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Abstract

We present yet another heuristic for the software pipelining problem� We believe this
heuristic to be of interest because it brings a new insight to the software pipelining
problem by establishing its deep link with the circuit retiming problem� Also� in the
single resource class case� our new heuristic is guaranteed� with a better bound than
that of ���� Finally� we point out that� in its simplest form� our algorithm has a lower
complexity�

Keywords� Software pipelining� circuit retiming� guaranteed heuristic� list scheduling� cyclic
scheduling�

R�esum�e

Nous pr�esentons une nouvelle heuristique pour le probl�eme du pipeline logiciel� Nous
montrons� par cette nouvelle approche� l�existence d�un lien �etroit entre le probl�eme
du pipeline logiciel et le probl�eme de resynchronisation des circuits� De plus� nous
montrons que dans le cas de ressources identiques� notre heuristique est garantie �avec
une borne de garantie meilleure que celle obtenue pour l�heuristique de Gasperoni et
Schwiegelshohn ���	 et� dans sa forme non optimis�ee� une complexit�e moindre�

Mots�cl�es� Pipeline logiciel� resynchronisation de circuits� heuristiques garanties� ordonnance

ment de liste� ordonnancement cyclique�
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Abstract

We present yet another heuristic for the SP problem� We believe this heuristic to be of
interest because it brings a new insight to the SP problem by establishing its deep link with the
circuit retiming problem� Also� in the single resource class case� our new heuristic is guaranteed�
with a better bound than that of ���� Finally� we point out that� in its simplest form� our
algorithm has a lower complexity�
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� Introduction

Software pipelining �SP hereafter	 is a technique aimed at the e�cient execution of simple loops�
The main problem is to cope with both dependence and resource constraints which make the
problem NP
complete in general� Consider the following example to illustrate the discussion� We
will work on this example all along the paper�

Example

DO k � � N
�op�	� a�k	 � c�k � �	
�op�	� b�k	 � a�k � �	 � d�k� �	
�op�	� c�k	 � b�k	 � �
�op�	� d�k	 � f�k � �	��
�op�	� e�k	 � sin�f�k � �		
�op�	� f�k	 � log�b�k	 � e�k		

ENDDO
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The instructions �op�	� � � � � �opn	 within the loop �n � � in our example	 are called generic tasks
�or operations�� Each of them is executed N � � times� where N is assumed to be very large�
Instance k of operation opi is denoted �opi� k	� and its execution is scheduled to begin at time
��opi� k	 �  and to last ��opi	 units of time�
The goal is to determine a schedule � to minimize the total execution time T � maxf��opi� k	�

��opi	� � � i � n�  � k � Ng subject to resource constraints� and while preserving the semantics
of the original loop �dependence constraints	�

Resource constraints In the most general instance of the SP problem� resource constraints
are expressed as follows� generic tasks are partitioned into classes� To each class C corresponds a
given ��nite	 number p�C	 of available processors �or resources	� For example think of tasks being
partitioned into additions �class C�	 and multiplications �class C�	� then p�C�	 is the number of
available adders and p�C�	 that of multipliers� We need to ensure that the scheduling � satis�es
to the resource constraints� i�e� that at any time
step and for each resource class C� no more than
p�C	 instances of tasks belonging to class C are being executed�
In a simpler instance of the SP problem� there is a single resource class composed of p identical

processors� Each operation op can be executed indi�erently on any processor� with delay ��op	�
Although less general� this single resource class instance has motivated a great deal of research� for
at least two reasons�

� it has a great importance in practice� as it models �ne
grain parallelism extraction in shared
memory machines with programmable ALUs �or o�
the
shelf microprocessors	�

� it is the only case where guarantees exist ��� for scheduling heuristics� This is very impor

tant as it gives a sound basis for comparing heuristics �the only alternative is to multiply
experiments	�

Dependence constraints Dependence constraints express the fact that some computations must
be executed in a speci�ed order so as to preserve the semantics of the loop� In our example�
computation �op�� k	 writes a�k	� hence it must precede computation �op�� k � �	 which reads this
value� There is also �among others	 a dependence from �op�� k � �	 to �op�� k	� because f�k � �	
must be read in �op�� k	� All dependences are usually captured into a reduced dependence graph
�see Figure �	�
The SP problem has motivated a great amount of research� Since the pioneering work of

Aiken and Nikolau ���� several authors have proposed various heuristics ��� �� �� �� �� �� The main
contribution of this paper is to present yet another heuristic for the SP problem� We believe this
heuristic to be of interest because it brings a new insight to the SP problem by establishing its deep
link with the circuit retiming problem� Also� in the single resource class case� our new heuristic is
guaranteed� with a better bound than that of ���� Finally� we point out that� in its simplest form�
our algorithm has a lower complexity�
The rest of the paper is organized as follows� in Section �� we formally de�ne the SP problem and

we brie�y survey complexity results and heuristics from the literature� In Section �� we present the
guaranteed heuristic of Gasperoni and Schwiegelshohn ���� In Section ���� we show how to modify
this heuristic so as to cut more edges in the dependence graph �hence expecting better results	�
This gives the starting point of our heuristic whose presentation is split over Sections � and ��
Furthermore� we show that the bound for our heuristic is better than the bound in ���� Finally�

�This small list is far from being comprehensive�
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Figure �� The reduced dependence graph G

we discuss some extensions in Section �� We summarize our results and give some perspectives in
Section ��

� Known results on the SP problem

��� Problem formulation

Formally� software pipelining problem instances are represented by a �nite� vertex
weighted� edge

weighted directed multi
graph G � �V�E� �� d	� The vertices V of the graph model the generic
tasks� V � fop�� op�� � � � � opng� Each generic task opi has a positive delay �or latency	 ��opi	�
Vertex �task	 delays � can be rational numbers� but since the graph is �nite we can always change
the time unit to have integer delays� The graph G is often called the reduced dependence graph in
the literature�
Each generic task opi has several instances �opi� k	�  � k � N � The problem is to �nd a

schedule � that assigns a time
step ��opi� k	 to begin the execution of each computation �opi� k	�
The directed edges E of the graph model dependence constraints� Let e � �opi� opj	 � E be

an edge of G with weight d�e	� this means that instance k of generic task opi must be completed
before the execution of instance k�d�e	 of generic task opj� In other words� we have the scheduling
constraints�

�e � �opi� opj	 � E � ��opi� k	 � ��opi	 � ��opj� k� d�e		

Edge delays are nonnegative integers by construction� Some edge delays may be equal to zero� but
there does not exist any cycle in G whose length �the sum of the edge delays	 is zero �otherwise
some computation depends upon itself	� The multi
graph G for our example is depicted in Figure ��
operator delays are given in square boxes�
Resource constraints are expressed as follows� generic tasks are partitioned into classes� To

each class C corresponds a given number p�C	 of available processors �or resources	� We need to
ensure that at any time
step no more than p�C	 instances of tasks belonging to class C are being
executed� This translates into the following formula�

�t � � �C� jf�op� k	� op � C�  � k � N� t� ��op	 � ��op� k	 � tgj � p�C	�

Resource constraints can be expressed slightly di�erently in the case of pipelined processors� If
we assume processors of class C to be pipelined� then no more than p�C	 tasks of class C can be
initiated at each unit of time�
The SP problem can therefore be reduced to the determination of the schedule � subject to the

above constraints� Valid schedules are those schedules satisfying all constraints �both dependence
constraints and resource constraints	� Because of the regular structure of the SP problem� we

�



usually search for a cyclic schedule �� we aim at �nding a nonnegative integer � �called the initiation
interval of �	 and constants ci such that

��opi� k	 � �k � ci

Because the input loop is supposed to execute many iterations �N is large	� we focus on the
asymptotic behavior of �� The initiation interval � is a natural performance estimator of �� as ���
measures ��s throughput� Note that if the reduced dependence graph G is acyclic and if the target
machine has enough processors� then � can be zero �this type of schedule has in�nite throughput	�
A variant consists in searching for a nonnegative rational � � u�v and to let ��opi� k	 � b�k�cic

�with rational constants ci	� This amounts to unroll the input loop by a factor v� Note that rational
cyclic schedules are dominant in the case of unlimited resources ����
In the following� we restrict to the simplest case� i�e� the case of a single resource class of

non pipelined processors� Our heuristic does apply to many resource classes� but we are no
longer able to guarantee it in this case�

��� Related work

Many papers on software pipelining have been published� In this section� we very brie�y sum

marize four of the most recent ones� by Feautrier ���� Hanen and Munier ���� Gasperoni and
Schwiegelshohn ��� and Wang et al� ����

Feautrier ��� Feautrier formalizes the SP problem in terms of integer linear programming� in
the case of di�erent resource classes� He gives two scheduling algorithms� one for the case p�C	 � �
�which means that all resources are considered as di�erent	 and another for the general case� In both
cases� it is shown how to translate resource constraints into systems of bilinear integer constraints�
This technique permits to derive optimal solutions� though in non
polynomial time�

Hanen and Munier ��� Hanen and Munier use a very interesting graph
based approach� They
restrict themselves to the single resource class case� They use �tie
breaking� graphs to derive
schedules� Basically� the idea is to add some edges to the reduced dependence graph� These
new edges link task instances to be executed on the same group of processors� The problem is
to determine how to partition processors into groups and how to add new edges� The proposed
heuristics look quite powerful� although not guaranteed�

Gasperoni and Schwiegelshohn ��� Gasperoni and Schwiegelshohn tackle the single resource
class case� both with pipelined and non
pipelined processors� They use yet another approach� they
separate� so to speak� dependence constraints and resource constraints� They �rst schedule the
reduced dependence graph G assuming an unlimited number of processors� Such a schedule is the
basis to decide which edges to cut in G so as to make it acyclic� On the new acyclic graph Ga� they
use a list
scheduling heuristic to cope with the resource constraints� The key
point is that the �nal
scheduling is guaranteed� We explain Gasperoni and Schwiegelshohn�s approach with full details
in Section �� and we build upon their results�

Wang� Eisenbeis� Jourdan and Su �	� Wang et al� have an approach very similar to that
of Gasperoni and Schwiegelshohn� The main di�erence is in the selection criterion to cut edges
in G so as to make it acyclic� They cut more edges than Gasperoni and Schwiegelshohn� thereby
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expecting better results when list
scheduling the acyclic graph Ga�

For our new heuristic� we apply this idea of cutting edges too� Our goal is twofold�

� Miminize the longest path in the acyclic graph Ga so as to have the best possible performance
bound� hence improving the heuristic guarantee�

� Minimize the number of edges in Ga so as to have as few constraints as possible�

As already mentioned� we �rst describe Gasperoni and Schwiegelshohn�s approach �Section �	 before
introducing our new heuristic �Section ���	�

� Going from cyclic scheduling to acyclic scheduling

Before going into the details of Gasperoni and Schwiegelshohn heuristic �GS for short	� we recall
some properties of cyclic schedules� so as to make the rest of the presentation clearer�

��� Some properties of cyclic scheduling

Given the dependence graph G � �V�E� �� d	� a cyclic schedule � is a schedule of the form�

��opi� k	 � �k � ci where �� ci� k � N

that satis�es both dependence constraints and resource constraints� Such a cyclic schedule is
periodic� with period �� the computation scheme is reproduced every � units of time� More
precisely� if instance �opi� k	 is assigned to begin at time t� then instance �opi� k � �	 will begin at
time t � �� Therefore we only need to study a slice of � clock cycles to know the behavior of the
whole cyclic scheduling in steady state�
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Figure �� Successive slices of a schedule for graph G �unbroken lines represent type � dependences�
dotted lines represent type � dependences	�

Let us observe such a slice� e�g� the slice SK from clock cycle K� up to clock cycle �K��	����
where K is large enough so that the steady state is reached �see Figure � for an example with an
optimal schedule and unlimited resources	� Perform the Euclidean division of ci by �� ci � ri��qi
where  � ri � �� �� Then

��opi� k	 � ri � ��k � qi	

�



This means that one and only one instance of opi is initiated within the slice SK � it is instance
k � K � qi� started ri clock cycles after the beginning of the slice�
If the schedule is valid� both resource constraints and dependence constraints are satis�ed�

The latter constraints can be satis�ed because of two di�erent reasons� either two dependent
computation instances are initiated in the same slice SK �type �	 or they are initiated in two
di�erent slices �type �	� Of course� the partial dependence graph induced by type � constraints is
acyclic� because type � dependences impose a partial order on the operations� according to their
apparition order within the slice�
The main idea of GS is the following� Assume that we have a valid cyclic schedule of period

�� for a given number p� of processors� and that we want to deduce a valid schedule for a smaller
number p of processors� A way of building the new schedule is to keep the same slice structure�
i�e� to keep the same operation instances within a given slice� Of course we might need to increase
the slice length to cope with the reduction of resources� In other words� we have to stretch the
rectangle of size �� � p� to build a rectangle of size � � p� Using this idea� type � dependences
will still be satis�ed if we choose � large enough� Only type � dependences have to be taken into
account for the internal reorganization of the slice �see Figure �	� But since the corresponding
partial dependence graph is acyclic� we are brought back to a standard acyclic scheduling problem
for which many theoretical results are known� In particular� a simple list scheduling technique
provides a guaranteed heuristic �and the shorter the longest path in the graph� the more accurate
the heuristic bound	�
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Once this main principle settled� there remain several open questions�

�� How to choose the initial scheduling�

�� How to choose the reference slice� �There is no reason a priori to choose a slice beginning at
a clock cycle congruent to  modulus ��	

�� How to decide that an edge is of type �� hence to be considered in the acyclic problem�

�



These three questions are of course linked together� Intuitively� it seems important to �try to	
minimize both

� the length of the longest path in the acyclic graph� which should be as small as possible as it
is tightly linked to the guaranteed bound for the list scheduling�

� and the number of edges in the acyclic graph� so as to reduce the dependence constraints for
the acyclic scheduling problem�

We will give a precise formulation to these questions and give a solution� Beforehand� we review
the choices of GS�

��� The heuristic of Gasperoni and Schwiegelshohn

In this section we explain with full details the GS heuristic ���� The main idea is as outlined in
the previous section� The choice of GS for the initial scheduling is to consider the optimal cyclic
scheduling for an in�nite number of processors �p� ��	� i�e� without resource constraints�


���� Optimal schedule for unlimited resources

Consider the cyclic scheduling problem G � �V�E� �� d	 without resource constraints �p ��	�
Let � be a nonnegative integer� De�ne from G an edge
weighted graph G�

� � �V
�� E �� d�	 as

follows�

Vertices of G�

� Add to V a new vertex s� V
� � V 	 fsg�

Edges of G�

� Add to E an edge from s to all other vertices� E� � E 	 �fsg � V 	�

Weight of edges of G�

� De�ne d
��e	 �  if e � E�nE and d��e	 � ��opi	��d�e	 if e � �opi� opj	 �

E�

We have the following well
known result�

Lemma � � is a valid initiation interval 
 G�

� has no cycle of positive weight�

Proof

� If � is a valid initiation interval� there is a cyclic schedule ��opi� k	 � ci � �k that satis�es
the dependence constraints�

�e � �opi� opj	 � E � ci � ��opi	 � �d�e	 � cj ��	

Consider a cycle C in G�

�� Note that C is a cycle of G� too� Summing all inequalities ��	 that
involve the edges of C leads to�X

opi�C

�ci � ��opi		 � �
X
e�C

d�e	 �
X

opj�C

cj 
 ��C	 � �d�C	
 d��C	 � 

�



� Conversely� if G� has no cycle of positive weight� one can de�ne� for all op � V � the longest
path �in G�	 from s to op� that we denote by t�s� op	�

By de�nition� t�s� op	 satis�es the following triangular inequality�

�e � �opi� opj	 � E� t�s� opj	 � t�s� opi	 � d��e	

i�e�
�e � �opi� opj	 � E� t�s� opi	 � ��opi	 � t�s� opj	 � �d�e	

This proves that ��op� k	 � t�s� op	 � �k is a valid cyclic schedule�

Lemma � has two important consequences�

� First� given an integer �� it is easy to determine if � is a valid initiation interval and if yes�
to build a corresponding cyclic schedule by applying Bellman
Ford�s algorithm ��� on G�

��

� The optimal initiation interval �� is the smallest integer � such that G�

� has no positive cycle�
Therefore� �� �  if G is acyclic and �� � maxfd

��C�
d�C�

e� C cycle of Gg otherwise�


���� Algorithm GS for p resources

As said before� in the case of p identical processors� the algorithm consists in the conversion of the
dependence graph G into an acyclic graph Ga� Ga is obtained by deleting some edges of G� As
initial scheduling� GS takes the optimal scheduling with unlimited resources

���opi� k	 � t�s� opi	 � ��k�

As reference slice� GS takes a slice starting at a clock cycle congruent to  modulus ��� i�e� a slice
from clock cycle K�� up to clock cycle �K��	��� �� This amounts to decomposing t�s� opi	 into

t�s� opi	 � ri � ��qi where  � ri � �� � �

In other words ri � t�s� opi	 mod ��� Consider an edge e � �opi� opj	 � E� In the reference slice�
the computation instance �opi� K � qi	 is performed� If ri � ��opi	 � rj� the computation instance
of opj which is performed within the reference slice �namely �opj � K � qj		 is started before the
end of the computation �opi� K � qi	� Hence this computation instance �opj� K � qj	 is not the
one that depends upon completion of �opi� K � qi	� In other words� K � qi � d�e	 �� K � qj � The
two computations in dependence through edge e are not initiated in the same slice� Edge e can be
safely considered as a type � edge� thus can be deleted from G� This is the way edges are cut in
GS heuristic�� We are led to the following algorithm�

Algorithm � �Algorithm GS	

�� Compute the optimal cyclic schedule �� for unlimited resources�

�� Let e � �opi� opj	 be an edge of G� Then e will be deleted from G if and only if

t�s� opj	 mod �� � t�s� opi	 mod �� � ��opi	 �C�	

This provides the acyclic graph Ga�

�However	 this is not the best way to determine type � edges� See Section ����

�



�� �a� Consider the acyclic graph Ga where vertices are weighted by � and edges represent task
dependences� and perform a list scheduling �a on the p processors�

�b� Let � � maxopi��a�opi	 � ��opi		 be the latency of the schedule for Ga�

�� For all opi � E and k � N�

��opi� k	 � �a�opi	 � �

�
t�s� opi	

��

�
� �k

is a valid cyclic schedule�

The correctness of Algorithm GS can be found in ���� It can also be deduced from the correctness
of Algorithm CDR �see Section �����	�


���
 Performances of Algorithm GS

GS gives an upper bound to the initiation interval � obtained by Algorithm �� Let �opt be the
optimal �smallest	 initiation interval with p processors� The following inequality is established�

p� � p�opt � �p� �	� ��	

where � is the length of the longest path in Ga� Moreover� owing to the strategy for cutting edges�
� � �� � �max � � �see Lemma � in ���	� This implies�

p� � p�opt � �p� �	��� � �max � �	

which leads to
�

�opt
� ��

�

p
�

�
p� �

p

��
�max � �

�opt

�

GS is the �rst guaranteed algorithm� We see from equation ��	 that the bound directly depends
upon �� the length of the longest path in Ga�

Example We go back to our example� Assume p � � available processors� Figure � �a	 recalls
the graph G for which �� � ��� In Figure � �b	� we depict the graph G�

�� that permits to
compute t�s� op	 for all op �the di�erent values t�s� op	 are given in circles on the �gure	 and an
optimal schedule with unlimited resources ���op� k	 � t�s� op	 � ��k� This schedule was already
represented Figure �� � processors are needed� Figure � �c	 shows the acyclic graph Ga obtained
by cutting edges e � �opi� opj	 such that rj � ri � ��opi	 where ri � t�s� opi	 mod ��� Finally�
Figure � �d	 shows a possible schedule of operations provided by a list scheduling� for which � � ���

��� Cutting edges by retiming

Let us summarize Algorithm GS as follows� �rst compute the values t�s� op	 in G�

��
to provide the

optimal scheduling without resource constraints ��� Then take a reference slice starting at top
 mod ���

���opi� k	 � ri � ���k � qi	 with  � ri � �� � �

Finally� delete from G some edges that necessarily correspond to dependences between di�erent
slices� only those edges e � �opi� opj	 such that ri � ��opi	 � rj are removed by GS�
However� edges that correspond to dependences between di�erent slices are those such that qi ��

qj � d�e	� Indeed� within the reference slice� the scheduled computation instances are �opi� K � qi	

�



2p

p1

1op

op2

op3

op4

2

10

6

14

1op

op2

op3

op4

op2
op3

op4

1
o

p

op6

op5

op6

op51op op4

op2

op3 op6

op5

op5

op6

processors
(d)

0 25 time

2

0
1

1

1

0

0

2

(a)

1

4

s

0

0

0

0
0

0

(b)

-6

2

4

10

-10

-10

-23

4 10

12

6

10

0

0

(c)

Figure �� �a	� The reduced dependence graph G� �� � ��
�b	� The graph G�

��

�c	� The acyclic graph Ga

�d	� A corresponding list scheduling allocation� � � ��

and �opj � K � qj	 for edge e � �opi� opj	� Therefore� the computation �opj� K � qi � d�e		� which
depends upon �opi� K�qi	� is performed in the same slice i� K�qi�d�e	 � K�qj � i�e� qj�d�e	 � qi�
Otherwise� it is performed in a subsequent slice� and in this case qj � d�e	 � qi� Therefore� the
condition for cutting edges corresponding to dependences between di�erent slices �i�e� those we
called type � dependences	 writes qj � d�e	 � qi rather than ri � ��opi	 � rj�
Let us check this mathematically� Consider a valid cyclic scheduling ��opi� k	 � ci� �k and let

ci � ri��qi with now t� � ri � t���� �� where t� is given� we look at an arbitrary slice of length
�� For each edge e � �opi� opj	� the dependence constraint is satis�ed� thus ri � ��opi	 � �qi �
rj � ��qj � d�e		� Then�

�������
������

ri � ��opi	 � �qi � rj � ��qj � d�e		

 �ri � rj	 � ��opi	 � ��qj � d�e	� qi	
� ��� � � ��qj � d�e	� qi	
� �� � qj � d�e	� qi
�  � qj � d�e	� qi

Furthermore� if qj�d�e	�qi � � then the dependence constraints directly writes ri���opi	 � rj�
Conversely� if ri � ��opi	 � rj� then necessarily qj � d�e	� qi � � if an edge is cut by GS� then it
is also cut by our new rule� We are led to a modi�ed version of GS which we call mGS� Since we
cut more edges in mGS than in GS� the acyclic graph mGa obtained by mGS contains a subset of
the edges of the acyclic graph Ga� See Figure � to illustrate this fact�
We are now ready to formulate the problem� We need neither an initial ordering nor a reference

slice any longer� What we only need is to determine a function q � V �Zsuch that�

�e � �u� v	 � E� q�v	 � d�e	� q�u	 � 
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Figure �� �a	� The acyclic graph provided by Algorithm mGS
�b	� A corresponding list scheduling allocation� � � ��

Such a function q is called a retiming in the context of synchronous VLSI circuits ���� Retiming is
an assignment of an integer lag q�u	 to each vertex u � V � it amounts to suppress q�u	 �registers�
to the weight of each edge leaving u �whose tail is u	 and to add q�v	 registers to each edge entering
v �whose head is v	� It leads to a new edge
weighting function dq de�ned for an edge u

e
 v by

dq�e	 � d�e	 � q�v	 � q�u	� After a suitable retiming is found� we de�ne the acyclic graph mGa

as follows� an edge e � E is kept in mGa i� its new weight dq�e	 is  �edge �without register�	�
Clearly� mGa is acyclic �assume there is a cycle� and sum up retimed edge weights on this cycle to
get a contradiction	� Given mGa� we list schedule it as a DAG whose vertices are weighted by the
initial � function�
Recall that our goal was to answer the two following questions�

� How to cut edges so as to obtain an acyclic graph Ga whose longest path has minimal length�

� How to cut as many edges as possible so that the number of dependence constraints to be
satis�ed by the list
scheduling of Ga is minimized�

Now� using our new formulation� we can state our objectives more precisely in terms of retiming�

Objective � Find a retiming q that minimizes the longest path in mGa� i�e� in terms of retiming�
that minimizes the clock period � of the retimed graph �see Section �	�

Objective � Find a retiming q so that the number of edges in mGa is minimal� i�e� distribute
registers so as to leave as few edges without registers as possible�

In Section �� we show how to achieve the �rst objective �this is a well
known problem	� There
are several possible solutions� and in Section �� we show how to select the best one with respect to
the second objective� and we state our �nal algorithm� We improve upon GS for two reasons� �rst
we have a better bound� and second we cut more edges� hence more freedom for the list scheduling�

� Minimizing the longest path of the acyclic graph

There are well
known retiming algorithms that can be used to minimize the clock period of a VLSI
circuit� In this section� we show how to use such algorithms to derive a valid value q�opi	 for each
operator opi�

��� Retiming algorithms

Formally� a retiming of a graph G � �V�E� �� d	 is a vertex
labeling function q � V �Z� q performs
a transformation of the initial graph G into a new graph Gq � �V�E� �� dq	 where dq is de�ned as

��



follows� if e � �u� v	 is an edge of E then

dq�e	 � d�e	 � q�v	� q�e	

Such a retiming is valid if for each edge e of E� dq�e	 � � Note that we assumed that in any
cycle of G there is at least one edge whose weight is positive� using VLSI terminology� we say G is
synchronous�
Leiserson and Saxe ��� present several algorithms to compute an optimal valid retiming� in the

sense that the longest path of null weight in the retimed graph is as short as possible� Before

presenting these algorithms with more details� we need some de�nitions� We denote by u
P
� v a

path P of G from u to v� by d�P 	 �
P

e�P d�e	 the sum of the dependences of the edges of P � and
by ��P 	 �

P
v�P ��v	 the sum of the delays of the vertices of P � We de�ne D and  as follows�

D�u� v	 � minfd�P 	 � u
P
� vg

 �u� v	 � maxf��P 	 � u
P
� v and d�P 	 � D�u� v	g

D and  are computed by solving an all
pairs shortest
path algorithm on G where edge u
e
 v is

weighted with the pair �d�e	����u		� Finally� let

��G	 � maxf��P 	 � P path of G� d�P 	 � g

��G	 is the length of the longest path of null weight in G �and is called the clock period of G in
VLSI terminology	�

Theorem � �Theorem � in ���	 Let G � �V�E� �� d	 be a synchronous circuit� let � be an arbitrary
positive real number� and let q be a function from V to the integers� Then q is a legal retiming of
G such that ��Gq	 � � if and only if

�� q�u	� q�v	 � d�e	 for every edge u
e
 v of G� and

�� q�u	� q�v	 � D�u� v	� � for all vertices u� v � V such that  �u� v	 � ��

Theorem � provides the basic tool to establish the following algorithm �Algorithm �	 that
determines a retiming such that the clock period of the retimed graph is minimized�

Algorithm � �Algorithm OPT� in ���	

�� Compute D and  �see Algorithm WD in 	
���

�� Sort the elements in the range of  �

�� Binary search among the elements  �u� v	 for the minimum achievable clock period� To
test whether each potential clock period � is feasible� apply the Bellman�Ford algorithm to
determine whether the conditions in Theorem � can be satised�

�� For the minimum achievable clock period found in step �� use the values for the q�v	 found
by the Bellman�Ford algorithm as the optimal retiming�

This algorithm runs in O�jV j� log jV j	� but there is a more e�cient algorithm whose complexity
is O�jV jjEj log jV j	� which is a signi�cant improvement for sparse graphs� It runs as the previous
algorithm except in step � where the Bellman
Ford algorithm is replaced by the following algorithm�

��



Algorithm 
 �Algorithm FEAS in ���	 Given a synchronous circuit G � �V�E� �� d	 and a desired
clock period �� this algorithm produces a retiming q of G such that Gq is a synchronous circuit with
clock period � � �� if such a retiming exists�

�� For each vertex v � V � set q�v	 to ��

�� Repeat the following jV j � � times�

�a� Compute graph Gq with the existing values for q�

�b� for any vertex v � V compute  ��v	 the maximum sum ��P 	 of vertex delays along any
zero�weight directed path P in G leading to v� This can be done in O�jEj	�

�c� For each vertex v such that  ��v	 � �� set q�v	 to q�v	 � ��

�� Run the same algorithm used for step ��b� to compute �� If � � � then no feasible retiming
exists� Otherwise� q is the desired retiming�

After performing a retiming q to obtain the graph Gq with minimal clock period� we convert
this graph into an acyclic one by deleting edges with positive weight� From the de�nition of a
retiming� we see that the sum d�C	 along any cycle C of G remains unchanged� i�e� dq�C	 � d�C	�
Furthermore since any cycle of the dependence graph G contains at least one edge with positive
weight� the graph we obtain by deleting edges with positive weight is acyclic�

��� A new scheduling algorithm� Algorithm CDR

We can now give our new algorithm and prove that both resource and dependence constraints are
met�

Algorithm  �Algorithm CDR	 Let G � �V�E� �� d	 be a dependence graph

�� Find a retiming q that minimizes the length � of the longest path of null weight in Gq �use
Algorithm � with the improved algorithm for step ���

�� Delete edges of positive weight� or equivalently keep edges e � �u� v	 which satisfy q�v	�q�u	�
d�e	 �  �i�e� edges with no registers�� By this way� we obtain an acyclic graph Ga�

�� Perform a list scheduling �a on Ga and compute � � maxu�V ��a�u	 � ��u		�

�� Dene the cyclic schedule � by�

�u � V �k � N ��u� k	 � �a�u	 � ��k� q�u		

Note that the complexity of Algorithm CDR is determined by Step � whose complexity is
O�jV jjEj log�jV j		� Therefore� the complexity of Algorithm CDR is lower than that of Algorithm
GS whose complexity is O�jV jjEj log�jV j�max		� This comes from the fact that �opt can be searched
among the jV j� values  �u� v	 whereas �� is searched among all values between  and jV j�max� In
particular� we point out that the complexity of Algorithm CDR does not depend on �max� which
makes it more robust�
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���� Correctness of Algorithm CDR

Theorem � The schedule � obtained with Algorithm CDR meets both dependence and resource
constraints�

Proof Resource constraints are obviously met because of the list scheduling and the de�nition of
�� which ensures that slices do not overlap� To show that dependence constraints are satis�ed for
each e � �u� v	 of E� we need to verify

��u� k	 � ��u	 � ��v� k� d�e		


 �a�u	 � �q�u	 � ��u	 � �a�v	 � �q�v	 � �d�e	


 �a�u	� �a�v	 � ��u	 � ��q�v	� q�u	 � d�e		 ��	

On one hand� suppose that e is not deleted� i�e� e � Ga� It is equivalent to say that the weight
of e after the retiming is equal to zero� q�v	� q�u	 � d�e	 � � But� since �a is a schedule for Ga�

�a�u	 � ��u	 � �a�v	

Thus� inequality ��	 is satis�ed�
On the other hand� if e is deleted� then q�v	�q�u	�d�e	� � and thus ��q�v	�q�u	�d�e		� ��

But� by de�nition of � we have

�a�u	 � ��u	� �a�v	 � �a�u	 � ��u	 � �

Thus� inequality ��	 is satis�ed�

���� Performances of Algorithm CDR

Now� we show that our algorithm is guaranteed and we give a bound for the initiation interval �
that is better than the bound given for Algorithm GS�

Theorem 
 Let G be a dependence graph� �opt the minimum achievable clock period for G� � the
initiation interval of the schedule generated by Algorithm CDR when p processors are available� and
�opt the best possible initiation interval for this case� Then

�

�opt
� � �

�
p� �

p

��
�opt

�opt

�

Proof Let � be the overall time in �a when no more than p � � processors are busy� Since � is
the makespan of the list scheduling �a�

p� �
X
u�V

��u	 � �p� �	�

�see ��� for more details	� As �a is generated by a list scheduling algorithm� there exists a dependence
path P in Ga such that � � ��P 	� By construction� �opt is the length of the longest path in Ga�
thus � � ��P 	 � �opt� So� we can write�

p� �
X
u�E

��u	 � �p� �	� � p�opt � �p� �	�opt

��



which leads to
�

�opt
� � �

�
p� �

p

��
�opt

�opt

�

Now we show that the bound obtained for Algorithm CDR �Theorem �	 is always better than
the bound for Algorithm GS �see Equation �	� This is a consequence of the following lemma�

Lemma �

�� � �opt � �� � �max � �

Proof Let us apply Algorithm CDR with unlimited resources� For that� we de�ne a retiming
q such that ��Gq	 � �opt and we de�ne the graph Ga by deleting from G all edges e such that
dq�e	 � � Then� we de�ne a schedule for Ga with unlimited resources by �a�u	 � maxf��P 	 �
P path of Ga leading to ug� The makespan of �a is �opt by construction� Finally� we get a schedule
for G by de�ning ��u� k	 � �a�u	� �q�u	� k	�opt� Since by de�nition �� is the smallest initiation
interval for p ��� we have �� � �opt�
Now� consider a schedule � for unlimited resources and initiation interval equal to ��� as de�ned

in Section ������ ��u� k	 � t�s� u	� ��k� Let r�u	 � t�s� u	 mod �� and q�u	 � b t�s�u�
��

c� As proved
in Section ���� q de�nes a retiming for G� i�e� for all edges e � �u� v	� q�v	 � q�u	 � d�e	 � �
Furthermore� q�v	� q�u	 � d�e	 �  implies r�u	 � ��u	 � r�v	� De�ne Ga by deleting from G all
edges e such that dq�e	 �  �as in Algorithm mGS	� Let P be any path in Ga� P � �u�� � � � � un	�
We have� for all i� � � i � n�

r�ui	 � ��ui	 � r�ui	�	

Summing up these n� � inequalities� we obtain�

n��X
i
�

��ui	 � r�u�	 � r�un	

��P 	� ��un	 � r�u�	 � r�un	

��P 	 � r�un	 � ��un	 � ��� � �	 � �max

By construction� ��Gq	 is the length of the longest path in Ga� thus ��Gq	 � ����max��� Finally�
we have �opt � ��Gq	� hence the result�

Theorem  The bound for Algorithm CDR is better than the bound for Algorithm GS�

Proof This is easily derived from the fact that �opt � �� � �max � � as shown by Lemma ��

���
 Link between �� and �opt

As shown in Lemma �� �� and �opt are very close� However� the retiming that can be derived from
the schedule with initiation interval �� does not permit to de�ne an acyclic graph with longest
path �opt� In other words� looking for �� is not the right approach to minimizing the period of the
graph� In this section� we investigate more deeply this fact� by recalling another formulation of the
retiming problem given by Leiserson and Saxe ����
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Lemma 
 �Lemma � in ���	 Let G � �V�E� �� d	 be a synchronous circuit� and let c be a positive
real number� Then there exists a retiming q of G such that ��Gq	 � � if and only if there exists
an assignment of a real value s�v	 and an integer value q�v	 to each vertex v � V such that the
following conditions are satised������

����
�s�v	 � ���v	 for every vertex v � V

s�v	 � � for every vertex v � V
q�u	� q�v	 � d�e	 wherever e � u v

s�u	� s�v	 � ���v	 wherever e � u v such that q�u	� q�v	 � d�e	

��	

By letting s�u	 � r�u	 � ��u	 for every vertex u� inequalities � are equivalent to������
����

r�v	 �  for every vertex v � V

r�v	 � �� ��v	 for every vertex v � V
q�u	� q�v	 � d�e	 wherever e � u v

r�v	 � r�u	 � ��u	 wherever e � u v such that q�u	� q�v	 � d�e	

��	

This last system permits to better understand all the techniques that we developed previously�

Optimal schedule for unlimited resources

As seen in Lemma �� the schedule ��u� k	 � t�s� u	 � ��k satis�es system � with r�u	 �
t�s� u	 mod �� and q�u	 � b t�s�u�

��
c except the second inequation� We do have r�v	 � ��� �

but not necessarily r�v	 � �� � ��v	 �except if �max � � and in this case� �� � �opt �see
Lemma � for another proof		�

Schedule obtained by Algorithm CDR for unlimited resources

By construction� with r � �a� q the retiming such that ��Gq	 � �opt� � � �opt� system �
is satis�ed with the smallest value for �� Therefore� this technique leads to the better cyclic
schedule with unlimited resources for which the slices do not overlap �because of the
second inequation	� Therefore� it is not always possible to �nd �� this way�

Schedule obtained by Algorithms CDR and GS for p resources

The schedule obtained satis�es system � with r � �a� � the makespan of �a� For CDR� q is the
retiming that achieves the optimal period� whereas for GS� q is the retiming de�ned from ��
�q�u	 � b t�s�u�

��
c	� For CDR� the fourth inequation is satis�ed exactly for all edges e � �u� v	

such q�v	� q�u	 � d�e	� However� for GS� � is required to satisfy the fourth inequation for
more edges than necessary �actually for all edges e � �u� v	 such that r�u	���u	 � r�v		� Note
that for both algorithms� there are additional conditions imposed by the resource constraints
that do not appear in system ��

Example We can now apply Algorithm CDR to our key example �assume again p � � available
processors	� �opt � �� and the retiming q that achieves this clock period is obtained in two steps
by Algorithm � �Figures � �a	� � �b	 and � �c	 show the successive retimed graphs	� Figure � �d	
shows the corresponding acyclic graph Ga and �nally� Figure � �e	 shows a possible schedule of
operations provided by a list scheduling technique� whose initiation interval is � � �� This is
better than what we found with Algorithm mGS �see Figure � �b		 and a fortiori with Algorithm
GS �see Figure � �d		�

��



1p

p2

1op1

op3

op4

14

2

6

op
1

op1op4 op5 op6

op3

op2

op2

op3
op4

op2

op6

op5

1op1

op2

op3

op4

14

2

6

op6

op5

1op1

op2

op3

op4

14

2

6

op6

op5

op6
op5

processors

time

(e)

0 20

(a)

2

0
1

1

1

0

0

2

4

10

(d)

2

0
1

1

4

10

(b)

1

0

1

1

2

0
1

14

10

(c)

0

1

1

1

Figure �� �a	� Initial dependence graph G
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� Minimizing the number of edges of the acyclic graph

Our purpose in this section is to �nd a retimed graph with the minimum number of null weight
edges among all retimed graphs whose longest path has the best possible length �opt� Removing
edges of non null weight will give an acyclic graph that matches both objectives stated at the end
of Section ����
Consider step � of Algorithm CDR in which we use the retiming algorithm of Leiserson and

Saxe ��� �Algorithm � with or without the improved algorithm for step �	� This retiming algorithm
does minimize the length � of the longest path of null weight into a dependence graph� but is does
not necessarily minimize the number of null weight edges� See again our key example� Figure � �c	�
for which � � ��� We can apply yet another retiming to obtain the graph of �gure � �a	� The length
of the longest path of null weight is still � � ��� but the total number of null weight edges is smaller�
This implies that the corresponding acyclic graph Ga �see Figure � �b		 contains fewer edges than
the acyclic graph of Figure � �d	 and therefore� is likely to induce a smaller initiation interval� �that
is the case in our example� we �nd an initiation interval equal to �� �see Figure � �c		��
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Figure �� �a	� the �nal retimed graph
q�op�	 � q�op�	 � � q�op�	 � q�op�	 � q�op�	 � q�op�	 � �
�b	� The corresponding acyclic graph
�c	� A corresponding list scheduling allocation� � � ��

Recall that a retiming q such that ��Gq	 � �opt is any integral solution to the following system
�see formulation of Theorem �	�

�
q�v	� q�u	 � d�e	 �  for every edge u

e
 v � E

q�v	� q�u	 �D�u� v	 � � for all vertices u� v � V such that  �u� v	 � �opt

��	

�List scheduling a graph which is a subset of another graph will not always produce a smaller execution time� But
intuition shows that it will in most practical cases �the fewer constraints	 the more freedom�

�It turns out that � � �� is the best possible integer initiation interval with p � � processors� the sum of all
operation delays is ��	 and d ��

�
e � ���
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Among these retimings� we want to select one particular retiming q for which the number of null
weight edges in Gq is minimized� This can be done as follows�

Lemma  Let G � �V�E� �� d	 be a synchronous circuit� A retiming q such that ��Gq	 � �opt and
such that the number of null weight edges in Gq is minimized can be found in polynomial time by
solving the following integer linear program������

����
min

P
e�E v�e	

 � v�e	 � �

q�v	� q�u	 � d�e	 � v�e	 � � for every edge u
e
 v � E

q�v	� q�u	 �D�u� v	 � � for all vertices u� v � V such that  �u� v	 � �opt

��	

Proof Consider an optimal integer solution �q� v	 to system �� q de�nes a retiming for G with
��Gq	 � �opt since system � is satis�ed� indeed q�v	� q�u	 � d�e	 � v�e	 � � and v�e	 � � implies
q�v	� q�u	 � d�e	 � �
Note that each v�e	 is constrained by only one equation� q�v	� q�u	 � d�e	 � v�e	 � �� There

are two cases�

� The edge e in Gq has null weight� i�e� q�v	 � q�u	 � d�e	 � � Then� v�e	 � � is the only
possibility�

� The edge e in Gq has a positive weight� i�e� q�v	� q�u	 � d�e	 � � �recall that q and d are
integers	� In this case� the minimal value for v is �

Therefore� given a retiming q�
P

e�E v�e	 is minimal when it is equal to the number of null weight
edges in Gq �
Now� it remains to show that such an optimal integer solution can be found in polynomial time�

For that� we write System � in matrix form as minfcx j Ax � bg�

minf�� �	

	
q

v



j

�
BBB�
 �Id
 Id
C Id
C� 


CCCA
	

q

v



�

�
BBB�


�

d� �
D � �


CCCAg

where C is the transpose of the jV j� jEj
incidence matrix of G� C� is the transpose of the incidence
matrix of the graph G� whose edges are the pairs �u� v	 such that  �u� v	 � �opt and Id is the
jEj � jEj identity matrix�

Note that if M is a totally unimodular matrix� then so are tM and

	
M

Id




� The matrix	

C
C�



is also the transpose of an incidence matrix �the incidence matrix of G 	 G�	� thus it

is totally unimodular �see ��� page ���� example ��	� Then�

	
C Id
C� 



is totally unimodular��

B�  Id
C Id
C� 


CA is totally unimodular� and �nally A is also totally unimodular�

Therefore� solving the ILP Problem � is not NP
complete� System � considered as an LP prob

lem has an integral optimum solution �Corollary ����a in ���	 and such an integral solution can be

��



found in polynomial time �Theorem ���� in ���	�

Let us summarize how this re�nement can be incorporated into our software pipelining heuristic�
�rst� we compute �opt the minimum achievable clock period for G� then we solve System � and we
obtain a retiming q� We de�ne Ga as the acyclic graph whose edges have null weight in Gq� the
longest path in Ga is minimized and the number of edges in Ga is minimized� Finally� we schedule
Ga as in Algorithm CDR� We call this heuristic the modi�ed CDR �or simply mCDR	�

Remark� Solving System � can be expensive although polynomial� An optimization that
permits to reduce the complexity is to pre
compute the strongly connected components Gi of G
and to solve the problem separately for each component Gi� Then� a retiming that minimizes the
number of null weight edges in Gq is built by adding suitable constants to each retiming qi so that
all edges that link di�erent components have positive weights� Future work will try to �nd a pure
graph
theoretic approach to the resolution of System �� so that the practical complexity of our
software pipelining heuristic is decreased�

� Load balancing

We have restricted so far initiation intervals to integer values� As mentioned in Section ���� search

ing for rational initiation intervals might give better results� but at the price of an increase in
complexity� searching for � � p

q
can be achieved by unrolling the original loop nest by a factor of

q� thereby processing an extended dependence graph with many more vertices and edges�
In this section� we propose a simple heuristic to alleviate potential load imbalance between

processors� and for which there is no need to unroll the graph�
Remember the principle of the four previously described heuristics �GS� mGS� CDR and mCDR	�

First� an acyclic graph Ga is built from G� Then� Ga is scheduled by a list scheduling technique�
This de�nes the schedule �a inside each slice of length � �the initiation interval	� Finally� slices are
concatenated� a slice being initiated just after the completion of the previous one�
The main weakness of this principle is that slices do not overlap� Since the schedule in each

slice has been de�ned by an As
Soon
As
Possible �ASAP	 list scheduling� what usually happens
is that many processors are idle during the last time steps of the slice� The idea to remedy this
problem is to try to �ll these �holes� in the schedule with the tasks of the next slice� For that�
instead of scheduling the next slice with the same schedule �a� we schedule it with an As
Late
As

Possible �ALAP	 so that �holes� may appear in the rst time steps of the slice� Then� between
two successive slices� processors are permuted so that the computational load is �nearly	 equally
balanced when concatenating both slices�
Let us formulate this more precisely� De�ne a retiming q for G� for example� the retiming

that minimizes the period of Gq and that minimizes the number of edges of Gq with no registers�
Delete from Gq all edges that have at least one register �i�e� whose weight is positive	� this de�nes
Ga� Then� de�ne for Ga an As
Soon
As
Possible �ASAP	 list scheduling �as and an As
Late
As

Possible �ALAP	 �al� Denote by �s and �l the respective makespans of �as and �al� By construction�
�s�opi� k	 � �as�opi	 � �s�q�opi	 � k	 and �l�opi� k	 � �al�opi	 � �l�q�opi	 � k	 are both valid cyclic
schedules for G� Note that both de�ne the same slices� only the organization inside slices may be
di�erent�
To de�ne the �nal schedule �� computations of slice �K �even slices	 for �as will be scheduled

in slice K of � and organized with �al� whereas computations of slice �K�� �odd slices	 for �l will
be scheduled in slice K and organized with �l� However� they will be delayed so that dependences
between operations in slice �K and in slice �K�� are respected� In other words� we try to determine

�



a schedule of the following form��
��opi� k	 � �as�opi	 � ��q�opi	 � k	 if q�op	 � k � �K
��opi� k	 � D � �al�opi	 � ��q�opi	 � k	 if q�op	 � k � �K � �

��	

where  � D � �s� � � D��l and D is minimized� D is the time step at which the �rst operations
that correspond to odd slices of �l are initiated� By this construction� all dependences are respected
except possibly some dependences between operations of slice �K and operations of slice �K � ��
D has to be chosen su�ciently large so that these remaining dependences are satis�ed�
Let Cr�s �resp� Cr�l	 be the set of operations that are allocated to processor r in schedule �s

�resp� in schedule �l	� Denote by Er�t the set of edges e � �opi� opj	 such that opi � Cr�s� opj � Ct�l

and q�opj	 � q�opi	 � d�e	 � �� Er�t induces a set of constraints on D that can be formulated as
follows� Let ��Cr� Ct	 be the minimum value which meets the following inequality�

��Cr� Ct	 � �al�opj	 � �as�opi	 � ��opi	 if e � �opi� opj	 � Er�t

Intuitively ��Cr� Ct	 is the minimum distance between tasks in slice �K assigned to processor r
and tasks in slice �K � � assigned to processor t� which are linked by a dependence� Dependence
constraints are now expressed as�

D � ��Cr� Ct	 for � � r� t � p ��	

Next we have to concatenate two successive slices so that all processors receive the same amount
of work� The idea is to make a permutation between processors� clusters for slice �K � � will
not be recomputed but target processors will be interchanged to take into account possible load
imbalance from slice �K� Let tr � maxop�Cr�s

��as�op	 � ��op		 and ut � minop�Ct�l
��al�op		� Let 	

be a permutation of f�� � � � � pg such that Cr�s and C��r��l will be allocated to the same processor�
Resource constraints are expressed as follows�

D � u��r� � tr for � � r � p ��	

Clearly� the optimal permutation 	 that minimizes D is de�ned as��
u���� � ��� � u��p�

t� � ��� � tp

We obtain the �nal heuristic�

�� Use Algorithm mCDR to compute the acyclic graph Ga� Compute an ASAP list scheduling
�as and an ALAP list scheduling �al�

�� Compute the minimum distance D from equations � and ��

�� The �nal schedule is expressed according to equation ��

As both �as and �al are list schedulings� we can prove the same guarantee bound for this heuristic
as for Algorithms CDR and mCDR since � � �s��l �and each slice computes two iterations instead
of one	� The possible gain is that rather than executing slices without overlap� we have tried to
interleave them as tightly as possible�

��



Example Consider our key example again� Figure ��c	 shows a possible allocation of an instance
of Ga provided by an ASAP list scheduling� Figure � shows an allocation provided by an ALAP list
scheduling and Figure � the concatenation of these two instances� The initiation interval � that we
obtain is equal to �� for two instances� i�e� � � ����� which is better � than the initiation interval
obtained with Algorithm mCDR �Figure ��c		�
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Figure �� ALAP scheduling
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Figure �� Concatenation of two instances

� Conclusion

In this paper� we have presented a new heuristic for the SP problem� We have built upon results of
Gasperoni and Schwiegelshohn� and we have made clear the link between software pipelining and
retiming�
In the single resource class case� our new heuristic is guaranteed� with a better bound than that

of ���� Unfortunately� we cannot extend the guarantee to the many resource classes case� because
list scheduling itself is not guaranteed in this case�
We point out that our CDR heuristic has a low complexity� As for mCDR� further work will

be aimed at deriving an algorithmic implementation that will not require the use of Integer Linear
Programming �even though the particular instance of ILP invoked in mCDR is polynomial	�
Finally� note that all edge
cutting heuristics lead to cyclic schedulings where slices do not overlap

�by construction	� Our �nal load
balancing technique is a �rst step to overcome this limitation� It
would be very interesting to derive methods �more sophisticated than loop unrolling	 to synthesize
resource
constrained schedulings where slices can overlap�

�This cannot be improved further� the two processors are always busy	 as
P

i
��opi � �� � ���

��
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