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Abstract

We prove that there exists no sentence F of the language of rings with
an extra binary predicat I� satisfying the following property� for every
de�nable set X � C�� X is connected if and only if 	C� X
 j� F where
I� is interpreted by X � We conjecture that the same result holds for the
closed subsets of C�� We prove some results motivated by this conjecture�
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R�esum�e

On montre quil nexiste pas d�enonc�e F dans le langage des anneaux
muni dun pr�edicat binaire suppl�ementaire I� satisfaisant la propri�et�e
suivante� pour tout ensemble d�e�nissable X � C�� X est connexe si et
seulement si 	C� X
 j� F 	I� est interpr�et�e par X dans l�enonc�e F 
� Nous
conjecturons que le m�eme r�esultat est vrai pour les ferm�ees de C�� Nous
d�emontrons �egalement quelques r�esultats motiv�es par cette conjecture�

Mots�cl�es� d�e�nissabilit�e� bases de donn�ees contraintes�
th�eorie des mod�eles� corps alg�ebriquement clos�
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Abstract

We prove that there exists no sentence F of the language of rings
with an extra binary predicat I� satisfying the following property� for
every de�nable set X � C�� X is connected if and only if �C� X� j� F

where I� is interpreted by X� We conjecture that the same result
holds for closed subset of C�� We prove some results motivated by this
conjecture�
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� Introduction

There is a recent and fairly large body of work on the de�nability of �geomet�
ric� properties in �rst�order logic� originally motivated by database research
	geographic databases in particular
� We refer the reader to ��� and ���� for
an introduction to this subject and a guide to the literature� The structures
which have been most studied from this point of view are the integers and
the reals with various sets of operations� In this paper� we begin a study of
de�nability over the complex numbers and algebraically closed �elds� Since
these questions are mathematically interesting in their own right� we have
chosen to use a language which may be more appealing to readers who do
not specialize in geographic databases�

For us� a property is just a family of de�nable sets of Kn� where K is
a �eld and n is some �xed constant� Here de�nable means de�nable by a
�rst�order formula 	with parameters
 of the language of rings �

Lrings � f�������� �� �g�

By elimination of quanti�ers� these sets are the constructible sets of algebraic
geometry if K is algebraically closed� they are the semi�algebraic sets if K
is real�closed� Here are two examples of properties�

�� The family of de�nable sets of C� which are of dimension ��

�� The family of connected de�nable subsets of C��

It turns out that Property � is de�nable but Property � isnt� Formally� in
order to de�ne properties in Kn we work in the language LKrings enriched
with a n�ary predicate In 	if L is a language and if M is an L�structure�
LM is L with constants naming the elements of M
� The property de�ned
by a �rst�order sentence F in this language is the family of de�nable sets
X � Kn such that F is true when In is interpreted by membership to X 	in
this case we write� 	K�X
 j� F 
�

We shall give examples of de�nable properties in section �� The main
result of this paper is that Connectivity in C� is not de�nable� That is�

Theorem ��� There exists no sentence F of LCrings � fI�g satisfying the

following property� for every de�nable set X � C�� X is connected if and
only if 	C� X
 j� F �

It is easy to see that the above theorem implies that connectivity is not
de�nable for the de�nable subsets of Cn whenever n � �� In fact we shall
prove that there exists no sentence F of LCrings � fI�g satisfying the follow�

ing property� for every de�nable set X � C� which can be written as a
�nite boolean combination of points and lines� X is connected if and only
if 	C� X
 j� F 	the same result is known to be true in R� for �nite unions
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of line segments ����
� However� it is shown in the next section that there
exists a sentence F 	I�
 such that if X is a �nite union of points and lines
in C�� then X is connected i� 	C� X
 j� F 	I�
� A variation on the proof of
Theorem ��� shows that no such sentence exists in dimension higher than ��

We present in section � a basic geometric construction 	reduction from
Parity to Connectivity
 which is used in the three proofs of Theorem ���
that we shall give� A proof of Theorem ��� follows by reduction to the real
case and by the fact that Parity is not de�nable over the reals ���� We give a
second proof in section �� As a byproduct� we obtain a strengthening of the
result that Parity is not de�nable over the reals� Parity remains unde�nable
even if we restrict our attention only to those subsets X of R which are made
only of integers� with distance at most � between two consecutive elements
of X � The proof of this result uses the equivalence between active and
natural semantics over the reals ��� and the fact that Parity is not in AC��
See ��� ��� ��� ��� for original proofs of this important theorem of complexity
theory� and ���� 	chapters ���� and ����
 for an elementary proof and further
references� A self�contained model�theoretic proof of Theorem ��� is given in
section �� This last proof works also for algebraically closed �elds of positive
characteristic�

At this stage� it is perhaps useful to make a few remarks of a topolog�
ical nature� We can view Cn with the strong 	euclidean
 topology or the
Zariski topology� Note �rst� that for de�nable sets to be closed in the strong
topology is the same thing as to be closed in the Zariski topology� Clearly� a
de�nable set which is connected in the strong topology has to be connected
in the Zariski topology� Moreover� one can use the fact that an irreducible
Zariski�closed set is connected for the strong topology 	see ���� Chapter VII�

to show that the converse is also true� These two notions of connectivity are
therefore equivalent�

We propose the following problems�

Conjecture ��� Let K be an algebraically closed �eld�
�a� The family of closed de�nable subsets of K� is not de�nable�
�b� The family of closed irreducible de�nable subsets of K� is not de�nable�

Note that in a real�closed �eld R� the family of closed 	for the order topology

de�nable sets of Rn is obviously de�nable�

The above conjecture makes precise an intuition that some logicians have
regarding the Cherlin�Zilber conjecture� We recall that the Cherlin�Zilber
conjecture states that a simple group of �nite Morley rank is an algebraic
group over an algebraically closed �eld 	see ���
� This conjecture essentially
says that if G is a simple group of �nite Morley rank� then we can recover the
Zariski topology of G from its de�nable subsets� This is surely not an easy
task and Conjecture ��� claims that this is not possible using a �rst�order
sentence in the case of an algebraically closed �eld�
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The last two sections of this paper were motivated by Conjecture ����
In Section �� we show that when a property of an algebraically closed �eld
K is de�nable with a formula with parameters in K� if there is any hope
of eliminating these parameters then this can be done 	we leave it as an
open problem whether the same result holds in real�closed �elds
� It follows
that Conjecture ��� depends only on the characteristic and not on a speci�c
algebraically closed �eld� In the last section� we show that the method
used to prove that Connectivity is not a de�nable property cannot solve
Conjecture ���� Namely� we show that for certain families of de�nable sets
of Kn closedness is de�nable� These families are� roughly speaking� the
families of de�nable sets which can be de�ned by a formula with �parameters
in a class of �nite structures�� The main tools in this section is a result of
quanti�er elimination where the degree of the polynomials in the quanti�er�
free formula depends only on the number of quanti�ers and the degree of
the polynomials in the quanti�ed formula� Surprisingly� such a result does
not seem to appear in the literature�

Finally� we would like to point out that many unde�nability results in
�rst�order logic hinge on the fact that the property under consideration 	e�g��
parity or connectivity
 is not �local�� However� closedness is a local property�
This explains perhaps why it seems di�cult to tackle Conjecture ��� with
standard techniques�

� Examples of De�nable Properties

In this section we give some examples of de�nable properties� We �x an
algebraically closed �eld K�

Proposition ��� The family DIMn�d of d�dimensional de�nable subsets of
Kn is de�nable without parameters�

Proof� We consider �rst the case d � n� A de�nable subset of X � Kn

has dimension n 	i�e�� is dense in Kn
 if and only if Kn can be covered by
n � � translates of X 	see ����� Theorem ��� for a proof� this is probably
well known from model theory
� Hence DIMn�n is de�ned by the following
formula�

�t�� � � � � tn�� � K
n �v � Kn

n���

i	�

In	v � ti
� 	�


For d � n� we use the fact that X has dimension at least d if and only if it
has a dense projection on some d�dimensional coordinate subspace� Hence
dimX � d can be expressed by a disjunction of

�
n
d

�
formulas of the form 	�


	projecting X amounts to adding an existential quanti�er in front of In
� A
formula for dimX � d follows immediately� �
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This implies that connectivity is de�nable in K since a de�nable set X � K
is connected if it is one�dimensional or has a single element� This also implies
that closedness is de�nable in K since a de�nable set X � K is closed if it
is zero�dimensional or equal to K�

Proposition ��� The following properties of de�nable subsets of K� are
de�nable�

�� X is a �nite union of points�

�� X is a �nite union of lines�

	� X is a �nite union of points and lines�


� X is connected� and is a �nite union of points and lines�

Proof� We will only give informal descriptions of the required formulas�
Supplying the details should be straightforward�

�� Follows immediately from Theorem ����

�� X is a union of lines i� for every x � X there exists a line � � X
which goes through x� The ��nite union� condition can be enforced
by requiring X to be of dimension � ��

�� This is equivalent to a conjunction of two conditions�

	a
 X has dimension � ��

	b
 If we remove from X all points x such that there exists a line
� � X going through x� the remaining set is ��dimensional�

A formula for condition 	b
 can thus be obtained from DIM���

by replacing each occurrence of I�	x
 in this formula by I�	x
 	

line	x
� where line	x
 expresses that there exists a line � � X

going through x�

�� A �nite union of points and lines is connected i� one of the following
conditions holds�

	a
 X is reduced to a single point�

	b
 X is reduced to a single line�

	c
 X is a �nite union of at least � lines� and there exists no line D
such that all lines � � X are parallel to D�

�
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These observations lead to many interesting questions� For instance�
one can ask whether connectivity is de�nable for closed de�nable subsets of
K�� Or� restricting our attention to a special class of closed sets� we can
make the following de�nition� let us say that a closed subset of Kn has
pseudo�degree � d if it is a �nite union of closed sets de�ned by systems of
polynomial equations of degree at most d� Then� given d � �� one can ask
whether connectivity is de�nable for closed subsets of K� of pseudo�degree
� d 	for n � � and d � �� we can answer this question by the negative using
a variation of the construction in section �
�

We shall need the following bound� If X is a closed set of Kn de�ned
by polynomial equations of degree � d� then the irreducible components of
X can be de�ned by polynomial equations of degree � D where D depends
only on n and d 	see ���� no ��� and ��� �����v� for more general results which
imply this bound
� The �rst consequence of this bound is that ifX is a closed
set ofKn of pseudo�degree � d� thenX is a �nite union of irreductible closed
sets de�ned by polynomial equations of degree � D� The second one is that
we can say in a �rst�order formula �there exists an irreductible closed set
W of Kn de�ned by polynomial equations of degree � d�� Indeed� note �rst
that if a closed set is de�ned by polynomial equations of degree � d� then it
can be de�ned by � c polynomial equations of degree � d where c �

�
d�n
d

�

	since c is the dimension of the K�subspace of polynomials of degree � d

in K�x�� � � �xn�
� Then we considere the following sentence � �There exist c
polynomials fi of degree � d such that for any familly of

�
D�n
D

�
polynomials

gi of degree � D� if the closed set W de�ned by the fi contains the closed
set Y de�ned by the gi and if these sets have the same dimension� then
Y � W�� This can be expressed with a �rst�order formula by quanti�ng the
coe�cients of polynomials and using Proposition ����

The following result will be useful in Section � and ��

Proposition ��� Let d and n be integers � �� There exists a formula F
of Lrings � fIng such that for any de�nable set X � Kn the two following
properties hold�

�i� If X is closed of pseudo�degree � d then 	K�X
 j� F �

�ii� If 	K�X
 j� F then X is closed�

Proof� We consider the following �algorithm��
Step �� check whether dimX � n � �� If not� then accept X if X � Kn�
reject X if X �� Kn�
Step i 	� � i � n � �
� Let Xi be the set obtained from X by removing
every point x � X such that there exists a closed irreducible set W � X

of dimension at least n� i de�ned by polynomials of degree � D such that
x �W 	hereD depends only on n and d as explained before the Proposition
�
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If the dimension of Xi is � n � i reject� If not� then if i � n � � accept X
and if i � n � � goto step i� ��

We claim that this algorithm accepts all de�nable subsets of Kn which
are closed of pseudo�degree � d� and that conversely any de�nable subsets of
Kn accepted by the algorithm must be closed� This will imply the Proposi�
tion since we can then use Proposition ���� the remark before the statement
of the proposition and the algorithm to construct a formula F satisfying 	i

and 	ii
�

Let us now prove the claim� Assume �rst that X is closed of pseudo�
degree � d� and write X � �j�JBj where Bj is a closed irreducible set
de�ned by polynomial equations of degree � D� Let x � X be a point lying
on a component Bj with dimBj � n � i� Then x �� Xi since we can take
W � Bj at step i of the algorithm� This shows that dimXi � n� i� �� and
therefore X is not rejected at step i and is eventually accepted after step
n� ��

Assume now that X is a de�nable 	i�e�� constructible
 set accepted by
the algorithm� In order to prove that X is closed� we will show by induction
on i that Yi � fx � X � dimxX � n� ig is closed for any � � i � n��� This
is clear for i � � since either Y� � � or Y� � Kn 	by step � of the algorithm
�
Induction step� assume that the result is true for i� �� There is nothing to
prove if Yi � Yi��� Note that sinceX is constructible� Yi is also constructible�
Let us now examine the case �i � Yi n Yi�� �� � 	note that dim�i � n � i
since �i � fx � X � dimxX � n � ig
� Let F be the family of closed
irreducible sets W � X of dimension � n� i de�ned polynomials of degree
� D such that W  �i �� �� In fact W � F must be of dimension exactly
n� i since dimxX � n� i for any x � �i 	and in particular for x � W �i
�
We shall see that F is �nite and Yi � Yi�� �

S
W�F W 	implying that Yi is

closed as claimed
� The inclusion from right to left is clear since W � Yi for
any W � F 	this follows from� dimW � n� i� W irreducible� and W � X
�
This inclusion implies that

S
W�F	W n Yi��
 � �i� Each term W n Yi�� in

the left�hand side has dimension n � i� This follows from dimW � n � i�
W irreducible and W ��Yi�� 	which follows in turn from W �i �� �
� Since
�i has dimension n � i too and is constructible� we conclude that F must
be �nite� In order to establish the inclusion Yi �

S
W�F W � we need to

show that �i �
S
W�F W � Assume to the contrary that there exists x � �i

such that x��
S
W�F W � Since F is �nite� there exists a Zariski open set O

	containing x
 such that 	�i  O
 
S
W�F W � �� By de�nition of F � this

implies that �i O � Xi� This is a contradiction since dim	�iO
 � n� i
and dimXi � n � i by hypothesis� �

Lemma ��� Let �	x�� � � � � xn
 be a quanti�er�free formula which is a
boolean combination of formulas of the form f	�x
 � � where f is a poly�
nomial of K��x� of degree � d� If the set de�ned by �	�x
 is closed� then its
pseudo�degree is � D where D depends only on n and d�

�



Proof� Assume that � is of the form

�

j

	

sj�

i

fi�j	�x
 � � 	 gi�j	�x
 �� � 
�

Denote by X the set de�ned by �	�x
� Let Fj be the closed set de�ned by
the polynomials fi�j	�x
� i � �� � � �sj � Then� X is a union of sets of the form
V O where V is an irreducible component of one of the Fj and where O is
a nonempty open subset of Kn� Note that the closure of such a set is equal
to V whenever V  O �� �� Assume that X is closed� Then� X is a union
of the closure of certain set V  O where V is an irreducible component of
one of the Fj and where O is a nonempty open subset of Kn� Thus� X is a
union of certain irreducible components of the Fj � Since the Fj are de�ned
by polynomial equations of degree � d � X is of pseudo�degree � D where
D depends only on n and d� �

� Parity from Connectivity

A family 	Gn
n�� of undirected graphs on the set of vertices f�� � � � � ng will
play an important role� There is an edge between vertices i and j in Gn if
ji� jj � � or i � � and j � n� One checks easily that Gn is connected only
when n is even� Given a �nite set X � fa�� � � � � ang � K� we now construct
a �geometric realization� SX � K� of Gn as a boolean combination of points
and lines in K�� This set is a geometric realization of Gn in the following
sense�

�� The points Ai � 	ai� �
 belong to SX 	Ai represents vertex i of Gn
�

�� There exists a path in SX between Ai and Aj which does not go
through any other Ak if and only if 	i� j
 � Gn�

Let Vi be the vertical line of equation x � ai� and Dj the line x � y � aj �
Let us remove from Vi and Dj the intersection point Vi Dj whenever both
i �� j and 	i� j
��Gn� This yields one�dimensional sets V �

�� D
�
�� � � � � V

�
n� D

�
n�

We take SX to be the union of these �n sets�

Proposition ��� SX is connected if and only jX j is even�

Proof� For jX j even� consider the arrangement of these �n 	connected
 sets
in the following order�

D�
�V

�
�D

�
�V

�
� � � �V

�
�iD

�
�i��V

�
�i�� � � �D

�
nV

�
nD

�
�V

�
�D

�
�V

�
� � � �V

�
�i��D

�
�i��V

�
�i�� � � �D

�
n��V

�
n���

By construction� two consecutive sets in this sequence have a nonempty
intersection� Their union is thus connected� This can be proved as follows�
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Let U and V be two Zariski�closed subsets of K� such that SX � U � V
and SX  U  V � �� We need to show that either SX � U or SX � V �
Since D�

� � SX � U � V � D�
�  U �� � or D�

�  V �� �� Assume for instance
that D�

�  U �� �� Since D�
� is connected� this implies that D�

� � U � Hence
V �
�  U �� � since D�

�  V
�
� �� �� V �

� being connected too� this implies that
V �
� � U as well� This process can be continued until we have shown that the

�n sets in the above sequence are all included in U �
For n odd� let C� be the union of the n � � lines

D�� V�� D�� V�� � � � � V�i��� D�i��� V�i��� � � � � Dn� Vn

and C� the union of the n � � lines

D�� V�� D�� V�� � � � � V�i� D�i��� V�i��� � � � � Dn��� Vn���

SX is included in the union of these two nonempty closed sets� and the
intersection SX  C�  C� is empty� This implies that SX is not connected�
�

Assume now that we have a total order on X � and a� � a� � � � � an�
We can then construct �rst�order formulas in the language Lrings � fI�� �g
	where I� is a predicate for X and � is a predicate for an order on X
�
min	x
� max	x
 and succ	x� y
 expressing respectively that x � a�� x � an�
x � ai and y � ai�� for some i � f�� � � � � n� �g�

min	x
 � I�	x
	 �y � I� 	x � y � x � y
�

max	x
 � I�	x
 	 �y � I� 	x � y � y � x
�

succ	x� y
 � I�	x
	 I�	y
 	 �z � I� 
	x � z � y
�

Membership of a point 	x� y
 � K� to the union of the V �
i s is expressed

by a formula �V 	x� y
 of the form�

�z � I� �x � z 	 �t � I�	z � t � edge	z� t
� edge	t� z
� x� y �� t
�

where edge	z� t
 stands for�

	min	z
 	 	max	t

� �u � I� 	succ	z� u
	 succ	u� t

�

The construction of a similar formula �D	x� y
 for membership to the
union of the D�

is is left to the reader� Membership to SX is then de�ned by
� � �V � �D�

One problem with the above construction is that if we work with an
algebraically closed �eld in the language Lrings � fI�g� there is no way to
construct a total order on an arbitrary �nite X 	however� a related construc�
tion over the reals can be used to show that Connectivity is not de�nable in
R
�
�
In the case where K � C it is possible to circumvent this di�culty by

performing a reduction to the real case�

�



Proposition ��� There exists a formula �	x�� x�� x�� x�
 of Lrings � fI�g
which satis�es the following property� For any �nite set X � R� let �X
be the subset of C� �identi�ed to R�� de�ned by � when I� is interpreted by
membership to X� Then �X is a de�nable subset of C�� and �X is connected
if and only if jX j is even�

Proof� We use the formula � constructed above� with the order onX induced
by the real order which is de�nable by � x � y i� �z y � x � z� 	 z �� ��
If X is �xed� then one easily see that �X de�nes a de�nable subset of C�

using a formula with parameters in X � �

Lemma ��� If Connectivity in C� is de�nable� then Parity over R is de�n�
able� i�e�� there exists a formula G of over LRrings � fI�g which satis�es the
following property� for any �nite set X � R� 	R� X
 j� G if and only if jX j
is even�

Proof� Let F be the formula of LCrings �fI�g which de�nes Connectivity� By
separating real and imaginary parts of variables and parameters in F � we
obtain a formula F � of LRrings � fI�g which satis�es the following property�

whenever I� is interpreted by membership to a de�nable subset S � C��
	R� S
 j� F � if and only if S is connected� Formula G is obtained from
F � by replacing each occurrence of I� in this formula by formula � from
Proposition ���� �

This proves Theorem ��� since Parity is not de�nable over the reals ���� As
announced in the introduction� we give a strengthening of this result in the
next section� This yields an alternative proof of Theorem ���� In section �
we will give a self�contained proof of this theorem which does not use any
reduction to the real case� Note that we perform such a reduction in section �
only because to this date� the equivalence between natural and active domain
semantics has been established only for the reals 	these notions are de�ned
in the next section
�

� From Complexity to Logic

This proof of Theorem ��� is by a series of reductions� beginning with a re�
duction from a restricted version of Parity to Connectivity� As mentioned in
the introduction� we will be interested in de�ning Parity only for a very spe�
cial class of �nite subsets X of C� those that are made only of integers with
distance either one or two between two consecutive elements of X � Let X
be this class of subsets of N� Along the way� we will give 	in Theorem ���
 a
strengthening of the recent result ��� that Parity is not de�nable over the re�
als� no �rst�order formula can correctly �compute� Parity even if we restrict
our attention to the input sets X that belong to X � The only property of
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the reals which will be used for this result is the equivalence between active
domain and natural domain semantics 	see ��� for a nonconstructive proof�
��� for a constructive proof� and ��� for an e�cient translation algorithm
�
Let K be a �eld� F a closed formula of LKrings � fI�g and X � K� F is
said to be true under the active domain semantics 	this is denoted X j� F 

if this formula is true when I� is interpreted by membership to X and the
range of every quanti�ed variable in F is taken to be X instead of the �nat�
ural domain� K� We refer to ��� �� �� for more details� The natural domain
semantics 	K�X
 j� F has already been de�ned 	for X � Kn
 in the intro�
duction and is the only semantics used outside this section� Note that the
predicate I� is no longer needed under the active domain semantics�

Proposition ��� There exists a formula �	x� y
 of Lrings � fI�g which sat�
is�es the following property�

For any X � X � let �X be the subset of C� de�ned by � when I� is
interpreted by membership to X� Then �X is connected if and only if jX j is
even�

Proof� We use the formula � constructed in section � 	hence �X � SX
� but
here we de�ne the predicates min� max and succ as follows�

min	x
 � I�	x
	 
I�	x� �
	 
I�	x� �
�

max	x
 � I�	x
 	 
I�	x� �
 	 
I�	x� �
�

and succ	x� y
 � I�	x
 	 I�	y
 	 �y � x� �� 	y � x� � 	 
I�	x� �

�� �

The following result is then clear�

Lemma ��� If Connectivity in C� is de�nable� there exists a formula G of
LCrings � fI�g which satis�es the following property�

�� for any X � X � 	C� X
 j� F if and only if jX j is even�

Proof� Let F be the formula of LCrings � fI�g which de�nes Connectivity� G
is obtained from F by replacing each occurrence of I� by formula � from
Proposition ���� �

If 	 
 holds� we say by abuse of language that Restricted Parity is de�nable�
In a second reduction� we show that if Restricted Parity is de�nable�

it is also de�nable over the reals� This follows immediately from the next
proposition�

Proposition ��� Let F be a formula of LCrings�fI�g� There exists a formula

G over LRrings � fI�g such that for any �nite set X � R� 	C� X
 j� F if and
only if 	R� X
 j� G�
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Proof� Separate real and imaginary parts of variables in F � �

The fact that Restricted Parity is not de�nable� and Theorem ���� will then
follow from the next result�

Theorem ��� There exists no formula F of LRrings � fI�g satisfying the
following property� for every X � X � 	R� X
 j� F if and only if jX j is even�

Corollary ��� There exists no formula F of LCrings � fI�g satisfying the
following property� for every X � X � 	C� X
 j� F if and only if jX j is even�

These two results are in a sense optimal since Parity becomes de�nable if we
restrict our attention further� by considering only setsX made of consecutive
integers�

The remainder of this section is devoted to the proof of Theorem ����
By the equivalence between natural and active domain semantics over the
reals it is su�cient to prove the following result�

Proposition ��	 Fix a �rst�order structure

M � 	N�R�� � � � �Rm� f�� � � � � fp


where Ri � Nni is an arbitrary predicate� and fi � Nqi � N an arbitrary
function� There exists no formula F over M satisfying the following prop�
erty� for every X � X � X j� F if and only if jX j is even�

The proof is by a reduction from the familiar Parity problem of complexity
theory to Restricted Parity� we will see that if Restricted Parity was de�n�
able then Parity would be in AC�� For this we need to know how fast query
in natural semantics can be evaluated� We shall work with the following
encoding of �nite sets of integers� a vector u � f�� �gn represents the set
Xu � fi� xi � �g 	of course there are many di�erent encodings for a given
X
� It is not hard to see that under this encoding� queries in an arbitrary
�rst�order language can be evaluated in AC��

Proposition ��
 Fix as in Proposition 
�� an arbitrary �rst�order structure
over N� and a �rst�order formula F � Then EvalF � AC�� where EvalF
denotes the following problem� given u � f�� �g�� decide whether Xu j� F �

Proof� We may assume that F is in prenex form� F �
Q�x� � � �Qkxk G	x�� � � � � xk
 where G is quanti�er�free and Qi � f�� �g� We
now describe a polynomial�size� O	k
 depth circuit Cn	a� u
 which solves
EvalF for inputs in u � f�� �gn� Here a is a vector of nk �hardwired�
boolean constants corresponding to the nk elements of f�� � � � � ngk� The
component ax of a associated to x � f�� � � � � ngk is � if and only if G	x
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is true� It is clear that F can be evaluated from a by replacing each exis�
tential quanti�er by a disjunction� and each universal quanti�er by a con�
junction� To be completely precise� one can de�ne inductively the formulas
Fk	x�� � � � � xk
 � G	x�� � � � � xk
 and Fi��	x�� � � � � xi��
 � QixiFi	x�� � � � � xi

	note that F� � F 
� The �i�� formulas Fi��	x�� � � � � xi��
 are evaluated in
parallel as follows� If Qi is existential�

Fi��	x�� � � � � xi��
 �
�

xi�Xu

Fi	x�� � � � � xi
 �
n�

j	�

�Fi	x�� � � � � xi��� j
	 uj � ���

If Qi is universal�

Fi��	x�� � � � � xi��
 �
�

xi�Xu

Fi	x�� � � � � xi
 �
n�

j	�

�Fi	x�� � � � � xi��� j
� uj � ���

�

The next and �nal lemma completes the proof of Proposition ���� Theo�
rem ��� and Theorem ����

Lemma ��� If Restricted Parity is de�nable then Parity � AC��

Proof� By Proposition ���� Restricted Parity can be evaluated in AC� if it
is de�nable� The result then follows from a straightforward AC� reduction
from Parity to Restricted Parity� map x � f�� �gn to the code u � f�� �g�n

satisfying u�i�� � u�i�� � � and u�i � xi for i � �� � � � � n� �

The fact that Parity��AC� was used in ���� to show that Parity is not de�n�
able with linear and order constraints 	see also ����
�

� A Logical Proof of Theorem ���

In this section we present a self�contained 	and direct
 proof of Theorem ���
modulo some basic model theory and �eld theory 	we refer the reader to
���� and ���� for the basic facts and notions from model theory that we shall
used freely
� Moreover� the proof works for an arbitrary algebraically closed
�eld� In this general case� we de�ne connectivity using the Zariski topology�

Let K be an algebraically closed �eld of characteristic p 	prime or zero
�
We denote by ACFp the theory of algebraically closed �elds of characteristic
p in Lrings� ACFp is a complete theory� We denote by L� the language
Lrings � fI�� �g where � is a binary predicate� We denote by 	M�X
 the
L��structures where M is the base set and X is the interpretation of I�� We
do not stress the interpretation of � in the notation because we shall only
consider L��structure where the interpretation of � is on I��
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Let T � be the theory of L� constituted by the following axioms�
	i
 the axioms of ACFp�
	ii
 �xy x � y � I�	x
 	 I�	y
 �
	iii
 � is a linear order on I� and this order is discrete with a smallest and
a largest element�
	iv
 I� is in�nite� for every n we consider the axiom

�x� � � � xn
�

i�	j

xi �� xj 	
n�

i	�

I�	xi


	v
 the elements of I� are algebraically independent� for every non�zero
polynomial f	x�� � � �xn
 with coe�cients in Z�pZ we consider the axiom

�x� � � � xn
�

i�	j

xi �� xj 	
n�

i	�

I�	xi
� f	x�� � � �xn
 �� ��

Note �rst that T � is a consistent theory� Indeed� let L be an algebraically
closed �eld of characteristic p with in�nite transcendence degree and let X
be a transcendence basis of L� Fix on X a discrete linear order � with a
smallest and a largest element� Then� clearly� 	L�X
 is a model of T ��

The technical result of this section is the following proposition� which
one may consider as folklore�

Proposition ��� T � is a complete theory� Moreover� if ! is a �nite subset
of T �� there exists an integer n such that for all integer m � n there exists
a subset X of K of cardinality m such that 	K�X
 j� ! for an arbitrary
linear order on X�

Proof� First we show the second part of the proposition� It is easy to see
that it su�ces to prove that for every integer m and every �nite family of
non�zero polynomials fj	x�� � � �xnj 
� j � �� � � �s� with coe�cients in Z�pZ
and with nj � m indeterminates� K satis�es the sentence

�x� � � � xm
�

fj	xi� � � � � � xinj 
 �� ��

where the conjunction is taken over the j � �� � � �s and the sequences
	i�� � � � inj
 of distinct elements of f�� � � � � mg� Since� K has an elemen�
tary extension with in�nite transcendence degree such a sentence is always
satis�ed in K�

Nowwe shall show that T � is complete� We denote by L� the sublanguage
f�� �g of L�� Let 	M�X 
 and 	N �Y
 be two ���saturated models of T ��
Since any completion of T � has an ���saturated model� it su�ces to prove
that 	M�X 
 and 	N �Y
 are elementarily equivalent in L�� Clearly� the
L��structures X and Y are ���saturated models of the theory of discrete
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linear orders with endpoints� Since this theory is complete� by ���saturation�
there exists a set "� of L��isomorphism �� � X �� Y where X is a �nite
L��substructure of X and Y is a �nite L��substructure of Y � with the back�
and�forth property�

We consider the set " of L��isomorphisms � � 	M�X
 �� 	N� Y 
 where
	M�X
 is an L��substructure of 	M�X 
 and 	N� Y 
 is an L��substructure
of 	N �Y
 such that�
	i
 the restriction of � to X is an element of "��
	ii
 there exists a tuple ��� � � ��n 	possibly empty
 in M algebraically inde�
pendent over X and a tuple ��� � � ��n in N algebraically independent over
Y such that M is the algebraic closure of f��� � � ��ng � X and N is the
algebraic closure of f��� � � ��ng � Y �
To prove that 	M�X 
 and 	N �Y
 are elementarily equivalent for L� it suf�
�ces to prove that " is nonempty and has the back�and�forth property�

Let us show that " is nonempty� Let �� � X �� Y be an element of "��
Since X and Y are constituted of algebraically independent elements of M
and N respectively� �� extends to a �elds isomorphism � from the algebraic
closure MX of X in M into the algebraic closure NY of Y in N � Moreover�
it is easy to see that MX  X � X and that NY  Y � Y � thus 	MX � X
 is
an L��substructure of 	M�X 
� 	N� Y 
 is an L��substructure of 	N �Y
 and
� is in fact an L��isomorphism� Then� clearly� � is an element of "�

Let us show that " has the back�and�forth property� By symmetry it
is enough to show that " has the forth property� So� let � � 	M�X
 ��
	N� Y 
 be an element of " and assume that M is the algebraic closure of
f��� � � ��ng � X where the �i are algebraically independent over X and N
is the algebraic closure of f��� � � ��ng � Y where the �i are algebraically
independent over Y � Let � be an element of M� Let us denote by �� the
restriction of � to X � Of course we may assume that � is not in M and thus
algebraically independent over M �

Firstly� assume that � � X � Since "� has the forth property there exists
a � � Y such that the map ��� � X � f�g �� Y � f�g which extend �� and
which send � on � is in "�� Note that � is algebraically independent over
N 	N  Y � Y since 	N� Y 
 is an L��substructure of 	N �Y

� Now� since
� is algebraically independent over M � � extends to a �elds isomorphism ��
from the algebraic closure M � of M � f�g into the algebraic closure N � of
N �f�g which send � on �� Set X � � X �f�g and Y � � Y �f�g� We claim
that M �X � X � and that N �Y � Y �� Indeed� let a �M �X � Then� a is
algebraic over f��� � � ��ng �X

�� Since the �i are algebraically independent
over X and since a � X it follows that a is algebraic over X �� Thus� a � X �

because X is a set of algebraically independent elements� The same proof
shows that N �  Y � Y �� It follows that �� is in fact an L��isomorphism
between L��substructures of 	M�X 
 and 	N �Y
� Then� clearly� �� is in "�

Secondly� assume that � is algebraic over M � X � Then� there exist
elements a�� � � �am of X such that � is algebraic over M � fa�� � � �amg�
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Applying� m times the above case we obtain an element �� �M � �� N � of "
such that the ai are in M �� Since M � is algebraically closed � �M ��

Finally� assume that � is algebraically independent over M � X � Note
�rst that �� ��� � � ��n are algebraically independent over X � Assume that we
have found an element � of N algebraically independent over N �Y � Then�
�� ��� � � ��n are algebraically independent over Y � Moreover� we can extend
� to a �elds isomorphism �� � M � �� N � which send � on � where M � is
the algebraic closure of M � f�g and where N � is the algebraic closure of
N � f�g� Again to show that �� is in "� it su�ces to show that M �X � X
and N �  Y � Y � So� let a � M �  X � Assume that a is not in X � Then�
since M  X � X � a is algebraic over M � f�g but not algebraic over M �
It follows 	by the exchange law
 that � is algebraic over M � fag� This is
absurd by hypothesis on �� In the same way� one shows that N �  Y � Y �

Thus� to complete the proof of the proposition we just need to show that
there exists a � in N which is algebraically independent over N �Y � Let us
consider the set #	y
 of formulas of the form

�x� � � � xm
�

i �	j

xi �� xj 	
m�

i	�

I�	xi
� f	y� x�� � � �xm� ��� � � � � �n
 �� �

where f is a nonzero polynomial with coe�cients in Z�pZ� It su�ces to
show that #	y
 is satis�able in N � Since N is ���saturated we only need
to show that #	y
 is �nitely satis�able in N � So� let #�	y
 be a �nite
subset of #	y
� There exists an integer d such that every polynomial which
�appears in� in #�	y
 has degree at most d in y� Let N� be the sub�eld of
N generated by f��� � � ��ng � Y � N� is isomorphic to the �eld of rational
fractions K�	T 
 where K� is the prime �eld of characteristic p and where
T is a set of indeterminates of the same cardinality than f��� � � ��ng � Y �
There exists an irreducible polynomial g	u
 of K�	T 
�u� of degree d�� 	one
may consider the polynomial ud��� t for a t � T 
� Since N is algebraically
closed it follows that there exists an element � in N of degree d � � over
N�� By de�nition of d this element satisfy #�	y
� This completes the proof
of the proposition� �

We are now ready to prove Theorem ��� for K� First we note that
there exists a formula �	x� y
 of L� such that if X is a �nite subset of
K linearly ordered by �� then in the associated L��structure 	K�X
 the
subset of K� de�ned by �	x� y
 is de�nable in K and is connected i� jX j
is even� Such a formula is constructed in Section �� Assume that there
exists a sentence F 	I�
 of Lrings � fI�g such that if A is a de�nable subset
of K�� 	K�A
 j� F 	I�
 i� A is connected� We denote by F 	�
 the sentence
of L� obtained from F 	I�
 by replacing each occurrence of I� by �� We
shall obtain a contradiction by showing that T ��fF 	�
g and T ��f
F 	�
g
are consistent theories� This is absurd because� by Proposition ���� T � is
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complete� Let ! be a �nite subset of T �� By Proposition ���� there exists a
�nite subset X of K of even cardinality such that given a linear order on X �
the L��structure 	K�X
 j� !� Moreover� since X is �nite of even cardinality
the set de�ned by �	x� y
 in 	K�X
 is connected and de�nable in K� thus
	K�X
 j� F 	�
� By Proposition ���� there also exists a �nite subset Y of
K of odd cardinality such that given a linear order on Y � the L��structure
	K� Y 
 j� !� Again� since Y is �nite the set de�ned by �	x� y
 in 	K� Y 
 is
de�nable in K� But� since jY j is odd� 	K� Y 
 j� 
F 	�
� We have shown that
for every �nite subset ! of T �� !� fF 	�
g and !� f
F 	�
g are consistent
theories� By compactness� T � � fF 	�
g and T � � f
F 	�
g are consistent
theories�

Note that the above proof works for sentence F 	I�
 without parameters
from K� In the case where F 	I�
 contains a tuple of parameters �� from K

a slight modi�cation of the theory T � yields a proof in this case� For if� we
add a tuple a constants in Lrings for naming the �i and instead of ACFp
we consider the theory of K in Lrings 	or equivalently we add to ACFp the
diagram of ��
� Moreover� in the new theory T � we say that the elements
of I� are algebraically independent over ��� Then� Proposition ��� holds for
this theory T � 	with essentially the same proof� we just need to work over
��
�

� Elimination of Parameters

Let K be an algebraically closed �eld� Let P be a property of Kn de�ned by
a sentence F in the language Lrings � fIng with parameters in K� One may
ask to which extent it is possible to eliminate the parameters� i�e�� to de�ne
P by a sentence F in the language Lrings � fIng without parameters� More
generally� given a sub�eld k � K� one may try to de�ne P with parameters
in k only�

We have mentioned at the end of section � that Parity remains unde�n�
able in the presence of parameters� In this section� we show that parameters
can be eliminated for a large class of properties 	in fact this class is as large
as possible
� In order to investigate the de�nability of a property in this
class� one is therefore free to focus on parameter�free de�nability�

Let k be a sub�eld of K and let P be a family of de�nable subsets of
Kn� We say that P is locally de�nable with parameters in k if for every
	parameter�free
 formula �	x�� � � �xn� y�� � � � � yl
 of Lrings� there exists a for�
mula �	�y
 of Lkrings such that for all a � Kl� �	K� a
 � P i� K j� �	a
 	here
�	K� a
 is the subset of Kn de�ned by the formula �	�x� a

� Let us give an
example 	one can also prove this lemma for irreducible closed sets
�

Lemma 	�� The family of closed sets of an algebraically closed �eld is lo�
cally de�nable without parameters� More precisely� for every �parameter�
free� formula �	x�� � � �xn� y�� � � � � yl
 of Lrings� there exists a parameter�free
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formula �	�y
 of Lrings such that if L is an algebraically closed �eld� then for
all a � Ll� the set de�ned by �	�x� a
 in L is closed i� L j� �	a
�

Proof� Since the theory of algebraically closed �elds admits quanti�er elim�
ination� we may assume that � is quanti�er�free� if �	L� a
 is closed� then
�	L� a
 is of pseudo�degree � D for a D which depends only on �	�x� �y
�
We may apply Proposition ��� 	which does not depend on the �eld under
consideration
 to complete the proof of the lemma � replace In	�x
 by �	�x� �y

in the formula of Proposition ���� �

Clearly� if P is de�nable with parameters in k it is also locally de�nable
with parameters in k� In this section we show that the converse is true�

Theorem 	�� Let k be a sub�eld of K� A de�nable property of Kn is de�n�
able with parameters in k if and only if it is locally de�nable with parameters
in k�

We �rst eliminate algebraic parameters�

Lemma 	�� Let P be a property of Kn which is de�nable with parameters
in an algebraic extension k��� of a �eld k � K� If P is locally de�nable with
parameters in k� it is also de�nable with parameters from k only�

Proof� Let m be the minimal polynomial of � over k� Property P is de�ned
by a formula F 	�
 where the parameters of F 	z
 are in k� We claim that
this property is also de�ned by the following formula G�

�� �m	�
 � �� F 	�
��

Let X be a de�nable subset of Kn� If 	K�X
 j� G it is clear that 	K�X
 j�
F 	�
 	take � � �
� Conversely� assume that 	K�X
 j� F 	�
 and that X is
de�ned by a formula �	�x� a
 where a � Kl� Since P is locally de�nable with
parameters in k� there exists a formula �	�y
 with parameters in k such that

�b � Kl �K j� �	b
 i� 	K� �	K� b

 j� F 	�
�� 	�


Let # be the set of element of K which can �play the role� of � in 	�
� That
is� 	 � # if and only if 	 satis�es the following formula #	z
 of Lrings

��y ��	�y
� F�
�x��y�	z
� 	�


where F�
�x��y� is the formula obtained from F by substitution of �	�x� �y
 to
In� Since 	�
 has parameters in k and is satis�ed by �� it is also satis�ed by
the conjugates of �� Since �	a
 holds true� this implies in particular that

�� �m	�
 � �� F�
�x�a�	�
��

that is� 	K�X
 j� G� �
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We now eliminate algebraically independent parameters�

Lemma 	�� Let P be a property of Kn which is de�nable with parameters
in an extension k	�
 of a �eld k � K� where � � 	��� � � � � �m
 is a tuple
of elements of K which are algebraically independent over k� If P is locally
de�nable with parameters in k� it is also de�nable with parameters in k only�

Proof� Property P is de�ned by a formula F 	�
 where the parameters of
F 	�z
 are in k� We claim that 	K�X
 j� F 	�
 if and only if 	K�X
 j� F 	�

for a generic �� This will prove the theorem since� as we have seen in section
� 	see the proof of Proposition ���
� P can then be de�ned by

�t�� � � � � tm�� � Km �� � Km

k���

i	�

F 	� � ti
�

The proof of the claim is similar to the proof of Lemma ���� Let
�	x�� � � � � xn� �y
 be a parameter�free formula� Since P is locally de�nable
with parameters in k� there exists a formula �	�y
 with parameters in k such
that

�b � Kl �K j� �	b
 i� 	K� �	K� b

 j� F 	�
�� 	�


Consider the formula #	z�� � � � � zk
 of Lrings

��y ��	�y
� F�
�x��y�	�z
�� 	�


Since 	�
 has parameters in k and is satis�ed when �z � �� it is satis�ed by a
generic � � Km� Hence for a generic � and any a � Kl� 	K� �	K�a

 j� F 	�

if and only if 	K� �	K� a

 j� F 	�
� �

One can also use the special case m � � to prove the lemma by induction
on m 	this does not result in any signi�cant simpli�cation
�

Proof of Theorem ���� Using Lemma ��� repeatedly� we can assume that
P is de�nable with parameters in k � f��� � � � � �mg where ��� � � � � �m are
algebraically independent over k� We eliminate ��� � � � � �m with Lemma ����
�

Problem 	�� Is Theorem ��� still true for R �

We conclude this section with an application of Theorem ��� 	which
holds as well for irreducible closed sets
�

Corollary 	�	 Let p be prime or equal to zero� Assume that there exists an
algebraically closed �eld K of characteristic p such that the family of closed
sets of Kn is de�nable� Then� there exists a parameter�free sentence F 	In

which de�nes the family of closed set of Ln for every algebraically closed
�eld of characteristic p�

��



Proof� By Theorem ��� and Lemma ��� if the family of closed set of Kn

is de�nable� then it is de�nable with a sentence F 	In
 without parameters�
Then� using Lemma ��� again and the fact that two algebraically closed �elds
of same characteristic are elementarily equivalent� it is easy to see that F 	In

de�nes the family of closed set of Ln for every algebraically closed �eld of
characteristic p� �

� De�nable Sets over Finite Structures

Again in this section K is an algebraically closed �eld� Let L� �
fR�� � � � � Rug be a �nite set of relational symbols with Ri of arity ri� Let
$	x�� � � � � xn
 be a formula of LKrings � L�� Given for each Ri a �nite subset
Xi of K

ri � if we interpret Ri by Xi� the formula $	�x
 de�ne a subset of Kn

which is de�nable by a formula of LKrings� We denote by X the family of all
these possible de�nable subset of Kn�

To show that connectivity is not a de�nable property of K�� we have
shown that there exists a family of the form X 	with L� � fI�� �g
 such
that there exists no sentence F 	I�
 that can recognize the connected sets
in X� The point is that if such a sentence exists� then� roughly speak�
ing� a given class of �nite L��structures 	totally ordered structure of even
cardinality
 becomes �nitely axiomatisable in a given world 	which yields a
contradiction
�

For closed sets the situation is di�erent� We say that a formula
$	x�� � � � � xn
 of LKrings � L� is of type 	m� d
 if it is equivalent to a for�
mula in prenex form which contains at most m quanti�ers and where every
polynomial f	�x� �z
 of K��x� �z� which appears in this formula is of degree � d�

Theorem 
�� Let n� d�m be three integers � �� There exists a sentence
Fn�m�d of Lrings � fIng such that if L� is a �nite set of relational symbols
and if $	x�� � � � � xn
 is a formula of LKrings � L� of type 	m� d
 then � if
X � X� X is closed if and only if 	K�X
 j� Fn�m�d�

This result gives a kind of strengthening of Lemma ���� Of course�
Theorem ��� no longer holds if we replace �X is closed� by �X is connected��
The main point in the proof is the following result�

Proposition 
�� There exists a function B of N� N into N such that the
following holds� Let �	x�� � � �xn
 be a formula of the form

Q�z� � � �Qmzm ��	x�� � � �xn� z�� � � �zm


where the Qi are � or � and where �� is a boolean combination of atomic
formulas of the form f	�x� �z
 � � where f is a polynomial of K��x� �z� of
degree � d� Then� �	x�� � � �xn
 is equivalent to a quanti�er�free formula
�	x�� � � �xn
 which is a boolean combination of atomic formulas of the form
f	�x
 � � where f is a polynomial of K��x� of degree � B	m� d
�

��



In fact for the proof of Theorem ��� we only need of a bound which
depends only on m� d and n� However it is not more di�cult to obtain a
bound which depends only on m and d� Note that the usual bound depends
on m�n and the sum of the degree of the polynomials which appear in
the formula� The proof below shows that we may take for B the function
	d��
��

m
	using the best available bound for Hilberts Nullstellensatz ����
�

One can prove that there is no simply exponential bound� However� one can
hope to prove the existence of a bound of the form 	d��


Q
O
mi� in the case

where� in the formula of the proposition� zi is a tuple of variable of length
mi 	i�e�� one can hope to obtain a simply exponential bound if the number
of alternation of quanti�er is �xed
� Note that such a bound is known to
be true in the case of real�closed �elds in the language of ordered rings 	see
��� and in this case the other �complexity parameters� are quite optimal
�
However� we have not found such a result for algebraically closed �elds
neither Proposition ��� in the literature 	see ���� for the �faster� algorithm
for algebraically closed �elds
� One possible reason is that it is perhaps
di�cult to obtain such results if one want to keep reasonable bounds on the
other �complexity parameters��

Proof of Proposition ���� It is easy to see that we may assume that
�	x�� � � �xn
 is of the form �z ��	�x� z
 where �� is equal to

s�

i	�

fi	�x� z
 � � 	
t�

i	�

gi	�x� z
 �� �

where the degree of the fi and the gi are � d� We may also assume that
d � �� We write�

fi	�x� z
 �
X

j

pj�i	�x
z
j and gi	�x� z
 �

X

j

qj�i	�x
z
j �

We denote by 
	�x
 the formula

�

i�j

pj�i	�x
 � �

and we denote by �	�x
 the formula

�

i

	
�

j

qj�i	�x
 �� � 
�

For a a � Kn� K j� 
	a
 i� fb � K jK j�
Vs
i	� fi	a� b
 � �g is equal

to K� Moreover� if K j� 

	a
� then the above set is �nite of cardinality
� d since it is the intersection of zero sets of non�zero polynomials in one
variable of degree � d� On the other hand� For a a � Kn� K j� �	a


��



i� fb � K jK j�
Vs
i	� gi	a� b
 �� �g is nonempty 	the intersection of two

co�nite subsets of K is co�nite
�
Let us �rst assume that t � d� For a subset I of f�� � � �tg we denote by

�I	�x
 the formula

�z
s�

i	�

fi	�x� z
 � �	
�

i�I

gi	�x� z
 �� ��

Then� we consider the formula ��	�x


	 
	�x
 	 �	�x
 
 � 	 

	�x
 	
�

I�f�����tg and jIj	d

�I	�x
 


Let us prove that �	�x
 is equivalent to ��	�x
� Let a � Kn� It is clear that
if K j� �	a
� then K j� ��	a
� Assume that K j� 
�	a
� If K j� 
	a
� then
K j� 
�	a
 and clearly K j� 
��	a
� Thus we assume that K j� 

	a

and the set B � fb � K jK j�

Vs
i	� fi	a� b
 � �g is �nite of cardinality

� d� Since K j� 
�	a
� for all b � B there exists a ib � f�� � � �tg such that
gib	a� b
 � �� Thus there exists a subset I of f�� � � �tg of cardinality d such
that K j� 
�I	a
� It follows that K j� 
��	a
�

The above paragraph shows that to prove the proposition we may assume
that t � d� Then� the formula � is equivalent to the formula�

�zw
s�

i	�

fi	�x� z
 � �	 g	�x� z� w
 � �

where g	�x� z� w
 � 	
Qt

i	� gi	�x� z


w� �� The point is that since t � d the
degree of g is � d� � ��

Now we apply the �e�ective� Hilbert Nullstellensatz of ���� 	see ��� for a
similar bound and a more elementary proof� moreover� if one only wants to
prove the existence of B one may use ��� or the bound of G� Hermann with
the proof of ����
� The negation of �	�x
 is true i� there exists polynomials
h�	z� w
� � � �hs	z� w
� hs	z� w
 with coe�cients in the �eld of fractions ofK��x�

and of degree 	in z and w
 � 	d� � �
�
def
� d� such that gh�

P
i fihi � ��

Thus� the negation of �	�x
 is true i� a system 	 
 of u � 	d� � �
	d� �

�
��
def
� d� equations in v � 	s � �
d� unknowns has a solution in the �eld

of fractions K��x�� Let A � 	ri�j	�x

��i�u� ��j�v be the matrix associated to
the homogeneous system and let B be the matrix of 	 
 	i�e�� the matrix
constituted of A plus a column of zeros and one �
� The polynomials ri�j	�x

which appear in A andB come from the coe�cients of the fi and of g 	viewed
as polynomial in z and w
� They are of degree � d�� Moreover� 	 
 has a
solution i� rank	A
 � rank	B
� The condition rank	A
 � r is equivalent
to 	i
 there exists a r � r sub�matrix of A with a nonzero determinant and
	ii
 every 	r��
�	r��
 sub�matrix of A has a zero determinant 	or r � u
�

��



Thus� since r should be � d�� the condition rank	A
 � r is equivalent to
a quanti�er free formula Ar 	�x
 which is a boolean combination of atomic
formulas of the form f	�x
 � � where f is of degree � d�d

�� We have the
same kind of formulas Br 	�x
 for B� Then� 
�	�x
 is equivalent to the formula

u�

r	�

	 Ar 	�x
 	 
B
r 	�x
 
�

Thus� �	�x
 is equivalent to a quanti�er�free formula which is a boolean
combination of atomic formulas of the form f	�x
 � � where f is of degree
� d�d

�� This completes the proof since d�d
� depends only on d� To get a

compact bound one may check that d�d
� � 	d� �
��� �

It is possible to use more elementary GCD computations instead of the
e�ective Nullstellensatz in the proof of this proposition�

Corollary 
�� Let m� d be two integers � �� There exists an integer B
such that if L� is a �nite set of relational symbols� if $	x�� � � � � xn
 is a
formula of LKrings � L� of type 	m� d
 and if X � X� then X is de�ned by
a quanti�er�free formula which is a boolean combination of formulas of the
form f	�x
 � � where f is a polynomial of K��x� of degree � B�

Proof� We may assume that $ is in prenex form �

Q�z� � � �Qmzm $�	x�� � � �xn� z�� � � �zm


with $� quanti�er�free and where the polynomials which appear in $�

is of degree � d� Set B � B	m� d
 where B is the function of the
above proposition� Let X�� � � �Xu be �nite interpretations of P�� � � �Pu�
Then� the set that $	�x
 de�nes is de�ned by a formula of LKrings
Q�z� � � �Qmzm ��	x�� � � �xn� z�� � � �zm
� This formula is obtained from
$ by replacing each occurrence of a subformula of $� of the form
Pi	f�	�x� �z
� � � �fri	�x� �z

 by a formula of the form

�

�a�Xi

ri�

j	�

fj	�x� �z
 � aj �

Clearly� the degree of the polynomials which appear in �� are bounded by
d� The above proposition completes the proof� �

Proof of Theorem ���� Immediate consequence of the above corollary�
Lemma ��� and Proposition ���� �

Again� one can prove Theorem ��� for irreductible closed sets�

��
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