of the tiles covers exactly
the region, and such that there is no overlapping between any tiles. See
for example Figure 1 for a tiling of a polyomino (set of squares on a two-
dimensional grid) with dominoes (1 x 2 and 2 x 1 rectangles). Tilings are
widely used in physics to modelize natural objects and phenomena. For
example, quasicrystals are modelized by Penrose tilings [?] and dimers on a
lattice are modelized by domino tilings [?]. Tilings appeared in computer
science with the famous undecidability of the question of whether the plane
is tilable or not using a given finite set of tiles [?]. Since then, many studies
appeared concerning these objects, which are also strongly related to many
important combinatorial problems [?].

[ ]
D [ ]

Figure 1: From left to right: the two possible tiles (called dominoes), a
polyomino (i.e. a set of squares) to tile, and a possible tiling of the polyomino
with dominoes.

A local transformation is often defined over tilings. This transformation,
called flip, is a local rearrangement of some tiles which makes it possible to
obtain a new tiling from a given one. One then defines the (undirected) flip-
accessibility graph of the tilings of a region R, denoted by Apg, as follows:
the vertices of Ag are all the tilings of R, and {t,#'} is an (undirected)
edge of Ap if and only if there is a flip between ¢ and ¢'. See Figure 2 for an
example. The flip notion is a key element for the generation and enumeration
of the tilings of a given region, and for many algorithmical questions. For
example, we will see in the following that the structure of Az may give a
way to sample randomly a tiling of R with the uniform distribution, which is
crucial for physicists. This notion is also a key element to study the entropy
of the physical objects [?], and to examine some of their properties like frozen
areas, weaknesses, and others |?].

On some classes of tilings which can be drawn on a regular grid, it is
possible to define a height function which associates an integer to any node
of the grid (it is called the height of the node). For example, one can define
such a function over domino tilings as follows. As already noticed, a domino
tiling can be drawn on a two dimensional square grid. We can draw the



Figure 2: From left to right: the flip operation over dominoes, and two ex-
amples of tilings which can be obtained from the one shown in Figure 1 by
one flip. In these tilings, we shaded the tiles which moved during the flip.

squares of the grid in black and white like on a chessboard. Let us consider a
polyomino P and a domino tiling T' of P, and let us distinguish a particular
node p on the boundary of P, say the one with smaller coordinates. We
say that p is of height 0, and that the height of any other node p’ of P is
computed as follows: initialize a counter to zero, and go from p to p’ using a
path composed only of edges of dominoes in 7', increasing the counter when
the square on the right is black and decreasing it when the square is white.
The height of p’ is the value of the counter when one reaches p’. One can
prove that this definition is consistent and can be used as the height function
for domino tilings [?]. See Figure 3 for an example.

These height functions make it possible to define Ag, the directed flip-
accessibility graph of the tilings of a region R: the vertices of Ar are the
tilings of R and there is a directed edge (,t') if and only if ¢ can be trans-
formed into #' by a flip which decreases the sum of the heights of all the
nodes. See Figure 3 for an example with domino tilings. The generalized
tilings we introduce in this paper are based on these height functions, and
most of our results are induced by them.

These notions of height functions are close to classical notions of flows
theory in graphs. Let G = (V, E) be a directed graph. A flow on G is a map
from E into C (actually, we will only use flows with values in Z). Given two
vertices v and v’ of G, a travel from s to s’ is a set of edges of G such that,
if one forgets their orientations, then one obtains a path from s to s’. Given
a flow C, the fluz of C on the travel T is

Fr(C) = > Cle) = Y Cle)

ecT+ ecT—

where T" is the set of oriented edges of T which are traveled in the right
direction when one goes from s to s’, and T~ is the set of oriented edges
traveled in the reverse direction. Omne can easily notice that the flux is
additive by concatenation of travels: if T7 and T, are two travels such that
the ending point of T} is equal to the starting point of Ty, then Fr,.7, (C) =
Fr,(C) + Fr,(C). See [?] for more details about flows theory in graphs.



- of-1

o1 o0 0
0 10 1 o o 10 1 o
- _ -2
-— 2 11 | 1
0 1 0 0 0 1 0 1 0

Figure 3: The directed flip-accessibility graph of the tilings of a polyomino
by dominoes. The height of each node of the polyomino is shown for each
tiling. The set of all the tilings of this polyomino is ordered by the flip relation
directed with respect to the height functions.

Since there is no circuit in the graph Ap (there exists no nonempty
sequence of directed flips which transforms a tiling into itself), it induces
an order relation over all the tilings of R: ¢ < ¢’ if and only if # can be
obtained from ¢ by a sequence of (directed) flips. In Section 3, we will
study Ag under the order theory point of view, and we will meet some
special classes of orders, which we introduce now. A lattice is an order
L such that any two elements z and y of L have a greatest lower bound,
called the infimum of z and y and denoted by z A y, and a lowest greater
bound, called the supremum of z and y and denoted by z V y. The infimum
of z and y is nothing but the greatest element among the ones which are
lower than both z and y. The supremum is defined dually. A lattice L
is distributive if for all z, y and z in L, x V(y Az) = (z Vy) A(zV 2)
and z A (yVz) = (xAy)V(xAz). For example, it is known that the
flip-accessibility graph of the domino tilings of a polyomino without holes
is always a distributive lattice [?]. Therefore, this is the case of the flip-
accessibility graph shown in Figure 3 (notice that the maximal element of
the order is at the bottom, and the minimal one is at the top of the diagram
since we used the discrete dynamical models convention: the flips go from
top to bottom). Lattices (and especially distributive lattices) are strongly



structured sets. Their study is an important part of order theory, and many
results about them exist. In particular, various codings and algorithms are
known about lattices and distributive lattices. For example, there exists a
generic algorithm to sample randomly an element of any distributive lattice
with the uniform distribution [?]. For more details about orders and lattices,
we refer to [?].

Finally, let us introduce a useful notation about graphs. Given a directed
graph G = (V, E), the undirected graph G = (V, E) is the graph obtained
from G by removing the orientations of the edges. In other words, V =V,
and E is the set of undirected edges {v,v'} such that (v,v") € E. We will
also call G the undirected version of G. Notice that this is consistent with
our definitions of A and Apg.

In this paper, we introduce a generalization of tilings on which a height
function can be defined, and show how some known results may be under-
stood in this more general context. All along this paper, like we did in the
present section, we will use the tilings with dominoes as a reference to illus-
trate our definitions and results. We used this unique example because it
is very famous and simple, and permits to give clear figures. We emphasize
however on the fact that our definitions and results are much more general,
as explained in the last section of the paper.

2 Generalized tilings.

In this section, we give all the definitions of the generalized notions we in-
troduce, starting from the objects we tile to the notions of tilings, height
functions, and flips. The first definitions are very general, therefore we will
only consider some classes of the obtained objects, in order to make the more
specific notions (mainly height functions and flips) relevant in this context.
However, the general objects introduced may be useful in other cases.

Let G be a simple directed graph (G has no multiple edges, no loops, and
if (v,v") is an edge then (v',v) can not be an edge). We consider a set © of
elementary circuits of GG, which we will call cells. Then, a polycell is any set
of cells in ©. Given a polycell P, we call the edges of cells in P the edges of
P, and their vertices the vertices of P. A polycell P is k-regular if and only
if there exists an integer k£ such that each cell of P is a circuit of length k.
Given a polycell P, the boundary of P, denoted by dP, is an arbitrarily not
empty partial subgraph of P. A polycell P is full if 9P is connected.

Given an edge e of P which is not on the boundary, we call the set of
all the cells in P which have e in common a tile. A set of edges of P\OP
such that the associated tiles constitute a partition of the cells of P is called
a tiling Q. An edge in @ is by definition a tiling edge. A polycell P which
admits at least a tiling @ is tilable. See Figure 4 and Figure 5 for some
examples. Notice that if we distinguish exactly one edge of each cell of a



polycell P, in such a way that none of them is on the boundary of P, then
the distinguished edges can be viewed as the tiling edges of a tiling of P.
Indeed, each edge induces a tile (the set of cells which have this edge in

common), and each cell is in exactly one tile.

P

Figure 4: From left to right: a polycell P (the boundary OP being the set of
all the vertices of P and © being the set of all the elementary circuits), the
three tiles of P, and a tiling of P represented by its tiling edges (the dotted
edges). This polycell is full, tilable, and is not k-regular for any k. Notice
that there are two tiles composed of two cells, and another one composed of
three cells. Notice also that the tiling given in this figure is the only possible
one.

Figure 5: Left: a 4-regular polycell P (the cells in © are the circuits of length
4), the boundary of which is composed of those vertices which belong to at
most three edges. Right: a tiling of P represented by its tiling edges (the
dotted edges). Notice that this figure is very similar to Figure 1.

Let P be a k-regular tilable polycell and @ be a tiling of P. We associate
to Q a flow Cg on © (seen as a graph):

Cole) = 1 — k& if the edge e is a tiling edge of Q
@Y1 otherwise.

For each cell ¢, we define T, as the travel which contains exactly the edges of
¢ (in other words, it consists in turning around c). Notice that the flux of Cg
on the travel T, is always null: Fr,(Cg) = 0 since each cell contains exactly
a tiling edge, valued 1 — k, and k — 1 other edges, valued 1. Moreover, for
each edge e € P, we have Cg(e) = 1 since from the definition e cannot be
a tiling edge.



Let us consider a polycell P and a flow C' on the edges of P. If for all
closed travel T (i.e. a cycle when one forgets the orientation of each edge)
in P we have Fp(C) = 0, then the flow C is called a tension. A polycell P
is contractible if the fact that Fr, (C) = 0 for all cell ¢ implies that C is a
tension. Since the converse is always true, we then have that C is a tension
if and only if for all cell ¢, Fr,(C) = 0. Notice that if P is a contractible
k-regular polycell and @ is a tiling of P, then the flow Cg is a tension, since
for all cell ¢, Fir,(Cg) = 0.

Now, if we (arbitrarily) distinguish a vertex v on the boundary of P, we
can associate to the tension Cg a potential ¢g, defined over the vertices of
P:

* oo(v) =0.

e for all vertices z and y of P, pq(y) — vq(z) = Fr, ,(Cq) where Ty, is
a travel from z to y.

The distinguished vertex is needed else ¢g would only be defined at almost
a constant, but one can choose any vertex on the boundary. Notice that this
potential can be viewed as a height function associated to ), and we will
see that it indeed plays this role in the following. Therefore, we will call the
potential ¢qg the height function of Q. See Figure 6 for an example.

1 1 1 1 o 1 o 1 0
A A A
1 1 -3 1 1 :
O O S = b > = < s > -1
J BT s 2 3 2
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v v v
1 1 1 1 0 1 0 1 0

Figure 6: From left to right: a tiling Q of a polycell (represented by its
tiling edges, the dotted ones), the tension Cg and the height function (or
potential) g it induces. Again, this figure may be compared to Figure 3
(topmost tiling).

We now have all the main notions we need about tilings of polycells,
including height functions, except the notion of flips. In order to introduce
it, we need to prove the following:

Theorem 2.1 Let P be a k-reqular contractible polycell. There is a bijection
between the tilings of P and the tensions C' on P which verify:

e for all edge e in OP, C(e) =1,
e and for all edge e of P, C(e) € {1 —k,1}.

Preuve. For all tiling @) of P, we have defined above a flow Cg which
verifies the property in the claim, and such that for all cell ¢, Fr,(Cq) =



0. Since P is contractible, this last point implies that Cg is a tension.
Conversely, let us consider a tension C' which satisfies the hypotheses. Since
each cell is of length k, and since C(e) € {1 —k, 1}, the fact that Fr,(C) =0
implies that each cell has exactly one negative edge. These negative edges
can be considered as the tiling edges of a tiling of P, which ends the proof.
O

Given a k-regular contractible polycell P defined over a graph G, this
theorem allows us to make no distinction between a tiling () and the as-
sociated tension Cg. This makes it possible to define the notion of flip as
follows. Suppose there is a vertex x in P which is not on the boundary and
such that its height, with respect to the height function of @), is greater than
the height of each of its neighbors in G. We will call such a vertex a mazimal
vertex. The neighbors of x in G have a smaller height than z, therefore the
outgoing edges of z in G are tiling edges of () and the incoming edges of z
in G' are not. Let us consider function Cgr defined as follows:

1 —k if e is an outgoing edge of z
Co(e)=14 1 if e is an incoming edge of
Cole) else.

Each cell ¢ which contains z contains exactly one outgoing edge of z and one
incoming edge of x, therefore we still have Fr, (Cg/) = 0. Therefore, C¢y is
a tension, and so it induces from Theorem 2.1 a tiling Q'. We say that Q’
is obtained from Q by a flip around x, or simply by a flip. Notice that Q’
can also be defined as the tiling associated to the height function obtained
from the one of (Q by decreasing the height of by k, and without changing
anything else. This corresponds to what happens with classical tilings (see
for example [?]). See Figure 7 for an example.

We now have all the material needed to define and study Ap, the (di-
rected) flip-accessibility graph of the tilings of P: Ap = (Vp, Ep) is the
directed graph where Vp is the set of all the tilings of P and (@, Q') is an
edge in Ep if Q can be transformed into Q' by a flip. We will also study the
undirected flip-accessibility graph Ap. The properties of these graphs are
crucial for many questions about tilings, like enumeration, generation and
sampling.

3 Structure of the flip-accessibility graph.

Let us consider a k-regular contractible polycell P and a tiling @ of P. Let
h be the maximal value among the heights of all the vertices with respect to
the height function of Q). If @ is such that all the vertices of height h are on
the boundary of P, then it is said to be a maximal tiling. For a given P, we
denote by Tmaxp the set of the maximal tilings of P. We will see that these
tilings play a particular role in the graph Ap. In particular, we will give an
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Figure 7: A flip which transforms a tiling Q of a polycell P into another
tiling Q' of P. From left to right, the flip is represented between the tilings,
then between the associated tensions, and finally between the associated height
functions.

explicit relation between them and the number of connected components of
Ap. Recall that we defined the maximal vertices of @) as the vertices which
have a height greater than the height of each of their neighbors, with respect
to the height function of @ (they are local maximals).

Lemma 3.1 Let P be a k-regular tilable contractible polycell (P is not nec-
essarily full). There exists a maximal tiling Q of P.

Preuve. Let V be the set of vertices of P, and let () be a tiling of P such
that for all tiling Q' of P, we have:

> o) <Y pg(x).

zeV zeV

We will prove that @) is a maximal tiling. Suppose there is a maximal vertex
T, which is not on the boundary. Therefore, one can transform @ into Q'
by a flip around z,,. Then Y v @or(z) = > oy pq(x) — k, which is in
contradiction with the hypothesis. [

Lemma 3.2 For all tiling Q of a k-regular contractible polycell P, there
exists a unique tiling in Tmazp reachable from @) by a sequence of flips.

Preuve. It is clear that at least one tiling in Tmaxp can be reached from
Q@ by a sequence of flips, since the flip operation decreases the sum of the
heights, and since we know from the proof of Lemma 3.1 that a tiling such
that this sum is minimal is always in Tmaxp. We now have to prove that
the tiling in Tmaxp we obtain does not depend on the order in which we
flip around the successive maximal vertices. Since making a flip around a



maximal vertex x is nothing but decreasing its height by k£ and keeping the
other values, if we have two maximal vertices z and z’ then it is equivalent
to make first the flip around z and after the flip around z’ or the converse.
O

Lemma 3.3 Let P be a k-reqular contractible and tilable polycell. A tiling
Q in Tmazp is totally determined by the values of g on OP.

Preuve. The proof is by induction over the number of cells in P. Let z
be a maximal vertex for ¢g in OP. For all outgoing edges e of z, Cg(e) =
1 — k (otherwise ¢(z) would not be maximal). Therefore, these edges can
be considered as tiling edges, and determine some tiles of a tiling @ of P.
Iterating this process, one finally obtains (). See Figure 8 for an example. [

Theorem 3.4 Let P be a k-regular contractible and tilable polycell. The
number of connected components in Ap is equal to the cardinal of Tmazp.

Preuve. Immediate from Lemma 3.2. O

This theorem is very general and can explain many results which ap-
peared in previous papers. We obtain for example the following corollary,
which generalizes the one saying that any domino tiling of a polyomino can
be transformed into any other one by a sequence of flips [?].

Corollary 3.5 Let P be a full k-reqular contractible and tilable polycell.
There is a unique element in Tmazp, which implies that Ap is connected.

Preuve. Since 0P is connected, the heights of the vertices in 9P are totally
determined by the orientation of the edges of P and do not depend on any
tiling Q. Therefore, from Lemma 3.3, there is a unique tiling in Tmaxp. [J

As a consequence, if P is a full tilable and contractible polycell, the height
of a vertex x on the boundary of P is independent of the considered tiling.
In the case of full polyominoes, this restriction of g to the boundary of P
is called height on the boundary [?] and has been introduced in [?].

Notice also that the proof of Lemma 3.3 gives an algorithm to build the
unique maximal tiling of any k-regular contractible and tilable full polycell
P, since the height function on the boundary of P can be computed without
knowing any tiling of P. See Algorithm 1 and Figure 8. This algorithm gives
in polynomial time a tiling of P if it is tilable. It can also be used to decide
whether P is tilable or not. Therefore, it generalizes the result of Thurston
[?] saying that it can be decided in polynomial time if a given polyomino is
tilable with dominoes.

With these results, we obtained much information concerning a central
question of tilings: the connectivity of the undirected flip-accessibility graph.
We did not only give a condition under which this graph is connected, but
we also gave a relation between the number of its connected components and



Algorithm 1 Computation of the maximal tiling of a full k-regular
contractible polycell.

Input: A full k-regular contractible polycell P, its boundary 9P and
a distinguished vertex v on this boundary.

Output: An array tension on integers indexed by the edges of P and
another one height indexed by the vertices of P. The first
gives the tension associated to the maximal tiling, and the
second gives its height function.

begin

P+ P;

height[v] < 0;

for each edge e = (v,v') on the boundary of P' do
| tensionfe] + 1;

for each vertezr v in OP' do
| Compute height[v] using the values in tension;

repeat
for each verter v in OP' which has the mazimal height
among the heights of all the vertices in OP' do
for each incoming edge e of v do
tension[e] «+— 1 — k;
for each edge €' in a cell containing e do
| tension[e/] + 1;

or each edge e = (v,v") such that tension[e] has newly
been computed do

Compute height[v] and height[v'] using the values in
| tension;

Yy

Remove in P’ the cells which contain a negative edge;
Compute the boundary of P': it is composed of all the
vertices of P’ which have a computed height;

until P’ is empty;

end

10
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Figure 8: An example of execution of Algorithm 1. The polycell we want
to tile is drawn on the top. Its boundary is composed of the vertices which
belong to at most three edges. Below, from left to right, we show the result
of each iteration of the algorithm (computation of the tension on the first
line, and of the height function on the second line). In this example, the first
iteration of the algorithm gives one vertical tile, and the second (and last)
iteration gives four horizontal tiles.

some special tilings. We will now deepen the study of the structure induced
by the flip relation by studying the directed flip-accessibility graph, and in
particular the partial order it induces over the tilings: ¢ < ¢’ if and only if #'
can be obtained from ¢ by a sequence of (directed) flips.

Lemma 3.6 Let Q and Q' be two tilings in the same connected component
of Ap of a polycell P. By definition, we put X, := {x such that pg(z) #
v (T)}, we take Tm € Xy such that max(pq(Tm), pq (Tm)) = max{pq(z), pq (z);z €
X}, We can suppose that ¢o(X£) < ¢ (X4) - else we reverse Q and Q'
-, then the potential @1 defined by : ¢1(x) := pgr(Xx) — k, when z := X4
and ¢1(x) := @ (x), otherwise, is associated to a tiling of P.
Let Q and Q' be two tilings in the same connected component of Ap
for a given k-reqular contractible polycell P. Let us consider x,, such that
‘(pQ(xm) — g (xm)‘ is mazimal in {‘(pQ(x) — g (x)‘ , T 18 a vertex of P}.
Then, one can make a flip around x,, from Q or Q'.

Preuve. We can suppose that ¢ (zm) < ¢o(zm) (otherwise we exchange
Q and Q'). We will show that the height function ¢ defined by ¢(z,,) =
0o(rm) — k and p(z) = pg(x) for all vertex = # x,, defines a tiling of P

11



(which is therefore obtained from @ by a flip around z,,). Let us consider
any circuit which contains z,,. Therefore, it contains an incoming edge
(zp, zm) and an outgoing edge (£, ;) of zp,. We will prove that pg(z,) =
0o(rm) — 1 and pg(zs) = @go(rm) — k + 1, which will prove the claim since
it proves that x,, is a maximal vertex.

The couple (pg(zp), pg(zs)) can have three values: (g (zm)—1, 0 (zm)+
1), (@Q(mm) -1 QOQ(l'm) —k+1), or (@Q(mm) +k—1, @Q(ij) +1). But, if
0Q(7s) = ¢q(zm)+1 then g (25) = p(zm)+1, and s0 g/ (Tm) = @(Tm)+k,
which is a contradiction. If gpg(z,) = wg(zm) + k — 1 then pgi(z,) =
0q(xm) +k —1, and so g (zm) > ¢o(zm), which is a contradiction again.
Therefore, (vg(zp), po(zs)) must be equal to (pg(zm) — 1, po(zm) —k+1)
for all circuit which contain z,,, which is what we needed to prove. [

Let us now consider two tilings Q and @’ of a k-regular contractible
polycell P. Let us define max(¢q, pq) as the height function such that its
value at each vertex is the maximal between the values of pg and ¢gr at
this vertex. Let us define min(¢q, ¢¢r) dually. Then, we have the following
result:

Lemma 3.7 Given two tilings Q and Q' in the same connected component of
Ap for a k-regular contractible polycell P, max(pq,pq) and min(pg, pq!)
are the height functions of tilings of P.

Preuve. We can see that max(pg, ¢¢) is the height function of a tiling
of P by iterating Lemma 3.6: > ‘(pQ(x) — g (m)‘ can be decreased until we

T
reach max(¢q, ¢¢g’). The proof for min(¢g, ¢¢’) is symmetric. O

Theorem 3.8 If P is a k-reqular contractible polycell, then each connected
component of Ap induces a distributive lattice structure over the tilings of

P.

Preuve. Given two tilings @ and @’ in the same connected component of
Ap, let us define the following binary operations: ¢g A pg = min(pq, vg’)
and @g V ¢or = max(pg,pgr). It is clear from the previous results that
this defines the infimum and supremum of @ and @Q'. To show that the
obtained lattice is distributive, it suffices now to verify that these relations
are distributive together. [

As already discussed, this last theorem gives much information on the
structure of the flip-accessibility graphs of tilings of polycells. It also gives the
possibility to use in the context of tilings the numerous results known about
distributive lattices, in particular the generic random sampling algorithm
described in [?].

To finish this section, we give another proof of Theorem 3.8 using only
discrete dynamical models notions. This proof is very simple and has the
advantage of putting two combinatorial object in a relation which may help
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understanding them. However, the reader not interested in discrete dynam-
ical models may skip the end of this section.

An Edge Firing Game (EFG) is defined by a connected undirected graph
G with a distinguished vertex v, and an orientation O of G. In other words,
O = G. We then consider the set of obtainable orientations when we iterate
the following rule: if a vertex v # v only has incoming edges (it is a sink)
then one can reverse all these edges. This set of orientations is ordered by
the reflexive and transitive closure of the evolution rule, and it is proved in
[?7] that it is a distributive lattice. We will show that the set of tilings of any
k-regular contractible polycell P is isomorphic to configuration space of an
EFG, which implies Theorem 3.8.

Let us consider a k-regular contractible polycell P defined over a graph G.
Let G' be the sub-graph of G which contains exactly the vertices and edges
in P plus a new vertex v and a edge (v, ) for all v in P. This vertex will be
the distinguished vertex of our EFG. Let us now consider the height function
pq of a tiling @ of P, and let us define the orientation (@) of G’ as follows:
the edges involving v are directed towards v, and each other undirected edge
{v,9'} in G' is directed from v to v" in 7(Q) if pg(v') > pg(v). Then, the
maximal vertices of () are exactly the ones which have only incoming edges
in 7(Q), and applying the EFG rule to a vertex of 7(Q) is clearly equivalent
to making a flip around this vertex in (). Moreover, one can never apply
the EFG rule to a vertex in 0P, since it always has an outgoing edge to v,
which can never be reversed. Finally, the configuration space of the EFG
is isomorphic to the connected component of Ap which contains (), which
proves Theorem 3.8 again. An example is given in Figure 9.

4 Some applications.

In this section, we present some examples which appear in the literature, and
we show how these tiling problems can be seen as special cases of k-regular
contractible polycells tilings. We therefore obtain as corollaries some known
results about these problems, as well as some new results.

4.1 Polycell drawn on the plane or the sphere.

Let us consider a set of vertices V' and a set © of elementary (undirected)
cycles of length k, with vertices in V', such that any couple of cycles in ©
have at most one edge in common. Now let us consider the undirected graph
G = (V, E) such that e is an edge of G if and only if it is an edge of a cycle
in ©. Moreover, let us restrict ourselves to the case where G is a planar
graph which can be drawn in such a way that no cycle of © is drawn inside
another one. G is 2-dual-colorable if one can color in black and white each
bounded face in such a way that two faces which have an edge in common
have different colors. See for example Figure 10.
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Figure 9: The configuration space of the EFG obtained from Figure 3 (the
distinguished vertex v is not represented: there is an additional outgoing edge
from each vertex on the boundary to v). The two orders are isomorphic.

25 R

Figure 10: Two examples of graphs which satisfy all the properties given in
the text. The leftmost is composed of cycles of length 3 and has a hole. The
rightmost one is composed of cycles of length 4.

& Q

Figure 11: A tiling of each of the objects shown in Figure 10, obtained using
the polycells formalism.

The fact that G has the properties above, including being 2-dual-colorable,
makes it possible to encode tilings with bifaces (the tiles are two adjacent
faces) as tilings of polycells. This includes tilings with dominoes, and tilings
with calissons. Following Thurston [Thu90], let us define an oriented version
of G as follows: the edges which constitute the white cycles boundaries are
directed to travel the cycle in the clockwise orientation, and the edges which
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constitute the black cycles boundaries are directed counterclockwise. If for
all closed travel (its origin and its extremity coincide) on the boundary of
polycell P we have Fr(C) = 0 where C is a flow such that C(e) = 1 for
all e € 9P, then we say that P has a balanced boundary. One can ver-
ify that a polycell with a balanced boundary defined in this way is always
contractible. Therefore, our results can be applied, which generalizes some
results of Chaboud [?]| and Thurston [?].

4.2 Rhombus tiling in higher dimension.

Let us consider the canonical basis {ej,...,es} of the d-dimensional affine
space RY, and let us define ez, = 2?21 e;. For all a between 1 and d + 1,
let us define the zonotope Zj ; as the following set of points:

d+1
Z3, = {z €R%such that z = Y Ne;, with —1 <X <1}
i=1i¢a

In other words, the Z7, is the zonotope defined by all the vectors e; except
the a-th. We are interested in the tilability of a given solid S when the set of
allowed tiles is {Z3,, 1 < a < d+ 1}. These tilings are called codimension
one rhombus tilz’ng’s, and they are very important as a physical model of
quasicristals [?]. If d = 2, they are nothing but the tilings of regions of
the plane with three parallelograms which tile an hexagon, which have been
widely studied. See Figure 12 for an example in dimension 2, and Figure 13
for an example in dimension 3.

In order to encode this problem by a problem over polycells, let us con-
sider the directed graph G with vertices in Z¢ and such that e = (z,%) is an
edge if and only if y = x+e; for an integer j between 1 and d or y = x—e441.
We will call diagonal edges the edges which correspond to the second case.
This graph can be viewed as a d-dimensional directed grid to which we add a
diagonal edge in the reverse direction, at each point of the grid. An example
in dimension 3 is given in Figure 14.

Each edge is in a one-to-one correspondence with a copy of a Z7, trans-
lated by an integer vector, namely the one of which it is the diagorfal edge.
The set © of the cells we will consider is the set of all the circuits of length
d+ 1 which contain exactly one diagonal edge. Therefore, each edge belongs
to a d! cells, and so the tiles will be themselves composed of d! cells. See
Figure 14 for an example in dimension 3. Given a polycell P defined over ©,
we define 0P as the set of the edges of P which do not belong to d! circuits
of P.

First notice that a full polycell defined over G is always contractible.
Therefore, our previous results can be applied, which generalizes some results
presented in [?] and [?, ?]. We also generalize some results about the 2-
dimensional case, which has been widely studied.
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Figure 12: If one forgets the orientations and removes the dotted edges, then
the rightmost object is a classical codimension one rhombus tiling of a part
of the plane (d = 2). From the polycells point of view, the leftmost object
represents the underlying graph G, the middle object represents a polucell P
(the boundary of which is the set of the edges which belong to only one cell),
and the rightmost object represents a tiling of P (the dottes edges are the

Figure 13: A codimension one rhombus tiling with d = 3 (first line, rightmost
object). It is composed of four different three dimensional tiles, and the first
line shows how it can be constructing by adding successive tiles. The second
line shows the position of each tile with respect to the cube.

Figure 14: Top: the 3-dimensional grid is obtained by a concatenation of
cubes with reverse diagonal edges, like this one. Bottom: the cells in ©.
Each tile is composed of siz such cells, since each edge belongs to exactly six
cells.
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5 Conclusion and Perspectives.

In conclusion, we gave in this paper a generalized framework to study some
tiling problems over which a height function can be defined. This includes
the famous tilings of polyominoes with dominoes, as well as various other
classes, like codimension one rhombus tilings, tilings with holes, tilings on
torus, on spheres, three-dimensional tilings, and others we did not detail
here. We gave some results on our generalized tilings which made it possible
to obtain a large set of known results as corollaries, as well as to obtain new
results on tiling problems which appear in the scientific literature. Many
other problems may exist which can be modelized in the general framework
we have introduced, and we hope that this paper will help understanding
them.

Many tiling problems, however, do not lead to the definition of any height
function. The key element to make such a function exist is the presence of
a strong underlying structure (the k-regularity of the polycell, for example).
Some important tiling problems (for example tilings of zonotopes) do not
have this property, and so we can not apply our results in this context.
Some of these problems do not have the strong properties we obtained on
the tilings of k-regular contractible polycells, but may be included in our
framework, since our basic definitions of polycells and tilings being very
general. This would lead to general results on more complex polycells, for
example polycells which are not k-regular, or with cells which have more
than one edge in common.
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