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We p r e s e n t y et another heuristic for the software pipelining problem. We believe this heuristic to be of interest because it brings a new insight to the software pipelining problem by establishing its deep link with the circuit retiming problem. Also, in the single resource class case, our new heuristic is guaranteed, with a better bound than that of 6]. Finally, w e p o i n t out that, in its simplest form, our algorithm has a lower complexity.

Introduction

Software pipelining (SP hereafter) is a technique aimed at the e cient execution of simple loops. The main problem is to cope with both dependence and resource constraints which make the problem NP-complete in general. Consider the following example to illustrate the discussion. We will work on this example all along the paper.

Example DO k = 0 N (op 1 ): a(k) = c(k ; 1) (op 2 ): b(k) = a(k ; 2) d(k ; 1) (op 3 ): c(k) = b(k) + 1 (op 4 ): d(k) = f(k ; 1)=3 (op 5 ): e(k) = sin(f(k ; 2)) ( The instructions (op 1 ) : : : (op n ) within the loop (n = 6 in our example) are called generic tasks (or operations). Each of them is executed N + 1 times, where N is assumed to be very large. Instance k of operation op i is denoted (op i k ), and its execution is scheduled to begin at time (op i k ) 0 and to last (op i ) units of time.

The goal is to determine a schedule to minimize the total execution time T = maxf (op i k )+ (op i )1 i n 0 k Ng subject to resource c onstraints, and while preserving the semantics of the original loop (dependence c onstraints).

Resource constraints In the most general instance of the SP problem, resource constraints are expressed as follows: generic tasks are partitioned into classes. To e a c h c l a s s C corresponds a given ( nite) number p(C) o f a vailable processors (or resources). For example think of tasks being partitioned into additions (class C 1 ) and multiplications (class C 2 ) then p(C 1 ) is the number of available adders and p(C 2 ) that of multipliers. We need to ensure that the scheduling satis es to the resource constraints, i.e. that at any time-step and for each resource class C, no more than p(C) instances of tasks belonging to class C are being executed.

In a simpler instance of the SP problem, there is a single resource class composed of p identical processors. Each o p e r a t i o n op can be executed indi erently on any processor, with delay (op).

Although less general, this single resource class instance has motivated a great deal of research, for at least two reasons: it has a great importance in practice, as it models ne-grain parallelism extraction in shared memory machines with programmable ALUs (or o -the-shelf microprocessors), it is the only case where guarantees exist 6] f o r s c heduling heuristics. This is very important a s i t g i v es a sound basis for comparing heuristics (the only alternative i s t o m ultiply experiments).

Dependence constraints Dependence constraints express the fact that some computations must be executed in a speci ed order so as to preserve the semantics of the loop. In our example, computation (op 1 k ) writes a(k), hence it must precede computation (op 2 k + 2) which reads this value. There is also (among others) a dependence from (op 6 k ; 2) to (op 5 k ), because f(k ; 2) must be read in (op 5 k ). All dependences are usually captured into a reduced dependence graph (see Figure 1).

The SP problem has motivated a great amount of research. Since the pioneering work of Aiken and Nikolau 1], several authors have proposed various heuristics 6, 2, 5, 7, 8] 1 . The main contribution of this paper is to present y et another heuristic for the SP problem. We believe this heuristic to be of interest because it brings a new insight to the SP problem by establishing its deep link with the circuit retiming problem. Also, in the single resource class case, our new heuristic is guaranteed, with a better bound than that of 6]. Finally, w e p o i n t out that, in its simplest form, our algorithm has a lower complexity.

The rest of the paper is organized as follows: in Section 2, we formally de ne the SP problem and we brie y survey complexity results and heuristics from the literature. In Section 3, we present the guaranteed heuristic of Gasperoni and Schwiegelshohn 6]. In Section 3.3, we show h o w to modify this heuristic so as to cut more edges in the dependence graph (hence expecting better results). This gives the starting point of our heuristic whose presentation is split over Sections 4 and 5. Furthermore, we s h o w that the bound for our heuristic is better than the bound in 6]. Finally, we discuss some extensions in Section 6. We summarize our results and give some perspectives in Section 7.

2 Known results on the SP problem

Problem formulation

Formally, software pipelining problem instances are represented by a nite, vertex-weighted, edgeweighted directed multi-graph G = ( V E d ). The vertices V of the graph model the generic tasks: V = fop 1 o p 2 : : : o p n g. Each generic task op i has a positive delay (or latency) (op i ).

Vertex (task) delays can be rational numbers, but since the graph is nite we can always change the time unit to have i n teger delays. The graph G is often called the reduced d e p endence g r aph in the literature.

Each generic task op i has several instances (op i k ), 0 k N. The problem is to nd a schedule that assigns a time-step (op i k ) to begin the execution of each computation (op i k ).

The directed edges E of the graph model dependence constraints. Let e = ( op i o p j ) 2 E be an edge of G with weight d(e): this means that instance k of generic task op i must be completed before the execution of instance k +d(e) of generic task op j . In other words, we h a ve the scheduling constraints: 8e = ( op i o p j ) 2 E : (op i k ) + (op i ) (op j k + d(e))

Edge delays are nonnegative i n tegers by construction. Some edge delays may be equal to zero, but there does not exist any cycle in G whose length (the sum of the edge delays) is zero (otherwise some computation depends upon itself). The multi-graph G for our example is depicted in Figure 1: operator delays are given in square boxes.

Resource constraints are expressed as follows: generic tasks are partitioned into classes. To each class C corresponds a given number p(C) o f a vailable processors (or resources). We need to ensure that at any time-step no more than p(C) instances of tasks belonging to class C are being executed. This translates into the following formula:

8t 0 8C jf(op k) o p2 C 0 k N t; (op) < (op k) tgj p(C):
Resource constraints can be expressed slightly di erently in the case of pipelined processors. If we assume processors of class C to be pipelined, then no more than p(C) tasks of class C can be initiated at each unit of time.

The SP problem can therefore be reduced to the determination of the schedule subject to the above constraints. Valid schedules are those schedules satisfying all constraints (both dependence constraints and resource constraints). Because of the regular structure of the SP problem, we usually search f o r a cyclic schedule : w e aim at nding a nonnegative i n teger (called the initiation interval of ) and constants c i such that

(op i k ) = k + c i
Because the input loop is supposed to execute many iterations (N is large), we focus on the asymptotic behavior of . The initiation interval is a natural performance estimator of , a s 1 = measures 's throughput. Note that if the reduced dependence graph G is acyclic and if the target machine has enough processors, then can be zero (this type of schedule has in nite throughput).

A v ariant consists in searching for a nonnegative rational = u=v and to let (op i k ) = b k+c i c (with rational constants c i ). This amounts to unroll the input loop by a factor v. Note that rational cyclic schedules are dominant in the case of unlimited resources 2].

In the following, we restrict to the simplest case, i.e. the case of a single resource class of non pipelined processors. Our heuristic does apply to many resource classes, but we a r e n o longer able to guarantee it in this case.

Related work

Many papers on software pipelining have been published. In this section, we v ery brie y summarize four of the most recent ones, by F eautrier 5], Hanen and Munier 2], Gasperoni and Schwiegelshohn 6] and Wang et al. 8]. Feautrier 5] Feautrier formalizes the SP problem in terms of integer linear programming, in the case of di erent resource classes. He gives two s c heduling algorithms, one for the case p(C) = 1 (which means that all resources are considered as di erent) and another for the general case. In both cases, it is shown how to translate resource constraints into systems of bilinear integer constraints. This technique permits to derive optimal solutions, though in non-polynomial time.

Hanen and Munier 2] Hanen and Munier use a very interesting graph-based approach. They restrict themselves to the single resource class case. They use \tie-breaking" graphs to derive schedules. Basically, the idea is to add some edges to the reduced dependence graph. These new edges link task instances to be executed on the same group of processors. The problem is to determine how to partition processors into groups and how to add new edges. The proposed heuristics look quite powerful, although not guaranteed.

Gasperoni and Schwiegelshohn 6] Gasperoni and Schwiegelshohn tackle the single resource class case, both with pipelined and non-pipelined processors. They use yet another approach: they separate, so to speak, dependence constraints and resource constraints. They rst schedule the reduced dependence graph G assuming an unlimited number of processors. Such a s c hedule is the basis to decide which edges to cut in G so as to make it acyclic. On the new acyclic graph G a , t h e y use a list-scheduling heuristic to cope with the resource constraints. The key-point is that the nal scheduling is guaranteed. We explain Gasperoni and Schwiegelshohn's approach with full details in Section 3, and we build upon their results.

Wang, Eisenbeis, Jourdan and Su 8] Wang et al. have an approach v ery similar to that of Gasperoni and Schwiegelshohn. The main di erence is in the selection criterion to cut edges in G so as to make it acyclic. They cut more edges than Gasperoni and Schwiegelshohn, thereby expecting better results when list-scheduling the acyclic graph G a .

For our new heuristic, we apply this idea of cutting edges too. Our goal is twofold: Miminize the longest path in the acyclic graph G a so as to have the best possible performance bound, hence improving the heuristic guarantee, Minimize the number of edges in G a so as to have as few constraints as possible.

As already mentioned, we rst describe Gasperoni and Schwiegelshohn's approach (Section 3) before introducing our new heuristic (Section 3.3).

3 Going from cyclic scheduling to acyclic scheduling Before going into the details of Gasperoni and Schwiegelshohn heuristic (GS for short), we recall some properties of cyclic schedules, so as to make the rest of the presentation clearer.

Some properties of cyclic scheduling

Given the dependence graph G = ( V E d ), a cyclic schedule is a schedule of the form:

(op i k ) = k + c i where c i k 2 N that satis es both dependence constraints and resource constraints. Such a cyclic schedule is periodic, with period : the computation scheme is reproduced every units of time. More precisely, if instance (op i k ) is assigned to begin at time t, then instance (op i k + 1) will begin at time t + . Therefore we only need to study a slice of clock cycles to know the behavior of the whole cyclic scheduling in steady state. Let us observe such a slice, e.g. the slice S K from clock cycle K up to clock cycle (K + 1 ) ;1, where K is large enough so that the steady state is reached (see Figure 2 for an example with an optimal schedule and unlimited resources). Perform the Euclidean division of c i by : c i = r i + q i where 0 r i ; 1. Then

(op i k ) = r i + (k + q i )
This means that one and only one instance of op i is initiated within the slice S K : it is instance k = K ; q i , started r i clock cycles after the beginning of the slice.

If the schedule is valid, both resource constraints and dependence constraints are satis ed. The latter constraints can be satis ed because of two di erent reasons: either two dependent computation instances are initiated in the same slice S K (type 1) or they are initiated in two di erent slices (type 2). Of course, the partial dependence graph induced by t ype 1 constraints is acyclic, because type 1 dependences impose a partial order on the operations, according to their apparition order within the slice.

The main idea of GS is the following. Assume that we h a ve a v alid cyclic schedule of period 0 for a given number p 0 of processors, and that we w ant to deduce a valid schedule for a smaller number p of processors. A way of building the new schedule is to keep the same slice structure, i.e. to keep the same operation instances within a given slice. Of course we might need to increase the slice length to cope with the reduction of resources. In other words, we h a ve to stretch the rectangle of size 0 p 0 to build a rectangle of size p. Using this idea, type 2 dependences will still be satis ed if we c hoose large enough. Only type 1 dependences have t o b e t a k en into account for the internal reorganization of the slice (see Figure 3). But since the corresponding partial dependence graph is acyclic, we are brought b a c k to a standard acyclic scheduling problem for which m a n y theoretical results are known. In particular, a simple list scheduling technique provides a guaranteed heuristic (and the shorter the longest path in the graph, the more accurate the heuristic bound). Once this main principle settled, there remain several open questions:

op (k) 1 op (k) 2 op (k) 3 op (k-1) 4 1 op (k+1) op (k) 4 op (k+1) 2 op (k+1) 5 op (k) 1 op (k-1) 4 op (k) 2 op (k) 3 op (k) 4 op (k+1) 2 op (k+1) 3 op (k+1) 1 op (k+1) 6 op (k+1) 5 op (k+1) 6 op (k) 5 op (k) 6 op 
1. How t o c hoose the initial scheduling? 2. How t o c hoose the reference slice? (There is no reason a priori to choose a slice beginning at a clock cycle congruent to 0 modulus 0 ) 3. How to decide that an edge is of type 1, hence to be considered in the acyclic problem?

These three questions are of course linked together. Intuitively, it seems important to (try to) minimize both the length of the longest path in the acyclic graph, which should be as small as possible as it is tightly linked to the guaranteed bound for the list scheduling, and the number of edges in the acyclic graph, so as to reduce the dependence constraints for the acyclic scheduling problem. We will give a precise formulation to these questions and give a solution. Beforehand, we review the choices of GS.

The heuristic of Gasperoni and Schwiegelshohn

In this section we explain with full details the GS heuristic 6]. The main idea is as outlined in the previous section. The choice of GS for the initial scheduling is to consider the optimal cyclic scheduling for an in nite number of processors (p 0 = 1), i.e. without resource constraints.

Optimal schedule for unlimited resources

Consider the cyclic scheduling problem G = ( V E d ) without resource constraints (p = 1).

Let be a nonnegative i n teger. De ne from G an edge-weighted graph G 0 = ( V 0 E 0 d 0 ) a s follows:

Vertices of G 0 Add to V a new vertex s: V 0 = V f sg.

Edges of G 0 Add to E an edge from s to all other vertices: E 0 = E (fsg V ).

Weight of edges of G 0 De ne d 0 (e) = 0 i f e 2 E 0 nE and d 0 (e) = (op i ); d(e) i f e = ( op i o p j ) 2 E.

We h a ve the following well-known result:

Lemma 1 is a valid initiation interval , G 0 has no cycle of positive weight.

Proof

If is a valid initiation interval, there is a cyclic schedule (op i k ) = c i + k that satis es the dependence constraints:

8e = ( op i o p j ) 2 E : c i + (op i ) d(e) + c j (1)
Consider a cycle C in G 0 . Note that C is a cycle of G, too. Summing all inequalities (1) that involve the edges of C leads to:

X opi2C (c i + (op i )) X e2C d(e) + X opj2C c j , (C) d(C) , d 0 (C) 0
Conversely, i f G 0 has no cycle of positive w eight, one can de ne, for all op 2 V , the longest path (in G 0 ) f r o m s to op, t h a t w e d e n o t e b y t(s op). By de nition, t(s op) satis es the following triangular inequality: 8e = ( op i o p j ) 2 E t(s op j ) t(s op i ) + d 0 (e)

i.e. 8e = ( op i o p j ) 2 E t(s op i ) + (op i ) t(s op j ) + d(e) This proves that (op k) = t(s op) + k is a valid cyclic schedule.

Lemma 1 has two important consequences:

First, given an integer , it is easy to determine if is a valid initiation interval and if yes, to build a corresponding cyclic schedule by applying Bellman-Ford's algorithm 4] on G 0 . The optimal initiation interval 1 is the smallest integer such that G 0 has no positive cycle. Therefore, 1 = 0 i f G is acyclic and 1 = m a x fd (C) d(C) e C cycle of Gg otherwise.

Algorithm GS for p resources

As said before, in the case of p identical processors, the algorithm consists in the conversion of the dependence graph G into an acyclic graph G a . G a is obtained by deleting some edges of G. A s initial scheduling, GS takes the optimal scheduling with unlimited resources 1 (op i k ) = t(s op i ) + 1 k:

As reference slice, GS takes a slice starting at a clock cycle congruent to 0 modulus 1 , i.e. a slice from clock c y c l e K 1 up to clock cycle (K + 1 ) 1 ; 1. This amounts to decomposing t(s op i ) i n to t(s op i ) = r i + 1 q i where 0 r i 1 ; 1 In other words r i = t(s op i ) m o d 1 . Consider an edge e = ( op i o p j ) 2 E. In the reference slice, the computation instance (op i K ; q i ) is performed. If r i + (op i ) > r j , the computation instance of op j which is performed within the reference slice (namely (op j K; q j )) is started before the end of the computation (op i K; q i ). Hence this computation instance (op j K; q j ) i s n o t t h e one that depends upon completion of (op i K ; q i ). In other words, K ; q i + d(e) 6 = K ; q j . The two computations in dependence through edge e are not initiated in the same slice. Edge e can be safely considered as a ty p e 2 e d g e , t h us can be deleted from G. This is the way edges are cut in GS heuristic2 . W e are led to the following algorithm:

Algorithm 1 (Algorithm GS) 1. Compute the optimal cyclic schedule 1 for unlimited r esources.

Let e = ( op i o p j ) be a n e dge of G. T h e n e will be deleted f r om G if and only

if t(s op j ) m o d 1 < t (s op i ) m o d 1 + (op i ) (C 1 )
This provides the acyclic graph G a .

3. (a) Consider the acyclic graph G a where vertices are weighted b y and edges represent task dependences, and perform a list scheduling a on the p processors. (b) Let = m a x opi ( a (op i ) + (op i )) be the latency of the schedule for G a . 4. For all op i 2 E and k 2 N:

(op i k ) = a (op i ) + t(s op i ) 1 + k is a valid cyclic schedule.
The correctness of Algorithm GS can be found in 6]. It can also be deduced from the correctness of Algorithm CDR (see Section 4.2.1).

Performances of Algorithm GS

GS gives an upper bound to the initiation interval obtained by Algorithm 1. Let opt be the optimal (smallest) initiation interval with p processors. The following inequality is established:

p p opt + ( p ; 1) (2)
where is the length of the longest path in G a . Moreover, owing to the strategy for cutting edges, 1 + max ; 1 ( s e e L e m m a 1 i n 6 ]). This implies: p p opt + ( p ; 1)( 1 + max ; 1) which leads to opt 2 ; 1 p + p ; 1 p max ; 1 opt GS is the rst guaranteed algorithm. We see from equation (2) that the bound directly depends upon , the length of the longest path in G a .

Example We go back to our example. Assume p = 2 a vailable processors. Figure 4 (a) recalls the graph G for which 1 = 12. In Figure 4 (b), we depict the graph G 0 12 that permits to compute t(s op) for all op (the di erent v alues t(s op) a r e g i v en in circles on the gure) and an optimal schedule with unlimited resources 1 (op k) = t(s op) + 1 k. This schedule was already represented Figure 2: 4 processors are needed. Figure 4 (c) shows the acyclic graph G a obtained by cutting edges e = ( op i o p j ) such that r j < r i + (op i ) where r i = t(s op i ) m o d 1 . Finally, Figure 4 (d) shows a possible schedule of operations provided by a list scheduling, for which = 2 5 .

Cutting edges by retiming

Let us summarize Algorithm GS as follows: rst compute the values t(s op) i n G 0 1 to provide the optimal scheduling without resource constraints 1 . Then take a reference slice starting at top 0 m o d 1 :

1 (op i k ) = r i + 1 (k + q i ) with 0 r i 1 ; 1 Finally, delete from G some edges that necessarily correspond to dependences between di erent slices: only those edges e = ( op i o p j ) such that r i + (op i ) > r j are removed by G S .

However, edges that correspond to dependences between di erent slices are those such that q i 6 = q j + d(e). Indeed, within the reference slice, the scheduled computation instances are (op i K ; q i ) and (op j K ; q j ) for edge e = ( op i o p j ). Therefore, the computation (op j K; q i + d(e)), which depends upon (op i K ;q i ), is performed in the same slice i K;q i +d(e) = K;q j , i.e. q j +d(e) = q i . Otherwise, it is performed in a subsequent slice, and in this case q j + d(e) > q i . Therefore, the condition for cutting edges corresponding to dependences between di erent slices (i.e. those we called type 2 dependences) writes q j + d(e) > q i rather than r i + (op i ) > r j . Let us check this mathematically. Consider a valid cyclic scheduling (op i k ) = c i + k and let c i = r i + q i with now t 0 r i t 0 + ; 1, where t 0 is given: we look at an arbitrary slice of length . F or each edge e = ( op i o p j ), the dependence constraint is satis ed, thus r i + (op i ) + q i r j + (q j + d(e)). Then, 8 > > > > > < > > > > > : r i + (op i ) + q i r j + (q j + d(e)) , (r i ; r j ) + (op i ) (q j + d(e) ; q i ) ) ; + 1 (q j + d(e) ; q i ) ) ;1 < q j + d(e) ; q i ) 0 q j + d(e) ; q i Furthermore, if q j +d(e);q i = 0, then the dependence constraints directly writes r i + (op i ) r j . Conversely, i f r i + (op i ) > r j , then necessarily q j + d(e) ; q i > 0: if an edge is cut by GS, then it is also cut by our new rule. We are led to a modi ed version of GS which w e call mGS. Since we cut more edges in mGS than in GS, the acyclic graph mG a obtained by mGS contains a subset of the edges of the acyclic graph G a . See Figure 5 to illustrate this fact.

We are now ready to formulate the problem. We need neither an initial ordering nor a reference slice any longer. What we only need is to determine a function q : V ;! Zsuch that: 8e = ( u v) 2 E q(v) + d(e) ; q(u) 0 Such a function q is called a retiming in the context of synchronous VLSI circuits 9]. Retiming is an assignment o f a n i n teger lag q(u) t o e a c h v ertex u 2 V : it amounts to suppress q(u) \registers" to the weight of each e d g e l e a ving u (whose tail is u) and to add q(v) registers to each edge entering v (whose head is v). It leads to a new edge-weighting function d q de ned for an edge u e ! v by d q (e) = d(e) + q(v) ; q(u). After a suitable retiming is found, we de ne the acyclic graph mG a as follows: an edge e 2 E is kept in mG a i its new weight d q (e) is 0 (edge \without register"). Clearly, mG a is acyclic (assume there is a cycle, and sum up retimed edge weights on this cycle to get a contradiction). Given mG a , w e list schedule it as a DAG whose vertices are weighted by the initial function.

Recall that our goal was to answer the two following questions:

How to cut edges so as to obtain an acyclic graph G a whose longest path has minimal length?

How to cut as many edges as possible so that the number of dependence constraints to be satis ed by the list-scheduling of G a is minimized?

Now, using our new formulation, we can state our objectives more precisely in terms of retiming:

Objective 1 Find a retiming q that minimizes the longest path in mG a , i.e. in terms of retiming, that minimizes the clock period of the retimed graph (see Section 4).

Objective 2 Find a retiming q so that the number of edges in mG a is minimal, i.e. distribute registers so as to leave as few edges without registers as possible. In Section 4, we show h o w t o a c hieve the rst objective (this is a well-known problem). There are several possible solutions, and in Section 5, we s h o w h o w to select the best one with respect to the second objective, and we state our nal algorithm. We i m p r o ve upon GS for two reasons: rst we h a ve a better bound, and second we cut more edges, hence more freedom for the list scheduling.

Minimizing the longest path of the acyclic graph

There are well-known retiming algorithms that can be used to minimize the clock period of a VLSI circuit. In this section, we s h o w h o w to use such algorithms to derive a v alid value q(op i ) for each operator op i .

Retiming algorithms

Formally, a retiming of a graph G = ( V E d ) i s a v ertex-labeling function q : V ;! Z. q performs a transformation of the initial graph G into a new graph G q = ( V E d q ) where d q is de ned as follows: if e = ( u v) is an edge of E then d q (e) = d(e) + q(v) ; q(e) Such a retiming is valid if for each edge e of E, d q (e) 0. Note that we assumed that in any cycle of G there is at least one edge whose weight is positive: using VLSI terminology, w e s a y G is synchronous.

Leiserson and Saxe 9] present s e v eral algorithms to compute an optimal valid retiming, in the sense that the longest path of null weight in the retimed graph is as short as possible. Before presenting these algorithms with more details, we need some de nitions. Theorem 1 (Theorem 7 in 9]) Let G = ( V E d ) be a synchronous circuit, let be an arbitrary positive real number, and let q be a function from V to the integers. Then q is a legal retiming of G such that (G q ) if and only if 1. q(u) ; q(v) d(e) for every edge u e ! v of G, and 2. q(u) ; q(v) D(u v) ; 1 for all vertices u v 2 V such that (u v) > .

Theorem 1 provides the basic tool to establish the following algorithm (Algorithm 2) that determines a retiming such that the clock period of the retimed graph is minimized.

Algorithm 2 (Algorithm OPT1 in 9]) 1. Compute D and (see A lgorithm WD in 9]).

2. Sort the elements in the range of .

3. Binary search among the elements (u v) for the minimum achievable clock period. To test whether each potential clock period is feasible, apply the Bellman-Ford algorithm to determine whether the conditions in Theorem 1 can be satis ed. [START_REF] Co Man | Computer and job-shop scheduling theory[END_REF]. For the minimum achievable clock period found in step 3, use the values for the q(v) found by the Bellman-Ford algorithm as the optimal retiming. This algorithm runs in O(jV j 3 log jV j), but there is a more e cient algorithm whose complexity is O(jV jjEj logjV j), which is a signi cant improvement for sparse graphs. It runs as the previous algorithm except in step 3 where the Bellman-Ford algorithm is replaced by the following algorithm: Algorithm 3 (Algorithm FEAS in 9]) Given a synchronous circuit G = ( V E d ) and a desired clock period , this algorithm produces a retiming q of G such that G q is a synchronous circuit with clock period , i f s u c h a r etiming exists.

1. For each vertex v 2 V , s e t q(v) to 0. 2. Repeat the following jV j ; 1 times: (a) Compute graph G q with the existing values for q. (b) for any vertex v 2 V compute 0 (v) the maximum sum (P) of vertex delays along any zero-weight directed p ath P in G leading to v. T h i s c an be done in O(jEj). (c) For each vertex v such that 0 (v) > , set q(v) to q(v) + 1 . 3. Run the same algorithm used for step 2(b) to compute . I f > then no feasible retiming exists. Otherwise, q is the desired r etiming.

After performing a retiming q to obtain the graph G q with minimal clock period, we c o n vert this graph into an acyclic one by deleting edges with positive w eight. From the de nition of a retiming, we see that the sum d(C) along any c y c l e C of G remains unchanged, i.e. d q (C) = d(C). Furthermore since any cycle of the dependence graph G contains at least one edge with positive weight, the graph we obtain by deleting edges with positive w eight is acyclic.

A new scheduling algorithm: Algorithm CDR

We can now give our new algorithm and prove that both resource and dependence constraints are met.

Algorithm 4 (Algorithm CDR) Let G = ( V E d ) be a d e p endence g r aph 1. Find a retiming q that minimizes the length of the longest path of null weight in G q (use Algorithm 2 with the improved algorithm for step 3).

2. Delete edges of positive weight, or equivalently keep edges e = ( u v) which satisfy q(v);q(u)+ d(e) = 0 (i.e. edges with no registers). By this way, we obtain an acyclic graph G a . 3. Perform a list scheduling a on G a and compute = max u2V ( a (u) + (u)).

4. De ne the cyclic schedule by: 8u 2 V 8k 2 N (u k) = a (u) + (k + q(u))

Note that the complexity of Algorithm CDR is determined by Step 1 whose complexity i s O(jV jjEj log(jV j)). Therefore, the complexity of Algorithm CDR is lower than that of Algorithm GS whose complexity i s O(jV jjEj log(jV j max )). This comes from the fact that opt can be searched among the jV j 2 values (u v) whereas 1 is searched among all values between 0 and jV j max . I n particular, we point out that the complexity of Algorithm CDR does not depend on max , which makes it more robust.

Correctness of Algorithm CDR Theorem 2

The schedule obtained w i t h A lgorithm CDR meets both dependence a n d r esource constraints.

Proof Resource constraints are obviously met because of the list scheduling and the de nition of , which ensures that slices do not overlap. To s h o w that dependence constraints are satis ed for each e = ( u v) o f E, w e n e e d t o v erify (u k) + (u) (v k+ d(e)) , a (u) + q(u) + (u) a (v) + q(v) + d(e) , a (u) ; a (v) + (u) (q(v) ; q(u) + d(e))

(3) On one hand, suppose that e is not deleted, i.e. e 2 G a . It is equivalent t o s a y that the weight of e after the retiming is equal to zero: q(v) ; q(u) + d(e) = 0. But, since a is a schedule for G a : a (u) + (u) a (v) Thus, inequality (3) is satis ed.

On the other hand, if e is deleted, then q(v);q(u)+d(e) > 0, and thus (q(v);q(u)+d(e)) .

But, by de nition of we h a ve a (u) + (u) ; a (v) a (u) + (u) Thus, inequality (3) is satis ed.

Performances of Algorithm CDR

Now, we show that our algorithm is guaranteed and we g i v e a bound for the initiation interval that is better than the bound given for Algorithm GS.

Theorem 3 Let G be a dependence g r aph, opt the minimum achievable clock period f o r G, the initiation interval of the schedule generated b y A lgorithm CDR when p processors are available, and opt the best possible initiation interval for this case. ) Let G = ( V E d ) be a synchronous circuit, and let c be a p ositive real number. Then there exists a retiming q of G such that (G q )

if and only if there exists an assignment of a real value s(v) and an integer value q(v) to each vertex v 2 V such that the following conditions are satis ed: 8 > > > < > > > :

;s(v) ; (v) for every vertex v 2 V s(v) for every vertex v 2 V q(u) ; q(v) d(e) wherever e = u ! v s(u) ; s(v) ; (v) wherever e = u ! v such that q(u) ; q(v) = d(e) [START_REF] Co Man | Computer and job-shop scheduling theory[END_REF] By letting s(u) = r(u) + (u) for every vertex u, inequalities 4 are equivalent t o : 8 > > > < > > > : r(v) 0 for every vertex v 2 V r(v) ; (v) for every vertex v 2 V q(u) ; q(v) d(e) wherever e = u ! v r(v) r(u) + (u) wherever e = u ! v such that q(u) ; q(v) = d(e) [START_REF] Thomas | Introduction to Algorithms[END_REF] This last system permits to better understand all the techniques that we developed previously:

Optimal schedule for unlimited resources As seen in Lemma 2, the schedule (u k) = t(s u) + 1 k satis es system 5 with r(u) = t(s u) m o d 1 and q(u) = b t(s u) 1 c except the second inequation. We d o h a ve r(v) 1 ; 1 but not necessarily r(v) 1 ; (v) (except if max = 1 and in this case, 1 = opt (see Lemma 2 for another proof)).

Schedule obtained by Algorithm CDR for unlimited resources

By construction, with r = a , q the retiming such that (G q ) = opt , = opt , system 5 is satis ed with the smallest value for . Therefore, this technique leads to the better cyclic schedule with unlimited resources for which the slices do not overlap (because of the second inequation). Therefore, it is not always possible to nd 1 this way.

Schedule obtained by Algorithms CDR and GS for p resources

The schedule obtained satis es system 5 with r = a , the makespan of a . F or CDR, q is the retiming that achieves the optimal period, whereas for GS, q is the retiming de ned from 1 (q(u) = b t(s u) 1 c). For CDR, the fourth inequation is satis ed exactly for all edges e = ( u v) such q(v) ; q(u) = d(e). However, for GS, is required to satisfy the fourth inequation for more edges than necessary (actually for all edges e = ( u v) s u c h that r(u)+ (u) r(v)). Note that for both algorithms, there are additional conditions imposed by the resource constraints that do not appear in system 5.

Example We c a n n o w apply Algorithm CDR to our key example (assume again p = 2 a vailable processors). opt = 14 and the retiming q that achieves this clock period is obtained in two steps by Algorithm 3 (Figures 6 (a), 6 (b) and 6 (c) show the successive retimed graphs). Figure 6 (d) shows the corresponding acyclic graph G a and nally, Figure 6 (e) shows a possible schedule of operations provided by a list scheduling technique, whose initiation interval is = 2 0 . This is better than what we found with Algorithm mGS (see Figure 5 (b)) and a fortiori with Algorithm GS (see Figure 4 (d)). Our purpose in this section is to nd a retimed graph with the minimum number of null weight edges among all retimed graphs whose longest path has the best possible length opt . Removing edges of non null weight will give an acyclic graph that matches both objectives stated at the end of Section 3.3.

Consider step 1 of Algorithm CDR in which w e use the retiming algorithm of Leiserson and Saxe 9] (Algorithm 2 with or without the improved algorithm for step 3). This retiming algorithm does minimize the length of the longest path of null weight i n to a dependence graph, but is does not necessarily minimize the number of null weight edges. See again our key example, Figure 6 (c), for which = 14. We can apply yet another retiming to obtain the graph of gure 7 (a). The length of the longest path of null weight is still = 14, but the total number of null weight edges is smaller. This implies that the corresponding acyclic graph G a (see Figure 7 (b)) contains fewer edges than the acyclic graph of Figure 6 (d) and therefore, is likely to induce a smaller initiation interval 3 (that is the case in our example: we nd an initiation interval equal to 19 (see Figure 7 (c)) 4 . q(op 2 ) = q(op 5 ) = 0 q (op 1 ) = q(op 3 ) = q(op 4 ) = q(op 6 ) = 1 (b): The corresponding acyclic graph (c): A corresponding list scheduling allocation: = 1 9

Recall that a retiming q such that (G q ) = opt is any i n tegral solution to the following system (see formulation of Theorem 1):

( q(v) ; q(u) + d(e) 0 for every edge u e ! v 2 E q(v) ; q(u) + D(u v) 1 for all vertices u v 2 V such that (u v) > opt [START_REF] Feautrier | Fine-grain scheduling under resource constraints[END_REF] Among these retimings, we w ant to select one particular retiming q for which the numb e r o f n ull weight edges in G q is minimized. This can be done as follows: Lemma 4 Let G = ( V E d ) be a synchronous circuit. A retiming q such that (G q ) = opt and such that the number of null weight edges in G q is minimized c an be found in polynomial time by solving the following integer linear program: 8 > > > < > > > : min P e2E v(e) 0 v(e) 1 q(v) ; q(u) + d(e) + v(e) 1 for every edge u e ! v 2 E q(v) ; q(u) + D(u v) 1 for all vertices u v 2 V such that (u v) > opt [START_REF] Gasperoni | Generating close to optimum loop schedules on parallel processors[END_REF] Proof Consider an optimal integer solution (q v) to system 7. q de nes a retiming for G with (G q ) = opt since system 6 is satis ed: indeed q(v) ; q(u) + d(e) + v(e) 1 a n d v(e) 1 implies q(v) ; q(u) + d(e) 0.

Note that each v(e) is constrained by only one equation: q(v) ; q(u) + d(e) + v(e) 1. There are two cases:

The edge e in G q has null weight, i.e. q(v) ; q(u) + d(e) = 0. Then, v(e) = 1 is the only possibility.

The edge e in G q has a positive w eight, i.e. q(v) ; q(u) + d(e) 1 (recall that q and d are integers). In this case, the minimal value for v is 0.

Therefore, given a retiming q, P e2E v(e) is minimal when it is equal to the number of null weight edges in G q . Now, it remains to show that such an optimal integer solution can be found in polynomial time.

For that, we write System 7 in matrix form as minfcx j Ax bg:

minf(0 1) q v ! j 0 B B B @ 0 ;I d 0 I d C I d C 0 0 1 C C C A q v ! 0 B B B @ 0 1 d ; 1 D ; 1 1 C C C A g
where C is the transpose of the jV j j Ej-incidence matrix of G, C 0 is the transpose of the incidence matrix of the graph G 0 whose edges are the pairs (u v) such that (u v) > opt and I d is the jEj j Ej identity matrix.

Note that if M is a totally unimodular matrix, then so are t M and M Id 1 C A is totally unimodular, and nally A is also totally unimodular.

Therefore, solving the ILP Problem 7 is not NP-complete: System 7 considered as an LP problem has an integral optimum solution (Corollary 19.1a in 10]) and such a n i n tegral solution can be found in polynomial time (Theorem 16.2 in 10]).

Let us summarize how this re nement can be incorporated into our software pipelining heuristic: rst, we compute opt the minimum achievable clock p e r i o d f o r G, then we solve System 7 and we obtain a retiming q. W e de ne G a as the acyclic graph whose edges have n ull weight i n G q : t h e longest path in G a is minimized and the number of edges in G a is minimized. Finally, w e s c hedule G a as in Algorithm CDR. We call this heuristic the modi ed CDR (or simply mCDR).

Remark: Solving System 7 can be expensive although polynomial. An optimization that permits to reduce the complexity is to pre-compute the strongly connected components G i of G and to solve the problem separately for each component G i . Then, a retiming that minimizes the number of null weight edges in G q is built by adding suitable constants to each retiming q i so that all edges that link di erent components have positive w eights. Future work will try to nd a pure graph-theoretic approach to the resolution of System 7, so that the practical complexity of our software pipelining heuristic is decreased.

Load balancing

We h a ve restricted so far initiation intervals to integer values. As mentioned in Section 2.1, searching for rational initiation intervals might g i v e better results, but at the price of an increase in complexity: searching for = p q can be achieved by unrolling the original loop nest by a factor of q, thereby processing an extended dependence graph with many m o r e v ertices and edges.

In this section, we propose a simple heuristic to alleviate potential load imbalance between processors, and for which there is no need to unroll the graph.

Remember the principle of the four previously described heuristics (GS, mGS, CDR and mCDR).

First, an acyclic graph G a is built from G. Then, G a is scheduled by a list scheduling technique.

This de nes the schedule a inside each slice of length (the initiation interval). Finally, slices are concatenated, a slice being initiated just after the completion of the previous one.

The main weakness of this principle is that slices do not overlap. Since the schedule in each slice has been de ned by an As-Soon-As-Possible (ASAP) list scheduling, what usually happens is that many processors are idle during the last time steps of the slice. The idea to remedy this problem is to try to ll these \holes" in the schedule with the tasks of the next slice. For that, instead of scheduling the next slice with the same schedule a , w e s c hedule it with an As-Late-As-Possible (ALAP) so that \holes" may appear in the rst time steps of the slice. Then, between two successive slices, processors are permuted so that the computational load is (nearly) equally balanced when concatenating both slices.

Let us formulate this more precisely. De ne a retiming q for G, for example, the retiming that minimizes the period of G q and that minimizes the number of edges of G q with no registers. Delete from G q all edges that have at least one register (i.e. whose weight is positive): this de nes G a . Then, de ne for G a an As-Soon-As-Possible (ASAP) list scheduling as and an As-Late-As-Possible (ALAP) al . Denote by s and l the respective makespans of as and al . By construction, s (op i k ) = as (op i ) + s (q(op i ) + k) and l (op i k ) = al (op i ) + l (q(op i ) + k) are both valid cyclic schedules for G. Note that both de ne the same slices, only the organization inside slices may b e di erent.

To de ne the nal schedule , computations of slice 2K (even slices) for as will be scheduled in slice K of and organized with al , whereas computations of slice 2K + 1 (odd slices) for l will be scheduled in slice K and organized with l . H o wever, they will be delayed so that dependences between operations in slice 2K and in slice 2K+1 are respected. In other words, we try to determine a s c hedule of the following form:

( (op i k ) = as (op i ) + (q(op i ) + k) i f q(op) + k = 2 K (op i k ) = D + al (op i ) + (q(op i ) + k) i f q(op) + k = 2 K + 1 (8) 
where 0 D s , = D + l and D is minimized. D is the time step at which the rst operations that correspond to odd slices of l are initiated. By this construction, all dependences are respected except possibly some dependences between operations of slice 2K and operations of slice 2K + 1 : D has to be chosen su ciently large so that these remaining dependences are satis ed. Let C r s (resp. C r l ) be the set of operations that are allocated to processor r in schedule s (resp. in schedule l ). Denote by E r t the set of edges e = ( op i o p j ) s u c h that op i 2 C r s , op j 2 C t l and q(op j ) ; q(op i ) + d(e) = 1 . E r t induces a set of constraints on D that can be formulated as follows. Let (C r C t ) be the minimum value which meets the following inequality:

(C r C t ) + al (op j ) as (op i ) + (op i ) i f e = ( op i o p j ) 2 E r t Intuitively (C r C t ) is the minimum distance between tasks in slice 2K assigned to processor r and tasks in slice 2K + 1 assigned to processor t, which are linked by a dependence. Dependence constraints are now expressed as: D (C r C t ) for 1 r t p [START_REF] Wang | Decomposed software pipelining[END_REF] Next we h a ve to concatenate two successive slices so that all processors receive the same amount of work. The idea is to make a p e r m utation between processors: clusters for slice 2K + 1 will not be recomputed but target processors will be interchanged to take i n to account possible load imbalance from slice 2K. Let t r = max op2Cr s ( as (op) + (op)) and u t = m i n op2Ct l ( al (op)). Let be a permutation of f1 : : : p g such that C r s and C (r) l will be allocated to the same processor.

Resource constraints are expressed as follows: D + u (r) t r for 1 r p [START_REF] Leiserson | Retiming synchronous circuitry[END_REF] Clearly, the optimal permutation that minimizes D is de ned as:

( u (1) ::: u (p) t 1 ::: t p We obtain the nal heuristic:

1. Use Algorithm mCDR to compute the acyclic graph G a . Compute an ASAP list scheduling as and an ALAP list scheduling al .

2. Compute the minimum distance D from equations 9 and 10.

3. The nal schedule is expressed according to equation 8. As both as and al are list schedulings, we can prove the same guarantee bound for this heuristic as for Algorithms CDR and mCDR since s + l (and each slice computes two iterations instead of one). The possible gain is that rather than executing slices without overlap, we h a ve tried to interleave them as tightly as possible. Example Consider our key example again. Figure 7(c) shows a possible allocation of an instance of G a provided by an ASAP list scheduling. Figure 8 shows an allocation provided by an ALAP list scheduling and Figure 9 the concatenation of these two instances. The initiation interval that we obtain is equal to 37 for two instances. i.e. = 1 8 :5, which i s b e t t e r5 than the initiation interval obtained with Algorithm mCDR (Figure 7(c)). In this paper, we h a ve presented a new heuristic for the SP problem. We h a ve built upon results of Gasperoni and Schwiegelshohn, and we h a ve made clear the link between software pipelining and retiming.

In the single resource class case, our new heuristic is guaranteed, with a better bound than that of 6]. Unfortunately, w e cannot extend the guarantee to the many resource classes case, because list scheduling itself is not guaranteed in this case.

We point out that our CDR heuristic has a low complexity. As for mCDR, further work will be aimed at deriving an algorithmic implementation that will not require the use of Integer Linear Programming (even though the particular instance of ILP invoked in mCDR is polynomial).

Finally, note that all edge-cutting heuristics lead to cyclic schedulings where slices do not overlap (by construction). Our nal load-balancing technique is a rst step to overcome this limitation. It would be very interesting to derive methods (more sophisticated than loop unrolling) to synthesize resource-constrained schedulings where slices can overlap. 
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This small list is far from being comprehensive.

However, this is not the best way to determine type 2 edges. See Section

3.3. 

List scheduling a graph which is a subset of another graph will not always produce a smaller execution time. But intuition shows that it will in most practical cases (the fewer constraints, the more freedom).

It turns out that = 19 is the best possible integer initiation interval with p = 2 processors: the sum of all operation delays is 37, and d 37 2 e = 1 9 .

This cannot be improved further: the two processors are always busy, a s P i (opi) = 3 7 = 2 .

which leads to opt 1 + p ; 1 p opt opt

Now w e show that the bound obtained for Algorithm CDR (Theorem 3) is always better than the bound for Algorithm GS (see Equation 2). This is a consequence of the following lemma:

Lemma 2 1 opt 1 + max ; 1 Proof Let us apply Algorithm CDR with unlimited resources. For that, we de ne a retiming q such that (G q ) = opt and we de ne the graph G a by deleting from G all edges e such that d q (e) > 0. Then, we de ne a schedule for G a with unlimited resources by a (u) = m a x f (P) : P path of G a leading to ug. The makespan of a is opt by construction. Finally, w e get a schedule for G by de ning (u k) = a (u) + ( q(u) + k) opt . Since by de nition 1 is the smallest initiation interval for p = 1, w e h a ve 1 opt . Now, consider a schedule for unlimited resources and initiation interval equal to 1 , as de ned in Section 3.2.1: (u k) = t(s u) + 1 k. L e t r(u) = t(s u) m o d 1 and q(u) = b t(s u) 1 c. As proved in Section 3.3, q de nes a retiming for G, i . e . for all edges e = ( u v), q(v) ; q(u) + d(e) 0. Furthermore, q(v) ; q(u) + d(e) = 0 implies r(u) + (u) r(v). De ne G a by deleting from G all edges e such that d q (e) > 0 (as in Algorithm mGS). Let P be any path in G a , P = ( u 1 : : : u n ). We h a ve, for all i, 1 i < n : r(u i ) + (u i ) r(u i+1 ) Summing up these n ; 1 inequalities, we obtain:

n;1 X i=1 (u i ) + r(u 1 ) r(u n ) (P) ; (u n ) + r(u 1 ) r(u n ) (P) r(u n ) + (u n ) ( 1 ; 1) + max By construction, (G q ) is the length of the longest path in G a , t h us (G q ) 1 + max ;1. Finally, we h a ve opt (G q ), hence the result.

Theorem 4 The bound for Algorithm CDR is better than the bound for Algorithm GS.

Proof This is easily derived from the fact that opt 1 + max ; 1 as shown by L e m m a 2 .

Link between 1 and opt

As shown in Lemma 2, 1 and opt are very close. However, the retiming that can be derived from the schedule with initiation interval 1 does not permit to de ne an acyclic graph with longest path opt . I n o t h e r w ords, looking for 1 is not the right approach to minimizing the period of the graph. In this section, we i n vestigate more deeply this fact, by recalling another formulation of the retiming problem given by Leiserson and Saxe 9].