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On the complexity of computing determinants

Erich Kaltofen and Gilles Villard
July 2003

Résumé

En combinant la technique des pas de géant/pas de bébé de Kaltofen (1992)
appliquée a l'algorithme de calcul du déterminant de Wiedemann (1986), avec
l'utilisation de projections par blocs de vecteurs suivant Coppersmith (1994) et
Panalyse correspondante de Villard (1997), nous obtenons de nouveaux algo-
rithmes asymptotiquement rapides pour la résolution de différents problémes
sur des matrices denses.

La premiére catégorie de problémes concerne les matrices A denses n xn a coef-
ficients entiers. Nous exprimons les coiits de calcul pour des entiers exacts dans
une base fixée, i.e. en termes d’opérations binaires, en notant ||A4 || le plus grand
coefficient de la matrice en valeur absolue. Nous calculons le déterminant, le
polyndme caractéristique, la forme normale de Frobenius et la forme normale
de Smith de A en (n2log ||A||)*+°(M) et (n>%97263 og || A||)*+°() opérations bi-
naires, 'ajustement “+0(1)” de ’exposant tient compte de facteurs additionnels
C1(logn)“2(log||A])¢® ot C1, Oy et C3 sont des constantes positives réelles.
La premiére complexité donnée ci-dessus, la plus lente asymptotiquement, est
atteinte sans utiliser les algorithmes sous-cubiques pour le produit de matrices.
Nos algorithmes sont probabilistes, cependant, le déterminant peut étre certifié
et conduit & une résolution Las Vegas.

La seconde catégorie de problémes correspond au cas ou la matrice A a ses
coefficients dans un anneau commutatif abstrait, c’est-a-dire que I'on ne s’au-
torise pas les divisions. Nous présentons une approche déterministe pour calcu-
ler le déterminant, le polynéme caractéristique et la matrice adjointe de A en
n32to(1) additions, soustractions et multiplications dans ’anneau, sans utiliser
de produits de matrices sous-cubiques. En faisant appel & la multiplication de
matrices de Coppersmith et Winograd nous calculons le déterminant et 1’ad-
jointe en O(n2-%97263) opérations dans I’anneau, le polynoéme caractéristique
est obtenu en O(n2-80651%) gpérations. Ces résultats reposent sur une nouvelle
preuve de ’analyse de Villard (1997) pour ’algorithme de Wiedemann /Lanczos
par blocs et sur une généralisation aux matrices polynomiales de ’algorithme
d’Euclide & la Knuth/Schonhage/Moenck.

Mots-clés: Algébre linéaire, déterminant, polynéme caractéristique, formes
normales de matrices, algorithmes rapides, algorithmes probabilistes,
algorithmes sans division.
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Abstract

By combining Kaltofen’s 1992 baby steps/giant steps technique for
Wiedemann’s 1986 determinant algorithm with Coppersmith’s 1994 pro-
jections by a block of vectors in the Wiedemann approach and Villard’s
1997 analysis of the block technique, we obtain new algorithms for dense
matrix problems of asymptotically fast running time. The first category
of problems is for a dense n X n matrix A with integer entries. We express
the cost in terms of bit operations on the exact integers and denote by
||A|| the largest entry in absolute value. Our algorithms compute the de-
terminant, characteristic polynomial, Frobenius normal form and Smith
normal form of A in (n®2log||4]|)!T°® and (n*5°726% log ||A||)*+°™) bit
operations, where the exponent adjustment by “+o(1)” captures addi-
tional factors C1(logn)©2(log||A||)“? for positive real constants C, C2,
Cs and where the first, asymptotically slower bit complexity does not
require any of the sub-cubic matrix multiplication algorithms. Our algo-
rithms are randomized, and we can certify the determinant of A in a Las
Vegas fashion. The second category of problems deals with the setting
where the matrix A has elements from an abstract commutative ring, that
is, when no divisions in the domain of entries are possible. We present
algorithms that deterministically compute the determinant, characteristic
polynomial and adjoint of A with n321°(M) ring additions, subtractions
and multiplications, that without utilizing sub-cubic matrix multiplica-
tion algorithms. With the asymptotically fast matrix multiplication algo-
rithms by Coppersmith and Winograd our method computes the deter-
minant and adjoint in O(n?%9725%) ring operations and the characteristic
polynomial in O(n?-8%%51%) ring operations. We achieve our results in part
through new proofs for Villard’s 1997 analysis of the block Wiedemann/
Lanczos algorithm and a generalization of the Knuth/Schénhage/Moenck
Euclidean remainder sequence algorithm to matrix polynomials.

1 Introduction

The computational complexity of many problems in linear algebra has been tied
to the computational complexity of matrix multiplication. If the result is to be
exact, for example the exact rational solution of a linear system, the lengths
of the integers involved in the computation and the answer affect the running
time of the used algorithms. A classical methodology is to compute the results
via Chinese remaindering. Then the standard analysis yields a number of fixed
radix, i.e. bit operations for a given problem that is essentially (within poly-
logarithmic factors) bounded by the number of field operations for the problem
times the maximal scalar length in the output. The algorithms at times use ran-
domization, because not all modular images may be usable. For the determinant

*This material is based on work supported in part by the National Science Foundation
(USA) under Grants Nos. DMS-9977392, CCR-9988177 and CCR-0113121 (Kaltofen) and by
CNRS (France) Actions Incitatives No 5929 et Stic LinBox 2001 (Villard).

Extended abstract appears in the Computer Mathematics Proc. Fifth Asian Symposium
(ASCM 2001) edited by Kiyoshi Shirayanagi and Kazuhiro Yokoyama, Lecture Notes Series
on Computing, vol. 9, World Scientific, Singapore, 2001, pages 13-27.
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of an n x n integer matrix A one thus gets a running time of (n*log||A||)*+o®)
bit operations [von zur Gathen and Gerhard 1999: Chapter 5.5], because the
determinant can have at most (nlog||A||)* o) digits; by ||A|| we denote the
largest entry in absolute value. Here and throughout this paper the exponent
adjustment by “+o0(1)” captures additional factors Cy (logn)“2(log||A||)¢* for
positive real constants C, Ca, C3 (“soft-O”). Via an algorithm that can multiply
two n X n matrices in O(n*) scalar operations the time is reduced to (n“*! x
log||A]])**+°™M). By [Coppersmith and Winograd 1990] we can set w = 2.375477.

First, it was recognized that for the problem of computing the exact rational
solution of a linear system the process of Hensel lifting can accelerate the bit
complexity beyond the Chinese remainder approach [Dixon 1982], namely to
cubic in n without using fast matrix multiplication algorithms. For the deter-
minant of an n x n integer matrix A, an algorithm with (n3®log ||A||*-5)+e()
bit operations is given in [Eberly et al. 2000].* The algorithm by Eberly et al.
computes the Smith normal form via the binary search technique of [Villard
2000].

Our algorithms combine three ideas.

1) The first is an algorithm in [Wiedemann 1986] for computing the determi-
nant of a sparse matrix over a finite field. Wiedemann finds the minimum
polynomial for the matrix as a linear recurrence on a corresponding Krylov
sequence. By preconditioning the input matrix, that minimum polynomial
is the characteristic polynomial and the determinants of the original and
preconditioned matrix have a direct relation.

11) The second is from [Kaltofen 1992] where Wiedemann’s approach is ap-
plied to dense matrices whose entries are polynomials over a field. Kaltofen
achieves speedup by employing Shank’s baby steps/giant steps technique for
the computation of the linearly recurrent scalars (cf. [Paterson and Stock-
meyer 1973]). For integer matrices the resulting randomized algorithm is
of the Las Vegas kind—always correct, probably fast—and has worst case
bit complexity (n3®log||4||)**°(") and again can be speeded with sub-cubic
time matrix multiplication [Kaltofen and Villard 2001]. A detailed descrip-
tion of this algorithm, with an early termination strategy in case the deter-
minant is small (cf. [Emiris 1998; Bronnimann et al. 1999)]), is presented in
[Kaltofen 2002].

111) By considering a bilinear map using two blocks of vectors rather than a
single pair of vectors, Wiedemann’s algorithm can be accelerated [Copper-
smith 1994; Kaltofen 1995; Villard 1997a,b]. Blocking can be applied to our
algorithms for dense matrices and further reduces the bit complexity.

The above ingredients yield a randomized algorithm of the Las Vegas kind
for computing the determinant of an n x n integral matrix A in (n3t1/3 x
log||A]])**+°™) expected bit operations, that with a standard cubic matrix mul-

*In [Eberly et al. 2000] the exponent for log ||A|| is 2.5, but the improvement to 1.5 based
on fast Chinese remaindering [Aho et al. 1974] is immediate.
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tiplication algorithm. If we employ fast FFT-based Padé approximation algo-
rithms for matrix polynomials, for example the so-called half-GCD algorithm
[von zur Gathen and Gerhard 1999] and fast matrix multiplication algorithms,
we can further lower the expected number of bit operations. Under the assump-
tion that two n X n matrices can be multiplied in O(n“) operations in the field
of entries, and an n X n matrix by an n x n¢ matrix in n2+°(!) operations, we
obtain an expected bit complexity for the determinant of

1-¢
224 Qw+2

(n"log ||A]])!T°M) with p = w + - (1)
The best known values w = 2.375477 [Coppersmith and Winograd 1990] and
¢ = 0.2946289 [Coppersmith 1997] yield n = 2.697263. For w = 3 and { =0 we
have n = 3+ 1/5 as given in the abstract above (cf. [Kaltofen and Villard 2002;
Pan 2002]).

Our techniques can be further combined with the ideas in [Giesbrecht 2001]
to produce a randomized algorithm for computing the integer Smith normal
form of an integer matrix. The method becomes Monte Carlo—always fast and
probably correct—and has the same bit complexity (1). In addition, we can
compute the characteristic polynomial of an integer matrix by Hensel lifting
[Storjohann 2000b]. Again the method is Monte Carlo and has bit complex-
ity (1). Both results utilize the fast determinant algorithm for matrix polyno-
mials [Storjohann 2002, 2003].

The algorithm in [Kaltofen 1992] (see case 1I above) was originally put to
a different use, namely that of computing the characteristic polynomial and
adjoint of a matrix without divisions, counting additions, subtractions, and
multiplications in the commutative ring of entries. Serendipitously, blocking
(see case 111 above) can be applied to our original 1992 division-free algorithm,
and we obtain a deterministic algorithm that computes the determinant of a
matrix over a commutative ring in n7°(!) ring additions, subtractions and
divisions, where n is given by (1). The exponent n = 2.697263 seems to be
the best that is known today for the division-free determinant problem. By the
technique in [Baur and Strassen 1983] we obtain the adjoint of a matrix in the
same division-free complexity. For the characteristic polynomial we can obtain
a deterministic division-free complexity of O(n?-8%6515) ring operations. The
higher exponent here is a result of the lack of algorithms like those in [Storjohann
2002; Jeannerod and Villard 2002; Storjohann 2003] for the division-free model.

In [Kaltofen and Villard 2002] we have identified other algorithms for com-
puting the determinant of an integer matrix. Those algorithms often perform
at cubic bit complexity on what we call are propitious inputs, but they have a
worst case bit complexity that is higher than our methods. One such method
is Clarkson’s algorithm [Clarkson 1992; Bronnimann and Yvinec 2000], where
the number of mantissa bits in the intermediate floating point scalars that are
necessary for obtaining a correct sign depends on the orthogonal defect of the
matrix. If the matrix has a large first invariant factor, Chinese remaindering
can be employed in connection with computing the solution of a random linear
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system via Hensel lifting [Abbott et al. 1999] (cf. [Pan 1988]).

Notation: By S™*™ we denote the set of m X n matrices with entries in the
set S. The set Z are the integers. For A € Z"*™ we denote by ||A|| the matrix
height [Kaltofen and May 2003: Lemma 2]:

1411 = 1411 = ma Az |oo/llolly = | mass o,

Hence the maximal bit length of all entries in A and their signs is, depending
on the exact representation, at least 2 + [log, max{1,||A]||}|. In order to avoid
zero factors or undefined logarithms, we shall simply define ||A|| > 1 whenever
it is necessary.

Organization of the paper. Section 2 introduces Coppersmith’s block Wiede-
mann algorithm and establishes all necessary mathematical properties of the
computed matrix generators. In particular, we show the relation of the deter-
minants of the generators with the (polynomial) invariant factors of the charac-
teristic matrix (Theorem 4), which essentially captures the block version of the
Cayley-Hamilton property. In addition, we characterize when short sequences
are insufficient to determine the minimum generator. Section 3 deals with the
computation of the block generator. We give the generalization of the Knuth/
Schoénhage/Moenck algorithm for polynomial quotient sequences to matrix poly-
nomials and show that in our case by randomization all leading coefficients stay
non-singular (Lemma 8). Section 4 presents our new determinant algorithm
for integer matrices and gives the running time analysis when cubic matrix
multiplication algorithms are employed (Theorem 10). Section 5 presents the
division-free determinant algorithm. Section 6 contains the analysis for versions
of our algorithms when fast matrix multiplication is introduced. The asymptot-
ically best results are derived there. Section 7 presents the algorithms for the
Smith normal form and the characteristic polynomial of an integer matrix. We
give concluding thoughts in Section 8.

2 Generating polynomials of matrix sequences

Coppersmith [1994] first has introduced blocking to the Wiedemann method. In
our description we also take into account the interpretation in [Villard 1997a,b],
where the relevant literature from linear control theory is cited. Our algorithms
rely on the notion minimum generating polynomials (generators) of matrix se-
quences. This notion is introduced below in Section 2.1. We also see how
generators are related to block Hankel matrices and recall some basic facts
concerning their computation. In Section 2.2 we then study determinants and
Smith normal forms of generators and see how they will be used for solving our
initial problem.
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2.1 Generators and block Hankel matrices

For the “block” vectors X € K™*! and Y € K"*™ consider the sequence of [ x m
matrices

B = xTry, Bl = XxTrAy, Bl = X7 A%y, ... B = XTrAly, ... (2)

As in the unblocked Wiedemann method, we seek linear generating polynomials.
A vector polynomial E?:[) X where cll € K™ is said to linearly generate
the sequence (2) from the right if

d d
Vi>0: 3B = 30 XAy i of, 3)
i=0 =0

For the minimum polynomial of A, f4()), and for the u-th unit vector in K™,
el fAN)eltl € K[\J™ is such a generator because it already generates the
Krylov sequence {A'Y1#},5o, where YI# is the pu-th column of ¥. We can
now consider the set of all such right vector generators. This set forms a K[\]-
submodule of the K[\]-module K[A\]™ and contains m linearly independent (over
the field of rational functions K())) elements, namely all f4())el#l. Further-
more, the submodule has an (“integral”) basis over K[)], namely any set of m
linearly independent generators such that the degree in A of the determinant
of the matrix formed by those basis vector polynomials as columns is minimal.
The matrices corresponding to all integral bases clearly are right equivalent with
respect to multiplication from the right by any unimodular matrix in K[\]"™*™,
whose determinant is by definition of unimodularity a non-zero element in K.
Thus we can pick a matrix canonical form for this right equivalence, say the
Popov form [Popov 1970] (see also [Kailath 1980: §6.7.2]) to get the following
definition.

Definition 1 The unique matriz generating polynomial for (2) in Popov form,
denoted by F)’?’Y € K[A\]"™*™  is called the minimum matriz generating polyno-
mial (generator).

As we will show below, deg(det F)‘?’Y) < n. The computation of the minimum
matrix generating polynomial from the matrix sequence (2) can be accomplished
by several interrelated approaches. One is a sophisticated generalization the
Berlekamp/Massey algorithm [Rissanen 1972; Dickinson et al. 1974; Copper-
smith 1994]. Another generalizes the theory of Padé approximation [Forney, Jr.
1975; Van Barel and Bultheel 1992; Beckermann and Labahn 1994; Giorgi et al.
2003]. The interpretation of the Berlekamp/Massey algorithm as a specializa-
tion of the extended Euclidean algorithm [Sugiyama et al. 1975; Dornstetter
1987] can be carried over to matrix polynomials [Coppersmith 1994; Thomé
2002] (see also Section 3 below). All approaches solve the classical Levinson-
Durbin problem, which for matrix sequences becomes a block Toeplitz linear
system [Kaltofen 1995]. The relation to Toeplitz/Hankel matrices turns out to
be a useful device for establishing certain properties.
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For a degree d and a length e we consider the [ -e by m-(d+ 1) block Hankel
matrix

Blol gl pld-1] Bldl
Bl gl Bld Bld+1]
Hkeg11(4,X,Y) = : . : : (4)
Y -

For any vector generator >0 cld\i € K™[\] we must have
O

Hke gt1 - =0foralle > 0.

)

By considering the rank of (4) we can infer the reverse. If

Hknapr-| § | =0 (5)

()

then Y27, cliI\ is a vector generator of (2). The claim follows from the fact
that rank Hk,, 411 = rank Hk e g+1 for all €’ > 0. The latter is justified by
observing that any row in the (n + €')th block row of Hk, e/ 441 is linearly
dependent on corresponding previous rows via the minimum polynomial f4,
which has degree deg(f4) < n.
We observe that rank(Hk.4) < n for all d > 0,e > 0 by considering the

factorization

XTr

XTrA

Hk, 4 = XTraA? vy Ay A%y L A1y

XTr:Aefl
and noting that either matrix factor has rank at most n.

Therefore, with d > deg(F ;(1 ¥, all solutions to (5) are canonically generated
over K[A] by the columns of F)‘? "Y(X), which is in Popov form (see Definition 1).
In this case, if the column degrees of the minimum generator are §; < -+ < §p,
the dimension of the right nullspace of Hk, 411 in (5) over K is (d — 1 + 1) +
-4 (d =y +1). Hence rank(Hk g41) = 01 + - - - + dp, = deg(det F)’?’Y) <n
for d > deg F)?’Y and e > n. Since the last block column in Hk, 441 with
d > deg(F;(1 ’Y) is generated by previous block columns, shifting lower degree
columns of F)’? ’Y(/\) as necessary by multiplying with powers of A, we have

rank(Hk, 4) = deg(det F)’?’Y) for d > deg F)’?’Y and e > n. (6)
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One may now define the minimum e, such that the matrix Hk,_, 4 for
d = degF)‘?’Y has full rank deg(det F?’Y). Any algorithm for computing
the minimum generator requires the first deg(F' ?’Y) + emin elements of the
sequence (2).

We give an example over Q [Turner 2002]. Let

01 0 0] 1 0
0010 0 0
A4=100 0 1] ¥=Y=1y o
2 0 0 0 0 0
Then
o _ [L O] gui_ [0 0] gey_[0 O] pw_[0 O
B _[0 0}’3 _{0 0_’B 0 0_’B
w2 0] [0 0] e _[0 0] qmp_J0 0O
B _[0 0}’3 _{o o_’B 0 0_’B 0 0|
Therefore
"1 0]/0 0]0 0[]0 0]2 0]
0 0/0 0|0 0|0 0|0 O
0 0/0 0|0 0[2 0[]0 O
0 0/0 0[O0 0|0 0|0 O
Hk475(A’X’Y)_0000200000’
0 0/0 0[O0 0|0 0|0 O
0 0|2 0l0 0[O0 0[]0 O
L0 0|0 0[0 0[{0 0[O0 O
and from
[ —27 707 07T 07 [0O7 [O]
LN T O A I O A VA
0 0 0 0 0 0
1l Hk, 5 (A
rutispace 4’5(X’ 0 0 1 0 0 0
! "o | o] 0] o] |0 |0
¥y=seantl o o oo || o || ]
0 0 0 0 0 0
0 O 10 (O L] [0
1 0 0 0 0 0
Lo ] Lo Lo Lo [o] [1]
1 —2 0] [MM-2
wegetF)?’Y(A)Z{o 8}>\4+[0 (1):{ 0 (1)]

Now let X as above and let Y = {1 8

0

1
=] 1 0 =11 (0 0 =2 (0 1
TR T B
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—13] 0 0 =4 12 0 =B |00
il R R R
Therefore ) )
1 0/0 0j0 1
0 0j0 OO0 O
0 0j0 1({0 O
= 0 0j0 OO0 O
Hk4,3(A)X) Y) - o0 11lo ol2 o )
0 0j0 OO0 O
0 02 0|0 O
L0 0|0 0]0 O
and from
0 -1
-2 0
nullspace Hk4 3(4, X,Y) = span( o | 8 )
1 0
0 1
_ 2
we get Fg' () = [(1) (1)] A2 — [(2) (1)] = PQ X"l] Note that in both cases

the determinant of the minimum generator is A* — 2, which is det(\I — A).

The second above example, where ey, = 4 > deg(F)?’Y) = 2, shows that
more than 2deg(F)‘?’Y) sequence elements may be necessary to compute the
generator, in contrast to the scalar Berlekamp/Massey theory: the last block
row of Hky3(A, X, Y) is required to restrict the right nullspace to the two
generating vectors.

However, for random projection block vectors X and Y both deg(F)‘(4 ) and
emin are small. Let us define

v= d21,e21,Xg]Ilg}§l,YeK"Xm{rank Hk.q4(4,X,Y)} (7)

Indeed, the probabilistic analysis [Kaltofen 1995: Section 5|, [Villard 1997b:
Corollary 6.4] shows the existence of matrices W € K"*! and Z € K"*™
such that the corresponding rank Hk., 4,(A4, W, Z) = v with dy = [v/m] and
eo = [v/l]. Moreover, v is equal to the sum of the degrees of the first min{l, m}
invariant factors of A\l — A (see Theorem 4 below), and hence X,Y can be
taken from any field extension of K. Then due to the existence of W, Z, for
symbolic entries in X,Y and therefore, by [DeMillo and Lipton 1978; Zippel
1979; Schwartz 1980], for random entries, the maximal rank is preserved for
block dimensions ey, dy. Note that the degree of the minimum matrix generating
polynomial is now deg(F)?’Y) = dp < n/m + 1 and the number of sequence
elements required to compute the minimum generator is dp + ey = [v/l] +
[v/m] < n/l+n/m+ 2. If K is a small finite field, Wiedmann’s analysis has
been generalized in [Villard 1997b; Brent et al. 2003].
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As with the unblocked Wiedemann projections, unlucky projection block
vectors X and Y may cause a drop in the determinantal degree deg(F )’?’Y).
They may also increase the length of the sequence required to compute the
generator F)? Y

2.2 Smith normal forms of matrix generating polynomials

In this section we study how the invariant structure of F’ )’?’Y partly reveals the
structure of A and A\l — A. Our algorithms in Sections 4 and 5 pick random
projections block vectors X,Y or use special projections and compute a gener-
ator from the first dp + eg elements of (2). Under the assumption that the rank
of Hk, 4 = v (see (7)) for sufficiently large d, e, we prove here that det(F)’?’Y)
is the product of the first min{l,m} invariant factors of A\I — A. These are
well-studied facts in the theory of realizations of multivariable control theory,
for instance see Kailath [1980]. The basis is the matrix power series

Al Bli
Tr —1 _ Tr —
XA -4V =X (Z )\i+1) - AL
i>0 i>0
Lemma 2 One has the fraction description
XTr (AT — A)7'Y = N(A)D(\)? (8)

if and only if there exists T € K[A]"™*™ such that D = F?’YT.

Proof. For the necessary condition, since every polynomial numerator in X" x
(M — A)~1Y has degree strictly less than the corresponding denominator, then
every column of N has degree strictly less than that of the corresponding column
of D. Thus it can be checked that the columns of D satisfy (3) and D must be
a multiple of F)’?’Y. Conversely, let D = F)’?’YT in K[A]™*™ be an invertible
matrix generator for (2). Using (3) for its m columns it can be seen that we
have
XTI (AT — A)7'YD(X) = N()\) € K[\)™X™

where the column degrees of N are lower than those of D. This yields the
matrix fraction description (8). X

Clearly, for D = F)’?’Y, the minimum polynomial f4(\) is a common de-
nominator of the rational entries of the matrices on both sides of (8). If the
least common denominator of the left side matrix is actually the character-
istic polynomial det(AI — A), then it follows from degree considerations that
det F)‘?’Y = det(AI — A). Our algorithm uses the matrix preconditioners dis-
cussed in Section 4 and random or ad hoc projections (Section 5) to achieve
this determinantal equality. We shall make the relationship between A\ — A
and F)’?’Y more explicit in Theorem 4 whose proof will rely on the structure of
the matrix denominator D in (8) and on the following.

For a square matrix M over K[A] we consider the Smith normal form [New-
man 1972], which is an equivalent diagonal matrix over K[\] with diagonal
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elements s1(A), ..., s¢(A), 1,...,1,0,...,0, where the s;’s are the nontrivial in-
variant factors of M, that is, non-constant monic polynomials with the property
that s; is a (trivial or nontrivial) polynomial factor of s;—1 for all 2 < i < ¢.
Because the Smith normal form of the characteristic matrix A — A corresponds
to the Frobenius canonical form of A for similarity, the largest invariant factor
of A\ — A, s1()\), equals the minimum polynomial f4(\).

Lemma 3 Let M € K[A]*** be non-singular and let U € K[A]**# be unimod-
ular such that

_[H Hyp
o= | e | o)
where H is a square matriz, then the i-th invariant factor of H divides the i-th

invariant factor of M.

Proof. Identity (9) may be rewritten as

[I Hy][H 0
w-lo w10 7]

Since the invariant factors of two non-singular matrices divide the invariant
factors of their product [Newman 1972: Theorem II.14], the largest invariant
factors of diag(H,I) that are those of H, divide the corresponding invariant
factors of MU and thus M. X

We can now see how the Smith form of F)‘?’Y is related to that of AT — A.
Essentially the result may be obtained for instance following the lines of [Kailath
1980: §6.4.2], we give here a statement and a proof better suited to our purposes.

Theorem 4 Let A € K™, X € K"V € K"™™ and let s1,...,s4 denote
all invariant factors of A\I — A. The i-th invariant factor of F)’?’Y divides s;.
Furthermore, there exist matrices W € K™*! and Z € K™™ such that for all
i, 1 <i < min{l,m, ¢}, the i-th invariant factor of Fv’?,’z is equal to s; and the
m — min{l,m, ¢} remaining ones are equal to 1. Moreover, for fivzed I and m,

deg, (det(Fyr” (V) = maxy y deg, (det(Fg"" (1))
deg(sl) +oet deg(smin{l,m,d)}) (10)
v, which is defined in (7).

Proof. We prove the first statement for a particular denominator matrix D of a
fraction description of X7"(A\I—A)~'Y". Indeed, if the i-th invariant factors of D
divide s; then, by Lemma 2 and using the product argument §iven in the proof
of Lemma 3, the same holds by transitivity of division for F' X’Y. When Y has
rank r < m, one may introduce an invertible transformation Q € K™*™ such
that YQ = [V1 0] with Y3 € K"*". From there, if XT"(A\I — A)~'Y; = N; D;*
then

XTI = A)71Y = [ M(Y) 0]{D10(A) H_ Q!
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and the invariant factors of the denominator matrix @) diag(D;,I) are those
of D;. We can thus without loss of generality assume that Y has full column
rank. Let us now construct a fraction description of X7"(A\I — A)~'Y with D
as announced. Choose Y. € K"*(»=™) gsuch that T = [V Y] is invertible in
K™ and let D € K[A]"™*™ be defined from a unimodular triangularization of
T—Y(AI — A), that is:

D(A)  Hiy(M)
0  Hx(N)

with U unimodular. If V' is the matrix formed by the first m columns of U we
have the fraction descriptions (A\I — A)~'Y = VD~ and X™"(A\I — A)~'Y =
(X"v) D='. Thus D is a denominator matrix for X”"(A\I — A)~'Y. By (11)
and Lemma 3, its ¢-th invariant factor divide the i-th invariant factor s; of
Al — A and the first assertion is proven.

To establish the rest of the theorem we work with the associated block
Hankel matrix Hk, 4(A, X,Y"). By definition of the invariant factors we know
that

dimspan(X, AT X, (AT)2X,...) < deg(sy) +--- + deg(Smin{1,¢})

T—Y(A\ — A)U(N) = (11)

and
dimspan(Y, AY, A?Y,...) < deg(s1) +--- + deg(Smin{m,¢})
thus
XTr
XTrA
rank Hk, 4(A, X,Y) <rank (|  xTry2 YAy A%Y .. ]) < 7,

where 7 = deg(s1) + -+ + deg(Smin{m,1,¢})- Hence, from the specializations W
and Z of X and Y given in [Villard 1997b: Corollary 6.4], we get
rank Hk., 4,(A, W, Z) = max rank Hk, 411(A4,X,Y) =7 (12)

with dgp = [7/m] and e = [7/1] and thus 7 = v. Using (6) we also have
degy (det (Fiy” (1)) = max degy (det(Fi™ (V) = 7. (13)

With (12) and (13) we have proven the two maximality assertions. In addition,
since the i-th invariant factor s; of F‘j?,’z must divide s;, the only way to get
deg, (det Fyy?) = v, is to take 5; = s; for 1 < i < min{m, [, ¢} and 5; = 1 for
min{m,l, ¢} < i < m. X

As already noticed, the existence of such W, Z establishes maximality of the
matrix generator for symbolic X and Y and, by the Schwartz/Zippel lemma,
for random projection matrices. In next sections we will use det Fv’?,’z(/\) =
det(AI — A) for computing the determinant and the characteristic polynomial
of matrices A such that ¢ < min{l, m}. For general matrices we will use F‘j?,’z
to determine the first min{l, m} invariant factors of A.
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3 Normal matrix polynomial remainder sequences

As done for a scalar sequence in [Sugiyama et al. 1975; Brent et al. 1980; Dorn-
stetter 1987] the minimum matrix generating polynomial of a sequence can
be computed via a specialized matrix Euclidean algorithm [Coppersmith 1994;
Thomé 2002]. Taking advantage of fast matrix multiplication algorithms re-
quires to extend these approaches. In Section 3.1 we propose a matrix Eu-
clidean algorithm which combines fast matrix multiplication with the recursive
Knuth/Schénhage half-GCD algorithm [Knuth 1970; Schonhage 1971; Moenck
1973; von zur Gathen and Gerhard 1999]. This is applicable to computing the
matrix minimum polynomial of a sequence {X"AY }; if the latter leads to a
normal matrix polynomial remainder chain. We show in Section 3.2 that this is
satisfied, with high probability, by our random integer sequences. This will be
satisfied by construction by the sequence in the division-free computation. For
simplicity we work in the square case | = m thus with a sequence {B};5¢ of
matrices in K™,

3.1 Minimum polynomials and half Euclidean algorithm

If F =YY%, FllX € K]\]™*™ is a generating matrix polynomial for {Bl1};5¢
then, as we have seen with (5), we have

Blol Bl L Bldl Flo] 0

Bl B2 ... Bld+1] Fll 0
= . |. (14)

B[d-fl] B[d+1] L B[2;171] F[d] 0

The left side matrix was denoted by Hkg 441 in (4). We define B in K[\Jm*m
by B = Z?igl BPd=i=1\i_ Identity (14) is satisfied if and only if there exists
matrices S and T of degree less than d — 1 in K[A]™*™ such that

A2S(N) + B(F(A) =T(N). (15)

Thus A2?] and B may be considered as the inputs of an extended Euclidean
scheme. In the scalar case, the remainder sequence of the Euclidean algorithm
is said to be normal when at each step the degree is decreased by 1 exactly. By
the theorem of subresultants, the remainder sequence is normal if and only if
the subresultants are non-zero [Brown and Traub 1971]. In an analogous way we
will identify normal matrix remainder sequences related to the computation of
matrix generating polynomials. We use these remainder sequences to establish
a recursive algorithm based on fast matrix polynomial multiplication.

For two matrices M = Z;‘.’io MUEX and N = Z;‘.’jgl NUEIXEin K[A]™*™ | if
the leading matrix N2¢1] is invertible in K™*™ then one can divide M by N
in an obvious way to get:

{ M =NQ+ R, with deg@Q =1, degR < 2d — 2,

Q — (N[2d71])71 (M[Zd])\ + M[2d71] _ N[2d72] (N[2d71])71M[2d]) ) (16)
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If the leading matrix coefficient of R is invertible (matrix coefficient of de-

gree 2d — 2), then the process can be continued. The remainder sequence is

normal if all matrix remainders have invertible leading matrices, if so we define:
M_1 =M, Mg=N (17)
M;=M; »—M; 1Q;, 1<i<d

with deg M; = 2d—1—1i. The above recurrence relations define matrices S; and
F; in K[A]™*™ such that

M_1(N)Si(A) + Mo(MEF;(A) = M;(A), 1<i<d, (18)

S; has degree i —1 and Fj; has degree i. We also define S_y =1, Sy =0, F_; =
and Fy = I. As shown below, the choice M_; = X?>?] and M, = B leads to
a minimum matrix generating polynomial F' = Fy for the sequence {B[i]}izg
(compare (18) and (15)).

Theorem 5 Let B be the matriz polynomial E?igl BPRd—i—1l\i ¢ Rmxm _ [f
for all 1 < k < d we have det(Hky ) # 0, then the half matriz Euclidean with
M_1 = X\T and M, = B works as announced. In particular:

1) M; has degree 2d — 1 —i (0 < i < d) and its leading matriz Mi[m_l_z] is
invertible (1 <1 <d—1);

11) F; has degree i and its leading matriz Fim is invertible (0 < i < d); S; has
degree i —1 (1 < i < d).
The algorithm produces a minimum matriz generating polynomial F4(\) for the
sequence {B}o<icoq 1 and F = (Fg{ld])*le()\) is the unique one in Popov
normal form.

Furthermore, if in the half matriz Euclidean algorithm the conditions 1-11 are
met for all i with 1 <i <d, then det(Hky ) #0 for all 1 <k <d.

Proof. We prove the assertions by induction. For ¢ = 0, since by assumption
B9 is invertible, My satisfies 1). By definition Fy = I and starting at i = 1,
S; = I. Now assume that the properties are true for 4 — 1. Then, following (16),

~ - S L ﬂ, _
Qi=QuA+Qi=(METT)  MESTIN4Q:

Q; is invertible by 1) at previous steps and Q; is in K™*™_ The leading matrix
of Fj is

(3

thus F; satisfies 1T). The same argument holds for S; (i—1 > 1). By construction
M; has a degree lower than 2d — 1 —i hence, looking at the right side coefficient
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matrices of (18), we know that

Bl pol . pld Fl° 0
gl gkl gl Jatl 0
: = : : (19)
li i - 2i T 2d—1—i
| Bl gli+l . pli || A M} i
Hki1,i11

By assumption of non-singularity of Hk;;; ;41 and since we have proved that
Fi[z] is invertible, the columns in the right side matrix of (19) are linearly inde-

pendent, thus Mipd_l_i] is invertible. This proves 1). Identity (18) for i = d
also establishes (14) which means that Fj is a matrix generating polynomial

for {B[i]}ggiggd,l whose leading matrix FCEd] its invertible. It follows that

F = (Fc[ld])’le(/\) is in Popov normal form. The minimality comes from the
fact that Hk g 4 is invertible and hence no vector generator (column of a matrix
generator) can be of degree less than d.

We finally prove that invertible leading coefficient matrices in the Euclidean
algorithm guarantee non-singularity for all Hky ;. To that end, we consider the
range of Hk; ;1 in (19). Clearly, the block vector [0 I,,]'" is in the range,

since Mi[zdflﬂ] is invertible. By induction hypothesis for Hk; ;, we see that the
first ¢ block columns of Hk ;41 ;41 can generate [ Ly O]TT, where the block zero
row at the bottom is achieved by subtraction of appropriate linear combinations
of the previous block vector [0 I,,]'". Hence the range of Hk;y1,i+1 has full
dimension. X

For Bl = XT"AY | i > 0, the next corollary shows that F is as expected.

Corollary 6 Let A be in K", let Bl = X" A'Y € K™*™ i >0, and let
v = md be the determinantal degree deg, (det F)’?’Y). If the block Hankel matriz
Hkq4(A, X,Y) satisfies the assumption of Theorem 5 then F = F)?’Y.

Proof. We know from (6) that v is the maximum possible rank for the block
Hankel matrices associated to the sequence, thus the infinite one Hk 441 sat-
isfies

Bl gt pld

rank Hk o, 441 = rank( Bl Bl Bld+1] ) =rank Hkgq11 = v.

It follows that Hk o 441 and Hkg 441 have the same nullspace and F', which by
Theorem 5 is a matrix generator for the truncated sequence {B[i]}ggiggd,l, is
a generator for the whole sequence. The argument used for the minimality of
F remains valid hence F = F)‘?’Y. X
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Remark 7 In Theorem 5 and Corollary 6 we have only addressed the case
where the target determinantal degree is an exact multiple md of the blocking
factor m. This can be assumed with no loss of generality for the algorithms in
sections 4 and 5 and the corresponding asymptotic costs in Section 6. Indeed,
we will work there with v = n and the input matrix A may be padded to
diag (4, I).

In the general case or in practice to avoid padding, the Euclidean algorithm
leads to rank (M, L[ﬂl) = v mod m < m and requires a special last division step.

The minimum generator F' = F)’? ¥ has degree d = [v/m], with column degrees
[01,...,0m] =[d—1,...,d —1,d,...,d] where d — 1 is repeated m[v/m| — v
times [Villard 1997b: Proposition 6.1]. X

The above method may be combined with the Knuth [1970]/Schonhage [1971]/
Moenck [1973] recursive approach. If w is the exponent of matrix multiplication
then, as soon as the block Hankel matrix has the required rank profile, F)’? Y
may be computed with (n“’d)”"(l) operations in K. The required FFT-based
multiplication algorithms for matrix polynomials are described in [Cantor and
Kaltofen 1991].

3.2 Normal matrix remainder sequences over the integers

The normality of the remainder sequence associated to a given matrix A es-
sentially comes from the genericity of the projections. This may be partly
seen in the scalar case for Lanczos algorithm from [Eberly and Kaltofen 1997:
Lemma 4.1], [Eberly 2002] or [Kaltofen et al. 2000; Kaltofen and Lee 2003]
and in the block case from [Kaltofen 1995: Proposition 3] or [Villard 1997b:
Proposition 6.1].

We show here that the block Hankel matrix has generic rank profile for
generic projections, and then the integer case follows by randomization. We let
A and YV be two n x m matrices with indeterminates entries ; ; and v; ; for
1<i<mnand 1< j<m. Letalsor be the maximum determinantal degree
defined by (10) in Theorem 4.

Lemma 8 With d = [v/m], the block Hankel matriz Hk 4 q4(A, X,Y) has rank
v and its principal minors of order i are non-zero for 1 <i < v,

Proof. For simplifying the presentation we only detail the case where v is a
multiple of m (see Remark 7). Let Kr;(A,Z) € K" be the block Krylov
matrix formed by the i first columns of [Z AZ ... A% 'Z]for 1 <i < v. The
specialization Z € K™*™ of Y given in [Villard 1997b: Proposition 6.1] satisfies

rankKr;(A,2) =i,1<i<w. (20)

We now argue, by specializing X and ), that the target principal minors are
non-zero. If i < m, using (20) one can find X € K"*? such that the rank
of XTKr;(A, Z) equals i. If m < i < v then one can find X € K"*™ such
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that X7"Kr;(A, Z) = [0 J,] where J,, is the m x m reversion matrix. Hence
Hkg4(A, X, Z) has ones on its ith anti-diagonal and zeros above, the corre-
sponding principal minor of order i is (—1)!. X

The polynomial HZ:1 det(Hky, 1 (A, X,)) is non-zero of degree no more
md(d+1)in K[...,&;,...,vij,...]. If the entries of X and Y are chosen uni-
formly and independently from a finite set S C Z then, by the Schwartz/Zippel
lemma and Theorem 5, the associated matrix remainder sequence is normal
with probability at least 1 — md(d + 1)/|S]|.

4 The block baby steps/giant steps determinant algorithm

We shall present our algorithm for integer matrices. Generalizations to other
domains, such as polynomial rings, are certainly possible. The algorithm fol-
lows the Wiedemann paradigm [Wiedemann 1986: Chapter V] and uses a baby
steps/giant steps approach for computing the sequence elements [Kaltofen 1992].
In addition, the algorithm blocks the projections [Coppersmith 1994]. A key
ingredient is that from the theory of realizations described in Section 2, it is
possible to recover the characteristic polynomial of a preconditioning of the
input matrix.

Algorithm Block Baby Steps/Giant Steps Determinant

Input: a matrix A € Z"*",
QOutput: an integer that is the determinant of A, or “failure;” the algorithm fails
with probability no more than 1/2.

Step 0. Let h = log, Hd(A), where Hd(A) is a bound on the magnitude of the
determinant of A, for instance, Hadamard’s bound (see, for example, [von
zur Gathen and Gerhard 1999]). For purpose of guaranteeing the prob-
ability of a successful completion, the algorithm uses positive constants
Y,7 > 1
Choose a random prime integer pp < vjh" and compute det(A) mod pyg
by LU-decomposition over Zy,.

If the result is zero, A is most likely singular, and the algorithm calls an
algorithm for computing z € Z"\ {0} with Az = 0, see Remark 12 on
page 22 below.

Step 1. Precondition A such that with high probability det(AI —A) = sy () - - -
Smin{m,s}> Where si,...,ss are the invariant factors of A\l — A. We have
two very efficient preconditioners at our disposal. The first is A « DA
where D is a random diagonal matrix with the diagonal entries chosen
uniformly and independently from a set S of integers [Chen et al. 2002:
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Theorem 4.3]. The second from [Turner 2001] is A < EA where

1 w1 0 0
E = 0 , w; €S.
1 Wn—1
0 0 1

The product DA is slightly cheaper than EA, but recovery of det(A)
requires division by det(D). Thus, all moduli that divide det(D) would
have to be discarded from the Chinese remainder algorithm below for the
first preconditioner. Both preconditioners achieve s1(A) = det(A — A)
with probability 1 — O(n?/|S|). Note that A is non-singular. We shall
choose S = {i | —[v4n"?] < i < [y4n72]}, where 2 > 2,75 > 1 are real
constants.

Step 2. Let the blocking factors be I = m = [n” | where o = 1/3.
Select random X,Y € S™x™,
We will compute the sequence Bl = XT"A%Y for all 0 < i < [2n/m] =
O(n'~) by utilizing our baby steps/giant steps technique [Kaltofen 1992].
Let the number of giant steps be s = [n” ], where 7 = 1/3, and let the
number of baby steps be r = [2[n/m]/s] = O(n'=7~7).

Substep 2.1 for j =0,1,...,r — 1 Do VUl « A7y,
Substep 2.2 7 + A";
Substep 2.3. For k =0,2,...,s — 1 Do (UF)T" « XTr 7k,

Substep 2.4. For j =0,1,...,r —1 Do
For k=0,1,...,s — 1 Do BFr+il « (UFHTry il

Step 3. Compute the minimum matrix generator F’ )‘?’Y()\) from the initial se-
quence segment {B[i]}OSKQ[n/m]. Here we can use the method from Sec-
tion 3, padding the matrix so that m divides n (see Remark 7 on page 14),
and return failure whenever the coefficient Fi[l] of the matrix remainder
polynomial is singular. For alternative methods, we refer to the Remark 9
below the algorithm.

Step 4. If deg(det F' ;(1 ’Y) < nreturn “failure” (this check may be redundant, de-

pending on which method was used in Step 3). Otherwise, since F)?’Y()\)

is in Popov form we know that its determinant is monic and by Theorem 4
we have det F)?’Y(/\) = det(AI — A). Return det(A) = A(0). X

Remark 9 As we have seen in Section 2.1 there are several alternatives for
carrying out Step 3 [Rissanen 1972; Dickinson et al. 1974; Forney, Jr. 1975;
Van Barel and Bultheel 1992; Beckermann and Labahn 1994; Kaltofen 1995;
Coppersmith 1994; Thomé 2002; Giorgi et al. 2003]. In Step 4 we require that
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det F)’?’Y()\) = det(AI — A). In order to achieve the wanted bit complexity, we
must stop any of the algorithms after having processed the first 2[n/m] elements
of (2). The used algorithm then must return a candidate matrix polynomial F.
Clearly, if Step 4 exposes deg(det F ) < n one knows that the randomizations
were unlucky. However, if deg(det F ) = n there still may be the possibility that
F # F)?’Y due to a situation where the first 2[n/m] elements do not determine
the generator, as would be the case in the two examples given in Section 2. In
order to achieve the Las Vegas model of randomized algorithmic complexity,
verification of the computed generator is thus necessary here. For example, the
used algorithm could do so by establishing that rank Hk ,, /17, [n/m] (4, X,Y) =
n. Our algorithm from Section 3 implicitly does so via Theorem 5 on page 13.
One could do so explicitly be computing the rank of Hky, /1, 15/m] modulo a
random prime number.

We remark that the arithmetic cost of verifying that the candidate for F)’? Y
is a generator for the block Krylov sequence {AiY}iZO is the same as step 2.
The reduction is seen by applying the transposition principle [Kaltofen 2000:
Section 6]: note that computing all Bl is the block diagonal left product

LAYE L 0 o --- 0
0 LVAYER L0 - 0
(XY | (X || . |
0 0 LLAYE L

where (X7); . denotes the i-th row of X?". Computing Y, A'Ycll, where
dil ¢ Km*m are the coefficients of F)‘?’Y, is the block diagonal right product

(O, 1]
LAY 0 0 .. 0 (cM)s
0 LVAYE 0 0 :
: - : ()|’
0 0 LAY (D)

where (c[i])*,j denotes the j-th column of the matrix ¢!/, One may also develop
an explicit baby steps/giant steps algorithm for computing ), Ayl How-
ever, because the integer lengths of the entries in ¢l are much larger than those
of X and Y, we do not know how to keep the bit complexity low enough to
allow verification of the candidate generator via verification as a block Krylov
space generator. X

We shall first give the bit complexity analysis for our block algorithm under
the assumption that no subcubic matrix multiplication & la Strassen or sub-
quadratic block Toeplitz solver/greatest common divisor algorithm & la Knuth/
Schonhage is employed. We will investigate those best theoretically possible
running times in Section 6.
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Theorem 10 Our algorithm computes the determinant of any non-singular
matriz A € L™ with (n®T1/3log||A||)'t°() bit operations. Our algorithm
utilizes (n'T1/3 + nlog||A|)*°M) random bits and either returns the correct
determinant or it returns “failure,” the latter with probability of no more than
1/2.

In our analysis, we will use modular arithmetic. The following lemma will be
used to establish the probability of getting a good reduction with prime moduli.

Lemma 11 Let v > 1, v' > 1 be positive real constants. Then for all integers
H € Z>, that with h = log,(H)/0.84 < 1.72log,(H) satisfy h > 114 and
~' < hY the probability

)
Prob(p divides H | p a prime integer, 2 < p < ~'h") < v

= i,y,h,yfl‘ (21)

Proof. We have the following estimates for the distribution of prime numbers:

H p> e 1(z) = Z 1> 102m , () < Csz

0g, T log,

’pere e
where Cy, Cy and C3 are positive constants. Explicit values for C;, Cs and C3
have been derived. It is shown in [Rosser and Schoenfeld 1962] that we may
choose C; = 0.84 for z > 101, Cy = 1 for x > 17, and C3 = 1.25 for = > 114.

Since we have [[, ., p > e“th = H | there are at most m(h) < Csh/(log, h)
distinct prime factors in H. The number of primes < 4'hY is more than
Coy'h7 /(ylog, h+1log, v'), because from our assumptions we have that y'hY >
114 > 17. Therefore the probability for a random p to divide H is no more
than, using log, 7' < ylog, h,

2
’Y’h771 :

C3h/(log, h) < C3h/(log, h) < 5
Coy'h7 [(ylog, h+1log, v') = Coy'h7/(2ylog, h) ~ 2
In the above Lemma 11 we have introduced the constant 4’ so that it is
possible to choose v = 1 and have a positive probability of avoiding a prime
divisor of H.

Proof of Theorem 10. The unblocked version of the algorithm is fully ana-
lyzed in [Kaltofen 2002] with the additional modification of early termination
when the determinant is small. That analysis uses a residue number system
(Chinese remaindering) for representing long integers, which we adopt for the
blocked algorithm. This adds the bit cost of generating a stream of sufficiently
large random primes (including po in Step 0).

Step 0 has by h = O(nlog(n||A]|)), which follows from Hadamard’s bound,
the bit complexity (n® 4+ n2log||A||)*T°("), the latter term constituting taking
every entry of A modulo py. The failure probabily of Step 0, that is when
det(A) = 0 (mod pp) for non-singular A, is bounded by Lemma 11. Thus, for
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H = det(A) and appropriate choice of v; and 7{ in Step 0 all non-singular
matrices will pass with probability no less than 9/10.

Step 1 increases log ||[DAJ| or log||EAJ| to no more than O((logn)?log||Al|)
and has bit cost (n®log||A|) oM.

Steps 3, and 4 are performed modulo sufficiently many primes p; so that
det(A) can be recovered via Chinese remaindering. Using p; > 2, we obtain the
very loose count

1 <1< 2log,(Hd A) = 2h = O(nlog(n||Al])), (22)

the factor 2 accounting for recovery of negative determinants. Modular arith-
metic becomes necessary for the avoidance of length growth in the scalars in
F ;(1 ¥ during Steps 3 and 4. We shall first estimate the probability of success,
and then the bit complexity. The probabilistic analysis will also determine the
size of the prime moduli.

The algorithm fails if

1) the preconditioners D or E in Step 1 do not yield det(A\] — A) = s1(\) - - -
Smin{m,o}, that with probability < O(1/n*>72). As for Step 0, we select the
constant 7,4 so that the preconditioners fail with probability < 1/10.

11) the projections X,Y" in Step 2 do not yield rank Hk ,, /5,7, 1n/m](4, X, Y) =
n. Since for X = & and Y = ) with variables &; ;, v;,; as entries full rank is
achieved (see Section 2), we can consider an n x n non-singular submatrix
(X, Y) of Hkrpy/m1,1n/m] (4, &,Y). By [DeMillo and Lipton 1978; Zippel
1979; Schwartz 1980] we get

deg(det I) < 2n < 1

Prob(detI'(X,Y) =0] X,Y € S™*™) < = <=
ro ( e ( ’ ) | ) € )— |S| — |S| — 75”72_1

If we use the matrix polynomial remainder sequence algorithm of Section 3
for Step 3, we also fail if [[; <.,/ det(Hkp i (A, X,Y)) = 0, that with
probability no more than n(n/m + 1)/|S| < (n*=7 +1)/(2y4n™>1).

Again, the constant 7,74 are chosen so that the probability is < 1/10.

111) the computation modulo one of the moduli p; fails for Step 3 or 4. Then p; di-
vides det T'(4, X,Y’). We have log|det(T'(4, X,Y)) | = (n?/mlog||A|)*+°M).
Therefore we select the random moduli in the range

2 <pr < (777 log [|A[)HNe = g (23)

where o = 1/3 and 3 > 2,4 > 1 are constants. Note that in (23) the ex-
ponent (1 + o(1)) captures derivable polylogarithmic factors C;(logn)®2 x
(log||A|)“2, where C;, C3, C3 are explicit constants. By Lemma 11 the
probability that any one of the < 2h moduli fails, i.e. divides det(T'(4, X,Y")),
is no more than 2h/(n>=7 log ||A||)(1+°(M)(vs=1) By the Hadamard estimate
(22) we can make this probability no larger than 1/10 via selecting the con-
stants 73,4 sufficiently large.
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If we also must avoid divisors of ], < c(p/m det(Hk,r (A, X,Y)) for the
matrix polynomial remainder sequence algorithm, the range (23) increases
to pr < 73(n® =27 log|| A[[)(* o),

1v) the algorithms fails to compute sufficiently many random prime moduli
m < g (see (23)). There is now a deterministic algorithm of bit complex-
ity (logp;)'2t°™ for primality testing [Agrawal et al. 2002|, which is not
required but simplifies the theoretical analysis here. We pick & = 4hloggq
positive integers < ¢. The probability for each to be prime is > 1/loggq = ¢
(provided ¢ > 17 [Rosser and Schoenfeld 1962]). By Chernoff bounds
for the tail of the binomial distribution, the probability that fewer than
2h = (1 — 1/2)¢k are prime is < e~ (1/2°Vk/2 = 1/¢h/2 Thus for h > 5 the
probability of failing to find 2h primes is < 1/10.

The cases I-1v together with Step 0 add up to a failure probability of < 1/2.
We conclude by estimating the number of bit operations for Steps 2-4.

Step 2 computes Bl mod p; for 0 < i < 2[n/m] and 1 <1 < 2h as follows.
First, all Bl are computed as exact integers. For substeps 2.1 and 2.2 that re-
quires O(n?® logr) arithmetic operations on integers of length (r log ||A||)*T°™),
in total (n*=7~7log||A||)!*°") bit operations (recall that o = 7 = 1/3). Sub-
steps 2.3 and 2.4 require O(s mn?) arithmetic operations on integers of length
(rs log||A]])'T°M), again (n®*7 log || A]])*T°(!) bit operations. Then all O(n/m x
m?) entries of all Bl are taken modulo p; with [ in the range (22) and p; in (23).
Straight-forward remaindering would yield a total of (nm hrs log||A]|)'+o()
bit operations, which is (n?(log||4])?)**t°(1). The complexity can be reduced
to (n®log||A|)*°™) via a tree evaluation scheme [Heindel and Horowitz 1971;
Aho et al. 1974: Algorithm 8.4].1

Steps 3 and 4 are performed modulo all O(h) prime moduli p;. For each
prime the cost of extended Euclidean algorithm on matrix polynomials is O(m?
(n/m)?) residue operations. Overall, the bit complexity of Steps 3 and 4 is
again (n*t7 log ||A|[)*+°(). The number of required random bits in D or E, X
and Y, and case 1v above is immediate. X

It is possible to derive explicit values for the constants v1, v, v2, 74, 73, and
7% so that Theorem 10 holds. However, any implementation of the algorithm
would select reasonably small values. For example, all prime moduli would be
chosen 32 or 64 bit in length. Since the method is Las Vegas, such choice only
effects the probability of not obtaining a result.

If Step 3 uses a Knuth/Schoénhage half-GCD approach with FFT-based
polynomial arithmetic for the Euclidean algorithm on matrix polynomials of
Section 3, the complexity for each modulus reduces to (m?n)'T°() residue op-
erations. Thus, the overall complexity of Steps 3 and 4 reduces to (n2t27 x
log||A]])**+°™M) bit operations. For ¢ = 3/5 and 7 = 1/5 the bit complexity
of the algorithm then is (n®+1/5log||A||)!*°™) (cf. [Kaltofen and Villard 2002]
and [Pan 2002]).

TNote that this speedup comes at a cost of an extra log-factor.
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Remark 12 In order to state a Las Vegas bit complexity for the determinant
of a general square matrix, we need to consider the cost of certifying singularity
in Step 0 on page 16 above. In order to meet the complexity of Theorem 10 on
page 19 above we can use the algorithm in [Dixon 1982]. Reduction to a non-
singular subproblem can be accomplished by methods in [Kaltofen and Saunders
1991], and the rank is determined in a Monte Carlo manner via a random prime
modulus; see also [Villard 1988: page 102].

5 Improved division-free complexity

Our baby steps/giant steps algorithm with blocking of Section 4 can be em-
ployed to improve the division-free complexity of the determinant of [Kaltofen
1992]. Here we consider a matrix A € R™*™, where R is a commutative ring
with a unit element. At task is to compute the determinant of A by ring ad-
ditions, subtractions and multiplications. Blocking can improve the number
of ring operations from n®5+°() [Kaltofen 1992] to n3+!/3+°(1) that without
subcubic matrix multiplication or subquadratic Toeplitz/GCD algorithms, and
best possible from O(n?028!) [Kaltofen 1992]* to O(n*%7). Our algorithm
combines the blocked determinant algorithm with the elimination of divisions
technique of [Kaltofen 1992]. Our computational model is either a straight-line
program/arithmetic circuit or an algebraic random access machine [Kaltofen
1988]. Further problems are to compute the characteristic polynomial and the
adjoint matrix of A.

The main idea of [Kaltofen 1992] follows [Strassen 1973] and for the input
matrix A computes the determinant of the polynomial matrix L(z) = M +z(A—
M), where M € Z™*"™ is an integral matrix whose entries are independent of the
entries in A. For A(z) = det(L(z)) we have det(A) = A(1). All intermediate
elements are represented as polynomials in R[z] or as truncated power series
in R[[z]] and the “shift” matrix M determines them in such a manner that
whenever a division by a polynomial or truncated power series is performed the
constant coefficients are £1. For the algorithm in Section 4 we not only pick
M but also concrete projection block vectors X € Z™*™ and Y € Z"*™. No
randomization is necessary, as M is a “good” input matrix (¢ = m) and X and
Y are “good” projections, we have det F)?(Z)’Y()\) = det(Al — L(z)).

The matrices M, X and Y are block versions of the ones constructed in
[Kaltofen 1992]. Suppose that the blocking factor m is a divisor of n, the

0 } Let

dimension of A. This we can always arrange by padding A to [ 0 I

d =n/m and let

a; = (Lij2J>’ ¢ = —(—1)ld=i+1)/2] (L(d +Z_i)/2J>’

¥The proceedings paper gives an exponent 3.188; the smaller exponent is in a postnote
added to the version posted on www.kaltofen.us/bibliography.
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and let
0 1 0 0 ao
0 0 1 0 a1
¢= oo e o """
0 0 0 1
Ch €1 ... Cqgq—2 Cqg—1 Gd—1
We show in [Kaltofen 1992] that for the sequence a; = el"Civ, where " =
[1 0 ... 0] € Z'4is the first d-dimensional unit (row) vector, then the
Berlekamp/Massey algorithm divides by only +1. We define
¢ 0 ... 0
mM=|0 € T 0 g
0o .
0 0 C
e1r O 0 v 0 0
X — 0 €1 0 c anm Y — 0 v c anm-
0 SRR 0 SRR
0 ... el 0 ... v

By construction, the algorithm for computing the determinant of Section 4 per-
formed now with the matrices X, M,Y results in a minimum matrix generator

Fy"Y () = (A = cq A — - — o),

where I,,, is an m X m identity matrix. Furthermore, this generator can be
computed from the sequence of block vectors Bl = a;1,,, by a matrix Euclidean
algorithm (see Section 3) in which all leading coefficient matrices are equal to
+1p,.

The arithmetic cost for executing the block baby steps/giant steps algorithm
on the polynomial matrix L(z) = M + z(A — M) is related to the bit complex-
ity of Section 4. Now the intermediate lengths are the degrees in z of the
computed polynomials in R[z]. Therefore, the matrices XT"L(z2)'Y € R[z]™*™
can be computed for all 0 < i < 2d in n*+/3+°() ring operations. In the
matrix Euclidean algorithm for Step 3 we perform truncated power series arith-
metic modulo "', The arithmetic cost is (d>m?®n)'*°(1) ring operations for
the classical Euclidean algorithm with FFT-based power series arithmetic. For
the latter, we employ a division-free FFT-based polynomial multiplication al-
gorithm [Cantor and Kaltofen 1991]. Finally, for obtaining the characteristic
polynomial, we may slightly extend Step 4 on page 17 and compute the entire
determinant of F)L((Z)’Y()\) division-free in truncated power series arithmetic over
R[z,\] mod (2", A\"*1). For this last step we can use our original division-free
algorithm [Kaltofen 1992] and achieve arithmetic complexity (m?®n?)'*o(1),
We have proven the following theorem.
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Theorem 13 Qur algorithm computes the characteristic polynomial of any ma-
triz A € R™™ with (n>t1/3)11°(1) ring operations in R. By the results in [Baur
and Strassen 1983] the same complezity is obtained for the adjoint matriz, which
can be symbolically defined as det(A)A~".

6 Using fast matrix multiplication

As stated in the Introduction, by use of sub-cubic matrix multiplication algo-
rithms the worst case bit complexity of the block algorithms in Section 4 and 5
can be brought below cubic complexity in n. We note that taking the n? entries
of the input matrix modulo n prime residues is already a cubic process in n;
our algorithms therefore proceed differently.

Now let w by the exponent for fast matrix multiplication. By [Coppersmith
and Winograd 1990] we may set w = 2.375477. The considerations in this
section are of a purely theoretical nature.

Substep 2.1 in Section 4 is done by repeated doubling as in

[A?“Y ALY ..AQ"“—lY] — A% [y Ay . A2y forp=0,1,...

Therefore the bit complexity for Substeps 2.1 and 2.2 is (n“rlog||A]])*+o™M)
with an exponent w+1— o0 — 7 for n. Note that o and 7 determine the blocking
factor and number of giant steps, and will be chosen later so as to minimize the
complexity.

Substep 2.3 both splits the integer entries in Ul into chunks of length
(rlog||A|)*+°™), which is the bit length of the entries in Z. There are at most
s'°() guch chunks. Thus each block vector times matrix product (U*)7"Z is
a rectangular matrix product of dimensions (ms)'T°() x n by n x n. We now
appeal to fast methods for rectangular matrices [Coppersmith 1997] (we seem
not to need the results in [Huang and Pan 1998]), which show how to multiply
an n X n matrix by an n X v matrix in n®~?t°(pf+o() arithmetic operations
(by blocking the n x n matrix into (¢ X t)-sized blocks and the n x v matrix into
(t x t)-sized blocks such that n/t = v/t and that the individual block products
only take t>t°(1) arithmetic steps each), where 8 = (w —2)/(1 — ¢) with ¢ =
0.2946289. There are s such products on integers of length (rlog||A||)*T°™),
so the bit complexity for Substep 2.3 is (sn*~?(ms)?rlog||A]|)**+°") with an
exponent w + 1 —o + (0 + 7 — 1) for n.

Step 3 for each individual modulus can be performed by the method pre-
sented in Section 3 in (m“n/m)*°M) residue operations. For all < 2k moduli
we get a total bit complexity for Step 3 of (m* 'n?log|lA|)* ") with an
exponent 2 4+ o(w — 1) for n.

The bit complexities of Substep 2.4 and Step 4 are dominated by the com-
plexities of other steps.

All of the above bit, costs lead to total bit complexity of (n”log ||A|])*To™)
where the exponent 1 depends on the use matrix multiplication exponents w
and (. Table 1 displays the optimal values of n for selected exponents together
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w ¢ n o T
1-¢ w—(1+¢) w—2

1 w C w+ w2 —(24¢)w+2 1- w2—(24+Q)w+2 w2—(2+(Q)w+2
2 | 2.375477 0.2946289 2.697263 0.506924 0.171290
Bl 0 wtomEm -t @i
4 3 0 3+3 2 :
5| logy(7) 0 3.041738 0.576388 0.189230
6| 2375477 0 2.721267 0.524375 0.129836
7 2 0 243 : 0

Table 1: Determinantal bit/division-free complexity exponent 7.

with the exponents for the blocking factor and giant stepping that achieve the
optimum. Line 1 is the symbolic solution, Line 2 gives the best exponent that
we have achieved. Line 3 is the solution without appealing to faster rectangu-
lar matrix multiplication schemes. Line 4 corresponds to the comments before
Remark 12 on page 22, and Line 5 uses Strassen’s original subquadratic matrix
multiplication algorithm. Line 6 exhibits the slowdown without faster rectangu-
lar matrix multiplication algorithms. Line 7 is our complexity for a hypothetical
quadratic matrix multiplication algorithm.

An issue arises whether the singularity certification in Step 0 of our algorithm
can be accomplished at a matching or lower bit complexity than the ones given
above for the determinant. We refer to possible approaches in [Mulders and
Storjohann 2000; Storjohann 2003].

The above analysis applies to our algorithm in Section 5 and yields for the
determinant and adjoint matrix a division-free complexity of O(n?-697263) ring
operations. To our knowledge, this is the best-known to-date. A complication
arises in Step 4 when the entire characteristic polynomial is to be computed
without divisions. The computation of det F=*¥' (A) mod (271, An*+1) seems
to require O(m®) operations modulo (™", \"*1). We note that for A = z = 0
the generator matrix polynomial evaluates to I,,,, so asymptotically fast LU-
decomposition algorithms are applicable [Aho et al. 1974]. Step 4 now needs
(newt2)1+o() ring operations, reducing the division-free complexity for the char-
acteristic polynomial to nXto(M) v = w + % ring operations. We
obtain with w = 2.375477 and ¢ = 0.2946289 at o ~ 0.339517 and 7 ~ 0.229446
a division-free complexity for the characteristic polynomial of O(n?-806515) ring
operations.

A Maple 7 worksheet that contains our exponent calculations is posted at
http://www.kaltofen.us/bibliography.
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7 Integer characteristic polynomial and normal forms

As already seen in Sections 5 and 6 over an abstract ring R, our determinant
algorithm also computes the adjoint matrix and the characteristic polynomial.
In the case of integer matrices, although differently from the algebraic setting,
the algorithm of Section 4 may also be extended to solving other problems. We
briefly mention two extensions in the following. For A € Z™*™ we shall first see
that the algorithm leads to the characteristic polynomial of a preconditioning
of A and consequently to the Smith normal form of A. We shall then see how
F)’? af may be used for computing the Frobenius normal form of A and hence its
characteristic polynomial. Note that the exponents in our bit complexity are of
the same order than those discussed for the determinant problem in Table 1.

7.1 Smith normal form of integer matrices

A randomized Monte Carlo algorithm for computing the Smith normal form S €
Z™*™ of an integer matrix A € Z™*" of rank r may be designed by combining
the algorithm of Section 4 with the approach of [Giesbrecht 2001]. Here we
improve on the best previously known randomized algorithm of [Eberly et al.
2000]. The current estimate for a deterministic computation of the form is
(n“tlogl|Al])'T°™") [Storjohann 1996].

The Smith normal form over Z is defined in a way similar to what we have
seen in Section 2.2 for polynomial matrices. The Smith form S is an equivalent

diagonal matrix in Z"*", with diagonal elements s1, $2, ..., $,,0,...,0 such that
s; divides s;—; for 2 < i < r. The s;’s are the invariant factors of A [Newman
1972].

Giesbrecht’s approach reduces the computation of S to the computation
of the characteristic polynomials of matrices D§i)T(i)Dgi)A for | = (logn +
loglog ||A]|)!*°™) random choices of diagonal matrices Dgi) and D;i) and of
Toeplitz matrices T®, 1 < ¢ < 1. The invariant factors may be computed
from the coefficients of these characteristic polynomials. The precondition-
ing B + Dgi)T(i)Déi)A ensures that the minimum polynomial fZ of B is
squarefree [Giesbrecht 2001: Theorem 1.4] (see also [Chen et al. 2002] for such
preconditionings). Hence if fZ denotes the largest divisor of fZ such that
fB(0) # 0, we have r = rank B = deg f? which is —1 + deg f? if A is singu-
lar. By Theorem 4, for random X and Y we shall have, with high probability,
AN = det(F)]?’Y()\)) = M1 fB(X\) = \Fz fB()) for two positive integers k; and
ko that depend on the rank and on the blocking factor m. The needed charac-
teristic polynomials \» " f& and then the Smith form are thus obtained from
the determinants of [ matrix generating polynomials.

To ensure a high probability of success, the computations are done with
D' DS and T chosen over a ring extension Rz, of degree O((logn)?) of Z, in
combination with Chinese remaindering modulo (nlog||4||)'T°") primes [Gies-
brecht 2001: Theorem 4.2]. For one choice of B | the cost overhead compared
to Step 4 in Section 4 is the one for computing the entire determinant of
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the m X m matrix polynomial F)]?(l)’y of degree d = [n/m]. Over a field,
by [Storjohann 2002: Proposition 24] or [Storjohann 2003: Proposition 41] such
a determinant is computed in (m*d)'*t°(!) arithmetic operations. Using the
(nlog||A|)*t°() primes and the fact that the ring extension Rz has degree
O((logn)?), det F)]?(l)’y € Rz[)] is thus computed in (n>t7@=1 log||A||)!To™t)
bit operations.

From there we see that the cost for computing the [ characteristic polyno-
mials, which is the dominant cost for computing the Smith form, corresponds
to the estimate already taken into account for Steps 3 of the determinant algo-
rithm. Hence the values of n in Table 1 remain valid for the computation of the
Smith normal form using a randomized Monte Carlo algorithm.

7.2 Integer characteristic polynomial and Frobenius normal form

As used above, a direct application of Section 4 leads to the characteristic poly-
nomial of a preconditioning of A. For computing the characteristic polynomial
of A itself, we extend our approach using the Frobenius normal form and the
techniques of [Storjohann 2000b]. The Frobenius normal form of A € Z"*™ is
a block diagonal matrix in Z™*"™ similar to A. Its diagonal blocks are the com-
panion matrices for the invariant factors s1()),. .., s¢(X) of A\I — A. Hence the
characteristic polynomial det(Al — A) = Hle si(\) is directly obtained from
the normal form. Our result is a randomized Monte Carlo algorithm which im-
proves on previous complexity estimates for computing the characteristic poly-
nomial or the Frobenius normal form over Z [Storjohann 2000a: Table 10.1].
The certified randomized algorithm of [Giesbrecht and Storjohann 2002] uses
(n“tlog||A]])'T°M) bit operations.

By Theorem 4 on page 10, if we avoid the preconditioning step (Step 1) in
the determinant algorithm of on page 16 in Section 4, the computation leads to
F)?’Y(/\) and to

min{m,p}
det(F"(\)) = [[ si-

i=1

The first invariant factor s;()\) is the minimum polynomial f4 of A, hence
det(F)‘?’Y) is a multiple of f4 and a factor of the characteristic polynomial in
Z[A]. Following the cost analysis of the previous Section 7.1 for the determinant
of the matrix generating polynomial, the exponents in Table 1 are thus valid
for the computation of det(F)’?’Y). The square free part s"(‘lfr of det(F;g’Y) may
be deduced in (n?log||A||)*+°(") bit operations [Gerhard 2001: Theorem 11].
From the Frobenius normal form of A modulo a random prime p, fs“c‘lfr allows
a multifactor Hensel lifting for recontructing the form over Z [Storjohann 2000b].
With high probability, A\I — A also has ¢ invariant factors modulo p. We denote

them by 31,..., 55. They can be decomposed into ¢ products

5 =1 fm 1<i < ¢,
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for a GCD-free family {#i,...,%m} of square free polynomials in F,[\] and for
indices (ej1,...,eim) € Z%, 1 < i < ¢. This decomposition is computed in
(n?logp)'t°(M) bit operations [Bach and Shallit 1996: Section 4.8]. With high
probability we also have

tito ... LTm = fsﬁfr mod p-

The latter factorization can be lifted, for instance using the algorithm of [von
zur Gathen and Gerhard 1999: §15.5], into a family {¢;,...,¢,} of polynomials
modulo a sufficiently high power k of p. With high probability, the invariant
factors of A\I — A over Z and the Frobenius form of A may finally be obtained
as the following combinations of the t;’s:

s; =5 t%m mod pF 1< i< ¢,

with coefficients reduced in the symmetric range.

In addition to the computation of F)’? Y()), the dominant cost is the cost
of the lifting. Any divisor of the characteristic polynomial has a cofficient
size in (nlog||A|)'*t°() (for instance see [Giesbrecht and Storjohann 2002:
Lemma 2.1]) hence one can take k& = (nlog||A|])'T°("). The polynomials #;,
..., ty, are thus computed in (n?log||A||)**°(!) bit operations [von zur Ga-
then and Gerhard 1999: Theorem 15.18]. We may conclude that the values of
the exponent of n in Table 1 are valid for the randomized computation of the
Frobenius normal form and the characteristic polynomial of an integer matrix.

Victor Pan has brought to our attention Theorem 5.4 in [Pan 2002]. There
a Las Vegas bit complexity of (n'%/5log||A||)'T°() is stated for the Frobenius
factors of a matrix A € Z™*"™ by a different method. Pan has told us that
the result is actually Monte Carlo. We have been unable to verify that Pan’s
algorithm has the stated bit complexity.

8 Concluding Remarks

Our baby steps/giant steps and blocking techniques apply to entry domains
other than the integers, like polynomial rings and algebraic number rings. We
would like to add that if the entries are polynomials over a possibly finite field,
there are additional new techniques possible [Storjohann 2002; Jeannerod and
Villard 2002; Mulders and Storjohann 2003; Storjohann 2003]. In [Storjohann
2003: Section 18] it is suggested that the results for polynomial matrices can be
adapted to matrices with integral entries, thus yielding a Las Vegas algorithm
that computes det(A) where A € Z™*™ in (n®log||A|)'*°™) bit operations,
when n X n matrices are multiplied in O(n*) algebraic operations; Storjohann
writes that this will be published in a future paper. The best known division-free
complexity of the determinant remains at O(n25%7263) as stated in Sections 5
and 6. Furthermore, the best known bit-complexity of the characteristic poly-

nomial of an integer matrix is to our knowledge the one in Section 7.2, namely
(n2.697263 log ||A||)1+o(1)_
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For the classical matrix multiplication exponent w = 3, the bit complexity of
integer matrix determinants is thus proportional to n7t°() as follows: n = 3+%
[Kaltofen 1992; Eberly et al. 2000; Kaltofen 2002], n = 3 + 1 (Theorem 10 on
page 19), n = 3+ £ (Line 4 in Table 1 on page 25), n = 3 [Storjohann 2003:
Section 18]. Together with the algorithms discussed in Section 1 on page 3
that perform well on propitious inputs, such a multitude of results poses a
problem for the practitioner: which of the methods can yield faster procedures
in computer algebra systems? With William J. Turner we have implemented
the baby steps/giant steps algorithm of [Kaltofen 1992, 2002] in Maple 6 with
mixed results in comparison to Gaussian elimination and Chinese remaindering.
The main problem seems the overhead hidden in the n°)-factor. For example,
for ny = 10000 one has (log, nl)/n}/3 > 0.616, which means that saving a factor
of n'/3 at the cost of a factor log, n may for practical considerations be quite
immaterial. In addition, one also needs to consider other properties, such as
the required intermediate space and whether the algorithm is easily parallelized.
We believe that the latter may be the most important advantage in practice of
our block approach (cf. [Coppersmith 1994; Kaltofen 1995]).

The reduction of the bit complexity of an algebraic problem below that
of its known algebraic complexity times the bit length of the answer should
raise important considerations for the design of generic algorithms with abstract
coefficient domains [Jenks et al. 1988] and for the interpretation of algebraic
lower bounds for low complexity problems [Strassen 1990]. We demonstrate
that the interplay between the algebraic structure of a given problem and the
bits of the intermediately computed numbers can lead to a dramatic reduction
in the bit complexity of a fundamental mathematical computation task.
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