
HAL Id: hal-02102096
https://hal-lara.archives-ouvertes.fr/hal-02102096v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new guaranteed heuristic for the software pipelining
problem.

Pierre-Yves Calland, Alain Darte, Yves Robert

To cite this version:
Pierre-Yves Calland, Alain Darte, Yves Robert. A new guaranteed heuristic for the software pipelining
problem.. [Research Report] LIP RR-1995-42, Laboratoire de l’informatique du parallélisme. 1995,
2+24p. �hal-02102096�

https://hal-lara.archives-ouvertes.fr/hal-02102096v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

A new guaranteed heuristic for the

software pipelining problem

Pierre�Yves Calland

Alain Darte

Yves Robert

November ����

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

A new guaranteed heuristic for the software pipelining problem

Pierre�Yves Calland

Alain Darte

Yves Robert

November ����

Abstract

We present yet another heuristic for the software pipelining problem� We believe this
heuristic to be of interest because it brings a new insight to the software pipelining
problem by establishing its deep link with the circuit retiming problem� Also� in the
single resource class case� our new heuristic is guaranteed� with a better bound than
that of ���� Finally� we point out that� in its simplest form� our algorithm has a lower
complexity�

Keywords� Software pipelining� circuit retiming� guaranteed heuristic� list scheduling� cyclic
scheduling�

R�esum�e

Nous pr�esentons une nouvelle heuristique pour le probl�eme du pipeline logiciel� Nous
montrons� par cette nouvelle approche� l�existence d�un lien �etroit entre le probl�eme
du pipeline logiciel et le probl�eme de resynchronisation des circuits� De plus� nous
montrons que dans le cas de ressources identiques� notre heuristique est garantie �avec
une borne de garantie meilleure que celle obtenue pour l�heuristique de Gasperoni et
Schwiegelshohn ���	 et� dans sa forme non optimis�ee� une complexit�e moindre�

Mots�cl�es� Pipeline logiciel� resynchronisation de circuits� heuristiques garanties� ordonnance

ment de liste� ordonnancement cyclique�

A new guaranteed heuristic for the software pipelining problem

Pierre�Yves Calland�� Alain Darteyand Yves Robertz

Laboratoire LIP� URA CNRS ����

Ecole Normale Sup	erieure de Lyon� F �
��
� LYON Cedex ��

e�mail� �Pierre�Yves�Calland�Alain�Darte�Yves�Robert��lip�ens�lyon�fr

October ����

Abstract

We present yet another heuristic for the SP problem� We believe this heuristic to be of
interest because it brings a new insight to the SP problem by establishing its deep link with the
circuit retiming problem� Also� in the single resource class case� our new heuristic is guaranteed�
with a better bound than that of ���� Finally� we point out that� in its simplest form� our
algorithm has a lower complexity�

Keywords Software pipelining� circuit retiming� guaranteed heuristic� list scheduling� cyclic
scheduling�

� Introduction

Software pipelining �SP hereafter	 is a technique aimed at the e�cient execution of simple loops�
The main problem is to cope with both dependence and resource constraints which make the
problem NP
complete in general� Consider the following example to illustrate the discussion� We
will work on this example all along the paper�

Example

DO k � � N
�op�	� a�k	 � c�k � �	
�op�	� b�k	 � a�k � �	 � d�k� �	
�op�	� c�k	 � b�k	 � �
�op�	� d�k	 � f�k � �	��
�op�	� e�k	 � sin�f�k � �		
�op�	� f�k	 � log�b�k	 � e�k		

ENDDO

�Supported by Region Rh�one�Alpes
yCorresponding author� Telephone ��� �� �� �� ��	 Fax ��� �� �� �
 �
	 e�mail Alain�Darte�lip�ens�lyon�fr
zSupported by the ESPRIT Basic Research Action ���� NANA� of the European Economic Community and by

the CNRS�INRIA project ReMaP

�

The instructions �op�	� � � � � �opn	 within the loop �n � � in our example	 are called generic tasks
�or operations�� Each of them is executed N � � times� where N is assumed to be very large�
Instance k of operation opi is denoted �opi� k	� and its execution is scheduled to begin at time
��opi� k	 � and to last ��opi	 units of time�
The goal is to determine a schedule � to minimize the total execution time T � maxf��opi� k	�

��opi	� � � i � n� � k � Ng subject to resource constraints� and while preserving the semantics
of the original loop �dependence constraints	�

Resource constraints In the most general instance of the SP problem� resource constraints
are expressed as follows� generic tasks are partitioned into classes� To each class C corresponds a
given ��nite	 number p�C	 of available processors �or resources	� For example think of tasks being
partitioned into additions �class C�	 and multiplications �class C�	� then p�C�	 is the number of
available adders and p�C�	 that of multipliers� We need to ensure that the scheduling � satis�es
to the resource constraints� i�e� that at any time
step and for each resource class C� no more than
p�C	 instances of tasks belonging to class C are being executed�
In a simpler instance of the SP problem� there is a single resource class composed of p identical

processors� Each operation op can be executed indi�erently on any processor� with delay ��op	�
Although less general� this single resource class instance has motivated a great deal of research� for
at least two reasons�

� it has a great importance in practice� as it models �ne
grain parallelism extraction in shared
memory machines with programmable ALUs �or o�
the
shelf microprocessors	�

� it is the only case where guarantees exist ��� for scheduling heuristics� This is very impor

tant as it gives a sound basis for comparing heuristics �the only alternative is to multiply
experiments	�

Dependence constraints Dependence constraints express the fact that some computations must
be executed in a speci�ed order so as to preserve the semantics of the loop� In our example�
computation �op�� k	 writes a�k	� hence it must precede computation �op�� k � �	 which reads this
value� There is also �among others	 a dependence from �op�� k � �	 to �op�� k	� because f�k � �	
must be read in �op�� k	� All dependences are usually captured into a reduced dependence graph
�see Figure �	�
The SP problem has motivated a great amount of research� Since the pioneering work of

Aiken and Nikolau ���� several authors have proposed various heuristics ��� �� �� �� �� �� The main
contribution of this paper is to present yet another heuristic for the SP problem� We believe this
heuristic to be of interest because it brings a new insight to the SP problem by establishing its deep
link with the circuit retiming problem� Also� in the single resource class case� our new heuristic is
guaranteed� with a better bound than that of ���� Finally� we point out that� in its simplest form�
our algorithm has a lower complexity�
The rest of the paper is organized as follows� in Section �� we formally de�ne the SP problem and

we brie�y survey complexity results and heuristics from the literature� In Section �� we present the
guaranteed heuristic of Gasperoni and Schwiegelshohn ���� In Section ���� we show how to modify
this heuristic so as to cut more edges in the dependence graph �hence expecting better results	�
This gives the starting point of our heuristic whose presentation is split over Sections � and ��
Furthermore� we show that the bound for our heuristic is better than the bound in ���� Finally�

�This small list is far from being comprehensive�

�

1op1

op2

op3

op4

14

2

6

op6

op5

2

0
1

1

1

0

0

2

4

10

Figure �� The reduced dependence graph G

we discuss some extensions in Section �� We summarize our results and give some perspectives in
Section ��

� Known results on the SP problem

��� Problem formulation

Formally� software pipelining problem instances are represented by a �nite� vertex
weighted� edge

weighted directed multi
graph G � �V�E� �� d	� The vertices V of the graph model the generic
tasks� V � fop�� op�� � � � � opng� Each generic task opi has a positive delay �or latency	 ��opi	�
Vertex �task	 delays � can be rational numbers� but since the graph is �nite we can always change
the time unit to have integer delays� The graph G is often called the reduced dependence graph in
the literature�
Each generic task opi has several instances �opi� k	� � k � N � The problem is to �nd a

schedule � that assigns a time
step ��opi� k	 to begin the execution of each computation �opi� k	�
The directed edges E of the graph model dependence constraints� Let e � �opi� opj	 � E be

an edge of G with weight d�e	� this means that instance k of generic task opi must be completed
before the execution of instance k�d�e	 of generic task opj� In other words� we have the scheduling
constraints�

�e � �opi� opj	 � E � ��opi� k	 � ��opi	 � ��opj� k� d�e		

Edge delays are nonnegative integers by construction� Some edge delays may be equal to zero� but
there does not exist any cycle in G whose length �the sum of the edge delays	 is zero �otherwise
some computation depends upon itself	� The multi
graph G for our example is depicted in Figure ��
operator delays are given in square boxes�
Resource constraints are expressed as follows� generic tasks are partitioned into classes� To

each class C corresponds a given number p�C	 of available processors �or resources	� We need to
ensure that at any time
step no more than p�C	 instances of tasks belonging to class C are being
executed� This translates into the following formula�

�t � � �C� jf�op� k	� op � C� � k � N� t� ��op	 � ��op� k	 � tgj � p�C	�

Resource constraints can be expressed slightly di�erently in the case of pipelined processors� If
we assume processors of class C to be pipelined� then no more than p�C	 tasks of class C can be
initiated at each unit of time�
The SP problem can therefore be reduced to the determination of the schedule � subject to the

above constraints� Valid schedules are those schedules satisfying all constraints �both dependence
constraints and resource constraints	� Because of the regular structure of the SP problem� we

�

usually search for a cyclic schedule �� we aim at �nding a nonnegative integer � �called the initiation
interval of �	 and constants ci such that

��opi� k	 � �k � ci

Because the input loop is supposed to execute many iterations �N is large	� we focus on the
asymptotic behavior of �� The initiation interval � is a natural performance estimator of �� as ���
measures ��s throughput� Note that if the reduced dependence graph G is acyclic and if the target
machine has enough processors� then � can be zero �this type of schedule has in�nite throughput	�
A variant consists in searching for a nonnegative rational � � u�v and to let ��opi� k	 � b�k�cic

�with rational constants ci	� This amounts to unroll the input loop by a factor v� Note that rational
cyclic schedules are dominant in the case of unlimited resources ����
In the following� we restrict to the simplest case� i�e� the case of a single resource class of

non pipelined processors� Our heuristic does apply to many resource classes� but we are no
longer able to guarantee it in this case�

��� Related work

Many papers on software pipelining have been published� In this section� we very brie�y sum

marize four of the most recent ones� by Feautrier ���� Hanen and Munier ���� Gasperoni and
Schwiegelshohn ��� and Wang et al� ����

Feautrier ��� Feautrier formalizes the SP problem in terms of integer linear programming� in
the case of di�erent resource classes� He gives two scheduling algorithms� one for the case p�C	 � �
�which means that all resources are considered as di�erent	 and another for the general case� In both
cases� it is shown how to translate resource constraints into systems of bilinear integer constraints�
This technique permits to derive optimal solutions� though in non
polynomial time�

Hanen and Munier ��� Hanen and Munier use a very interesting graph
based approach� They
restrict themselves to the single resource class case� They use �tie
breaking� graphs to derive
schedules� Basically� the idea is to add some edges to the reduced dependence graph� These
new edges link task instances to be executed on the same group of processors� The problem is
to determine how to partition processors into groups and how to add new edges� The proposed
heuristics look quite powerful� although not guaranteed�

Gasperoni and Schwiegelshohn ��� Gasperoni and Schwiegelshohn tackle the single resource
class case� both with pipelined and non
pipelined processors� They use yet another approach� they
separate� so to speak� dependence constraints and resource constraints� They �rst schedule the
reduced dependence graph G assuming an unlimited number of processors� Such a schedule is the
basis to decide which edges to cut in G so as to make it acyclic� On the new acyclic graph Ga� they
use a list
scheduling heuristic to cope with the resource constraints� The key
point is that the �nal
scheduling is guaranteed� We explain Gasperoni and Schwiegelshohn�s approach with full details
in Section �� and we build upon their results�

Wang� Eisenbeis� Jourdan and Su �	� Wang et al� have an approach very similar to that
of Gasperoni and Schwiegelshohn� The main di�erence is in the selection criterion to cut edges
in G so as to make it acyclic� They cut more edges than Gasperoni and Schwiegelshohn� thereby

�

expecting better results when list
scheduling the acyclic graph Ga�

For our new heuristic� we apply this idea of cutting edges too� Our goal is twofold�

� Miminize the longest path in the acyclic graph Ga so as to have the best possible performance
bound� hence improving the heuristic guarantee�

� Minimize the number of edges in Ga so as to have as few constraints as possible�

As already mentioned� we �rst describe Gasperoni and Schwiegelshohn�s approach �Section �	 before
introducing our new heuristic �Section ���	�

� Going from cyclic scheduling to acyclic scheduling

Before going into the details of Gasperoni and Schwiegelshohn heuristic �GS for short	� we recall
some properties of cyclic schedules� so as to make the rest of the presentation clearer�

��� Some properties of cyclic scheduling

Given the dependence graph G � �V�E� �� d	� a cyclic schedule � is a schedule of the form�

��opi� k	 � �k � ci where �� ci� k � N

that satis�es both dependence constraints and resource constraints� Such a cyclic schedule is
periodic� with period �� the computation scheme is reproduced every � units of time� More
precisely� if instance �opi� k	 is assigned to begin at time t� then instance �opi� k � �	 will begin at
time t � �� Therefore we only need to study a slice of � clock cycles to know the behavior of the
whole cyclic scheduling in steady state�

op
 (

k)
1

op (k)2 op (k)3op (k-1)4

1
op

 (
k+

1)

op (k)4

processors

time

op (k+1)2 op (k+1)3

op (k-1)

op (k)
5

6

op (k)

op (k+1)

6

5
op (k+1)

6

Figure �� Successive slices of a schedule for graph G �unbroken lines represent type � dependences�
dotted lines represent type � dependences	�

Let us observe such a slice� e�g� the slice SK from clock cycle K� up to clock cycle �K��	����
where K is large enough so that the steady state is reached �see Figure � for an example with an
optimal schedule and unlimited resources	� Perform the Euclidean division of ci by �� ci � ri��qi
where � ri � �� �� Then

��opi� k	 � ri � ��k � qi	

�

This means that one and only one instance of opi is initiated within the slice SK � it is instance
k � K � qi� started ri clock cycles after the beginning of the slice�
If the schedule is valid� both resource constraints and dependence constraints are satis�ed�

The latter constraints can be satis�ed because of two di�erent reasons� either two dependent
computation instances are initiated in the same slice SK �type �	 or they are initiated in two
di�erent slices �type �	� Of course� the partial dependence graph induced by type � constraints is
acyclic� because type � dependences impose a partial order on the operations� according to their
apparition order within the slice�
The main idea of GS is the following� Assume that we have a valid cyclic schedule of period

�� for a given number p� of processors� and that we want to deduce a valid schedule for a smaller
number p of processors� A way of building the new schedule is to keep the same slice structure�
i�e� to keep the same operation instances within a given slice� Of course we might need to increase
the slice length to cope with the reduction of resources� In other words� we have to stretch the
rectangle of size �� � p� to build a rectangle of size � � p� Using this idea� type � dependences
will still be satis�ed if we choose � large enough� Only type � dependences have to be taken into
account for the internal reorganization of the slice �see Figure �	� But since the corresponding
partial dependence graph is acyclic� we are brought back to a standard acyclic scheduling problem
for which many theoretical results are known� In particular� a simple list scheduling technique
provides a guaranteed heuristic �and the shorter the longest path in the graph� the more accurate
the heuristic bound	�

o
p

 (
k)

1

op (k)2 op (k)3op (k-1)4

1
o

p
 (

k+
1

)

op (k)4 op (k+1)2

op (k+1)5

o
p

 (
k)

1op (k-1)4 op (k)2 op (k)3 op (k)4 op (k+1)2 op (k+1)3

o
p

 (
k+

1
)

1

op (k+1)6op (k+1)5

op (k+1)6

op (k)5
op (k)6

op (k)5
op (k)6

processors

time

p

p

1

2

processors

p1

p

p

p

2

3

4

time

(a)

(b)

op (k+1)3

Figure �� Two di�erent allocations of a slice of graph G �p� � �� p � �	

Once this main principle settled� there remain several open questions�

�� How to choose the initial scheduling�

�� How to choose the reference slice� �There is no reason a priori to choose a slice beginning at
a clock cycle congruent to modulus ��	

�� How to decide that an edge is of type �� hence to be considered in the acyclic problem�

�

These three questions are of course linked together� Intuitively� it seems important to �try to	
minimize both

� the length of the longest path in the acyclic graph� which should be as small as possible as it
is tightly linked to the guaranteed bound for the list scheduling�

� and the number of edges in the acyclic graph� so as to reduce the dependence constraints for
the acyclic scheduling problem�

We will give a precise formulation to these questions and give a solution� Beforehand� we review
the choices of GS�

��� The heuristic of Gasperoni and Schwiegelshohn

In this section we explain with full details the GS heuristic ���� The main idea is as outlined in
the previous section� The choice of GS for the initial scheduling is to consider the optimal cyclic
scheduling for an in�nite number of processors �p� ��	� i�e� without resource constraints�

���� Optimal schedule for unlimited resources

Consider the cyclic scheduling problem G � �V�E� �� d	 without resource constraints �p ��	�
Let � be a nonnegative integer� De�ne from G an edge
weighted graph G�

� � �V
�� E �� d�	 as

follows�

Vertices of G�

� Add to V a new vertex s� V
� � V 	 fsg�

Edges of G�

� Add to E an edge from s to all other vertices� E� � E 	 �fsg � V 	�

Weight of edges of G�

� De�ne d
��e	 � if e � E�nE and d��e	 � ��opi	��d�e	 if e � �opi� opj	 �

E�

We have the following well
known result�

Lemma � � is a valid initiation interval
 G�

� has no cycle of positive weight�

Proof

� If � is a valid initiation interval� there is a cyclic schedule ��opi� k	 � ci � �k that satis�es
the dependence constraints�

�e � �opi� opj	 � E � ci � ��opi	 � �d�e	 � cj ��	

Consider a cycle C in G�

�� Note that C is a cycle of G� too� Summing all inequalities ��	 that
involve the edges of C leads to�X

opi�C

�ci � ��opi		 � �
X
e�C

d�e	 �
X

opj�C

cj
 ��C	 � �d�C	
 d��C	 �

�

� Conversely� if G� has no cycle of positive weight� one can de�ne� for all op � V � the longest
path �in G�	 from s to op� that we denote by t�s� op	�

By de�nition� t�s� op	 satis�es the following triangular inequality�

�e � �opi� opj	 � E� t�s� opj	 � t�s� opi	 � d��e	

i�e�
�e � �opi� opj	 � E� t�s� opi	 � ��opi	 � t�s� opj	 � �d�e	

This proves that ��op� k	 � t�s� op	 � �k is a valid cyclic schedule�

Lemma � has two important consequences�

� First� given an integer �� it is easy to determine if � is a valid initiation interval and if yes�
to build a corresponding cyclic schedule by applying Bellman
Ford�s algorithm ��� on G�

��

� The optimal initiation interval �� is the smallest integer � such that G�

� has no positive cycle�
Therefore� �� � if G is acyclic and �� � maxfd

��C�
d�C�

e� C cycle of Gg otherwise�

���� Algorithm GS for p resources

As said before� in the case of p identical processors� the algorithm consists in the conversion of the
dependence graph G into an acyclic graph Ga� Ga is obtained by deleting some edges of G� As
initial scheduling� GS takes the optimal scheduling with unlimited resources

���opi� k	 � t�s� opi	 � ��k�

As reference slice� GS takes a slice starting at a clock cycle congruent to modulus ��� i�e� a slice
from clock cycle K�� up to clock cycle �K��	��� �� This amounts to decomposing t�s� opi	 into

t�s� opi	 � ri � ��qi where � ri � �� � �

In other words ri � t�s� opi	 mod ��� Consider an edge e � �opi� opj	 � E� In the reference slice�
the computation instance �opi� K � qi	 is performed� If ri � ��opi	 � rj� the computation instance
of opj which is performed within the reference slice �namely �opj � K � qj		 is started before the
end of the computation �opi� K � qi	� Hence this computation instance �opj� K � qj	 is not the
one that depends upon completion of �opi� K � qi	� In other words� K � qi � d�e	 �� K � qj � The
two computations in dependence through edge e are not initiated in the same slice� Edge e can be
safely considered as a type � edge� thus can be deleted from G� This is the way edges are cut in
GS heuristic�� We are led to the following algorithm�

Algorithm � �Algorithm GS	

�� Compute the optimal cyclic schedule �� for unlimited resources�

�� Let e � �opi� opj	 be an edge of G� Then e will be deleted from G if and only if

t�s� opj	 mod �� � t�s� opi	 mod �� � ��opi	 �C�	

This provides the acyclic graph Ga�

�However	 this is not the best way to determine type � edges� See Section ����

�

�� �a� Consider the acyclic graph Ga where vertices are weighted by � and edges represent task
dependences� and perform a list scheduling �a on the p processors�

�b� Let � � maxopi��a�opi	 � ��opi		 be the latency of the schedule for Ga�

�� For all opi � E and k � N�

��opi� k	 � �a�opi	 � �

�
t�s� opi	

��

�
� �k

is a valid cyclic schedule�

The correctness of Algorithm GS can be found in ���� It can also be deduced from the correctness
of Algorithm CDR �see Section �����	�

���
 Performances of Algorithm GS

GS gives an upper bound to the initiation interval � obtained by Algorithm �� Let �opt be the
optimal �smallest	 initiation interval with p processors� The following inequality is established�

p� � p�opt � �p� �	� ��	

where � is the length of the longest path in Ga� Moreover� owing to the strategy for cutting edges�
� � �� � �max � � �see Lemma � in ���	� This implies�

p� � p�opt � �p� �	��� � �max � �	

which leads to
�

�opt
� ��

�

p
�

�
p� �

p

��
�max � �

�opt

�

GS is the �rst guaranteed algorithm� We see from equation ��	 that the bound directly depends
upon �� the length of the longest path in Ga�

Example We go back to our example� Assume p � � available processors� Figure � �a	 recalls
the graph G for which �� � ��� In Figure � �b	� we depict the graph G�

�� that permits to
compute t�s� op	 for all op �the di�erent values t�s� op	 are given in circles on the �gure	 and an
optimal schedule with unlimited resources ���op� k	 � t�s� op	 � ��k� This schedule was already
represented Figure �� � processors are needed� Figure � �c	 shows the acyclic graph Ga obtained
by cutting edges e � �opi� opj	 such that rj � ri � ��opi	 where ri � t�s� opi	 mod ��� Finally�
Figure � �d	 shows a possible schedule of operations provided by a list scheduling� for which � � ���

��� Cutting edges by retiming

Let us summarize Algorithm GS as follows� �rst compute the values t�s� op	 in G�

��
to provide the

optimal scheduling without resource constraints ��� Then take a reference slice starting at top
 mod ���

���opi� k	 � ri � ���k � qi	 with � ri � �� � �

Finally� delete from G some edges that necessarily correspond to dependences between di�erent
slices� only those edges e � �opi� opj	 such that ri � ��opi	 � rj are removed by GS�
However� edges that correspond to dependences between di�erent slices are those such that qi ��

qj � d�e	� Indeed� within the reference slice� the scheduled computation instances are �opi� K � qi	

�

2p

p1

1op

op2

op3

op4

2

10

6

14

1op

op2

op3

op4

op2
op3

op4

1
o

p

op6

op5

op6

op51op op4

op2

op3 op6

op5

op5

op6

processors
(d)

0 25 time

2

0
1

1

1

0

0

2

(a)

1

4

s

0

0

0

0
0

0

(b)

-6

2

4

10

-10

-10

-23

4 10

12

6

10

0

0

(c)

Figure �� �a	� The reduced dependence graph G� �� � ��
�b	� The graph G�

��

�c	� The acyclic graph Ga

�d	� A corresponding list scheduling allocation� � � ��

and �opj � K � qj	 for edge e � �opi� opj	� Therefore� the computation �opj� K � qi � d�e		� which
depends upon �opi� K�qi	� is performed in the same slice i� K�qi�d�e	 � K�qj � i�e� qj�d�e	 � qi�
Otherwise� it is performed in a subsequent slice� and in this case qj � d�e	 � qi� Therefore� the
condition for cutting edges corresponding to dependences between di�erent slices �i�e� those we
called type � dependences	 writes qj � d�e	 � qi rather than ri � ��opi	 � rj�
Let us check this mathematically� Consider a valid cyclic scheduling ��opi� k	 � ci� �k and let

ci � ri��qi with now t� � ri � t���� �� where t� is given� we look at an arbitrary slice of length
�� For each edge e � �opi� opj	� the dependence constraint is satis�ed� thus ri � ��opi	 � �qi �
rj � ��qj � d�e		� Then�

�������
������

ri � ��opi	 � �qi � rj � ��qj � d�e		

 �ri � rj	 � ��opi	 � ��qj � d�e	� qi	
� ��� � � ��qj � d�e	� qi	
� �� � qj � d�e	� qi
� � qj � d�e	� qi

Furthermore� if qj�d�e	�qi � � then the dependence constraints directly writes ri���opi	 � rj�
Conversely� if ri � ��opi	 � rj� then necessarily qj � d�e	� qi � � if an edge is cut by GS� then it
is also cut by our new rule� We are led to a modi�ed version of GS which we call mGS� Since we
cut more edges in mGS than in GS� the acyclic graph mGa obtained by mGS contains a subset of
the edges of the acyclic graph Ga� See Figure � to illustrate this fact�
We are now ready to formulate the problem� We need neither an initial ordering nor a reference

slice any longer� What we only need is to determine a function q � V �Zsuch that�

�e � �u� v	 � E� q�v	 � d�e	� q�u	 �

�

p1
p2 op2

op3
op4

op
1

op2

op1

op3

op4

op5

op6

op5
op6

processors

0 time24

(b)(a)

Figure �� �a	� The acyclic graph provided by Algorithm mGS
�b	� A corresponding list scheduling allocation� � � ��

Such a function q is called a retiming in the context of synchronous VLSI circuits ���� Retiming is
an assignment of an integer lag q�u	 to each vertex u � V � it amounts to suppress q�u	 �registers�
to the weight of each edge leaving u �whose tail is u	 and to add q�v	 registers to each edge entering
v �whose head is v	� It leads to a new edge
weighting function dq de�ned for an edge u

e
 v by

dq�e	 � d�e	 � q�v	 � q�u	� After a suitable retiming is found� we de�ne the acyclic graph mGa

as follows� an edge e � E is kept in mGa i� its new weight dq�e	 is �edge �without register�	�
Clearly� mGa is acyclic �assume there is a cycle� and sum up retimed edge weights on this cycle to
get a contradiction	� Given mGa� we list schedule it as a DAG whose vertices are weighted by the
initial � function�
Recall that our goal was to answer the two following questions�

� How to cut edges so as to obtain an acyclic graph Ga whose longest path has minimal length�

� How to cut as many edges as possible so that the number of dependence constraints to be
satis�ed by the list
scheduling of Ga is minimized�

Now� using our new formulation� we can state our objectives more precisely in terms of retiming�

Objective � Find a retiming q that minimizes the longest path in mGa� i�e� in terms of retiming�
that minimizes the clock period � of the retimed graph �see Section �	�

Objective � Find a retiming q so that the number of edges in mGa is minimal� i�e� distribute
registers so as to leave as few edges without registers as possible�

In Section �� we show how to achieve the �rst objective �this is a well
known problem	� There
are several possible solutions� and in Section �� we show how to select the best one with respect to
the second objective� and we state our �nal algorithm� We improve upon GS for two reasons� �rst
we have a better bound� and second we cut more edges� hence more freedom for the list scheduling�

� Minimizing the longest path of the acyclic graph

There are well
known retiming algorithms that can be used to minimize the clock period of a VLSI
circuit� In this section� we show how to use such algorithms to derive a valid value q�opi	 for each
operator opi�

��� Retiming algorithms

Formally� a retiming of a graph G � �V�E� �� d	 is a vertex
labeling function q � V �Z� q performs
a transformation of the initial graph G into a new graph Gq � �V�E� �� dq	 where dq is de�ned as

��

follows� if e � �u� v	 is an edge of E then

dq�e	 � d�e	 � q�v	� q�e	

Such a retiming is valid if for each edge e of E� dq�e	 � � Note that we assumed that in any
cycle of G there is at least one edge whose weight is positive� using VLSI terminology� we say G is
synchronous�
Leiserson and Saxe ��� present several algorithms to compute an optimal valid retiming� in the

sense that the longest path of null weight in the retimed graph is as short as possible� Before

presenting these algorithms with more details� we need some de�nitions� We denote by u
P
� v a

path P of G from u to v� by d�P 	 �
P

e�P d�e	 the sum of the dependences of the edges of P � and
by ��P 	 �

P
v�P ��v	 the sum of the delays of the vertices of P � We de�ne D and as follows�

D�u� v	 � minfd�P 	 � u
P
� vg

 �u� v	 � maxf��P 	 � u
P
� v and d�P 	 � D�u� v	g

D and are computed by solving an all
pairs shortest
path algorithm on G where edge u
e
 v is

weighted with the pair �d�e	����u		� Finally� let

��G	 � maxf��P 	 � P path of G� d�P 	 � g

��G	 is the length of the longest path of null weight in G �and is called the clock period of G in
VLSI terminology	�

Theorem � �Theorem � in ���	 Let G � �V�E� �� d	 be a synchronous circuit� let � be an arbitrary
positive real number� and let q be a function from V to the integers� Then q is a legal retiming of
G such that ��Gq	 � � if and only if

�� q�u	� q�v	 � d�e	 for every edge u
e
 v of G� and

�� q�u	� q�v	 � D�u� v	� � for all vertices u� v � V such that �u� v	 � ��

Theorem � provides the basic tool to establish the following algorithm �Algorithm �	 that
determines a retiming such that the clock period of the retimed graph is minimized�

Algorithm � �Algorithm OPT� in ���	

�� Compute D and �see Algorithm WD in 	
���

�� Sort the elements in the range of �

�� Binary search among the elements �u� v	 for the minimum achievable clock period� To
test whether each potential clock period � is feasible� apply the Bellman�Ford algorithm to
determine whether the conditions in Theorem � can be satised�

�� For the minimum achievable clock period found in step �� use the values for the q�v	 found
by the Bellman�Ford algorithm as the optimal retiming�

This algorithm runs in O�jV j� log jV j	� but there is a more e�cient algorithm whose complexity
is O�jV jjEj log jV j	� which is a signi�cant improvement for sparse graphs� It runs as the previous
algorithm except in step � where the Bellman
Ford algorithm is replaced by the following algorithm�

��

Algorithm
 �Algorithm FEAS in ���	 Given a synchronous circuit G � �V�E� �� d	 and a desired
clock period �� this algorithm produces a retiming q of G such that Gq is a synchronous circuit with
clock period � � �� if such a retiming exists�

�� For each vertex v � V � set q�v	 to ��

�� Repeat the following jV j � � times�

�a� Compute graph Gq with the existing values for q�

�b� for any vertex v � V compute ��v	 the maximum sum ��P 	 of vertex delays along any
zero�weight directed path P in G leading to v� This can be done in O�jEj	�

�c� For each vertex v such that ��v	 � �� set q�v	 to q�v	 � ��

�� Run the same algorithm used for step ��b� to compute �� If � � � then no feasible retiming
exists� Otherwise� q is the desired retiming�

After performing a retiming q to obtain the graph Gq with minimal clock period� we convert
this graph into an acyclic one by deleting edges with positive weight� From the de�nition of a
retiming� we see that the sum d�C	 along any cycle C of G remains unchanged� i�e� dq�C	 � d�C	�
Furthermore since any cycle of the dependence graph G contains at least one edge with positive
weight� the graph we obtain by deleting edges with positive weight is acyclic�

��� A new scheduling algorithm� Algorithm CDR

We can now give our new algorithm and prove that both resource and dependence constraints are
met�

Algorithm �Algorithm CDR	 Let G � �V�E� �� d	 be a dependence graph

�� Find a retiming q that minimizes the length � of the longest path of null weight in Gq �use
Algorithm � with the improved algorithm for step ���

�� Delete edges of positive weight� or equivalently keep edges e � �u� v	 which satisfy q�v	�q�u	�
d�e	 � �i�e� edges with no registers�� By this way� we obtain an acyclic graph Ga�

�� Perform a list scheduling �a on Ga and compute � � maxu�V ��a�u	 � ��u		�

�� Dene the cyclic schedule � by�

�u � V �k � N ��u� k	 � �a�u	 � ��k� q�u		

Note that the complexity of Algorithm CDR is determined by Step � whose complexity is
O�jV jjEj log�jV j		� Therefore� the complexity of Algorithm CDR is lower than that of Algorithm
GS whose complexity is O�jV jjEj log�jV j�max		� This comes from the fact that �opt can be searched
among the jV j� values �u� v	 whereas �� is searched among all values between and jV j�max� In
particular� we point out that the complexity of Algorithm CDR does not depend on �max� which
makes it more robust�

��

���� Correctness of Algorithm CDR

Theorem � The schedule � obtained with Algorithm CDR meets both dependence and resource
constraints�

Proof Resource constraints are obviously met because of the list scheduling and the de�nition of
�� which ensures that slices do not overlap� To show that dependence constraints are satis�ed for
each e � �u� v	 of E� we need to verify

��u� k	 � ��u	 � ��v� k� d�e		

 �a�u	 � �q�u	 � ��u	 � �a�v	 � �q�v	 � �d�e	

 �a�u	� �a�v	 � ��u	 � ��q�v	� q�u	 � d�e		 ��	

On one hand� suppose that e is not deleted� i�e� e � Ga� It is equivalent to say that the weight
of e after the retiming is equal to zero� q�v	� q�u	 � d�e	 � � But� since �a is a schedule for Ga�

�a�u	 � ��u	 � �a�v	

Thus� inequality ��	 is satis�ed�
On the other hand� if e is deleted� then q�v	�q�u	�d�e	� � and thus ��q�v	�q�u	�d�e		� ��

But� by de�nition of � we have

�a�u	 � ��u	� �a�v	 � �a�u	 � ��u	 � �

Thus� inequality ��	 is satis�ed�

���� Performances of Algorithm CDR

Now� we show that our algorithm is guaranteed and we give a bound for the initiation interval �
that is better than the bound given for Algorithm GS�

Theorem
 Let G be a dependence graph� �opt the minimum achievable clock period for G� � the
initiation interval of the schedule generated by Algorithm CDR when p processors are available� and
�opt the best possible initiation interval for this case� Then

�

�opt
� � �

�
p� �

p

��
�opt

�opt

�

Proof Let � be the overall time in �a when no more than p � � processors are busy� Since � is
the makespan of the list scheduling �a�

p� �
X
u�V

��u	 � �p� �	�

�see ��� for more details	� As �a is generated by a list scheduling algorithm� there exists a dependence
path P in Ga such that � � ��P 	� By construction� �opt is the length of the longest path in Ga�
thus � � ��P 	 � �opt� So� we can write�

p� �
X
u�E

��u	 � �p� �	� � p�opt � �p� �	�opt

��

which leads to
�

�opt
� � �

�
p� �

p

��
�opt

�opt

�

Now we show that the bound obtained for Algorithm CDR �Theorem �	 is always better than
the bound for Algorithm GS �see Equation �	� This is a consequence of the following lemma�

Lemma �

�� � �opt � �� � �max � �

Proof Let us apply Algorithm CDR with unlimited resources� For that� we de�ne a retiming
q such that ��Gq	 � �opt and we de�ne the graph Ga by deleting from G all edges e such that
dq�e	 � � Then� we de�ne a schedule for Ga with unlimited resources by �a�u	 � maxf��P 	 �
P path of Ga leading to ug� The makespan of �a is �opt by construction� Finally� we get a schedule
for G by de�ning ��u� k	 � �a�u	� �q�u	� k	�opt� Since by de�nition �� is the smallest initiation
interval for p ��� we have �� � �opt�
Now� consider a schedule � for unlimited resources and initiation interval equal to ��� as de�ned

in Section ������ ��u� k	 � t�s� u	� ��k� Let r�u	 � t�s� u	 mod �� and q�u	 � b t�s�u�
��

c� As proved
in Section ���� q de�nes a retiming for G� i�e� for all edges e � �u� v	� q�v	 � q�u	 � d�e	 � �
Furthermore� q�v	� q�u	 � d�e	 � implies r�u	 � ��u	 � r�v	� De�ne Ga by deleting from G all
edges e such that dq�e	 � �as in Algorithm mGS	� Let P be any path in Ga� P � �u�� � � � � un	�
We have� for all i� � � i � n�

r�ui	 � ��ui	 � r�ui	�	

Summing up these n� � inequalities� we obtain�

n��X
i
�

��ui	 � r�u�	 � r�un	

��P 	� ��un	 � r�u�	 � r�un	

��P 	 � r�un	 � ��un	 � ��� � �	 � �max

By construction� ��Gq	 is the length of the longest path in Ga� thus ��Gq	 � ����max��� Finally�
we have �opt � ��Gq	� hence the result�

Theorem The bound for Algorithm CDR is better than the bound for Algorithm GS�

Proof This is easily derived from the fact that �opt � �� � �max � � as shown by Lemma ��

���
 Link between �� and �opt

As shown in Lemma �� �� and �opt are very close� However� the retiming that can be derived from
the schedule with initiation interval �� does not permit to de�ne an acyclic graph with longest
path �opt� In other words� looking for �� is not the right approach to minimizing the period of the
graph� In this section� we investigate more deeply this fact� by recalling another formulation of the
retiming problem given by Leiserson and Saxe ����

��

Lemma
 �Lemma � in ���	 Let G � �V�E� �� d	 be a synchronous circuit� and let c be a positive
real number� Then there exists a retiming q of G such that ��Gq	 � � if and only if there exists
an assignment of a real value s�v	 and an integer value q�v	 to each vertex v � V such that the
following conditions are satised������

����
�s�v	 � ���v	 for every vertex v � V

s�v	 � � for every vertex v � V
q�u	� q�v	 � d�e	 wherever e � u v

s�u	� s�v	 � ���v	 wherever e � u v such that q�u	� q�v	 � d�e	

��	

By letting s�u	 � r�u	 � ��u	 for every vertex u� inequalities � are equivalent to������
����

r�v	 � for every vertex v � V

r�v	 � �� ��v	 for every vertex v � V
q�u	� q�v	 � d�e	 wherever e � u v

r�v	 � r�u	 � ��u	 wherever e � u v such that q�u	� q�v	 � d�e	

��	

This last system permits to better understand all the techniques that we developed previously�

Optimal schedule for unlimited resources

As seen in Lemma �� the schedule ��u� k	 � t�s� u	 � ��k satis�es system � with r�u	 �
t�s� u	 mod �� and q�u	 � b t�s�u�

��
c except the second inequation� We do have r�v	 � ��� �

but not necessarily r�v	 � �� � ��v	 �except if �max � � and in this case� �� � �opt �see
Lemma � for another proof		�

Schedule obtained by Algorithm CDR for unlimited resources

By construction� with r � �a� q the retiming such that ��Gq	 � �opt� � � �opt� system �
is satis�ed with the smallest value for �� Therefore� this technique leads to the better cyclic
schedule with unlimited resources for which the slices do not overlap �because of the
second inequation	� Therefore� it is not always possible to �nd �� this way�

Schedule obtained by Algorithms CDR and GS for p resources

The schedule obtained satis�es system � with r � �a� � the makespan of �a� For CDR� q is the
retiming that achieves the optimal period� whereas for GS� q is the retiming de�ned from ��
�q�u	 � b t�s�u�

��
c	� For CDR� the fourth inequation is satis�ed exactly for all edges e � �u� v	

such q�v	� q�u	 � d�e	� However� for GS� � is required to satisfy the fourth inequation for
more edges than necessary �actually for all edges e � �u� v	 such that r�u	���u	 � r�v		� Note
that for both algorithms� there are additional conditions imposed by the resource constraints
that do not appear in system ��

Example We can now apply Algorithm CDR to our key example �assume again p � � available
processors	� �opt � �� and the retiming q that achieves this clock period is obtained in two steps
by Algorithm � �Figures � �a	� � �b	 and � �c	 show the successive retimed graphs	� Figure � �d	
shows the corresponding acyclic graph Ga and �nally� Figure � �e	 shows a possible schedule of
operations provided by a list scheduling technique� whose initiation interval is � � �� This is
better than what we found with Algorithm mGS �see Figure � �b		 and a fortiori with Algorithm
GS �see Figure � �d		�

��

1p

p2

1op1

op3

op4

14

2

6

op
1

op1op4 op5 op6

op3

op2

op2

op3
op4

op2

op6

op5

1op1

op2

op3

op4

14

2

6

op6

op5

1op1

op2

op3

op4

14

2

6

op6

op5

op6
op5

processors

time

(e)

0 20

(a)

2

0
1

1

1

0

0

2

4

10

(d)

2

0
1

1

4

10

(b)

1

0

1

1

2

0
1

14

10

(c)

0

1

1

1

Figure �� �a	� Initial dependence graph G
�b	 and �c	� First step of Algorithm CDR
�d	� Corresponding acyclic graph
�e	� A corresponding list scheduling allocation� � � �

��

� Minimizing the number of edges of the acyclic graph

Our purpose in this section is to �nd a retimed graph with the minimum number of null weight
edges among all retimed graphs whose longest path has the best possible length �opt� Removing
edges of non null weight will give an acyclic graph that matches both objectives stated at the end
of Section ����
Consider step � of Algorithm CDR in which we use the retiming algorithm of Leiserson and

Saxe ��� �Algorithm � with or without the improved algorithm for step �	� This retiming algorithm
does minimize the length � of the longest path of null weight into a dependence graph� but is does
not necessarily minimize the number of null weight edges� See again our key example� Figure � �c	�
for which � � ��� We can apply yet another retiming to obtain the graph of �gure � �a	� The length
of the longest path of null weight is still � � ��� but the total number of null weight edges is smaller�
This implies that the corresponding acyclic graph Ga �see Figure � �b		 contains fewer edges than
the acyclic graph of Figure � �d	 and therefore� is likely to induce a smaller initiation interval� �that
is the case in our example� we �nd an initiation interval equal to �� �see Figure � �c		��

op1

op2

op3 op4
op6op5

(b)

1op1

op2

op3

op4

op6

op5

1p

p2

o
p 1op2

op3op4

op6
op5

1

1

2

14

6

10

4

1

1
1

1

1

0

(a)

processors

time0 19

(c)

Figure �� �a	� the �nal retimed graph
q�op�	 � q�op�	 � � q�op�	 � q�op�	 � q�op�	 � q�op�	 � �
�b	� The corresponding acyclic graph
�c	� A corresponding list scheduling allocation� � � ��

Recall that a retiming q such that ��Gq	 � �opt is any integral solution to the following system
�see formulation of Theorem �	�

�
q�v	� q�u	 � d�e	 � for every edge u

e
 v � E

q�v	� q�u	 �D�u� v	 � � for all vertices u� v � V such that �u� v	 � �opt

��	

�List scheduling a graph which is a subset of another graph will not always produce a smaller execution time� But
intuition shows that it will in most practical cases �the fewer constraints	 the more freedom�

�It turns out that � � �� is the best possible integer initiation interval with p � � processors� the sum of all
operation delays is ��	 and d ��

�
e � ���

��

Among these retimings� we want to select one particular retiming q for which the number of null
weight edges in Gq is minimized� This can be done as follows�

Lemma Let G � �V�E� �� d	 be a synchronous circuit� A retiming q such that ��Gq	 � �opt and
such that the number of null weight edges in Gq is minimized can be found in polynomial time by
solving the following integer linear program������

����
min

P
e�E v�e	

 � v�e	 � �

q�v	� q�u	 � d�e	 � v�e	 � � for every edge u
e
 v � E

q�v	� q�u	 �D�u� v	 � � for all vertices u� v � V such that �u� v	 � �opt

��	

Proof Consider an optimal integer solution �q� v	 to system �� q de�nes a retiming for G with
��Gq	 � �opt since system � is satis�ed� indeed q�v	� q�u	 � d�e	 � v�e	 � � and v�e	 � � implies
q�v	� q�u	 � d�e	 � �
Note that each v�e	 is constrained by only one equation� q�v	� q�u	 � d�e	 � v�e	 � �� There

are two cases�

� The edge e in Gq has null weight� i�e� q�v	 � q�u	 � d�e	 � � Then� v�e	 � � is the only
possibility�

� The edge e in Gq has a positive weight� i�e� q�v	� q�u	 � d�e	 � � �recall that q and d are
integers	� In this case� the minimal value for v is �

Therefore� given a retiming q�
P

e�E v�e	 is minimal when it is equal to the number of null weight
edges in Gq �
Now� it remains to show that such an optimal integer solution can be found in polynomial time�

For that� we write System � in matrix form as minfcx j Ax � bg�

minf�� �	

	
q

v

j

�
BBB�
 �Id
 Id
C Id
C�

CCCA
	

q

v

�

�
BBB�

�

d� �
D � �

CCCAg

where C is the transpose of the jV j� jEj
incidence matrix of G� C� is the transpose of the incidence
matrix of the graph G� whose edges are the pairs �u� v	 such that �u� v	 � �opt and Id is the
jEj � jEj identity matrix�

Note that if M is a totally unimodular matrix� then so are tM and

	
M

Id

� The matrix	

C
C�

is also the transpose of an incidence matrix �the incidence matrix of G 	 G�	� thus it

is totally unimodular �see ��� page ���� example ��	� Then�

	
C Id
C�

is totally unimodular��

B� Id
C Id
C�

CA is totally unimodular� and �nally A is also totally unimodular�

Therefore� solving the ILP Problem � is not NP
complete� System � considered as an LP prob

lem has an integral optimum solution �Corollary ����a in ���	 and such an integral solution can be

��

found in polynomial time �Theorem ���� in ���	�

Let us summarize how this re�nement can be incorporated into our software pipelining heuristic�
�rst� we compute �opt the minimum achievable clock period for G� then we solve System � and we
obtain a retiming q� We de�ne Ga as the acyclic graph whose edges have null weight in Gq� the
longest path in Ga is minimized and the number of edges in Ga is minimized� Finally� we schedule
Ga as in Algorithm CDR� We call this heuristic the modi�ed CDR �or simply mCDR	�

Remark� Solving System � can be expensive although polynomial� An optimization that
permits to reduce the complexity is to pre
compute the strongly connected components Gi of G
and to solve the problem separately for each component Gi� Then� a retiming that minimizes the
number of null weight edges in Gq is built by adding suitable constants to each retiming qi so that
all edges that link di�erent components have positive weights� Future work will try to �nd a pure
graph
theoretic approach to the resolution of System �� so that the practical complexity of our
software pipelining heuristic is decreased�

� Load balancing

We have restricted so far initiation intervals to integer values� As mentioned in Section ���� search

ing for rational initiation intervals might give better results� but at the price of an increase in
complexity� searching for � � p

q
can be achieved by unrolling the original loop nest by a factor of

q� thereby processing an extended dependence graph with many more vertices and edges�
In this section� we propose a simple heuristic to alleviate potential load imbalance between

processors� and for which there is no need to unroll the graph�
Remember the principle of the four previously described heuristics �GS� mGS� CDR and mCDR	�

First� an acyclic graph Ga is built from G� Then� Ga is scheduled by a list scheduling technique�
This de�nes the schedule �a inside each slice of length � �the initiation interval	� Finally� slices are
concatenated� a slice being initiated just after the completion of the previous one�
The main weakness of this principle is that slices do not overlap� Since the schedule in each

slice has been de�ned by an As
Soon
As
Possible �ASAP	 list scheduling� what usually happens
is that many processors are idle during the last time steps of the slice� The idea to remedy this
problem is to try to �ll these �holes� in the schedule with the tasks of the next slice� For that�
instead of scheduling the next slice with the same schedule �a� we schedule it with an As
Late
As

Possible �ALAP	 so that �holes� may appear in the rst time steps of the slice� Then� between
two successive slices� processors are permuted so that the computational load is �nearly	 equally
balanced when concatenating both slices�
Let us formulate this more precisely� De�ne a retiming q for G� for example� the retiming

that minimizes the period of Gq and that minimizes the number of edges of Gq with no registers�
Delete from Gq all edges that have at least one register �i�e� whose weight is positive	� this de�nes
Ga� Then� de�ne for Ga an As
Soon
As
Possible �ASAP	 list scheduling �as and an As
Late
As

Possible �ALAP	 �al� Denote by �s and �l the respective makespans of �as and �al� By construction�
�s�opi� k	 � �as�opi	 � �s�q�opi	 � k	 and �l�opi� k	 � �al�opi	 � �l�q�opi	 � k	 are both valid cyclic
schedules for G� Note that both de�ne the same slices� only the organization inside slices may be
di�erent�
To de�ne the �nal schedule �� computations of slice �K �even slices	 for �as will be scheduled

in slice K of � and organized with �al� whereas computations of slice �K�� �odd slices	 for �l will
be scheduled in slice K and organized with �l� However� they will be delayed so that dependences
between operations in slice �K and in slice �K�� are respected� In other words� we try to determine

�

a schedule of the following form��
��opi� k	 � �as�opi	 � ��q�opi	 � k	 if q�op	 � k � �K
��opi� k	 � D � �al�opi	 � ��q�opi	 � k	 if q�op	 � k � �K � �

��	

where � D � �s� � � D��l and D is minimized� D is the time step at which the �rst operations
that correspond to odd slices of �l are initiated� By this construction� all dependences are respected
except possibly some dependences between operations of slice �K and operations of slice �K � ��
D has to be chosen su�ciently large so that these remaining dependences are satis�ed�
Let Cr�s �resp� Cr�l	 be the set of operations that are allocated to processor r in schedule �s

�resp� in schedule �l	� Denote by Er�t the set of edges e � �opi� opj	 such that opi � Cr�s� opj � Ct�l

and q�opj	 � q�opi	 � d�e	 � �� Er�t induces a set of constraints on D that can be formulated as
follows� Let ��Cr� Ct	 be the minimum value which meets the following inequality�

��Cr� Ct	 � �al�opj	 � �as�opi	 � ��opi	 if e � �opi� opj	 � Er�t

Intuitively ��Cr� Ct	 is the minimum distance between tasks in slice �K assigned to processor r
and tasks in slice �K � � assigned to processor t� which are linked by a dependence� Dependence
constraints are now expressed as�

D � ��Cr� Ct	 for � � r� t � p ��	

Next we have to concatenate two successive slices so that all processors receive the same amount
of work� The idea is to make a permutation between processors� clusters for slice �K � � will
not be recomputed but target processors will be interchanged to take into account possible load
imbalance from slice �K� Let tr � maxop�Cr�s

��as�op	 � ��op		 and ut � minop�Ct�l
��al�op		� Let 	

be a permutation of f�� � � � � pg such that Cr�s and C��r��l will be allocated to the same processor�
Resource constraints are expressed as follows�

D � u��r� � tr for � � r � p ��	

Clearly� the optimal permutation 	 that minimizes D is de�ned as��
u���� � ��� � u��p�

t� � ��� � tp

We obtain the �nal heuristic�

�� Use Algorithm mCDR to compute the acyclic graph Ga� Compute an ASAP list scheduling
�as and an ALAP list scheduling �al�

�� Compute the minimum distance D from equations � and ��

�� The �nal schedule is expressed according to equation ��

As both �as and �al are list schedulings� we can prove the same guarantee bound for this heuristic
as for Algorithms CDR and mCDR since � � �s��l �and each slice computes two iterations instead
of one	� The possible gain is that rather than executing slices without overlap� we have tried to
interleave them as tightly as possible�

��

Example Consider our key example again� Figure ��c	 shows a possible allocation of an instance
of Ga provided by an ASAP list scheduling� Figure � shows an allocation provided by an ALAP list
scheduling and Figure � the concatenation of these two instances� The initiation interval � that we
obtain is equal to �� for two instances� i�e� � � ����� which is better � than the initiation interval
obtained with Algorithm mCDR �Figure ��c		�

1p

p2

op
1op2

op3op4

op6
op5

processors

time0 19

Figure �� ALAP scheduling

opopop
1

opopop
1

op2
op2

op3
op3op4

op4op6
op5 op6

op5

processors

time0 37

Figure �� Concatenation of two instances

� Conclusion

In this paper� we have presented a new heuristic for the SP problem� We have built upon results of
Gasperoni and Schwiegelshohn� and we have made clear the link between software pipelining and
retiming�
In the single resource class case� our new heuristic is guaranteed� with a better bound than that

of ���� Unfortunately� we cannot extend the guarantee to the many resource classes case� because
list scheduling itself is not guaranteed in this case�
We point out that our CDR heuristic has a low complexity� As for mCDR� further work will

be aimed at deriving an algorithmic implementation that will not require the use of Integer Linear
Programming �even though the particular instance of ILP invoked in mCDR is polynomial	�
Finally� note that all edge
cutting heuristics lead to cyclic schedulings where slices do not overlap

�by construction	� Our �nal load
balancing technique is a �rst step to overcome this limitation� It
would be very interesting to derive methods �more sophisticated than loop unrolling	 to synthesize
resource
constrained schedulings where slices can overlap�

�This cannot be improved further� the two processors are always busy	 as
P

i
��opi � �� � ���

��

References

��� A� Aiken and A� Nicolau� Perfect pipelining� A new loop parallelization technique� In ESOP
��� volume � of Lectures Notes in Computer Science� pages ���!���� Springer Verlag� �����

��� C�Hanen and A�Munier� Cyclic scheduling on parallel processors� an overview� Technical Re

port ���� Laboratoire de Recherche en Informatique� Universite de Paris Sud� Centre d�Orsay�
�����

��� E� G� Co�man� Computer and job�shop scheduling theory� John Wiley� �����

��� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� editors� Introduction to
Algorithms� The MIT Press� ����

��� Paul Feautrier� Fine
grain scheduling under resource constraints� In Languages and Compil�
ers or Parallel Computing� number ��� in Lectures Notes in Computer Science� pages �!���
Springer Verlag� �����

��� F�Gasperoni and U�Schwiegelshohn� Generating close to optimum loop schedules on parallel
processors� Parallel Processing Letters� ���	����!��� �����

��� R� Govindarajan� Erik R� Altman� and Guang R� Gao� A framework for resource
constrained�
rate
optimal software pipelining� In COMPAR
��VAPP VI� volume ��� of Lectures Notes in
Computer Science� Springer Verlag� �����

��� J�Wang� C�Einsenbeis� M�Jourdan� and B�Su� Decomposed software pipelining� International
Journal of Parallel Programming� ����	����!���� �����

��� C�E� Leiserson and J�B� Saxe� Retiming synchronous circuitry� Algorithmica� ���!��� �����

��� Alexander Schrijver� Theory of Linear and Integer Programming� John Wiley and Sons� New
York� �����

��

Contents

� Introduction �

� Known results on the SP problem

��� Problem formulation �
��� Related work �

 Going from cyclic scheduling to acyclic scheduling �

��� Some properties of cyclic scheduling �
��� The heuristic of Gasperoni and Schwiegelshohn �

����� Optimal schedule for unlimited resources �
����� Algorithm GS for p resources �
����� Performances of Algorithm GS �

��� Cutting edges by retiming �

 Minimizing the longest path of the acyclic graph ��
��� Retiming algorithms ��
��� A new scheduling algorithm� Algorithm CDR ��

����� Correctness of Algorithm CDR ��
����� Performances of Algorithm CDR ��
����� Link between �� and �opt ��

� Minimizing the number of edges of the acyclic graph �	

� Load balancing ��

� Conclusion ��

��

