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We prove that there exists no sentence F of the language of rings with an extra binary predicat I 2 satisfying the following property: for every de nable set X C 2 , X is connected if and only if (C X ) j = F where I 2 is interpreted by X. W e conjecture that the same result holds for the closed subsets of C 2 . W e prove some results motivated by this conjecture.

Introduction

There is a recent and fairly large body of work on the de nability of \geometric" properties in rst-order logic, originally motivated by database research (geographic databases in particular). We refer the reader to 4] and 12] for an introduction to this subject and a guide to the literature. The structures which h a ve been most studied from this point of view are the integers and the reals with various sets of operations. In this paper, we begin a study of de nability o ver the complex numbers and algebraically closed elds. Since these questions are mathematically interesting in their own right, we h a ve chosen to use a language which m a y be more appealing to readers who do not specialize in geographic databases.

For us, a property is just a family of de nable sets of K n , where K is a eld and n is some xed constant. Here de nable means de nable by a rst-order formula (with parameters) of the language of rings : L rings = f= + ; 0 1g: By elimination of quanti ers, these sets are the constructible sets of algebraic geometry if K is algebraically closed they are the semi-algebraic sets if K is real-closed. Here are two examples of properties:

1. The family of de nable sets of C 4 which are of dimension 2. 2. The family of connected de nable subsets of C 2 . It turns out that Property 1 is de nable but Property 2 isn't. Formally, i n order to de ne properties in K n we w ork in the language L K rings enriched with a n-ary predicate I n (if L is a language and if M is an L-structure, L M is L with constants naming the elements of M). The property de ned by a rst-order sentence F in this language is the family of de nable sets X K n such that F is true when I n is interpreted by m e m bership to X (in this case we write: (K X) j = F).

We shall give examples of de nable properties in section 2. The main result of this paper is that Connectivity i n C 2 is not de nable. That is: Theorem 1.1 There exists no sentence F of L C rings f I 2 g satisfying the following property: for every de nable set X C 2 , X is connected i f a n d only if (C X ) j = F.

It is easy to see that the above theorem implies that connectivity i s n o t de nable for the de nable subsets of C n whenever n 2. In fact we shall prove that there exists no sentence F of L C rings f I 2 g satisfying the following property: for every de nable set X C 2 which can be written as a nite boolean combination of points and lines, X is connected if and only if (C X ) j = F (the same result is known to be true in R 2 for nite unions of line segments 12]). However, it is shown in the next section that there exists a sentence F(I 2 ) such that if X is a nite union of points and lines in C 2 , then X is connected i (C X ) j = F(I 2 ). A variation on the proof of Theorem 1.1 shows that no such s e n tence exists in dimension higher than 2.

We present in section 3 a basic geometric construction (reduction from Parity to Connectivity) which is used in the three proofs of Theorem 1.1 that we shall give. A proof of Theorem 1.1 follows by reduction to the real case and by the fact that Parity is not de nable over the reals 4]. We g i v e a second proof in section 4. As a byproduct, we obtain a strengthening of the result that Parity is not de nable over the reals: Parity remains unde nable even if we restrict our attention only to those subsets X of R which are made only of integers, with distance at most 2 between two consecutive elements of X. The proof of this result uses the equivalence between active and natural semantics over the reals 5] and the fact that Parity is not in AC 0 . See 1, 1 1 , 2 2 , 14] for original proofs of this important theorem of complexity theory, and 18] ( c hapters 6.12 and 6.13) for an elementary proof and further references. A self-contained model-theoretic proof of Theorem 1.1 is given in section 5. This last proof works also for algebraically closed elds of positive characteristic.

At this stage, it is perhaps useful to make a few remarks of a topological nature. We can view C n with the strong (euclidean) topology or the Zariski topology. Note rst, that for de nable sets to be closed in the strong topology is the same thing as to be closed in the Zariski topology. Clearly, a de nable set which is connected in the strong topology has to be connected in the Zariski topology. Moreover, one can use the fact that an irreducible Zariski-closed set is connected for the strong topology (see 21, Chapter VII]) to show that the converse is also true. These two notions of connectivity a r e therefore equivalent.

We propose the following problems.

Conjecture 1.2 Let K be a n a l g e b r aically closed eld.

(a) The family of closed de nable subsets of K 2 is not de nable. (b) The family of closed irreducible de nable subsets of K 2 is not de nable.

Note that in a real-closed eld R, the family of closed (for the order topology) de nable sets of R n is obviously de nable.

The above conjecture makes precise an intuition that some logicians have regarding the Cherlin-Zil'ber conjecture. We recall that the Cherlin-Zil'ber conjecture states that a simple group of nite Morley rank is an algebraic group over an algebraically closed eld (see 7]). This conjecture essentially says that if G is a simple group of nite Morley rank, then we can recover the Zariski topology of G from its de nable subsets. This is surely not an easy task and Conjecture 1.2 claims that this is not possible using a rst-order sentence in the case of an algebraically closed eld.

The last two sections of this paper were motivated by Conjecture 1.2. In Section 6, we s h o w that when a property of an algebraically closed eld K is de nable with a formula with parameters in K, if there is any h o p e of eliminating these parameters then this can be done (we l e a ve i t a s a n open problem whether the same result holds in real-closed elds). It follows that Conjecture 1.2 depends only on the characteristic and not on a speci c algebraically closed eld. In the last section, we show that the method used to prove that Connectivity is not a de nable property cannot solve Conjecture 1.2. Namely, w e show that for certain families of de nable sets of K n closedness is de nable. These families are, roughly speaking, the families of de nable sets which can be de ned by a formula with \parameters in a class of nite structures". The main tools in this section is a result of quanti er elimination where the degree of the polynomials in the quanti erfree formula depends only on the number of quanti ers and the degree of the polynomials in the quanti ed formula. Surprisingly, s u c h a result does not seem to appear in the literature.

Finally, w e w ould like t o p o i n t out that many unde nability results in rst-order logic hinge on the fact that the property under consideration (e.g., parity or connectivity) is not \local." However, closedness is a local property. This explains perhaps why it seems di cult to tackle Conjecture 1.2 with standard techniques.

Examples of De nable Properties

In this section we give some examples of de nable properties. We x a n algebraically closed eld K.

Proposition 2.1 The family DIM n d of d-dimensional de nable subsets of K n is de nable without parameters.

Proof. We consider rst the case d = n. A de nable subset of X K n has dimension n (i.e., is dense in K n ) if and only if K n can be covered by n + 1 translates of X (see 16], Theorem 4.8 for a proof this is probably well known from model theory). Hence DIM n n is de ned by the following formula:

9t 1 : : : t n+1 2 K n 8v 2 K n n+1 _ i=1 I n (v ; t i ):
(1) For d < n , w e use the fact that X has dimension at least d if and only if it has a dense projection on some d-dimensional coordinate subspace. Hence dimX d can be expressed by a disjunction of ; n d formulas of the form (1) (projecting X amounts to adding an existential quanti er in front o f I n ). A formula for dimX = d follows immediately. 2

This implies that connectivity is de nable in K since a de nable set X K is connected if it is one-dimensional or has a single element. This also implies that closedness is de nable in K since a de nable set X K is closed if it is zero-dimensional or equal to K. Proposition 2.2 The following properties of de nable subsets of K 2 are de nable.

1. X is a nite union of points. 2. X is a nite union of lines. 3. X is a nite union of points and lines. 4. X is connected, and is a nite union of points and lines.

Proof. We will only give informal descriptions of the required formulas. Supplying the details should be straightforward.

1. Follows immediately from Theorem 2.1.

2. X is a union of lines i for every x 2 X there exists a line X which goes through x. The \ nite union" condition can be enforced by requiring X to be of dimension 1.

3. This is equivalent to a conjunction of two conditions: (a) X has dimension 1. (b) If we r e m o ve from X all points x such that there exists a line X going through x, the remaining set is 0-dimensional.

A formula for condition (b) can thus be obtained from DIM 2 0 by replacing each occurrence of I 2 (x) in this formula by I 2 (x) :line(x),

where line(x) expresses that there exists a line X going through x. [START_REF] Basu | On the combinatorial and algebraic complexity of quanti er-elimination[END_REF]. A nite union of points and lines is connected i one of the following conditions holds:

(a) X is reduced to a single point. (b) X is reduced to a single line.

(c) X is a nite union of at least 2 lines, and there exists no line D such that all lines X are parallel to D. 2 These observations lead to many i n teresting questions. For instance, one can ask whether connectivity is de nable for closed de nable subsets of K 2 . Or, restricting our attention to a special class of closed sets, we can make the following de nition: let us say that a closed subset of K n has pseudo-degree d if it is a nite union of closed sets de ned by systems of polynomial equations of degree at most d. Then, given d 2, one can ask whether connectivity is de nable for closed subsets of K 2 of pseudo-degree d (for n 3 and d 1, we can answer this question by the negative using a v ariation of the construction in section 3).

We shall need the following bound. If X is a closed set of K n de ned by polynomial equations of degree d, then the irreducible components of X can be de ned by polynomial equations of degree D where D depends only on n and d (see 20, n o 65] and 9, 2.10.v] for more general results which imply this bound). The rst consequence of this bound is that if X is a closed set of K n of pseudo-degree d, then X is a nite union of irreductible closed sets de ned by polynomial equations of degree D. The second one is that we c a n s a y in a rst-order formula \there exists an irreductible closed set W of K n de ned by polynomial equations of degree d". Indeed, note rst that if a closed set is de ned by polynomial equations of degree d, then it can be de ned by c polynomial equations of degree d where c = ; d+n d (since c is the dimension of the K-subspace of polynomials of degree d in K x 1 : : : x n ]). Then we considere the following sentence : \There exist c polynomials f i of degree d such that for any familly of ; D+n D polynomials g i of degree D, if the closed set W de ned by the f i contains the closed set Y de ned by the g i and if these sets have the same dimension, then Y = W". This can be expressed with a rst-order formula by quanti ng the coe cients of polynomials and using Proposition 2.1.

The following result will be useful in Section 6 and 7.

Proposition 2.3 Let d and n be i n t e gers 1. There exists a formula F of L rings f I n g such that for any de nable set X K n the two following properties hold:

(i) If X is closed of pseudo-degree d then (K X) j = F. (ii) If (K X) j = F then X is closed.
Proof. We consider the following \algorithm".

Step 0: check whether dimX n ; 1. If not, then accept X if X = K n , reject X if X 6 = K n .

Step i (1 i n ; 1): Let X i be the set obtained from X by removing every point x 2 X such that there exists a closed irreducible set W X of dimension at least n ; i de ned by polynomials of degree D such that x 2 W (here D depends only on n and d as explained before the Proposition).

If the dimension of X i is n ; i reject. If not, then if i = n ; 1 accept X and if i < n ; 1 goto step i + 1 . We claim that this algorithm accepts all de nable subsets of K n which are closed of pseudo-degree d, and that conversely any de nable subsets of K n accepted by the algorithm must be closed. This will imply the Proposition since we can then use Proposition 2.1, the remark before the statement of the proposition and the algorithm to construct a formula F satisfying (i) and (ii).

Let us now p r o ve the claim. Assume rst that X is closed of pseudodegree d, and write X = j2J B j where B j is a closed irreducible set de ned by polynomial equations of degree D. L e t x 2 X be a point lying on a component B j with dimB j n ; i. Then x 6 2 X i since we can take W = B j at step i of the algorithm. This shows that dimX i n ; i ; 1, and therefore X is not rejected at step i and is eventually accepted after step n ; 1.

Assume now that X is a de nable (i.e., constructible) set accepted by the algorithm. In order to prove that X is closed, we will show b y induction on i that Y i = fx 2 X dim x X n;ig is closed for any 0 i n;1. This is clear for i = 0 since either Y 0 = or Y 0 = K n (by step 0 of the algorithm). Induction step: assume that the result is true for i ; 1. There is nothing to prove i f Y i = Y i;1 . Note that since X is constructible, Y i is also constructible. Let us now examine the case i = Y i n Y i;1 6 = (note that dim i = n ; i since i = fx 2 X dim x X = n ; ig). Let F be the family of closed irreducible sets W X of dimension n ; i de ned polynomials of degree D such that W \ i 6 = . In fact W 2 F must be of dimension exactly n;i since dim x X = n;i for any x 2 i (and in particular for x 2 W \ i ).

We shall see that F is nite and Y i = Y i;1 S W2F W (implying that Y i is closed as claimed). The inclusion from right to left is clear since W Y i for any W 2 F (this follows from: dimW = n ; i, W irreducible, and W X).

This inclusion implies that S W2F (W n Y i;1 ) i . E a c h t e r m W n Y i;1 in the left-hand side has dimension n ; i. This follows from dimW = n ; i, W irreducible and W6 Y i;1 (which f o l l o ws in turn from W \ i 6 = ). Since i has dimension n ; i too and is constructible, we conclude that F must be nite. In order to establish the inclusion Y i S W2F W, w e need to show that i S W2F W. Assume to the contrary that there exists x 2 i such that x6 2 S W2F W. Since F is nite, there exists a Zariski open set O (containing x) such that ( i \ O) \ S W2F W = . By de nition of F, this implies that i \ O X i . This is a contradiction since dim( i \ O) = n ; i and dimX i < n ; i by h ypothesis. 2 Lemma 2.4 Let (x 1 : : : x n ) be a quanti er-free formula which is a boolean combination of formulas of the form f( x) = 0 where f is a polynomial of K x] of degree d. If the set de ned b y ( x) is closed, then its pseudo-degree i s D where D depends only on n and d.

Proof. Assume that is of the form _ j ( s j î f i j ( x) = 0 ^gi j ( x) 6 = 0 ) : Denote by X the set de ned by ( x). Let F j be the closed set de ned by the polynomials f i j ( x), i = 1 : : : s j . Then, X is a union of sets of the form V \ O where V is an irreducible component of one of the F j and where O is a nonempty open subset of K n . Note that the closure of such a set is equal to V whenever V \ O 6 = . Assume that X is closed. Then, X is a union of the closure of certain set V \ O where V is an irreducible component o f one of the F j and where O is a nonempty open subset of K n . T h us, X is a union of certain irreducible components of the F j . Since the F j are de ned by polynomial equations of degree d , X is of pseudo-degree D where D depends only on n and d. 2

Parity from Connectivity

A family (G n ) n 1 of undirected graphs on the set of vertices f1 : : : n g will play an important role. There is an edge between vertices i and j in G n if ji ; jj = 2 o r i = 1 and j = n. One checks easily that G n is connected only when n is even. Given a nite set X = fa 1 : : : a n g K, w e n o w construct a \geometric realization" S X K 2 of G n as a boolean combination of points and lines in K 2 . This set is a geometric realization of G n in the following sense:

1. The points A i = ( a i 0) belong to S X (A i represents vertex i of G n ). 2. There exists a path in S X between A i and A j which does not go through any o t h e r A k if and only if (i j) 2 G n . Let V i be the vertical line of equation x = a i , and D j the line x + y = a j . Let us remove f r o m V i and D j the intersection point V i \ D j whenever both i 6 = j and (i j)6 2G n . This yields one-dimensional sets V 0 1 D 0 1 : : : V 0 n D 0 n .

We take S X to be the union of these 2n sets.

Proposition 3.1 S X is connected if and only jXj is even.

Proof. For jXj even, consider the arrangement of these 2n (connected) sets in the following order:

D 0 2 V 0 2 D 0 4 V 0 4 V 0 2i D 0 2i+2 V 0 2i+2 D 0 n V 0 n D 0 1 V 0 1 D 0 3 V 0 3 V 0 2i;1 D 0 2i+1 V 0 2i+1 D 0 n;1 V 0 n;1 :
By construction, two consecutive sets in this sequence have a nonempty intersection. Their union is thus connected. This can be proved as follows.

Let U and V be two Zariski-closed subsets of K 2 such that S X U V and S X \ U \ V = . W e n e e d t o s h o w that either S X U or S X V . Since D 0 2 S X U V , D 0 2 \ U 6 = or D 0 2 \ V 6 = . Assume for instance that D 0 2 \ U 6 = . Since D 0 2 is connected, this implies that D 0 2 U. Hence V 0 2 \ U 6 = since D 0 2 \ V 0 2 6 = . V 0 2 being connected too, this implies that V 0 2 U as well. This process can be continued until we h a ve shown that the 2n sets in the above sequence are all included in U.

For n odd, let C 1 be the union of the n + 1 lines D 1 V 1 D 3 V 3 : : : V 2i;1 D 2i+1 V 2i+1 : : : D n V n and C 2 the union of the n ; 1 lines D 2 V 2 D 4 V 4 : : : V 2i D 2i+2 V 2i+2 : : : D n;1 V n;1 : S X is included in the union of these two nonempty closed sets, and the intersection S X \ C 1 \ C 2 is empty. This implies that S X is not connected. 2

Assume now that we h a ve a total order on X, a n d a 1 < a 2 < a n . We can then construct rst-order formulas in the language L rings f I 1 < g (where I 1 is a predicate for X and < is a predicate for an order on X), min(x), max(x) and succ(x y) expressing respectively that x = a 1 , x = a n , x = a i and y = a i+1 for some i 2 f 1 : : : n ; 1g: min(x) I 1 (x) 8 y 2 I 1 (x = y _ x < y ) max(x) I 1 (x) 8 y 2 I 1 (x = y _ y < x ) succ(x y) I 1 (x) ^I1 (y) 8 z 2 I 1 :(x < z < y ): Membership of a point ( x y) 2 K 2 to the union of the V 0 i 's is expressed by a formula V (x y) of the form: 9z 2 I 1 x = z 8 t 2 I 1 (z = t _ edge(z t) _ edge(t z) _ x + y 6 = t)] where edge(z t) stands for:

(min(z) ^(max(t)) _ 9 u 2 I 1 (succ(z u) ^succ(u t)): The construction of a similar formula D (x y) for membership to the union of the D 0 i 's is left to the reader. Membership to S X is then de ned by = V _ D .

One problem with the above construction is that if we w ork with an algebraically closed eld in the language L rings f I 1 g, there is no way t o construct a total order on an arbitrary nite X (however, a related construction over the reals can be used to show that Connectivity is not de nable in R 3 ).

In the case where K = C it is possible to circumvent this di culty b y performing a reduction to the real case. Proposition 3.2 There exists a formula (x 1 x 2 x 3 x 4 ) of L rings f I 1 g which satis es the following property. For any nite set X R, let X be the subset of C 2 (identi ed t o R 4 ) de ned b y when I 1 is interpreted b y membership to X. Then X is a de nable subset of C 2 , a n d X is connected if and only if jXj is even.

Proof. We use the formula constructed above, with the order on X induced by the real order which is de nable by : x < y i 9z y ; x = z 2 ^z 6 = 0 . If X is xed, then one easily see that X de nes a de nable subset of C 2 using a formula with parameters in X. 2 Lemma 3.3 If Connectivity in C 2 is de nable, then Parity over R is de n- able, i.e., there exists a formula G of over L R rings f I 1 g which satis es the following property: for any nite set X R, (R X ) j = G if and only if jXj is even.

Proof. Let F be the formula of L C rings f I 2 g which de nes Connectivity. B y separating real and imaginary parts of variables and parameters in F, w e obtain a formula F 0 of L R rings f I 4 g which satis es the following property: whenever I 4 is interpreted by membership to a de nable subset S C 2 , (R S ) j = F 0 if and only if S is connected. Formula G is obtained from F 0 by replacing each occurrence of I 4 in this formula by f o r m ula from Proposition 3.2. 2 This proves Theorem 1.1 since Parity is not de nable over the reals 4]. As announced in the introduction, we g i v e a strengthening of this result in the next section. This yields an alternative proof of Theorem 1.1. In section 5 we will give a self-contained proof of this theorem which does not use any reduction to the real case. Note that we perform such a reduction in section 4 only because to this date, the equivalence between natural and active domain semantics has been established only for the reals (these notions are de ned in the next section).

From Complexity to Logic

This proof of Theorem 1.1 is by a series of reductions, beginning with a reduction from a restricted version of Parity to Connectivity. As mentioned in the introduction, we will be interested in de ning Parity only for a very special class of nite subsets X of C: those that are made only of integers with distance either one or two b e t ween two consecutive elements of X. L e t X be this class of subsets of N. Along the way, w e will give (in Theorem 4.4) a strengthening of the recent result 4] that Parity is not de nable over the reals: no rst-order formula can correctly \compute" Parity e v en if we restrict our attention to the input sets X that belong to X . The only property o f the reals which will be used for this result is the equivalence between active domain and natural domain semantics (see 5] for a nonconstructive proof, 6] for a constructive proof, and 2] for an e cient translation algorithm).

Let K be a eld, F a closed formula of L K rings f I 1 g and X K. F is said to be true under the active domain semantics (this is denoted X j = F) if this formula is true when I 1 is interpreted by m e m bership to X and the range of every quanti ed variable in F is taken to be X instead of the \natural domain" K. We refer to 5, 6, 2] for more details. The natural domain semantics (K X) j = F has already been de ned (for X K n ) i n t h e i n troduction and is the only semantics used outside this section. Note that the predicate I 1 is no longer needed under the active domain semantics. Proposition 4.1 There exists a formula (x y) of L rings f I 1 g which satis es the following property.

For any X 2 X , l e t X be the subset of C 2 de ned b y when I 1 is interpreted b y m e m b ership to X. T h e n X is connected if and only if jXj is even.

Proof. We use the formula constructed in section 3 (hence X = S X ), but here we de ne the predicates min, max and succ as follows: min(x) I 1 (x) : I 1 (x ; 1) : I 1 (x ; 2) max(x) I 1 (x) : I 1 (x + 1 ) : I 1 (x + 2 ) and succ(x y) I 1 (x) ^I1 (y) ^ y = x + 1 _ (y = x + 2 : I 1 (x + 1))]. 2

The following result is then clear. Lemma 4.2 If Connectivity in C 2 is de nable, there exists a formula G of L C rings f I 1 g which satis es the following property:

(*) for any X 2 X , (C X ) j = F if and only if jXj is even.

Proof. Let F be the formula of L C rings f I 2 g which de nes Connectivity: G is obtained from F by replacing each occurrence of I 2 by formula from Proposition 4.1. 2

If (*) holds, we s a y b y abuse of language that Restricted Parity is de nable. In a second reduction, we s h o w that if Restricted Parity is de nable, it is also de nable over the reals. This follows immediately from the next proposition.

Proposition 4.3 Let F be a formula of L C rings fI 1 g. T h e r e exists a formula G over L R rings f I 1 g such that for any nite set X R, (C X ) j = F if and only if (R X ) j = G. is true. It is clear that F can be evaluated from a by replacing each existential quanti er by a disjunction, and each universal quanti er by a conjunction. To be completely precise, one can de ne inductively the formulas F k (x 1 : : : x k ) G(x 1 : : : x k ) and F i;1 (x 1 : : : x i;1 ) Q i x i F i (x 1 : : : x i ) (note that F 0 = F). The 2 i;1 formulas F i;1 (x 1 : : : x i;1 ) are evaluated in parallel as follows. If Q i is existential, F i;1 (x 1 : : : x i;1 ) = _ x i 2Xu F i (x 1 : : : x i ) = n _ j=1 F i (x 1 : : : x i;1 j ) ^uj = 1 ] : Proof. By Proposition 4.7, Restricted Parity can be evaluated in AC 0 if it is de nable. The result then follows from a straightforward AC 0 reduction from Parity to Restricted Parity: map x 2 f 0 1g n to the code u 2 f 0 1g 3n satisfying u 3i;2 = u 3i;1 = 1 and u 3i = x i for i = 1 : : : n . 2

If Q i is universal, F i;1 (x 1 : : : x i;1 ) = x i 2Xu F i (x 1 : : : x i ) = n ĵ =1 F i (x 1 : : : x i;1 j ) _ u j =
The fact that Parity6 2AC 0 was used in 13] to show that Parity is not de nable with linear and order constraints (see also 12]).

A Logical Proof of Theorem 1.1

In this section we present a self-contained (and direct) proof of Theorem 1.1 modulo some basic model theory and eld theory (we refer the reader to 19] and 15] for the basic facts and notions from model theory that we shall used freely). Moreover, the proof works for an arbitrary algebraically closed eld. In this general case, we de ne connectivity using the Zariski topology.

Let K be an algebraically closed eld of characteristic p (prime or zero). We d e n o t e b y ACF p the theory of algebraically closed elds of characteristic p in L rings . ACF p is a complete theory. We denote by L the language L rings f I 1 < g where < is a binary predicate. We denote by ( M X) t h e L -structures where M is the base set and X is the interpretation of I 1 . W e do not stress the interpretation of < in the notation because we shall only consider L -structure where the interpretation of < is on I 1 .

Let T be the theory of L constituted by the following axioms: (i) the axioms of ACF p (ii) 8x y x < y ! I 1 (x) ^I1 (y) (iii) < is a linear order on I 1 and this order is discrete with a smallest and a largest element (iv) I 1 is in nite: for every n we consider the axiom 9x 1 : : : x n î 6 =j x i 6 = x j ^n î =1 I 1 (x i ) (v) the elements of I 1 are algebraically independent: for every non-zero polynomial f(x 1 : : : x n ) with coe cients in Z=pZ we consider the axiom 8x 1 : : : x n î 6 =j

x i 6 = x j ^n î =1

I 1 (x i ) ! f(x 1 : : : x n ) 6 = 0 :

Note rst that T is a consistent theory. Indeed, let L be an algebraically closed eld of characteristic p with in nite transcendence degree and let X be a transcendence basis of L. Fix on X a discrete linear order < with a smallest and a largest element. Then, clearly, ( L X) i s a m o d e l o f T .

The technical result of this section is the following proposition, which one may consider as folklore. Proposition 5.1 T i s a c omplete theory. Moreover, if is a nite subset of T , there exists an integer n such that for all integer m n there exists a subset X of K of cardinality m such that (K X) j = for an arbitrary linear order on X.

Proof. First we s h o w the second part of the proposition. It is easy to see that it su ces to prove that for every integer m and every nite family of non-zero polynomials f j (x 1 : : : x n j ), j = 1 : : : s , with coe cients in Z=pZ and with n j m indeterminates, K satis es the sentence 9x 1 : : : x m ^fj (x i 1 : : : x in j ) 6 = 0 : where the conjunction is taken over the j = 1 : : : sand the sequences (i 1 : : : i n j ) of distinct elements of f1 : : : m g. Since, K has an elementary extension with in nite transcendence degree such a s e n tence is always satis ed in K.

Now w e shall show that T is complete. We d e n o t e b y L 0 the sublanguage f= < g of L . Let (M X) and (N Y) b e t wo @ 0 -saturated models of T . Since any completion of T has an @ 0 -saturated model, it su ces to prove that (M X) and (N Y) are elementarily equivalent i n L . Clearly, t h e L 0 -structures X and Y are @ 0 -saturated models of the theory of discrete linear orders with endpoints. Since this theory is complete, by @ 0 -saturation, there exists a set 0 of L 0 -isomorphism 0 : X ;! Y where X is a nite L 0 -substructure of X and Y is a nite L 0 -substructure of Y, with the backand-forth property.

We consider the set of L -isomorphisms : ( M X) ;! (N Y) w h e r e (M X) i s a n L -substructure of (M X ) and (N Y) i s a n L -substructure of (N Y) s u c h t h a t : (i) the restriction of to X is an element o f 0 (ii) there exists a tuple 1 : : : n (possibly empty) in M algebraically independent o ver X and a tuple 1 : : : n in N algebraically independent o ver Y such that M is the algebraic closure of f 1 : : : n g X and N is the algebraic closure of f 1 : : : n g Y . To p r o ve that (M X ) and (N Y) are elementarily equivalent f o r L it sufces to prove t h a t i s n o n e m p t y and has the back-and-forth property.

Let us show that is nonempty. L e t 0 : X ;! Y be an element o f 0 . Since X and Y are constituted of algebraically independent elements of M and N respectively, 0 extends to a elds isomorphism from the algebraic closure M X of X in M into the algebraic closure N Y of Y in N. M o r e o ver, it is easy to see that M X \ X = X and that N Y \ Y = Y , t h us (M X X ) i s an L -substructure of (M X), (N Y) i s a n L -substructure of (N Y) and is in fact an L -isomorphism. Then, clearly, is an element o f .

Let us show that has the back-and-forth property. By symmetry it is enough to show that has the forth property. So, let : ( M X) ;! (N Y) be an element of and assume that M is the algebraic closure of f 1 : : : n g X where the i are algebraically independent o ver X and N is the algebraic closure of f 1 : : : n g Y where the i are algebraically independent o ver Y. Let be an element o f M. Let us denote by 0 the restriction of to X. O f c o u r s e w e m a y assume that is not in M and thus algebraically independent o ver M. Firstly, assume that 2 X . Since 0 has the forth property there exists a 2 Y such that the map ^ 0 : X f g ; ! Y f g which extend 0 and which s e n d on is in 0 . Note that is algebraically independent o ver N (N \ Y = Y since (N Y) i s a n L -substructure of (N Y)). Now, since is algebraically independent o ver M, extends to a elds isomorphism ^ from the algebraic closure M 0 of M f g into the algebraic closure N 0 of N f g which send on . S e t X 0 = X f g and Y 0 = Y f g. W e claim that M 0 \X= X 0 and that N 0 \Y= Y 0 . Indeed, let a 2 M 0 \X. Then, a is algebraic over f 1 : : : n g X 0 . Since the i are algebraically independent over X and since a 2 X it follows that a is algebraic over X 0 . T h us, a 2 X 0 because X is a set of algebraically independent elements. The same proof shows that N 0 \ Y = Y 0 . It follows that ^ is in fact an L -isomorphism between L -substructures of (M X ) and (N Y). Then, clearly, ^ is in .

Secondly, assume that is algebraic over M X . Then, there exist elements a 1 : : : a m of X such that is algebraic over M f a 1 : : : a m g.

Applying, m times the above c a s e w e obtain an element ^ : M 0 ;! N 0 of such that the a i are in M 0 . S i n c e M 0 is algebraically closed 2 M 0 .

Finally, assume that is algebraically independent o ver M X . N o t e rst that 1 : : : n are algebraically independent o ver X. Assume that we have found an element of N algebraically independent o ver N Y . T h e n , 1 : : : n are algebraically independent o ver Y. Moreover, we can extend to a elds isomorphism ^ : M 0 ;! N 0 which send on where M 0 is the algebraic closure of M f g and where N 0 is the algebraic closure of N f g. Again to show that ^ is in , it su ces to show that M 0 \ X= X and N 0 \ Y = Y . S o , l e t a 2 M 0 \ X . Assume that a is not in X. T h e n , since M \ X = X, a is algebraic over M f g but not algebraic over M. It follows (by the exchange law) that is algebraic over M f ag. This is absurd by h ypothesis on . In the same way, one shows that N 0 \ Y = Y . Thus, to complete the proof of the proposition we just need to show that there exists a in N which is algebraically independent o ver N Y . Let us consider the set ;(y) o f f o r m ulas of the form 8x 1 : : : x m î 6 =j x i 6 = x j ^m î =1

I 1 (x i ) ! f(y x 1 : : : x m 1 : :

: n ) 6 = 0
where f is a nonzero polynomial with coe cients in Z=pZ. It su ces to show t h a t ; ( y) is satis able in N . Since N is @ 0 -saturated we only need to show t h a t ; ( y) is nitely satis able in N. So, let ; 0 (y) be a nite subset of ;(y). There exists an integer d such that every polynomial which \appears in" in ; 0 (y) has degree at most d in y. Let N 0 be the sub eld of N generated by f 1 : : : n g Y . N 0 is isomorphic to the eld of rational fractions K 0 (T ) w h e r e K 0 is the prime eld of characteristic p and where T is a set of indeterminates of the same cardinality than f 1 : : : n g Y .

There exists an irreducible polynomial g(u) o f K 0 (T ) u] of degree d+1 (one may consider the polynomial u d+1 ; t for a t 2 T ). Since N is algebraically closed it follows that there exists an element in N of degree d + 1 o ver N 0 . By de nition of d this element satisfy ; 0 (y). This completes the proof of the proposition. 2

We are now ready to prove Theorem 1.1 for K. First we note that there exists a formula (x y) o f L such that if X is a nite subset of K linearly ordered by <, then in the associated L -structure (K X) t h e subset of K 2 de ned by (x y) is de nable in K and is connected i jXj is even. Such a formula is constructed in Section 3. Assume that there exists a sentence F(I 2 ) o f L rings f I 2 g such that if A is a de nable subset of K 2 , ( K A) j = F(I 2 ) i A is connected. We denote by F( ) the sentence of L obtained from F(I 2 ) b y replacing each occurrence of I 2 by . We shall obtain a contradiction by s h o wing that T f F( )g and T f : F( )g are consistent theories. This is absurd because, by Proposition 5.1, T is complete. Let be a nite subset of T . By Proposition 5.1, there exists a nite subset X of K of even cardinality s u c h that given a linear order on X, the L -structure (K X) j = . Moreover, since X is nite of even cardinality the set de ned by (x y) i n ( K X) is connected and de nable in K, t h us (K X) j = F( ). By Proposition 5.1, there also exists a nite subset Y of K of odd cardinality such that given a linear order on Y , t h e L -structure (K Y) j = . Again, since Y is nite the set de ned by (x y) i n ( K Y) i s de nable in K. But, since jY j is odd, (K Y) j = :F( ). We h a ve s h o wn that for every nite subset of T , f F( )g and f : F( )g are consistent theories. By compactness, T f F( )g and T f : F( )g are consistent theories.

Note that the above proof works for sentence F(I 2 ) without parameters from K. In the case where F(I 2 ) c o n tains a tuple of parameters from K a slight modi cation of the theory T yields a proof in this case. For if, we add a tuple a constants in L rings for naming the i and instead of ACF p we consider the theory of K in L rings (or equivalently we a d d t o ACF p the diagram of ). Moreover, in the new theory T we s a y that the elements of I 1 are algebraically independent o ver . Then, Proposition 5.1 holds for this theory T (with essentially the same proof, we just need to work over ).

Elimination of Parameters

Let K be an algebraically closed eld. Let P be a property o f K n de ned by a sentence F in the language L rings f I n g with parameters in K. One may ask to which extent it is possible to eliminate the parameters, i.e., to de ne P by a sentence F in the language L rings f I n g without parameters. More generally, g i v en a sub eld k K, o n e m a y try to de ne P with parameters in k only.

We h a ve m e n tioned at the end of section 5 that Parity remains unde nable in the presence of parameters. In this section, we show that parameters can be eliminated for a large class of properties (in fact this class is as large as possible). In order to investigate the de nability of a property in this class, one is therefore free to focus on parameter-free de nability.

Let k be a sub eld of K and let P be a family of de nable subsets of K n . W e s a y that P is locally de nable with parameters in k if for every (parameter-free) formula (x 1 : : : x n y 1 : : : y l ) o f L rings , there exists a formula ( y) o f L k rings such that for all a 2 K l , (K a) 2 P i K j = (a) (here (K a) is the subset of K n de ned by the formula ( x a)). Let us give a n example (one can also prove this lemma for irreducible closed sets). Lemma 6.1 The family of closed sets of an algebraically closed e l d i s l ocally de nable without parameters. More p r ecisely, for every (parameterfree) formula (x 1 : : : x n y 1 : : : y l ) of L rings , t h e r e exists a parameter-free formula ( y) of L rings such that if L is an algebraically closed eld, then for all a 2 L l , the set de ned b y ( x a ) in L is closed i L j = (a).

Proof. Since the theory of algebraically closed elds admits quanti er elimination, we m a y assume that is quanti er-free. if (L a) is closed, then (L a) is of pseudo-degree D for a D which depends only on ( x y).

We m a y apply Proposition 2.3 (which does not depend on the eld under consideration) to complete the proof of the lemma : replace I n ( x) b y ( x y) in the formula of Proposition 2.3. 2

Clearly, i f P is de nable with parameters in k it is also locally de nable with parameters in k. In this section we s h o w that the converse is true. Theorem 6.2 Let k be a sub eld of K. A de nable property of K n is de nable with parameters in k if and only if it is locally de nable with parameters in k.

We rst eliminate algebraic parameters. Lemma 6.3 Let P be a p r operty of K n which is de nable with parameters in an algebraic extension k ] of a eld k K. I f P is locally de nable with parameters in k, it is also de nable with parameters from k only.

Proof. Let m be the minimal polynomial of over k. Property P is de ned by a formula F( ) where the parameters of F(z) a r e i n k. W e claim that this property is also de ned by the following formula G: 8 m( ) = 0 ) F( )]: Let X be a de nable subset of K n . I f ( K X) j = G it is clear that (K X) j = F( ) ( t a k e = ). Conversely, assume that (K X) j = F( ) and that X is de ned by a f o r m ula ( x a) where a 2 K l . Since P is locally de nable with parameters in k, there exists a formula ( y) with parameters in k such that 8b 2 K l K j = (b) i ( K (K b)) j = F( )]:

(2)

Let ; be the set of element o f K which can \play the role" of in (2). That is, 2 ; if and only if satis es the following formula ;(z) o f L rings 8 y ( y) , F ( x y) (z)]

where F ( x y) is the formula obtained from F by substitution of ( x y) t o I n . Since (3) has parameters in k and is satis ed by , it is also satis ed by the conjugates of . Since (a) holds true, this implies in particular that 8 m( ) = 0 ) F ( x a) ( )] that is, (K X) j = G. 2

We n o w eliminate algebraically independent parameters. Lemma 6.4 Let P be a p r operty of K n which is de nable with parameters in an extension k( ) of a eld k K, w h e r e = ( 1 : : : m ) is a tuple of elements of K which are algebraically independent over k. I f P is locally de nable with parameters in k, it is also de nable with parameters in k only.

Proof. Property P is de ned by a formula F( ) where the parameters of F( z) are in k. W e claim that (K X) j = F( ) if and only if (K X) j = F( ) for a generic . This will prove the theorem since, as we h a ve seen in section 2 (see the proof of Proposition 2.1), P can then be de ned by 9t 1 : : : t m+1 2 K m 8 2 K m k+1 _ i=1 F( ; t i ):

The proof of the claim is similar to the proof of Lemma 6.3. Let (x 1 : : : x n y) be a parameter-free formula. Since P is locally de nable with parameters in k, there exists a formula ( y) with parameters in k such that 8b 2 K l K j = (b) i ( K (K b)) j = F( )]: [START_REF] Basu | On the combinatorial and algebraic complexity of quanti er-elimination[END_REF] Consider the formula ;(z 1 : : : z k ) o f L rings 8 y ( y) , F ( x y) ( z)]:

(

Since ( 5) has parameters in k and is satis ed when z = , it is satis ed by a generic 2 K m . Hence for a generic and any a 2 K l , ( K (K a)) j = F( ) if and only if (K (K a)) j = F( ). 2 One can also use the special case m = 1 to prove the lemma by induction on m (this does not result in any signi cant simpli cation).

Proof of Theorem 6.2. Using Lemma 6.3 repeatedly, w e can assume that P is de nable with parameters in k f 1 : : : m g where 1 : : : m are algebraically independent o ver k. W e eliminate 1 : : : m with Lemma 6.4. 2 Problem 6.5 Is Theorem 6.2 still true for R ?

We conclude this section with an application of Theorem 6.2 (which holds as well for irreducible closed sets). Corollary 6.6 Let p be prime or equal to zero. Assume that there exists an algebraically closed e l d K of characteristic p such that the family of closed sets of K n is de nable. Then, there e x i s t s a p arameter-free s e n t e n c e F(I n ) which de nes the family of closed s e t o f L n for every algebraically closed eld of characteristic p.

Proof. By Theorem 6.2 and Lemma 6.1 if the family of closed set of K n is de nable, then it is de nable with a sentence F(I n ) without parameters.

Then, using Lemma 6.1 again and the fact that two algebraically closed elds of same characteristic are elementarily equivalent, it is easy to see that F(I n ) de nes the family of closed set of L n for every algebraically closed eld of characteristic p. 2 7 De nable Sets over Finite Structures Again in this section K is an algebraically closed eld. Let L 0 = fR 1 : : : R u g be a nite set of relational symbols with R i of arity r i . L e t (x 1 : : : x n ) b e a f o r m ula of L K rings L 0 . G i v en for each R i a nite subset X i of K r i , i f w e i n terpret R i by X i , the formula ( x) de ne a subset of K n which is de nable by a formula of L K rings . W e denote by X the family of all these possible de nable subset of K n . To s h o w that connectivity is not a de nable property o f K 2 , w e h a ve shown that there exists a family of the form X (with L 0 = fI 1 < g) such that there exists no sentence F(I 2 ) that can recognize the connected sets in X . The point is that if such a sentence exists, then, roughly speaking, a given class of nite L 0 -structures (totally ordered structure of even cardinality) becomes nitely axiomatisable in a given world (which yields a contradiction).

For closed sets the situation is di erent. We s a y that a formula (x 1 : : : x n ) o f L K rings L 0 is of type (m d) if it is equivalent t o a f o rmula in prenex form which c o n tains at most m quanti ers and where every polynomial f( x z) o f K x z] which appears in this formula is of degree d. Theorem 7.1 Let n d m be t h r ee i n t e gers 1. There exists a sentence F n m d of L rings f I n g such that if L 0 is a nite set of relational symbols and if (x 1 : : :

x n ) is a formula of L K rings L 0 of type (m d) then : if X 2 X , X is closed i f a n d o n l y i f (K X) j = F n m d .
This result gives a kind of strengthening of Lemma 6.1. Of course, Theorem 7.1 no longer holds if we replace \X is closed" by \ X is connected."

The main point in the proof is the following result. Proposition 7.2 There exists a function B of N N into N such that the following holds. Let (x 1 : : : x n ) be a formula of the form Q 1 z 1 : : : Q m z m (x 1 : : : x n z 1 : : : z m ) where t h e Q i are 9 or 8 and where is a boolean combination of atomic formulas of the form f( x z) = 0 where f i s a p olynomial of K x z] of degree d. Then, (x 1 : : : x n ) is equivalent to a quanti er-free formula (x 1 : : : x n ) which is a boolean combination of atomic formulas of the form f( x) = 0 where f is a polynomial of K x] of degree B(m d).

In fact for the proof of Theorem 7.1 we only need of a bound which depends only on m d and n. H o wever it is not more di cult to obtain a bound which depends only on m and d. Note that the usual bound depends on m n and the sum of the degree of the polynomials which appear in the formula. The proof below s h o ws that we m a y take f o r B the function (d+ 1 ) 11 m (using the best available bound for Hilbert's Nullstellensatz 17]). One can prove that there is no simply exponential bound. However, one can hope to prove the existence of a bound of the form (d+ 2 ) Q O(m i ) in the case where, in the formula of the proposition, z i is a tuple of variable of length m i (i.e., one can hope to obtain a simply exponential bound if the number of alternation of quanti er is xed). Note that such a bound is known to be true in the case of real-closed elds in the language of ordered rings (see 3] and in this case the other \complexity parameters" are quite optimal). However, we h a ve not found such a result for algebraically closed elds neither Proposition 7.2 in the literature (see 10] for the \faster" algorithm for algebraically closed elds). One possible reason is that it is perhaps di cult to obtain such results if one want t o k eep reasonable bounds on the other \complexity parameters".

Proof of Proposition 7.2. It is easy to see that we m a y assume that (x 1 : : : x n ) is of the form 9z ( x z ) w h e r e is equal to

s î =1 f i ( x z) = 0 ^t î =1 g i ( x z) 6 = 0
where the degree of the f i and the g i are d. W e m a y also assume that d 1. We write:

f i ( x z) = X j p j i ( x)z j and g i ( x z) = X j q j i ( x)z j :

We d e n o t e b y ( x) the formula î j p j i ( x) = 0 and we denote by ( x) the formula î ( _ j q j i ( x) 6 = 0 ) :

For a a 2 K n , K j = (a) i fb 2 K j K j = V s i=1 f i (a b) = 0 g is equal to K. Moreover, if K j = : (a), then the above set is nite of cardinality d since it is the intersection of zero sets of non-zero polynomials in one variable of degree d. On the other hand, For a a 2 K n , K j = (a) i fb 2 K j K j = V s i=1 g i (a b) 6 = 0 g is nonempty (the intersection of two co nite subsets of K is co nite).

Let us rst assume that t > d . F or a subset I of f1 : : : t g we denote by I ( x) the formula 9z s î =1 f i ( x z) = 0 ^î2I g i ( x z ) 6 = 0 :

Then, we consider the formula 1 ( x) ( ( x) ^ ( x) ) _ ( : ( x) ^Î f1 :::tg and jIj=d I ( x) )

Let us prove that ( x) is equivalent t o 1 ( x). Let a 2 K n . It is clear that if K j = (a), then K j = 1 (a). Assume that K j = : (a). If K j = (a), then K j = : (a) and clearly K j = : 1 (a). Thus we assume that K j = : (a)

and the set B = fb 2 K j K j = V s i=1 f i (a b) = 0 g is nite of cardinality d. Since K j = : (a), for all b 2 B there exists a i b 2 f 1 : : : t g such that g i b (a b) = 0 . T h us there exists a subset I of f1 : : : t g of cardinality d such that K j = : I (a). It follows that K j = : 1 (a).

The above paragraph shows that to prove the proposition we m a y assume that t d. Then, the formula is equivalent to the formula: 9zw s î =1 f i ( x z) = 0 ^g( x z w ) = 0 where g( x z w ) = ( Q t i=1 g i ( x z)))w ; 1. The point is that since t d the degree of g is d 2 + 1 . Now w e apply the \e ective" Hilbert Nullstellensatz of 17] (see 8] f o r a similar bound and a more elementary proof moreover, if one only wants to prove the existence of B one may use 9] or the bound of G. Hermann with the proof of 20]). The negation of ( x) is true i there exists polynomials h 1 (z w) : : : h s (z w) h s (z w) with coe cients in the eld of fractions of K x] and of degree (in z and w) (d 2 + 2 ) 2 def = d 1 such that gh+ P i f i h i = 1 . Thus, the negation of ( x) is true i a system (*) of u (d 1 + 1 ) ( d 1 + 2)=2 def = d 2 equations in v (s + 1 ) d 2 unknowns has a solution in the eld of fractions K x]. Let A = ( r i j ( x)) 1 i u 1 j v be the matrix associated to the homogeneous system and let B be the matrix of (*) (i.e., the matrix constituted of A plus a column of zeros and one 1). The polynomials r i j ( x) which appear in A and B come from the coe cients of the f i and of g (viewed as polynomial in z and w). They are of degree d 2 . M o r e o ver, (*) has a solution i rank(A) = rank(B). The condition rank(A) = r is equivalent to (i) there exists a r r sub-matrix of A with a nonzero determinant and (ii) every (r+1 ) (r+1) sub-matrix of A has a zero determinant ( o r r = u).

Thus, since r should be d 2 , the condition rank(A) = r is equivalent t o a quanti er free formula A r ( x) which i s a b o o l e a n c o m bination of atomic formulas of the form f( x) = 0 where f is of degree d 2 d 2 . W e h a ve t h e same kind of formulas B r ( x) f o r B. Then, : ( x) is equivalent to the formula u _ r=0 ( A r ( x) ^ B r ( x) ) : Thus, ( x) is equivalent t o a q u a n ti er-free formula which is a boolean combination of atomic formulas of the form f( x) = 0 w h e r e f is of degree d 2 d 2 . This completes the proof since d 2 d 2 depends only on d. T o g e t a compact bound one may c heck that d 2 d 2 (d + 1 ) 10 . 2

It is possible to use more elementary GCD computations instead of the e ective Nullstellensatz in the proof of this proposition. Corollary 7.3 Let m d be two integers 1. There exists an integer B such that if L 0 is a nite set of relational symbols, if (x 1 : : : x n ) is a formula of L K rings L 0 of type (m d) and if X 2 X , t h e n X is de ned b y a quanti er-free formula which is a boolean combination of formulas of the form f( x) = 0 where f is a polynomial of K x] of degree B.

Proof. We m a y assume that is in prenex form : Q 1 z 1 : : : Q m z m (x 1 : : : x n z 1 : : : z m ) with quanti er-free and where the polynomials which appear in is of degree d. Set B = B(m d) where B is the function of the above proposition. Let X 1 : : : X u be nite interpretations of P 1 : : : P u .

Then, the set that ( x) de nes is de ned by a f o r m ula of L K rings Q 1 z 1 : : : Q m z m (x 1 : : : x n z 1 : : : z m ). This formula is obtained from b y replacing each occurrence of a subformula of of the form P i (f 1 ( x z) : : : f r i ( x z)) by a formula of the form _ a2X i r i ĵ=1 f j ( x z) = a j :

Clearly, the degree of the polynomials which appear in are bounded by d. 

  0 ] : 2 The next and nal lemma completes the proof of Proposition 4.6, Theorem 4.4 and Theorem 1.1. Lemma 4.8 If Restricted Parity is de nable then Parity 2 AC 0 .

  The above proposition completes the proof. 2 Proof of Theorem 7.1. Immediate consequence of the above corollary, Lemma 2.4 and Proposition 2.3. 2 Again, one can prove Theorem 7.1 for irreductible closed sets.
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Proof. Separate real and imaginary parts of variables in F. 2

The fact that Restricted Parity is not de nable, and Theorem 1.1, will then follow from the next result. Theorem 4.4 There exists no formula F of L R rings f I 1 g satisfying the following property: for every X 2 X , (R X ) j = F if and only if jXj is even. Corollary 4.5 There exists no formula F of L C rings f I 2 g satisfying the following property: for every X 2 X , (C X ) j = F if and only if jXj is even.

These two results are in a sense optimal since Parity becomes de nable if we restrict our attention further, by considering only sets X made of consecutive integers.

The remainder of this section is devoted to the proof of Theorem 4.4. By the equivalence between natural and active domain semantics over the reals it is su cient t o p r o ve the following result. where R i N n i is an arbitrary predicate, and f i : N q i ! N an arbitrary function. There exists no formula F over M satisfying the following property: for every X 2 X , X j = F if and only if jXj is even.

The proof is by a reduction from the familiar Parity problem of complexity theory to Restricted Parity: we will see that if Restricted Parity w as de nable then Parity w ould be in AC 0 . F or this we need to know h o w fast query in natural semantics can be evaluated. We shall work with the following encoding of nite sets of integers: a vector u 2 f 0 1g n represents the set X u = fi x i = 1 g (of course there are many d i e r e n t encodings for a given X). It is not hard to see that under this encoding, queries in an arbitrary rst-order language can be evaluated in AC 0 .

Proposition 4.7 Fix as in Proposition 4.6 an arbitrary rst-order structure over N, and a rst-order formula F. Then Eval F 2 AC 0 , where Eval F denotes the following problem: given u 2 f 0 1g , d e cide whether X u j = F.

Proof.

We may assume that F is in prenex form: F Q 1 x 1 Q k x k G(x 1 : : : x k ) w h e r e G is quanti er-free and Q i 2 f 9 8g. W e now describe a polynomial-size, O(k) depth circuit C n (a u) which s o l v es Eval F for inputs in u 2 f 0 1g n . Here a is a vector of n k \hardwired" boolean constants corresponding to the n k elements of f1 : : : n g k . The component a x of a associated to x 2 f 1 : : : n g k is 1 if and only if G(x)